
Filling holes in LoD2 building models

Weixiao Gao1∗, Ravi Peters2, Hugo Ledoux1, Jantien Stoter1

1 Delft University of Technology, The Netherlands - (w.gao-1,h.ledoux,j.e.stoter)@tudelft.nl
2 3DGI, Zoetermeer, The Netherlands - ravi.peters@3dgi.nl

Keywords: Mesh Hole Filling, LoD2 Building Models, Repair of 3D Models, CityGML.

Abstract

This paper presents a new algorithm for filling holes in Level of Detail 2 (LoD2) building mesh models, addressing the challenges
posed by geometric inaccuracies and topological errors. Unlike traditional methods that often alter the original geometric structure
or impose stringent input requirements, our approach preserves the integrity of the original model while effectively managing
a range of topological errors. The algorithm operates in three distinct phases: (1) pre-processing, which addresses topological
errors and identifies pseudo-holes; (2) detecting and extracting complete border rings of holes; and (3) remeshing, aimed at
reconstructing the complete geometric surface. Our method demonstrates superior performance compared to related work in
filling holes in building mesh models, achieving both uniform local geometry around the holes and structural completeness.
Comparative experiments with established methods demonstrate our algorithm’s effectiveness in delivering more complete and
geometrically consistent hole-filling results, albeit with a slight trade-off in efficiency. The paper also identifies challenges in
handling certain complex scenarios and outlines future directions for research, including the pursuit of a comprehensive repair
goal for LoD2 models to achieve watertight 2-manifold models with correctly oriented normals. Our source code is available at
https://github.com/tudelft3d/Automatic-Repair-of-LoD2-Building-Models.git.

1. Introduction

As geographic information system and computer graphics
technologies continue to advance, an increasing number of
sophisticated 3D city models are being generated (Döllner et
al., 2006, Helsinki, 2019, Peters et al., 2022). These models
play a crucial role in enhancing urban visualization (Mao and
Ban, 2011, Zhang et al., 2014), aiding urban planning (Murata,
2004, Ran, 2011), and providing a robust platform for
analyzing essential urban data (Geiger et al., 2013). The
building models in these 3D city models are particularly
significant, as they capture the fundamental aspects of a city’s
planning, construction, and development (Biljecki et al., 2015).

In the realm of 3D building models, Building Information
Modeling (BIM) is often employed for detailed building
management (Kolbe and Donaubauer, 2021). BIM models are
characterized by their intricate semantic and geometric details,
offering a high degree of precision and information.
Concurrently, the construction of building models in large
scale 3D urban environments typically adheres to the standards
set forth by CityGML models (Kolbe et al., 2005). The Level
of Detail 2 (LoD2) building model is notably prevalent in this
area. LoD2 models provide a more comprehensive geometric
representation of buildings, particularly in terms of roof
structures, when compared to their LoD1 counterparts which
have only flat horizontal roofs. Furthermore, LoD2 models
strike a balance between detail and ease of construction,
making them a more practical choice for large-scale urban
building modeling than the more complex LoD3 models.

LoD2 building models are depicted as polygon soups or
triangular meshes, created via automatic or (semi-)manual
methods. Automatic modeling relies on input data quality for
accuracy (Peters et al., 2022) and aims for watertight, manifold
outcomes with geometric constraints (Huang et al., 2022).
∗ Corresponding author

However, inaccuracies may arise from incomplete data, as
shown in Figure 1(a). In contrast, (semi-)manual modeling,
integrating GIS, imagery, and elevation, offers higher
geometric accuracy (see Figure 1(b)). Yet, software
limitations, modeler expertise, or data conversion errors can
introduce geometric and topological errors, including
duplicates, non-manifolds, and holes (Wagner et al., 2012).
For applications like fluid simulations, energy estimation, and
geometric analyses, error-free, watertight 3D models are
crucial (Ledoux, 2013, Biljecki et al., 2016). This research
focuses on hole completion in LoD2 building models.

(a) (b)

Figure 1. (a) displays a Lod2 building model reconstructed
automatically, while (b) presents a manually reconstructed LoD2

building model.

A significant number of LoD2 city models are currently
plagued with varying degrees of geometric and topological
errors (Wagner et al., 2012, Biljecki et al., 2016). Addressing
these issues manually would be an arduous and
resource-intensive task. Consequently, there is a pressing
demand for automated methods capable of both detecting and
precisely rectifying these errors. Prior research has yielded
encouraging outcomes in identifying anomalies in 3D urban
models (Ledoux, 2013, Ledoux, 2018). In terms of repairing

1



building models, existing research predominantly falls into two
categories: reconstruction-based repair and topological-based
local repair.

Reconstruction-based methods can ensure watertight models to
a degree, but often alter the original geometry and rely on
preconditions like correct normals or semantic labels, posing
challenges for inherently deficient models (Sindram et al.,
2016, Zhao et al., 2018, Yu et al., 2022). Our approach avoids
such strict input requirements and instead focuses on hole
detection and repair within the model, preserving geometric
integrity. Conversely, traditional topological-based local
repairs, arising from computer graphics research, assume
2-manifold inputs with correct normals, utilizing half-edge
data structures for hole boundary detection and local geometry
for triangulation (Liepa, 2003, Zhao et al., 2007). However,
urban building models, which may have non-manifolds,
duplicate vertices, or misoriented normals (Wagner et al.,
2012) as shown in Figure 2, present difficulties in accurately
identifying holes topologically, leading to potential misrepairs.
These conventional methods are thus not universally
applicable to all LoD2 building models.

Figure 2. The LoD2 building mesh exhibits several errors,
including non-manifold vertices highlighted in green, faces with

incorrect normals indicated by the back faces of the mesh
depicted in light blue, and boundaries of holes marked in red.

To address this gap, this paper introduces an innovative
approach leveraging the continuity of mesh edges and the
formation of virtual faces. This method effectively detects and
fills holes in LoD2 building models without imposing stringent
requirements on the input data, offering a versatile and
adaptable solution for urban model repair.

2. Related work

In reviewing existing literature, we have identified two primary
categories of urban model repair techniques: reconstruction-
based repair and topological-based local repair. Our research
is particularly focused on strategies that effectively address the
completion of holes in mesh models.

2.1 Reconstruction-based repair

Reconstruction-based repair of mesh models typically involves
using flawed models as input. And it is aiming to rebuild a
complete mesh model by creating voxels or polyhedron to
extract surface details and topological structures. These
methods have their merits in restoring some missing or
incorrect geometric structures, but they are not without
limitations. The voxel-based approach (Mulder, 2015, Sindram
et al., 2016), for instance, is limited by factors such as
resolution, accuracy, computational demands, and a tendency

to either introduce extraneous geometric structures or omit fine
details (Mulder, 2015). Polyhedron-based methods often
stipulate specific conditions for the input model, such as
continuous normal vectors, correct mesh topology (Zhao et al.,
2018), while allowing for the absence of certain geometric
structures (like parts of a wall), and the inclusion of semantic
labels (Yu et al., 2022). Moreover, the reconstruction process
may inadvertently add unnecessary geometric elements.
Although capable of filling in missing information, these
methods may alter the model’s original geometric structure,
either by introducing redundant elements that were not present
originally or by omitting crucial components. Our proposed
method, however, directly targets the areas with holes in
building models without modifying the original structure and
imposes no stringent requirements on the input model.

2.2 Topological-based local repair

Local repair methods that leverage mesh topology
characteristics typically employ the half-edge data structure for
detecting edges of holes (Liepa, 2003, Zhao et al., 2007). They
then reconstruct the triangular mesh surface of the holes based
on the provided geometric features of these edges. Subsequent
post-processing, which includes smoothing and vertex position
optimization, is applied to achieve uniformity in the local
geometry. Nevertheless, these techniques necessitate that the
input mesh is 2-manifold and struggle with larger holes.
Moreover, the reconstruction of sharp geometric features is
limited only to the local regions at the edges of the holes. In
contrast, the method we introduce in this paper is adept at
managing non-manifold mesh models and larger hole areas,
enabling the restoration of sharp features throughout the
entirety of the holes.

3. Methodology

Our aim is to fill holes in LoD2 building mesh models. It
should be emphasized that the holes being repaired here
specifically refer to geometric holes in the model, rather than
topological holes or discontinuous gaps. The input for our
process comprises piecewise planar LoD2 building mesh
models. We approach the input data without pre-established
conditions or limitations regarding its geometric attributes,
topological characteristics, or semantic information. Upon
identifying data with holes, we initiate a comprehensive
hole-filling procedure. As shown in Figure 3, our methodology
unfolds in three phases: pre-processing, hole detection, and
remeshing.

Figure 3. Pipeline for hole filling in building mesh models.

3.1 Pre-processing

The objective of pre-processing is to conduct a targeted repair
on triangle meshes exhibiting topological errors, and to
systematically identify and mark vertices and edges with
topological inaccuracies. This preparation is crucial for the
efficient detection and handling of holes in subsequent stages.

2



The process initiates with the identification and resolution of
self-intersecting faces within the triangle mesh. We employ
remeshing in these areas to rectify the half-edge data structure.
Importantly, as the newly generated vertices during remeshing
are confined within the planes of the triangles, the local
geometric structure of the mesh remains unaltered.

Subsequently, we concentrate on addressing invalid
pseudo-holes with tightly attached boundaries through a
detailed stitching operation. Pseudo-holes, which are openings
that resemble gaps without signifying real separations in the
mesh, typically emerge from issues such as duplicated vertices,
overlapping edges, and non-manifold edges. In contrast, true
holes represent valid gaps with actual separations. Both true
and pseudo-holes are geometric holes. Our current focus is
specifically on pseudo-holes resulting from duplicated vertices
(see Figure 4). The stitching process, leveraging the half-edge
data structure, involves aligning and merging the edges where
the source and target vertices of one half-edge (h1) correspond
with the target and source vertices of another (h2).

Figure 4. A 2D illustration depicts true and pseudo-holes in a 3D
mesh. The left figure shows a true hole, while the middle and

right display pseudo-holes. Red edges outline the hole’s
boundaries, and the light blue area indicates the real gap.

Vertices in green highlight duplicate presence.

The final step involves the detection and categorization of
duplicate vertices and overlapping edges. This identification is
critical for the effective management of these anomalies during
hole detection. To address duplicate vertices, we construct a
kd-tree encompassing all mesh vertices, which allows us to
efficiently locate and mark close vertices within a specified
threshold range. In the case of overlapping edges, our aim is
to pinpoint and mark three specific edges: degenerate edges,
edges that share the same endpoints, and edges that, while being
collinear, have distinct endpoints.

(a) Input (b) Output

Figure 5. The left figure illustrates the input mesh with
self-intersecting faces in yellow and the boundaries of true and
pseudo-holes in red. The right figure displays the output mesh,
highlighting duplicated vertices in green, duplicated edges in
yellow, and maintaining the remaining hole boundaries in red.

Through this pre-processing phase, we effectively eliminate
errors arising from self-intersecting faces and closely attached
borders of pseudo-holes (see Figure 5(a)). Additionally, we
mark vertices and edges that exhibit duplication within the
output mesh data (see Figure 5(b)). This preparatory work
lays the groundwork by providing essential topological insights,
setting the stage for the forthcoming hole detection process.

3.2 Hole detection

The objective of this step is to accurately identify all true
holes, distinguishing them from pseudo-holes arising due to
overlapping or non-manifold edges (see Figure 6(a) to 6(c)).
To accomplish this, we assemble triangles using adjacent half-
edges and conduct intersection tests with every incident face
of their edge vertices. This process is essential for choosing
adjacent half-edges that pass intersection tests as candidates
for true holes. Subsequently, we complement these selected
candidates and extract their complete, closed border rings.

Algorithm 1 Hole Detection Algorithm
1: for each halfedge h in mesh do
2: if h is not visited and is a valid border halfedge then
3: Mark h as visited and use h as seed halfedge hs

4: repeat
5: if preceding halfedge hp exists and valid then
6: Collect all incident facets from h and hp

vertices
7: Create a triangle α from h and hp

8: for each face β in all incident facets do
9: Compute maximum distance D from

triangle α to β (Eq: 1)
10: Compute area ratio A from area Aβ of β

and intersected area Aw between projected α and β (Eq: 2)
11: if D < ϵd and Aw

Aβ
> ϵt then

12: α intersects with β
13: break
14: else
15: α does not intersect with β
16: end if
17: end for
18: if α does not intersect with any β then
19: Collect hp and h to current border ring
20: end if
21: end if
22: Move h to next halfedge
23: until h is not equal to seed halfedge hs

24: if current border ring is not closed then
25: Find missing edges of current border ring
26: end if
27: Reorder hole vertices
28: end if
29: end for

As outlined in Algorithm 1, our approach begins by traversing
potential border edges using the half-edge data structure,
marking each traversed half-edge. Our focus is on potential
border rings initiated from a seed half-edge. Each half-edge,
upon traversal, is paired with its preceding half-edge to form a
triangle, α. This triangle α is projected onto a plane defined by
the incident faces of the edge’s vertices, where it undergoes
intersection tests with these faces.

dv0

v0

v1

v2

v3v0
proj

Figure 7. An example of the
intersection test.

Figure 7 illustrates
this process. The seed
half-edge v1v2 and its
preceding half-edge v0v1,
marked in red, constitute
the virtual triangle
α. Meanwhile, triangle
β (highlighted in green
and defined by v1v2v3)
is an incident face of the
vertices of half-edge v1v2.
The projection of α onto β
results in an intersecting area, shown in blue. The maximum
distance D from α to β is equal dv0 in this example, indicating

3



(a) Input (b) All holes (c) True holes (d) Remeshed holes

Figure 6. Visualization of intermediate stages in the proposed hole filling process.

the distance between vertex v0 and its projected counterpart
vproj0 . The subsequent equation provides a detailed
computation:

D = max(dv0 , dv1 , dv2) (1)

A =
Aw

Aβ
(2)

In Equation 1, dv0 , dv1 , dv2 denote the distances from the three
vertices of triangle α to the plane of the incident triangle face
β. D is the maximum of these distances. It should be noted that
dv1 and dv2 , as shown in Figure 7, can be non-zero when they
are identified as duplicated vertices. As indicated in Equation 2,
α is then projected onto β’s plane, where Aw signifies the area
of intersection between the projected α and β, Aβ is the area of
β, and A indicates the ratio of these areas. An intersection is
deemed valid only when D < ϵd = 0.1 and A > ϵt = 0.01. It
should be emphasized that the thresholds for distance and area
specified in this paper are measured in meters, and their settings
are based on the geometric precision of the test data. In cases
where intersections are absent, this pair of edges is incorporated
into the border ring collection for the candidate holes.

Next, we conduct closure checks for each border ring, that is,
to ascertain whether their start and end points connect. This
verification is crucial because meshes plagued with overlapping
(see Figure 8(a)) or non-manifold edges (see Figure 8(b)) can
result in border rings that do not close properly. To tackle
these issues, we have implemented two strategies. The first
addresses overlapping edges: we examine all incident edges of
the end vertices of the border ring, including all corresponding
duplicated vertices. If an untraversed incident edge is a border
edge or overlaps with an edge of the hole, it is added to the
border ring collection. The second strategy, concerning non-
manifold edges, involves assessing whether all connected non-
border ring vertices of the current hole occupy the same plane.
If affirmative, the vertex nearest to the border ring’s endpoint
that meets the intersection test criteria is added to the collection.
These strategies are applied in an iterative manner until a fully
closed ring is achieved.

Finally, we undertake a reordering of all selected candidate
edges. This reordering ensures that adjacent edges are properly
linked, creating a continuous and coherent structure. By
employing this approach, we ensure that the successfully
extracted closed rings of the holes are correctly configured for
their integration in the forthcoming stage of remeshing.

3.3 Remeshing

The aim of this step is to execute triangle mesh construction,
utilizing the closed rings identified in the hole detection process
(see Figure 6(d)). This is essential for accurately filling in the
mesh’s missing areas.

We begin by fitting a plane with all the vertices of each
identified closed hole ring and project these vertices onto this
plane. Utilizing the border edges of the hole as constraints, we
then create a 2D constrained Delaunay triangulation from these
projected vertices. The subsequent step involves incorporating
the triangulated mesh into our input data, aligning it with the
corresponding original vertices of the projected points.

To ensure topological accuracy and avoid issues arising from
recovering the 3D structure from the Delaunay triangulation,
we conduct degeneracy detection and self-intersection checks
for each triangle face to be added. Only faces that meet the
specified conditions are ultimately included. Thus, through
remeshing, we have obtained a complete building mesh model.

4. Experiment

4.1 Implementation details

Our testing environment is powered by a computer configured
with an Intel Core i7-7700HQ CPU, operating at a base
frequency of 2.8GHz, and bolstered by 32GB of RAM.

We developed our algorithm in C++, leveraging the
capabilities of the Easy3D (Nan, 2021) library. This library
facilitated our handling of triangular mesh read/write
operations, manipulation of mesh data structures, and enabled
efficient topological detection and validation. For the
implementation of constrained Delaunay triangulation and
edge-stitching processes, we employed the robust CGAL 5.6
library (Fabri et al., 2000).

In our comparative experimental assessments, we selected six
characteristic models, each featuring complex holes, from The
Hague’s maunally created CityGML LoD2 building
models (DenHaag, 2022). These models underwent a
conversion process from CityGML (polygonal surface meshes)
to OBJ format (triangular meshes) using FME software,
specifically for conducting our advanced hole-filling
operations.

4.2 Comparisons

MeshL. PMP MeshF. Polym. Ours
Time (s) 0.76 2.12 1.24 1.13 16.19
Face num. 12.3k 16.2k 7k 158k 15.5k

Table 1. Comparative analysis of hole filling methods:
Evaluating time efficiency and total output face count (Face

Num.) across six chosen building meshes (incorporating 11.3k
input faces) utilizing MeshLab (MeshL.), PMP, MeshFix

(MeshF.), PolyMender (PolyM.), and our method.

We carried out a comprehensive qualitative analysis and a
performance comparison between our mesh hole-filling method
and other established methods, such as PMP (Sieger and

4



(a) (b)

Figure 8. (a) illustrates a hole defined by two overlapping edges that originate from distinct vertices but converge at duplicated
vertices, each edge outlined by a yellow dashed curve and a green dashed curve, respectively. (b) illustrates a hole featuring

non-manifold edges, highlighted in green. The border of the hole is marked in red, while the mesh’s back face is represented in light
blue in both images.

(a) Input (b) PMP (c) MeshFix (d) MeshLab (e) Polymender (f) Ours

Figure 9. Qualitative comparisons of hole-filling methods in building mesh models. The boundaries of the holes are highlighted in red,
while the back face of the mesh is depicted in light blue.

Botsch, 2019), MeshFix (Attene, 2010), MeshLab (Cignoni
et al., 2008), and Polymender (Ju, 2004). The experimental
results demonstrate that our method excels in completing LoD2
building models, surpassing all traditional methods on the
quality of the output mesh, at the cost of an admittedly longer
running time.

As illustrated in Figure 9, the PMP method, while successfully
filling all holes, but generates erroneous surfaces due to the
presence of pseudo-holes (as highlighted in rows 1 and 4 of the
second column in Figure 9). Additionally, PMP’s surface
fairing post-processing step fails to ensure completely flat
surfaces. Conversely, MeshFix alters the original geometric
structure of the input data because of non-manifolds,

5



pseudo-holes, and disconnected components, resulting in the
loss of specific geometric structures in its results. In contrast,
MeshLab’s hole-filling approach maintains the geometric
structure of the initial data but falls short in terms of
completeness, leaving some holes unfilled. Polymender,
employing a reconstruction-based algorithm, over-smooths
sharp geometric features of the original input data and in some
cases introduces new holes (as depicted in rows 2 and 3 of the
fifth column in Figure 9). Our method distinguishes itself by
preserving the uniformity of local geometry at the holes and by
upholding structural completeness. Moreover, our method
showcases remarkable adaptability in processing input data
with topological inaccuracies, while also providing improved
stability in its operation.

Table 1 reveals that our algorithm’s running time is longer than
other methods, largely due to the additional time required for
addressing topological errors such as non-manifolds, duplicate
vertices, and overlapping edges. Notably, given a total number
of 11.3k triangle faces in the input data, the increased number
of triangles with our method is less than PMP. This benefit
primarily stems from our method’s ability to discern between
true and pseudo-holes. Significantly, Polymender, a method
based on reconstruction, produces an excessively large number
of triangles to minimize geometric differences with the original
data, which runs counter to the objective of preserving the
LoD2 building model’s simplicity. MeshFix, on the other
hand, results in a loss of too many triangles, yielding a more
incomplete final result.

To conclude, despite a longer running time, our method excels
over others in terms of delivering complete and geometrically
uniform hole-filling results.

4.3 Limitations and future prospects

Figure 10. Failure cases of our algorithm. The boundaries of the
holes are highlighted in red, while the back face of the mesh is

depicted in light blue.

While our algorithm effectively addresses most topological
errors in the input data and reconstructs the complete geometric
surface of building mesh holes, it encounters limitations in three
specific scenarios: Firstly, in cases where the hole of the input
model has significantly lost geometric structure — a situation
exemplified in the upper part of Figure 10 — where only a
few geometric planar structures are near the hole, our algorithm

is unable to fully reconstruct the hole’s geometric surface.
Secondly, if the genus of the closed original input mesh model
after completion exceeds zero, and the location of a detected
geometric hole to be filled coincides with the genus hole, our
algorithm might inadvertently produce faces to close the genus
hole, as illustrated in the bottom part of Figure 10. Thirdly,
when the input model has disconnected components and a hole
boundary is split between the two components, our algorithm
struggles to form a complete and closed ring around the hole
(see Figure 9 (f) top). Notice that for the above three situations,
the other comparative algorithms mentioned in Section 4.2 also
fail. Hence, solving these problems would be an interesting
future research direction.

Moreover, for flawed LoD2 building models, resolving only
the hole issue may not be adequate for downstream application
requirements. This is because, apart from holes, the presence of
issues like misoriented normals and inner faces can also greatly
impact the overall quality of the final model. Consequently, the
comprehensive goal in repairing LoD2 building models is to
achieve a watertight, 2-manifold model with correctly oriented
normals. We will take this goal as our future research direction.

5. Conclusions

In conclusion, our research contributes a novel algorithm to the
field of urban model repair, particularly for filling holes in
LoD2 building models. Our method surpassing traditional
techniques in terms of preserving the original geometric
structure and handling various topological errors. The
algorithm’s effectiveness is underscored by its ability to
maintain geometric structure uniformity and integrity, proving
advantageous over existing methods in qualitative and
performance comparisons. While our approach represents a
significant advancement, it also encounters certain limitations,
particularly in addressing severely missing geometric
structures, models with overlapping holes and non-zero genus,
and entirely disconnected components. These challenges,
alongside the broader goal of achieving comprehensive repair
for LoD2 building models, set the direction for future research.
The ultimate aim is to develop techniques that not only address
holes but also rectify other critical aspects such as misoriented
normals and inner faces, moving towards creating watertight,
2-manifold models with correctly oriented normals, thereby
enhancing the utility and applicability of 3D urban building
models.

References

Attene, M., 2010. A lightweight approach to repairing digitized
polygon meshes. The visual computer, 26, 1393–1406.

Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., Khoo,
V., 2016. The most common geometric and semantic errors
in CityGML datasets. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 4, 13–22.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.,
2015. Applications of 3D city models: State of the art review.
ISPRS International Journal of Geo-Information, 4(4), 2842–
2889.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M.,
Ganovelli, F., Ranzuglia, G. et al., 2008. Meshlab: an open-
source mesh processing tool. Eurographics Italian chapter
conference, 2008, Salerno, Italy, 129–136.

6



DenHaag, 2022. 3D stadsmodel den haag 2022
citygml. https://denhaag.dataplatform.nl/#/data/

12f4e0c6-1c2e-4867-acab-6182b8a683a5. Accessed:
2024-01-30.

Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann,
K., 2006. The virtual 3d city model of berlin-managing,
integrating, and communicating complex urban information.
Proceedings of the 25th international symposium on urban data
management UDMS 2006 in Aalborg, Denmark, 15-17 May
2006.

Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr,
S., 2000. On the design of CGAL a computational geometry
algorithms library. Software: Practice and Experience, 30(11),
1167–1202.

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R., 2013.
3d traffic scene understanding from movable platforms. IEEE
transactions on pattern analysis and machine intelligence,
36(5), 1012–1025.

Helsinki, C., 2019. Helsinki’s 3D city models.
https://www.hel.fi/helsinki/en/administration/

information/general/3d. Accessed: 2020-11-25.

Huang, J., Stoter, J., Peters, R., Nan, L., 2022. City3D:
Large-scale building reconstruction from airborne LiDAR point
clouds. Remote Sensing, 14(9), 2254.

Ju, T., 2004. Robust repair of polygonal models. ACM
Transactions on Graphics (TOG), 23(3), 888–895.

Kolbe, T. H., Donaubauer, A., 2021. Semantic 3D city modeling
and BIM. Urban informatics, 609–636.

Kolbe, T. H., Gröger, G., Plümer, L. et al., 2005. CityGML–
Interoperable access to 3D city models. Geo-information for
disaster management, 49.

Ledoux, H., 2013. On the validation of solids represented
with the international standards for geographic information.
Computer-Aided Civil and Infrastructure Engineering, 28(9),
693–706.

Ledoux, H., 2018. val3dity: validation of 3D GIS primitives
according to the international standards. Open Geospatial Data,
Software and Standards, 3(1), 1–12.

Liepa, P., 2003. Filling holes in meshes. Proceedings of the
2003 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, 200–205.

Mao, B., Ban, Y., 2011. Online visualization of 3D
city model using CityGML and X3DOM. Cartographica:
The International Journal for Geographic Information and
Geovisualization, 46(2), 109–114.

Mulder, D., 2015. Automatic repair of geometrically invalid 3D
city building models using a voxel-based repair method.

Murata, M., 2004. 3d-gis application for urban planning
based on 3d city model. 24th annual esri international user
conference, 9–13.

Nan, L., 2021. Easy3D: a lightweight, easy-to-use, and efficient
C++ library for processing and rendering 3D data. Journal of
Open Source Software, 6(64), 3255.

Peters, R., Dukai, B., Vitalis, S., van Liempt, J., Stoter, J., 2022.
Automated 3D reconstruction of LoD2 and LoD1 models for
all 10 million buildings of the Netherlands. Photogrammetric
Engineering & Remote Sensing, 88(3), 165–170.

Ran, C., 2011. The development of 3D city model and
its applications in urban planning. 2011 19th International
Conference on Geoinformatics, IEEE.

Sieger, D., Botsch, M., 2019. The polygon mesh processing
library. http://www.pmp-library.org.

Sindram, M., Machl, T., Steuer, H., Pültz, M., Kolbe, T. H.,
2016. Voluminator 2.0–speeding up the approximation of the
volume of defective 3D building models. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 3, 29–36.

Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries,
M., Coors, V., 2012. Geometric-semantical consistency
validation of citygml models. Progress and new trends in 3D
geoinformation sciences, Springer, 171–192.

Yu, M., Lafarge, F., Oesau, S., Hilaire, B., 2022. Repairing
geometric errors in 3D urban models with kinetic data
structures. ISPRS Journal of Photogrammetry and Remote
Sensing, 192, 315–326.

Zhang, L., Han, C., Zhang, L., Zhang, X., Li, J., 2014.
Web-based visualization of large 3D urban building models.
International Journal of Digital Earth, 7(1), 53–67.

Zhao, J., Ledoux, H., Stoter, J., Feng, T., 2018. HSW:
Heuristic Shrink-wrapping for automatically repairing solid-
based CityGML LOD2 building models. ISPRS Journal of
Photogrammetry and Remote Sensing, 146, 289–304.

Zhao, W., Gao, S., Lin, H., 2007. A robust hole-filling
algorithm for triangular mesh. The Visual Computer, 23, 987–
997.

7




