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Abstract

We introduce a novel deep learning-based framework to interpret 3D urban
scenes represented as textured meshes. Based on the observation that
object boundaries typically align with the boundaries of planar regions, our
framework achieves semantic segmentation in two steps: planarity-sensible
over-segmentation followed by semantic classi�cation. The over-segmentation
step generates an initial set of mesh segments that capture the planar and
non-planar regions of urban scenes. In the subsequent classi�cation step,
we construct a graph that encodes the geometric and photometric features
of the segments in its nodes and the multi-scale contextual features in
its edges. The �nal semantic segmentation is obtained by classifying the
segments using a graph convolutional network. Experiments and comparisons
on two semantic urban mesh benchmarks demonstrate that our approach
outperforms the state-of-the-art methods in terms of boundary quality, mean
IoU (intersection over union), and generalization ability. We also introduce
several new metrics for evaluating mesh over-segmentation methods dedicated
to semantic segmentation, and our proposed over-segmentation approach
outperforms state-of-the-art methods on all metrics. Our source code is available
at https://github.com/WeixiaoGao/PSSNet.

Keywords: Texture meshes; Semantic segmentation; Over-segmentation;
Urban scene understanding

1. Introduction

Recent advances in photogrammetry and 3D computer vision have enabled
the generation of textured meshes of large-scale urban scenes that contain
buildings, trees, vehicles, etc. [1, 2, 3]. Deriving semantic information from
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the mesh models is critical to allowing the use of these meshes in diverse
applications, e.g., energy estimate, noise modeling, and solar potential [4, 5, 6].

There exists a large volume of machine learning-based algorithms for the
semantic segmentation of 3D data, and they are designed mainly for 3D point
clouds [7, 8, 9, 10, 11, 12]. A few recent works also address deep learning for
surface meshes [13, 14, 15, 16] but are limited to individual objects or small
indoor scenes (e.g., living room, kitchen). Unlike point clouds that are usually
obtained as the raw input from typical data acquisition devices, textured meshes
(see Figure 2(a)) provide topological information, have continuous surfaces,
yield better visualization, and are lightweight, which makes them an ideal
representation for urban scenes. Surprisingly, the semantic segmentation of
urban meshes has rarely been investigated, [17, 18, 3] are exceptions.

In this work, we address the semantic segmentation of urban meshes by
introducing a two-step framework using deep learning. Our framework is
designed to improve the following three aspects of semantic segmentation:
1) Segmentation quality. Urban scenes typically contain piecewise regions,
which can already inspire the separation of man-made objects (e.g., roads,
buildings) from organic objects (e.g., trees). We observe that semantic
segmentation algorithms usually perform well in the interior of large smooth
surfaces (including planar surfaces), but that they perform poorly for the
identi�cation of object boundaries. Given the fact that object boundaries
typically align with the boundaries of planar regions (see Figure 1), our
framework achieves semantic segmentation by �rst exploiting a planarity-
sensible over-segmentation step that separates planar and non-planar surface
patches.

Figure 1: Object boundaries often align with the boundaries of planar regions. Top: planar
segmentation results; Bottom: the corresponding ground truth object boundaries (shown as
yellow lines).

2) Descriptiveness of geometric features. Existing methods for semantic
segmentation of 3D data commonly rely on features de�ned on local primitives
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(i.e., points or triangles) [19, 20, 9, 21, 22, 23] or segments (i.e., a group of
points or triangles) [24, 25, 26, 27, 17, 18]. Features from local primitives are
limited to a certain distance in the local neighborhood, while features used
in existing segment-based approaches do not e�ectively capture the contextual
relationships between segments. Thus, they are less descriptive in representing
the complex shapes of diverse objects and in revealing the relationships between
objects. In our work, by initially decomposing a mesh model into planar and
non-planar segments, both local geometric features of individual segments and
global relationships between segments can be captured.
3) E�ciency. Existing deep learning-based methods for processing 3D data
are limited by the data size, especially for large-scale urban scenes. This has
already motivated over-segmentation for semantic segmentation [20, 25, 28, 29].
Following the spirit of the previous work for improving e�ciency, our over-
segmentation facilitates better object boundaries and strengthens semantic
segmentation by distinctive local and non-local features, which is suitable for
the subsequent classi�cation using graph convolutional networks (GCN).

Besides the two-step semantic segmentation framework, we also introduce
several new metrics for evaluating mesh over-segmentation techniques. We
believe the proposed metrics will further stimulate the improvement of over-
segmentation for semantic segmentation.

Experiments on two benchmarks show that our approach outperforms
recently developed methods in terms of boundary quality, mean IoU
(intersection over union), and generalization ability.

In summary, our contributions are: 1) a novel mesh over-segmentation
approach for extracting planarity-sensible segments that are dedicated for GCN-
based semantic segmentation; 2) a new graph structure that encodes both
local geometric and photometric features of segments, as well as global spatial
relationships between segments; 3) several novel metrics for evaluating mesh
over-segmentation techniques in the context of semantic segmentation.

(a) Input mesh (b) Over-segmented mesh (c) Semantic mesh

Figure 2: The work�ow of our method. We �rst decompose the input mesh (a) into a set of
planar and non-planar segments (b). Then we classify the segments using graph convolutional
networks to obtain the results of semantic segmentation (c). In (b), the segments are randomly
colorized. In (c), the colors are: terrain, building, high vegetation, water, vehicle,

boat.
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2. Related Work

While there is a large volume of research on the over-segmentation and
semantic segmentation of urban images [30, 31], we focus in this sole section on
methods designed to process large-scale 3D data, i.e., point clouds and meshes
of urban scenes. Methods specially designed for handling individual objects or
small scenes [32, 13, 14, 15, 16] usually do not scale to large-scale urban scenes
and thus are not covered.

2.1. Over-segmentation of 3D data

Many methods for over-segmentation of 3D data are inspired by image
over-segmentation algorithms [33] and can be divided into four categories: (1)
primitive-based �tting [34, 35, 27], (2) graph-based partitioning [25, 36], (3)
local region expansion [26, 37, 27, 38, 18, 39, 38, 24], and (4) learning-based
methods [28, 29]. Over-segmentation often serves as pre-processing for tasks
such as semantic segmentation, instance segmentation, or reconstruction, and
aims at reducing the complexity of subsequent tasks by using fewer segments
having local homogeneity. Due to the complexity of real-world scenes and the
irregularity of the data, it is challenging to obtain over-segmentation results with
a desired number of segments and clear object boundaries. The aforementioned
methods are either limited by the primitive types (e.g., plane, sphere, and
cylinder) or su�er from severe under-segmentation errors when the number
of segments is reduced or by the type of available labels in the training data
(e.g., a few methods require instance labels [28, 29]). We propose to partition
the input meshes into a relatively small number of homogeneous regions with
clear object boundaries based on both geometric and photometric characteristics
(see Section 3), which is bene�cial to semantic segmentation (see Section 4).

2.2. Semantic segmentation of 3D data

An important step in semantic segmentation is feature extraction. Based on
the methods used for feature extraction, semantic segmentation approaches can
be roughly categorized into three groups: handcrafted-feature-based [7, 19, 17,
20, 8, 18, 39, 11], learning-based [9, 10, 12, 40, 41], and hybrid methods [25, 42].
Handcrafted features are often e�ective when with limited training data. In
contrast, deep-learning techniques are more e�ective when su�cient training
data is available [43]. These methods usually require contextual information to
compute or learn features. However, it is di�cult to capture e�ective global
contextual features. Inspired by SPG [25], our graph structure encodes various
local geometric, photometric, and contextual features, and we apply a GCN
for semantic segmentation. Our method exploits enriched spatial relationships
in the graph at both local and global scales, which greatly facilitates the
GCN model to capture contextual information and learn distinctive features
for semantic segmentation.
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(a) Planar segments (b) Planarity-sensible segments

Figure 3: 2D illustrative comparison between planar and planarity-sensible segments. Each
dot and its line denote a segment.

3. Methodology

Our framework for semantic segmentation of urban meshes has two steps (as
shown in Figure 2):
Planarity-sensible over-segmentation. This step decomposes the urban
mesh into a set of planar and non-planar surface patches because object
boundaries often align with the boundaries of planar regions. This step not
only enhances the descriptiveness of the features learned through local context
but also signi�cantly reduces the number of segments to be classi�ed.
Segmentation classi�cation. We construct a graph with its nodes encoding
the local geometric and photometric features of the segments and its edges
encoding global contextual features. We achieve semantic segmentation of the
mesh by classifying the segments using a graph convolutional network.

3.1. Planarity-sensible over-segmentation

This step aims to decompose the urban mesh into a set of homogeneous
segments in terms of geometric and photometric characteristics, see Figure 3.
Compared with planar segments generated by classical region growing
methods [27], our segments can accommodate more complex surfaces (i.e.,
trees and vehicles). Our over-segmentation, further detailed below, is achieved
in two steps: (1) planar and non-planar classi�cation, and (2) incremental
segmentation.

Planar and non-planar classi�cation. We classify the triangle faces of a mesh
as either planar or non-planar. Following Gao et al. [3], we design a set of
features including Eigen-based (i.e., linearity, planarity, sphericity, curvature,
and verticality), elevation-based (i.e., absolute, relative, and multi-scale), scale-
based (i.e, InMAT radius [44, 45]: interior shrinking ball radius of 3D medial
axis transformation), density-based (i.e., the number of vertices and the density
of triangle faces), and color-based (i.e., greenness and HSV histograms) features,
and we concatenate these features into a feature vector Fi. We then use random
forest (RF) [46] to learn the probability of a face being non-planar as

Gi(L) =
1

|τ |
∑
t∈τ

log
(
Pt(li | Fi)

)
, (1)
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(a) (b) (c) (d) (e)

Figure 4: An illustration of the �rst few steps of incremental segmentation. (a) The seed face
with the highest planar probability is shown in gold color. (b) The local graph is constructed
on the seed face (represented by the region node) and its three neighboring faces (represented
by the face node). (c) The labeling outcome of the Markov random �eld (MRF): one newly
added face is used as a seed face, and two non-added faces will be labeled as visited faces
for the current growth step. (d) A local graph is constructed based on the growing region
(represented by the region node) and two neighboring faces (represented by the face node).
(e) The new labeling outcome, where the newly added two faces will be used as seed faces for
the next growing step.

where τ is a set of decision trees, and the predicted probability from decision
tree t is denoted by Pt ∈ [0, 1]. L = {0, 1} represents the potential labels of a
face i (i.e., li = 0 for planar and li = 1 for non-planar). We learn a probability
map (instead of binary classi�cation) for the subsequent segment aggregation.

Incremental segmentation. Grouping all triangles into segments in one step
using graph cuts would require the total number of segments, which is often not
a priori. Therefore, we use the learned planar and non-planar probability maps
to incrementally aggregate the mesh faces into a set of locally homogeneous
segments. Inspired by Lafarge and Mallet [27], we accumulate faces for a
segment by solving a binary labeling problem. Starting from the face with
the highest planar probability (i.e., the current region r has only a starting
face at the beginning), we incrementally gather its neighboring face i to the
current region r based on the labeling outcome of face i. The growing process
is illustrated in Figure 4. Our idea is to grow a region r if its neighboring face i
receives the same label. We exploit a Markov Random Field (MRF) formulation
to select the most suitable face for the aggregation in each growing iteration.
The energy function U(X) is de�ned as the sum of a unary term ψi(xi) and a
pairwise term φi,r(xi, xr), i.e.,

U(X) = λd ·
∑
i∈A

ψi(xi) + λm ·
∑
i∈A

φi,r(xi, xr), (2)

where A denotes the neighboring faces of the current growing region (i.e., the
faces directly connected to r). xi and xr denote the binary labels that will be
received by face i and region r, respectively. A neighboring face can be added to
the current region only if it receives the same label as the current region. In our
implementation, we �x the label of the current region to 0 (i.e., xr ≡ 0) before
minimizing the energy function. The face i is added to r only when xi = 0
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after the optimization. λd ≥ 0 and λm ≥ 0 are the weights balancing the unary
and pairwise terms. A larger λd can lead to an excessive number of segments
with smaller under-segmentation errors (see Figure 5(a) and Figure 5(b)). In
contrast, a larger λm can result in fewer segments but may introduce larger
under-segmentation errors (see Figure 5(c)).

The unary term ψi(xi) measures the penalty of assigning a label xi to
a face i. To de�ne this term, we consider the geometric distance (for planar
regions) and the probability map (for non-planar regions), which is formulated
as

ψ(xi) =

{
min

{
d(fi, pr), Ci

}
, if xi = 0

1−min
{
d(fi, pr), Ci

}
, if xi = 1

, (3)

Ci =

{
1− λg ·Gi, if li = 1 ∧ lr = 1
∞, otherwise

, (4)

where d(fi, pr) measures the Euclidean distance between the farthest vertex of
face i and the �tted plane pr of the region r. The plane is obtained by linear least
squares �tting using all the vertices of the region and dynamically updated when
a new face has been added. During growing, when xi = 0, min

{
d(fi, pr), Ci

}
measures the cost of assigning face i the same label as the current region r (i.e.,
the cost of adding face i to the current region r). On the contrary, the cost is
measured by 1 −min

{
d(vi, pr), Ci

}
when xi = 1. In particular, for the planar

case, since Ci = ∞, the geometric distance d(fi, pr) is actually used as the
cost measure. For the non-planar case, the prior term Gi (see Equation (1)) is
considered to de�ne the cost Ci. λg ≥ 0 is a weight that controls the relative
numbers of planar and non-planar segments (see Figure 5(a) and Figure 5(d)).

The pairwise term φi,r(xi, xr) is designed to control the smoothness degree
during the growing process,

φi,r(xi, xr) = ̸ (ni,nr) · 1(xi ̸= xr), (5)

where ni and nr denote the normals of a neighboring triangle face i and the
region r, respectively. This term encodes the angle between these normal
vectors, to reduce the normal deviation within the local neighborhood in the
segmentation. 1(xi ̸= xr) is an indicator function that measures the coherence
between xi and xr.

The energy U(X) is minimized using the α−β swap graph cut algorithm [47]
to accumulate a face for the current segment. The growth of a segment stops
if no more faces can be accumulated. We then restart growing a new segment
from the face with the highest planar probability in the remaining set of faces.
The growing of segments is repeated until all mesh faces have been processed.

3.2. Classi�cation

We construct a graph whose nodes encode features of the segments and
edges encode interactions between segments. With this graph, the semantic
segmentation of the mesh is achieved by classifying the segments using GCN.
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(a) λd = 1, λm = 0, λg = 0 (b) λd = 2, λm = 0, λg = 0

(c) λd = 1, λm = 1, λg = 0 (d) λd = 1, λm = 0, λg = 1

Figure 5: The e�ect of the parameters λd, λm, and λg on the over-segmentation. These
parameters provide control over the size and boundary smoothness of the segments.

Compactness CPk =
4·π·area(sk)

C(sk)2
Shape Index SIk =

C(sk)
4
√

area(sk)

Straightness SDk =

∑m
i=1

λ2
λ3

m Avg Distance Dk =

∑i=1
n dist(pi,Pk)

n

Table 1: Shape-based features de�ned on segments. C(sk) is the circumference of a segment
sk. λ2 and λ3 are the eigenvalues derived from the linear �tting line of m boundary points in
3D [48]. Avg Distance measures the average distance from nmesh vertices pi to the supporting
plane Pk of the segment.

Node feature embedding. In our graph, each node represents a segment and it
encodes two types of features generated based on the vertices and face centroids
of the segment: 1) Fl(sk)256 is learned using PointNet [9], and the input to it
is a point cloud of randomly sub-sampled points from mesh vertices and face
centroids. The size of the feature vector is 128×6 and consists of XYZ and RGB;
2) Fh(sk)48 is generated from the handcrafted feature generator (HFG), and it
contains the same type of features used for planar and non-planar classi�cation
(see in Section 3.1) and four additional shape-based features capturing local
geometric di�erences (see Table 1).

Edge feature embedding. In contrast to graphs de�ned on 3D points or triangle
faces, graphs de�ned on certain segmentation of the data can better capture
global contextual relationships than simple adjacency connections. The idea
behind the designed graph is to give more prominence to the segment di�erences
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(a) Parallelism edges (b) Connecting-ground edges

(c) ExMAT edges (d) Spatially-proximate edges

Figure 6: An illustration of the four types of edges in our graph. Each color indicates a
segment encoded as a node (i.e., the colored dot on each segment) in the graph. The dash
lines denote the graph edges. In (c), the blue circles represent the exterior shrinking balls.

that are usually present in urban scenarios. To this end, we intend to include
global features that ful�ll two conditions. First, the global features should
be generalizable, i.e., they can be captured in di�erent scenarios. Second,
the global features should be established between graph nodes that have large
feature di�erences. To make full use of the planar and non-planar segments and
establish meaningful relationships between the segments, we propose a graph
consisting of the following four types of edges (see Figure 6):

1) parallelism edges: edges connecting parallel planar segments. Two planar
segments are considered parallel if the angle between their supporting
planes is smaller than a threshold (5◦ in our experiments). These edges
mainly connect the planar segments belonging to man-made objects.

2) connecting-ground edges: edges connecting segments and their local
ground planes. A local ground plane is identi�ed as the lowest and largest
planar segment in a cylindrical neighborhood (30 m in our experiments)
around the boundary vertices of the segment. These edges primarily
capture the relationship between the ground and all non-ground objects.

3) exterior medial axis transform (ExMAT) edges. We �rst build the ExMAT
(i.e., exterior shrinking ball radius of 3D medial axis transformation) [44,
45] on the segments, and we introduce graph edges that link the segments
connected by the exterior shrinking ball (see Figure 6(c)). Since the
external skeleton usually corresponds to the joints between objects,
ExMAT edges allow connecting segments that are adjacent but belong
to di�erent objects.

4) spatially-proximate edges. We �rst build a 3D Delaunay triangulation [49]
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with the input mesh vertices and the centroids of mesh faces. Two
segments are connected by an edge if at least one pair of points from
the two segments are connected by a Delaunay edge. This type of
edges allow the encoding of contextual information on di�erent scales.
Particularly, these edges contribute to capturing the relationships between
urban objects from short-range (for objects that are close to the ground)
to long-range (for objects that are far away from the ground).

With the above graph edges, we de�ne the edge feature Fh(ek,k+1) =
log(Fh(sk)/Fh(sk+1)), where sk and sk+1 are the two segments connected by
an edge ek,k+1. We also introduced two additional edge features de�ned as the
mean and standard deviation of the vertex o�sets of the segment boundaries, in
which the o�set is de�ned using the closest point pair between two segments.

Segment classi�cation. Based on the graph and feature embedding (see Fig-
ure 7), we exploit a GCN [50] to classify the segments. The node features
learned from PointNet [9] and the handcrafted features are concatenated and
fed to MLP (Multilayer perceptron) to output a 64D feature vector that serves
as the hidden state of the Gated Recurrent Unit (GRU: a gating mechanism in
recurrent neural networks for updating and resetting hidden states to capture
short-term and long-term dependencies in sequence) [51]. We apply ReLU
activation [52] and batch normalization [53] for each hidden layer of all MLPs.
The computed edge features are used as the input to the Filter Generating
Network (FGN: a sequence of MLPs with widths of 32, 128, and 64 to output
a 64D edge feature vector) [25]. The output edge weights are then used to
update the hidden state and re�ne the GRUs via Edge-Conditioned Convolution
(ECC: a dynamic edge-conditioned �lter that computes element-wise vector-
vector multiplication for each edge and averages the results over respective
nodes) [54]. To alleviate class imbalance, we apply a standard cross-entropy

loss [55] ln = −wyn
log

exp(xn,yn )∑C
c=1 exp(xn,c)

weighted by wyn
=

√
N/nc, where x is

the input, and y is the target. N denotes the total number of segments, and
nc represents the number of segments in each class c. The �nal output is per-
segment labels that are then transferred to the faces of the input mesh.

4. Evaluation

4.1. Data Split

We have implemented our mesh over-segmentation with CGAL [56] and
Easy3D [57], and the semantic classi�cation with PyTorch [58]. All experiments
were carried out on a desktop PC with a 3.5GHz CPU and a GTX 1080Ti GPU.

We have used the SUM dataset [3] and H3D dataset [59] to evaluate our
method. To the best of our knowledge, SUM is the largest benchmark dataset
for semantic urban meshes, which covers about 4 km2 of Helsinki (Finland) with
six object classes: terrain (terra.), high vegetation (h-veg.), building (build.),
water, vehicle (vehic.), and boat. The whole dataset contains 64 tiles each
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Figure 7: The feature embedding components for segment classi�cation. Our network takes
mesh vertices and face centers (with XYZ and RGB) of each segment, denoted as Fp(sk)6,
as input. PointNet [9] is used to learn features Fl(sk)256 for each segment. The handcrafted
features Fh(sk)48 are computed using the feature generator (HFG). These two types of features
are then processed jointly by the MLP and then re�ned in the GRU. The Fh(ek,k+1)48
are handcrafted edge features and input to a �lter generating network (FGN). The �nal
classi�cation is obtained using edge-conditioned convolution (ECC) that takes both node and
edge features as input. The output segment labels L(sk) are then transferred to face labels
L(i).

covering an 250 m × 250 m area. Following the SUM baseline, we used 40
tiles (62.5% of the whole dataset) for training, 12 tiles (18.75%) for the test,
and 12 tiles for validation. The H3D dataset covers about 0.19 km2 area of the
village of Hessigheim (Germany) with 11 classes: Low Vegetation, Impervious
Surface, Vehicle, Urban Furniture, Roof, Facade, Shrub, Tree, Soil/Gravel,
Vertical Surface, and Chimney. We follow the data splits in H3D [59], and
we further merge small mesh tiles into a large one to obtain more contextual
information.

4.2. Evaluation metrics

Metrics for over-segmentation. Our over-segmentation aims to produce
homogeneous segments to better facilitate semantic segmentation. We propose
three novel evaluation metrics focusing on the impact of the over-segmentation
on the �nal semantic segmentation: object purity (OP), boundary precision
(BP), and boundary recall (BR).

Since our goal is semantic segmentation, the best achievable over-
segmentation is identical to the ground truth semantic segmentation. In
this ideal situation, each segment covers exactly an individual object, and
its boundaries perfectly align with the object boundaries. Thus, similar to
intersection over union, we de�ne object purity as

OP (S,G) =

∑
k purity(sk, G)

area(G)
, (6)

where S = {sk} denotes the set of segments in our over-segmentation, and
G = {gk} are the segments extracted as connected components from the ground
truth semantic segmentation. purity(sk, G) measures the surface area of the
largest overlapping region between a segment and the ground truth segments
(see Figure 8).
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(a) (b) (c) (d)

Figure 8: 2D schematic of object purity, boundary precision, and boundary recall. In (a),
the yellow region represents the ground truth segment G. The blue region represents the
generated segment S. The pink region represents the largest overlapping region between a
segment and the ground truth segments. In (b), the yellow edges represent the border BG of
the ground truth segment. In (c), the blue edges represent the border BS of the generated
segment. The orange edges represent the �rst ring of BS . The green edges represent the
second ring of BS . In (d), the red edges are the intersection of BG and BS (as well as its �rst
two rings). The black dashed line represents the true border between objects.

Boundary precision measures the correctness of the segment boundaries.
Thus, it is de�ned to quantify how much the segment boundaries overlap with
the boundaries of the ground truth semantic segmentation,

BP (BS , BG) =
length(BS ∩BG)

length(BS)
, (7)

where BS and BG denote the boundaries of the over-segmentation and those
of the ground truth of the semantic segmentation, respectively. The function
length(·) quanti�es the total length of a set of segment boundaries. To handle
noisy and dense meshes, we allow a tolerance when looking for overlapping
boundary edges. Speci�cally, two edges e1 and e2 are considered overlapping if
the two endpoints of e2 fall within the 2-ring neighborhood of the endpoints of
e1 (see Figure 8).

Boundary recall measures the completeness of the segment boundaries,
de�ned as

BR(BS , BG) =
length(BS ∩BG)

length(BG)
. (8)

Metrics for semantic segmentation. To evaluate semantic segmentation results,
we measure the precision, recall, F1 score, and intersection over union (IoU) for
each object class, and we also record the overall accuracy (OA), mean accuracy
(mAcc), and mean intersection over union (mIoU) of all object classes.

4.3. Evaluation of over-segmentation

We evaluate over-segmentation on SUM dataset [3] because it covers a larger
area and contains fewer unlabeled areas compared to H3D dataset [59]. Figure 9
presents our planarity-sensible over-segmentation result and comparison with
seven other commonly used over-segmentation techniques, namely region
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growing (RG) [27], e�cient RANSAC (RA) [35], geometric partition (GP) [25],
supervized superpoint generation (SSP) [28], variational shape approximation
(VSA) [26], supervoxel generation (SPV) [24], voxel cloud connectivity
segmentation (Vccs) [38], superface clustering (SC) [17], and superface
partitioning (SP) [18]. RG, VSA, SC, SP, and our method use meshes as input,
and the other methods (originally developed for point clouds) perform over-
segmentation on points that we densely sampled (10 pts/m2) from the input
mesh. We can see from Figure 9 that the segment boundaries of our method
are largely aligned with object boundaries. RG and VSA perform similarly but
generate excessive segments for non-planar objects such as trees. Our over-
segmentation generates segments that are closer to semantically meaningful
objects. In terms of the number of segments, RA, SC, SP, Vccs, and SPV
generate relatively large numbers of segments, which are unfavorable to the
subsequent classi�cation using GCN. In contrast, our method generates the
least segments, which is a strong advantage for the subsequent classi�cation
step in terms of e�ciency.

(a) Input (b) RG [27]. 13656 (c) RA [35]. 446424 (d) GP [25]. 30586

(e) SSP [28]. 30375 (f) VSA [26]. 14177 (g) SPV [24]. 53554 (h) Vccs [38]. 51199

(i) SC [17]. 85126 (j) SP [18]. 92010 (k) Ours. 8637 (l) Truth. 371

Figure 9: Comparison of mesh over-segmentation methods on a tile of the SUM dataset [3].
(b) to (k) show the over-segmentation results with the same object purity (around 92%) for all
methods. The number below each result denotes the number of segments required to achieve
the desired object purity. (l) shows the connected components extracted from the ground
truth semantic segmentation.

We have used the entire SUM dataset [3] to evaluate our over-segmentation
method in terms OP, BP, and BR, and we have compared them with those of
the other seven over-segmentation methods. In the comparison, we tuned the
parameters of each method such that all methods generated a similar number
of segments, and we then computed the OP, BP, and BR for each method.
We recorded the performance of all methods for di�erent numbers of segments,
and the results are shown in Figure 10. It can be observed that our method
outperforms the others for all three metrics. Speci�cally, as the number of

13



70%
73%
76%
79%
82%
85%
88%
91%
94%

10k 20k 30k 40k 50k 60k 70k 80k

O
P

Segments

(a) Object purity

10%

15%

20%

25%

30%

35%

40%

10k 20k 30k 40k 50k 60k 70k 80k

B
P

Segments

(b) Boundary precision

70%

75%

80%

85%

90%

95%

100%

10k 20k 30k 40k 50k 60k 70k 80k

B
R

Segments

(c) Boundary recall

Figure 10: Comparison of di�erent over-segmentation method in terms of OP, BP, and BR

on the SUM dataset [3]. For each method, we tuned their parameters such that all methods
generated a similar number of segments. The data was recorded at di�erent numbers of
segments for all methods.

segments increases, the OP of VSA, RG, and SSP get closer to ours. However,
VSA underperforms our method in terms of BP and BR, which indicates that
our method generated segments with better boundary qualities. For RG and
SSP, its OP, BP, and BR are rather low when the number of segments is small,
indicating that our method is more robust with a relatively small number of
segments. Other methods like RA, SP, GP, SPV, Vccs, and SC also require a
larger number of segments to produce satisfactory results.

To understand the potential of each method, Table 2 provides the maximum
achievable performance of semantic segmentation for each over-segmentation
method. The maximum achievable performance is measured by the maximum
IoU and mIoU that can be achieved in theory. We can see that our method
signi�cantly outperforms the other methods with a considerable margin ranging
from 4.8% to 30.1% in terms of mIoU (which re�ects the under-segmentation
errors). It is also worth noting that VSA has slightly better results on very few
object classes (e.g., water and boat) while our method can better distinguish
small non-planar objects such as vehicles which are very common in urban
textured meshes.

Performance analysis. For the impact of planarity-sensible over-segmentation
in di�erent con�gurations, we experimented with di�erent settings for each
weight term based on the default parameters (i.e., λd = 1.2, λm = 0.1, and
λg = 0.9). In each experiment, only one weight is tuned while the others remain
unchanged. Figure 11 shows its results in terms of OP and the number of
segments. We can observe that increasing λd leads to a larger OP but also
encourages the splitting of segments into smaller planar ones. In contrast,
increasing λm results in over-smoothed segments (i.e., the smaller segments are
merged into a larger one). However, λg performs di�erently from the other two
since our aim is to use λg to reduce the number of segments without decreasing
OP (as demonstrated in Figure 11). The performance of applying λg is limited
to the results of planar and non-planar classi�cation, while the performance of
the other two terms is limited to the quality of the mesh.
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Methods Terra. H-veg. Build. Water Vehic. Boat mIoU
SP [18] 73.4 88.1 96.8 12.5 15.7 68.1 59.1
RANSAC [35] 82.3 88.6 97.0 57.3 29.8 69.7 70.8
Vccs [38] 77.4 86.3 94.3 87.4 35.9 84.5 77.6
SC [17] 86.8 92.5 97.8 75.5 46.1 79.3 79.7
SPV [24] 83.7 91.5 97.0 87.1 37.5 84.5 80.2
GP [25] 86.5 91.2 96.6 87.1 46.9 84.6 82.1
RG [27] 90.9 93.9 98.4 84.5 53.9 75.6 82.9
SSP [28] 85.3 91.2 96.1 91.1 49.6 88.3 83.6
VSA [26] 91.1 95.1 98.7 93.4 39.3 88.9 84.4
Ours 93.3 95.6 98.9 91.6 67.1 88.8 89.2

Table 2: Comparison of di�erent over-segmentation methods in terms of maximum achievable
performance of semantic segmentation on test data from the SUM dataset [3], with 50,000
segments. Evaluation metrics are reported as per-class IoU (%) and mean IoU (mIoU, %).
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Figure 11: Comparison of over-segmentation with di�erent parameter con�gurations in terms
of object purity and the number of segments on the SUM dataset [3]. Note that the range of
parameters depends on the quality of the input data.

4.4. Evaluation of semantic classi�cation

(a) Input (b) Segments (c) Semantic (d) Truth (e) Error (red)

Figure 12: Semantic segmentation results of our method on two tiles from the SUM
dataset [3].

We have tested our semantic classi�cation method on both the SUM [3] and
the H3D [59] datasets.
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(a) Original (b) SUM-RF [3] (c) KPConv [12] (d) Ours (e) Truth

Figure 13: Semantic segmentation results of SUM-RF [3], KPConv [12], and our method on
�ve tiles from the SUM dataset [3].
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Methods Terra. H-veg. Build. Water Vehic. Boat mIoU OA mAcc mF1
Training

(h)
Testing
(min)

PointNet [9] 56.3 14.9 66.7 83.8 0.0 0.0 36.9 ± 2.3 71.4 ± 2.1 46.1 ± 2.6 44.6 ± 3.2 1.8 1
RandLaNet [40] 38.9 59.6 81.5 27.7 22.0 2.1 38.6 ± 4.6 74.9 ± 3.2 53.3 ± 5.1 49.9 ± 4.8 10.8 52
SPG [25] 56.4 61.8 87.4 36.5 34.4 6.2 47.1 ± 2.4 79.0 ± 2.8 64.8 ± 1.2 59.6 ± 1.9 17.8 26
PointNet++ [10] 68.0 73.1 84.2 69.9 0.5 1.6 49.5 ± 2.1 85.5 ± 0.9 57.8 ± 1.8 57.1 ± 1.7 2.8 3
RF-MRF [18] 77.4 87.5 91.3 83.7 23.8 1.7 60.9 ± 0.0 91.2 ± 0.0 65.9 ± 0.0 68.1 ± 0.0 1.1 15
SUM-RF [3] 83.3 90.5 92.5 86.0 37.3 7.4 66.2 ± 0.0 93.0 ± 0.0 70.6 ± 0.0 73.8 ± 0.0 1.2 18
KPConv [12] 86.5 88.4 92.7 77.7 54.3 13.3 68.8 ± 5.7 93.3 ± 1.5 73.7 ± 5.4 76.7 ± 5.8 23.5 42
Ours 84.9 90.6 93.9 84.3 50.9 32.3 72.8 ± 2.0 93.8 ± 0.4 79.2 ± 3.0 81.6 ± 2.3 16.3 62

Table 3: Comparison with state-of-the-art semantic segmentation methods on the SUM
dataset [3]. Per-class IoU (%), mean IoU (mIoU, %), Overall Accuracy (OA, %), mean class
Accuracy (mAcc, %), mean F1 score (mF1, %), and the running times for training (over-seg:
1.8 hours, graph: 2.7 hours, classi�cation: 11.8 hours, total: 16.3 hours) and testing (over-seg:
15 minutes, graph: 40 minutes, classi�cation: 7 minutes, total: 62 minutes) are included.
Note that each method was run ten times and the mean performance is reported here.

4.4.1. Evaluation on SUM

Figure 12 shows the results for two tiles from the SUM dataset. From the
extensive experiments, we also observed that our method is robust against non-
uniform triangulation of mesh, for which an example is shown in Figure 15.
We have also compared our method with several state-of-the-art semantic
segmentation approaches, among which RF-MRF [18] and SUM-RF [3] directly
consume meshes. To compare with methods originally developed for semantic
segmentation of point clouds, e.g., PointNet [9], PointNet++ [10], SPG [25],
KPConv [12], and RandLA-Net [40], we sampled points from the meshes by
following [3]. For each deep learning method designed for point clouds, we
feed it with the colored point clouds densely sampled from the texture meshes.
We tune the hyper-parameters starting with their default setting. For a fair
comparison, we use the same weight for all the competing methods involved in
the comparison. Due to the randomness of deep learning, we ran each method
ten times with the same settings to record its average performance. We report
the results in Table 3, and we can see the results of the top three best methods
in Figure 13. Our method achieves the highest per-class IoU on the majority
of object classes, and it outperforms all other methods in all overall metrics,
with a margin from 4% to 35.9% in terms of mIoU. Compared to KPConv and
SPG, our method requires less training time, and our results are more stable
(i.e., with smaller standard deviations).

4.4.2. Evaluation on H3D

We also attempted to train and test on the H3D dataset [59] (see for an
overview of the results in Figure 14). It should be noted that the H3D dataset
is much smaller (0.19 km2) than SUM (4 km2). In addition, 40% of the area of
the mesh in H3D is unlabeled and many triangles have incorrect labels, which
was due to the limitation in their cloud-to-mesh labeling process where the
correspondence was either not completed or has ambiguities when transferring
the labels from the points to the mesh faces. This prevents H3D from being
an ideal training dataset for us, as both our method and other deep learning
methods require a large amount of labeled data. Besides, to distinguish between
di�erent classes that are geometrically coplanar in H3D (e.g., Low Vegetation,
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(a) Input (b) Segments

(c) Semantic

Figure 14: Semantic segmentation results of our method on the test area of the H3D
dataset [59].

Impervious Surface, Soil, and Gravel), the planar class is divided into sub-
classes and used as a prior for over-segmentation in our approach. The test
results show that our method achieves about 52.2% mIoU, outperforming the
KPConv (45.5% mIoU), SPG (29.9% mIoU), and PointNet++ (15.6% mIoU).

(a) Near-uniform triangulation (b) Non-uniform triangulation

Figure 15: Robustness against triangulation.

4.5. Ablation study

To understand the e�ect of several design choices made in the graph
construction, and the contributions of the hand-crafted features and the learned
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Model OA (%) mAcc (%) mIoU (%) ∆mIoU (%)

Graph Edges

No parallelism 92.9 75.3 68.5 ± 1.9 -4.3
No ExMAT 93.1 76.0 69.3 ± 1.3 -3.5
No spatial-proximity 93.1 76.3 69.4 ± 1.9 -3.4
No connecting-ground 93.3 76.3 69.9 ± 1.6 -2.9
Only random 92.5 74.9 67.8 ± 2.3 -5.0
With orthogonal 93.0 75.3 68.9 ± 1.8 -3.9

Features

No All Handcrafted 89.7 75.9 65.0 ± 3.8 -7.8
No O�set 92.4 75.0 67.2 ± 1.5 -5.6
No PointNet 92.8 74.5 68.2 ± 1.3 -4.6
No Eigen 93.0 75.3 68.3 ± 2.3 -4.5
No Color 93.1 75.0 68.9 ± 1.4 -3.9
No Density 93.1 76.4 69.4 ± 2.0 -3.4
No Scale 93.0 76.1 69.7 ± 0.9 -3.1
No Shape 93.2 75.6 69.7 ± 0.8 -3.1
No RGB with PointNet 93.5 76.4 70.4 ± 0.4 -2.4
Ours 93.8 79.2 72.8 ± 2.0 -

Table 4: Ablation study of graph edges and features on the SUM dataset [3]. PointNet

denotes features learned from PointNet [9] with XYZ and RGB as input, and � No RGB with

PointNet" means RGB is not used as input.

features, we have conducted an ablation study on the SUM dataset [3].
Table 4 summarizes the ablation result of the graphs and the features. The

upper part of Table 4 reveals the impact of removing each type of graph edges
(i.e., connections between segments) on the �nal semantic segmentation. It
reveals that every type of graph edges contributes to the performance, and
removing any of them results in a drop in mIoU in the range [2.9%, 4.3%].
This implies that both local and global interactions between segments provide
useful information and play an important role in semantic segmentation. To
understand the e�ectiveness of the designed graph, we compared it to using
a graph with random connections (with the same number of edges as in our
designed graph). Although these connections may overlap with the edges we
have designed, the presence of randomness signi�cantly reduces the capability
of the network. This is because the random set of edges does not convey
the e�ective features captured by our carefully designed edges. Besides, the
orthogonal edges were also tested (see Table 4), from which we can see that they
are less useful than the other types of edges. This is because the orthogonal
relationship is more often incident to man-made structures within the same
object (such as building parts) than between segments from di�erent objects.

The lower part of Table 4 details the ablation analysis of di�erent features.
We have evaluated the importance of each feature by removing it from the
experiment and recording the performance of the semantic segmentation. These
experiments show that the combination of all the features outperforms all
degraded features with a margin of mIoU from 2.4% to 7.8%, which means
every feature contributes to the performance. It is also interesting to notice
that the results are more stable without RGB information as input to PointNet
for feature learning, which indicates the low quality (e.g., distortion, shadow)
of mesh textures in our training datasets.
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4.6. Generalization ability

We have conducted experiments to test the generalization ability of our
method and the competing methods. Such tests can indicate the applicability
of models trained by di�erent methods on practical test datasets. SUM [3] and
H3D [59] are well quali�ed for generalization ability tests as they both represent
urban scenes. As the original classes of these two datasets do not match, we
merged them into four common classes that are typical of urban scenarios for
testing, i.e., terrain (including water, low vegetation, impervious surface, soil,
and gravel), high-vegetation (including shrub and tree), building (including roof,
facade, and chimney), and vehicle (including car and boat). For all methods,
we trained the model on the SUM dataset and perform the testing on the H3D
dataset. In particular, for training and validation, we have used the training
and validation splits of the SUM dataset as they cover a larger area than H3D.
For testing, we have used training and validation splits of the H3D dataset that
has publicly available ground truth labels. To compare the di�erence in results,
we also tested the same model on the test area of SUM.

Methods Terra. H-veg. Build. Vehic. mIoU

SUM

PointNet [9] 66.8 13.8 65.7 0.0 36.6
PointNet++ [10] 77.7 76.7 86.3 1.3 60.5
SPG [25] 86.0 73.9 88.5 13.9 65.6
RF-MRF [18] 86.8 86.7 90.5 20.7 71.2
RandLaNet [40] 83.0 91.6 90.1 22.0 71.7
KPConv [12] 89.4 84.7 91.5 34.1 75.0
SUM-RF [3] 88.0 90.2 92.3 30.4 75.2
Ours 89.5 92.0 93.9 33.0 77.1

H3D

PointNet++ [10] 0.0 0.0 0.0 1.1 0.3
KPConv [12] 0.0 0.0 0.0 1.1 0.3
SPG [25] 0.0 0.0 18.3 0.0 4.6
RandLaNet [40] 0.0 0.0 20.7 0.0 5.2
PointNet [9] 56.9 24.1 0.0 0.0 20.3
RF-MRF [18] 73.9 46.0 40.0 4.7 41.1
SUM-RF [3] 80.2 44.0 41.6 9.2 43.8
Ours 74.2 66.2 44.5 13.4 49.6

Table 5: Generalization ability comparison. All methods are trained on four classes of the
SUM dataset [3]. The top eight rows show the scores on the testing area of the SUM dataset,
while the bottom eight records show the testing results on the four classes H3D dataset. Per-
class IoU (%) and mean IoU (mIoU, %) are reported here.

As shown in the top eight rows of Table 5, the mIoU of all methods has
improved compared to the previous six classes in the SUM test area because
the task of classi�cation has become relatively easy due to the reduction in
the number of classes. The bottom eight records of Table 5 demonstrate
the generalization ability of di�erent methods. We can see that our method
outperforms all competing methods with a margin from 5.8% to 49.3% in terms
of mIoU. Except for our approach, almost all other deep learning-based methods
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(i.e. PointNet++ [10], SPG [25], KPConv [12], and RandLA-Net [40]) failed to
predict the classes in a new urban scene. This is because these methods all learn
global features by having a large receptive �eld, and these global features can
lead to over�tting of the model to the training data and result in degradation of
generalization ability. In contrast, the global features of PointNet [9] are based
on aggregated local features and do not correspond to a larger receptive �eld,
which does not have the over�tting problem. In other words, training with only
local features avoids the degradation of model generalization ability, which is
better illustrated by RF-MRF [18] and SUM-RF [3] as they only use features
extracted on local segments. Whereas our approach includes global features
derived from the local features, our proposed graph is based on the spatial
distribution of the object components in the urban scene, which facilitates the
generalization of the global features.

From Table 4 and Table 5, we can conclude that compared with features
learned by the neural network, the proposed handcrafted features and edges
lead to better semantic segmentation results and contribute to a stronger
generalization ability, especially for data with domain gaps. In particular, the
domain gaps are attributed to the di�erences between training data and test
data (i.e., di�erent feature distributions), and the reasons for these di�erences
can be grouped into two main categories: 1) same data acquisition and
processing pipeline, but covering di�erent urban scenarios (e.g., from dense
urban area to rural or forest area); 2) covering the same urban scenarios but with
di�erent data acquisition (e.g., using di�erent sensors or di�erent parameters
for data collection) and processing pipelines (e.g., using di�erent approaches
or parameter con�gurations for generating the 3D data). Nevertheless, the
features learned by the existing neural network architectures cannot cope
with such di�erences without adding new training samples from the test
area. Our segment-based handcrafted features and edges capture the intrinsic
characteristics of the object (e.g., the facade is usually perpendicular to the
ground or the surface of the tree is undulating and non-planar) and can better
cope with the variance in feature distribution.

4.7. Limitations

Our method is based on the observation that urban scenes consist of objects
demonstrating both planar and non-planar regions, and that object boundaries
lie in the connections between the planar and non-planar regions. In special
cases where adjacent objects contain only non-planar regions (e.g., vehicles
underneath trees), our method will not be able to di�erentiate them. In
addition, our approach generates segments for semantic classi�cation, which
reduces memory consumption as well as the number of samples. Speci�cally, if
the training data covers a small area (e.g., H3D [59]) and only a few segments are
generated after over-segmentation, the number of samples may not be su�cient
to train a competent model. Possible solutions include data augmentation
of segments and graph connections or adding more labeled data. Besides,
our method requires adjacency information of the mesh for incremental region
growing. Additional preprocessing is necessary for meshes that are non-manifold
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or contain duplicated vertices, as they destroy the topological adjacency
information. Potential solutions can be to split non-manifold vertices or to
reconstruct adjacency information of duplicated vertices. In our experiments,
the meshes in the SUM dataset [3] are 2-manifold, while the meshes in the H3D
dataset [59] are not.

5. Conclusion

We have presented a two-stage supervised framework for semantic
segmentation of large-scale urban meshes. Our planarity-sensible over-
segmentation algorithm favors generating segments largely aligned with object
boundaries, closer to semantically meaningful objects, can deliver descriptive
features, and can represent urban scenes with a smaller number of segments. A
thorough analysis reveals that our planarity-sensible over-segmentation plays a
key role in achieving superior performance in semantic segmentation. We have
also shown that exploiting multi-scale contextual information better facilitates
semantic segmentation. Furthermore, we have demonstrated that our proposed
approach achieves better generalization abilities in comparison with other
methods, owing to the segment-based local features and unique connections
in graphs. Our proposed new metrics are e�ective for evaluating mesh over-
segmentation methods dedicated to semantic segmentation. We believe the
proposed metrics will further stimulate improving other over-segmentation
techniques. In future work, we would like to extend our framework to part-
level (e.g., dormers, balconies, roofs, and facades of buildings) urban mesh
segmentation. In addition, we will also investigate how the semantics learned
from multi-view images can be used for semantic segmentation of urban meshes.
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