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Abstract

With the rapid advancement of 3D sensing technologies, obtaining 3D shape information of objects has become increasingly
convenient. Lidar technology, with its capability to accurately capture the 3D information of objects at long distances, has been
widely applied in the collection of 3D data in urban scenes. However, the collected point cloud data often exhibit incompleteness
due to factors such as occlusion, signal absorption, and specular reflection. This paper explores the application of point cloud
completion technologies in processing these incomplete data and establishes a new real-world benchmark Building-PCC dataset,
to evaluate the performance of existing deep learning methods in the task of urban building point cloud completion. Through a
comprehensive evaluation of different methods, we analyze the key challenges faced in building point cloud completion, aiming
to promote innovation in the field of 3D geoinformation applications. Our source code is available at https://github.com/
tudelft3d/Building-PCC-Building-Point-Cloud-Completion-Benchmarks.git.

1. Introduction

The rapid advancement of 3D sensing technology has
simplified acquiring 3D object information, making data
acquisition increasingly convenient. LiDAR, compared with
stereo vision and structured light, can capture 3D information
accurately from long distances (Giancola et al., 2018). For
collecting urban data, LiDAR has been widely used (Wang et
al., 2019), including airborne, terrestrial, and mobile laser
scanning. However, these devices still face issues such as
occlusion, signal absorption, reflection, and sensor resolution,
which result in incomplete point clouds (Fei et al., 2022).
Thus, completing these point clouds to restore full structures is
crucial, especially for applications related to 3d
geoinformation, such as 3D reconstruction (Nan and Wonka,
2017), semantic understanding (Song et al., 2017), change
detection (Czerniawski et al., 2021), and autonomous
driving (Bai et al., 2020).

The task of point cloud completion was first proposed in
computer vision and graphics fields. Early research inferred
the geometric properties of missing areas from observed
regions using methods such as surface reconstruction (Berger
et al., 2014), symmetry analysis (Mitra et al., 2006), or
template matching (Nan et al., 2012). With the development of
deep learning technology, methods based on voxels (Xie et al.,
2020), encoders-decoders (Yuan et al., 2018), and
transformers (Yu et al., 2021, Chen et al., 2023) have been
proposed, aiming to recover the complete geometric shape of
objects from incomplete data. These learning-based methods
can capture higher-dimensional features without relying on
prior assumptions, offering significant advantages over
traditional methods.

However, despite these advancements, the practical application
of these methods predominantly involves testing on CAD model
datasets such as ShapeNet (Chang et al., 2015), revealing a
gap in their evaluation within real-world contexts. Existing
evaluations in real-world settings often concentrate on specific
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Figure 1. (a) and (b) display partial point clouds captured by
airborne LiDAR, corresponding to AHN3 and AHN4,

respectively. (c) presents a manually created LoD2 building
model, while (d) illustrates point clouds sampled from (c).

categories such as cars in datasets like KITTI (Geiger et
al., 2012), lacking comprehensive evaluation for large-scale
real-world scenes. To bridge this gap, this paper introduces
real-world data benchmarks based on airborne LiDAR point
clouds to improve testing scenarios for deep learning-based
completion methods.

Airborne point cloud data, known for its high precision, is
commonly used for building reconstruction in large-scale urban
scenes. For instance, initiatives such as 3D BAG (Peters et al.,
2022) and Helsinki3D (Helsinki, 2019) leverage airborne point
cloud data as their foundational input, integrating this with
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GIS-based building footprints to reconstruct building models.
These models adhere to the CityGML standards (Kolbe et al.,
2005), achieving detailed representations at either Level of
Detail 1 (LoD1) or Level of Detail 2 (LoD2) (see Figure 1(c)).
These models can be applied to various fields (Biljecki et
al., 2015) such as urban planning, energy estimation, fluid
dynamics simulation, and city management. However, due to
factors such as tree occlusion, glass adsorption, and varying
viewpoints, the collected data often have missing parts (see
Figure 1(a) and 1(b)), which critically affect the quality of
3D reconstruction of the building models. Therefore, this
research conducts a thorough evaluation of the performance of
state-of-the-art, deep learning-based approaches in the task of
completing building point clouds.

The objective of this paper is to introduce a new real-world
benchmark dataset, namely Building-PCC, specifically
designed for the task of building point cloud completion. We
collected 50,000 building instances from two cities in the
Netherlands, The Hague and Rotterdam, correlating each with
two sets of airborne point cloud data, namely AHN3 and
AHN4, alongside ground truth data sampled from manually
reconstructed 3D building models. Compared to existing
datasets, our dataset is based on real-world scenarios and
presents a higher level of challenge owing to the intricate and
diverse nature of these real-world settings. On this basis, this
study comprehensively evaluates the existing deep
learning-based 3D completion methods on our dataset. We
delve into the critical challenges encountered in building point
cloud completion from various perspectives, with the goal of
fostering innovation within the realm of 3D geoinformation
applications.

2. Related work

This section begins with a comprehensive overview of the
datasets frequently employed in 3D point cloud completion
tasks. It then proceeds to offer an in-depth exploration of deep
learning-based techniques for achieving 3D shape completion.

2.1 Point cloud completion datasets

Point cloud completion tasks leverage datasets that can be
categorized into two primary types: synthetic and real-world
scene datasets. Among these, synthetic datasets such as
ShapeNet (Chang et al., 2015), ModelNet (Vishwanath et al.,
2009), and Completion3D (Tchapmi et al., 2019) are
extensively utilized. These datasets consist of Computer-Aided
Design (CAD) models that span a diverse array of object
categories, including but not limited to airplanes, ships,
furniture, and electronic devices. The generation of complete
point clouds within these datasets involves either uniform
sampling or Poisson disk sampling techniques applied to the
model surfaces, standardizing the maximum resolution at
16,384 sampling points per model (Yuan et al., 2018). To
obtain incomplete point coulds, a process of simulating 2.5D
depth images from various viewpoints and subsequently
back-projecting these images into the three-dimensional space
is employed to achieve sampling.

In the realm of real-world scene datasets, the KITTI (Geiger et
al., 2012) dataset stands out as a primary resource. Acquired
using Mobile Laser Scanning (MLS) technology across actual
road environments, KITTI was initially crafted for the purpose
of autonomous driving research. It encompasses 22 point cloud

sequences and 11 semantically annotated categories. Within
the scope of point cloud completion tasks, the vehicle category
frequently serves as the chosen subject for testing. The inherent
sparsity of point clouds within the KITTI dataset often results in
the geometric structure of the captured object being incomplete.
As a consequence, a common approach among researchers is to
initially train their models on synthetic datasets featuring car
models. Subsequently, they utilize the incomplete vehicle point
clouds from the KITTI dataset, performing uniform sampling to
create the requisite datasets for further training and predictive
analysis.

It is important to highlight that all datasets undergo a
normalization process before being fed into the point cloud
completion network. This is a crucial step designed to mitigate
the adverse effects of outlier samples. Specifically for KITTI
data, each vehicle is marked with a bounding box that provides
a reference coordinate system for normalization. While most
test datasets, aside from KITTI car datasets, consist of
synthetic data, they often fall short in capturing the diversity
found in real-world settings, particularly within urban scenes.
To address this shortfall, this research introduces a
comprehensive airborne point cloud completion benchmark
dataset tailored for buildings, thereby aiming to bridge this
notable gap.

2.2 3D shape completion

In the domain of 3D shape completion, methods leveraging
deep learning are primarily categorized into three strategic
approaches: point cloud-based, multimodality-based, and those
employing Generative Adversarial Networks (GANs).

The point cloud-based completion approach is intricately
divided into three distinct methodologies: 3D
convolution-based methods, encoder-decoder frameworks, and
anchor-based strategies. Techniques rooted in 3D convolution
typically require the construction of voxel grids or distance
fields (Xie et al., 2020), offering high accuracy at the cost of
significant computational resources and challenges in
capturing the intricate details of objects.
Encoder-decoder-based methods (Yuan et al., 2018) adeptly
extract both global and local 3D features from the point clouds
using the encoder, while the decoder refines the prediction of
the object’s complete point cloud from a coarse to a fine
resolution. The anchor-based approach (Chen et al., 2023, Yu
et al., 2023), on the other hand, determines the positions of
anchor points by learning the local features of the input,
followed by an upsampling process that leverages these anchor
points to reconstruct the object’s full shape, integrating both
local and global features. This method may also incorporate
attention mechanisms to further boost the performance of the
network. This research is dedicated to examining the
performance of these methods in achieving accurate
completion of building point clouds.

Multimodality-based methods (Zhang et al., 2021) leverage
image data from single or multiple views combined with
partial point clouds for completion. These images can provide
auxiliary information about the global shape of the object.
Notably, such images usually have a pure white background,
containing only the target object. However, the complex nature
of urban environments poses significant challenges in
acquiring object instances paired with both registered point
clouds and segmented image data, crucial for constructing
comprehensive multimodality datasets for completion.
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Figure 2. FME workflow for extracting building point cloud instances.

Currently, the performance improvement of multimodality
methods in this area is limited. Therefore, this paper focuses
on exploring point cloud-based methods for completing the
shape of buildings.

GAN-based approaches (Xie et al., 2021) leverage the
discriminator’s implicit learning capability to evaluate the
accuracy of complete point clouds produced by the generator.
This technique may integrate the previously mentioned
encoder-decoder architecture or utilize multimodality data.
While capable of generating complete predictions, the
outcomes may present multiple interpretations, potentially
resulting in point clouds of the same object but with varying
styles or details. Given the stringent accuracy requirements for
3D data in disciplines such as geoinformation and geodesy,
GAN-based techniques may not always be the optimal choice
for completing building point clouds. This is due to the
potential for the generated results to diverge from the true
geometric configuration of the original structures.

3. The Building-PCC datasets

In this section, we detail the construction process of the
Building-PCC dataset. Our goal is to pair individual building
models with their sampling points and corresponding partial
point clouds of the actual scanned buildings. In subsection 3.1,
we discuss the specifics of the research area and data
collection. In subsection 3.2, we showcase our approach for
extracting complete building instances from both point clouds
and models, as well as conducting point cloud sampling.

3.1 Data collection

We selected The Hague and Rotterdam in the Netherlands as
our main research areas, which together host approximately
350,000 buildings of various types. The city of The Hague
provides LoD2 building models as open data based on the
CityGML standard, from which we collected data for the year
2022. Similarly, the city of Rotterdam also provided LoD2
building models in DWG (from AutoCAD) and SKP (from
SketchUp) formats. It is worth mentioning that these building
models were semi-automatically constructed by professional
modelers using 3D modeling software and GIS data, offering
accuracy superior to automatic reconstruction methods. We
randomly selected about 50,000 building models from these
two cities as our sample, each model containing a unique BAG
identifier, the identifier used in the Dutch national geographic
database to uniquely identify a building.

For point cloud data, we relied on the Actueel Hoogtebestand
Nederland (AHN), a nationwide elevation dataset of the
Netherlands. The AHN dataset, collected via LiDAR
technology, provides accurate terrain and elevation
information. We used data from both AHN3 and AHN4
versions, where AHN3 offers a point density of approximately
8 points per square meter, and AHN4 increases the point

density to approximately 10 points per square meter, providing
more detailed elevation maps. It is important to note that
although AHN3 and AHN4 offer rich information, they do not
contain segmentation information for building instances.

3.2 Building instance extraction

Our goal is to extract individual building models for sampling
and match them with corresponding real scans. By utilizing
the BAG identifiers mentioned in Section 3.1, we are able to
precisely extract individual buildings from the LoD2 building
models discussed earlier. Using FME software, we achieved
this process and converted all models to obj format for
sampling. These models may contain holes, inner faces, or
might be non-manifold or non-watertight, which could affect
the quality and precision of subsequent point cloud sampling.
Therefore, we used Easy3d (Nan, 2021), an open-source
libraries, to automatically correct these errors. To obtain the
ground truth, we employed Poisson Disk Sampling and fixed
the number of sampling points at 16,384 per building model.
Compared to Uniform Sampling, Poisson Disk Sampling
generates a more natural and irregular distribution of sampling
points, avoiding the aggregation of sample points and ensuring
the randomness and uniformity of sampling.

For AHN point clouds, considering that manually segmenting
each building is very time-consuming and automatic
segmentation methods based on machine learning require a
large amount of ground truth annotation data, we implemented
a building instance segmentation pipeline based on LoD2
models (see Figure 2). First, we used the Overhead Shadow
technique to project 3D buildings to extract each building
model’s footprint. Then, we corrected topological errors such
as gaps and overlaps in the footprint and dissolved footprints
with common boundaries. Finally, we projected the point
cloud to 2D and clipped it using the generated footprint to
retain points within the footprint. Thus, we acquired complete
point clouds for each building, along with two types of partial
point clouds derived from AHN3 and AHN4 datasets, to
evaluate the performance of point cloud completion methods.

4. Benchmarks

In this section, we embark on an in-depth analysis of the
performance of representative deep learning methods applied
to the Building-PCC dataset.

4.1 Implementation details

In this study, we deployed an experimental setup equipped
with an AMD Ryzen Threadripper 1920X 12-core processor,
32GB RAM, and an Nvidia Geforce RTX 3090 graphics card
with 24GB of VRAM. All test networks were developed and
implemented using the Pytorch framework. We randomly
selected approximately 50,000 buildings as the subject of our
study, with 30,000 used to construct the training set and 10,000
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each allocated to the validation and test sets, supporting model
training and performance evaluation. During the training phase,
for each building, we randomly choose either an incomplete
point cloud from the corresponding AHN3 or AHN4 datasets
to serve as the input. Additionally, the point cloud data for each
building underwent normalization processing.

4.2 Representative baselines

To comprehensively assess the performance of existing point
cloud completion pipelines on real-world dataset, we carefully
selected eight representative methods as the solid baseline for
the Building-PCC benchmark. These baselines encompass the
point cloud-based deep learning strategies discussed in Section
2.2. A concise overview of these baseline methods is as follows:

• PCN: As the first architecture in the field of point cloud
completion to introduce neural networks for direct
processing of 3D coordinates, PCN’s encoder transforms
the input data into a high-dimensional global feature
vector, while its decoder employs the concept of a folding
network, simulating the deformation of a
two-dimensional plane to map 2D grid points into 3D
space (Yuan et al., 2018).

• FoldingNet: This end-to-end deep autoencoder was
originally designed to tackle the challenges of
unsupervised learning on point clouds. Its core
mechanism folds a 2D grid onto the underlying surface of
a 3D object. For point cloud completion tasks,
FoldingNet utilizes an encoder similar to PCN’s, but
introduces a folding-based decoder (Yang et al., 2017).

• TopNet: Proposes a decoder based on a tree topology
structure, aimed at constructing structured data by
generating subsets of the point cloud, facilitating the
completion process (Tchapmi et al., 2019).

• GRNet: Introduces a 3D grid as an intermediate
representation to regularize unordered point clouds,
enhancing the structure and contextual information of the
point cloud through a gridding residual network to
achieve complete cloud reconstruction (Xie et al., 2020).

• SnowflakeNet: Simulates the process of completing point
clouds as a snowflake-like growth in space, using
multi-layer snowflake points for deconvolution to
generate locally compact and structured data with
high-detail geometries (Xiang et al., 2021).

• PoinTr: Transforms the point cloud completion task into
a set-to-set translation task, employing a transformer to
precisely model the local geometric relations within the
structure, addressing the inductive biases in 3D
geometry (Yu et al., 2021).

• AnchorFormer: Introduces the use of anchors to
dynamically capture the regional information of objects.
These anchors are dispersed to observed and unobserved
positions by estimating specific offsets, forming a sparse
set with downsampled points from the input observation
data, and finally reconstructing fine-grained 3D structures
through a point morphing scheme (Chen et al., 2023).

• AdaPoinTr: Building on PoinTr, it adds an adaptive
query generation mechanism and a denoising module to
effectively deal with issues such as discontinuous and
uneven appearance (Yu et al., 2023).

These methods showcase the diversity and innovation within
the point cloud completion technology, providing a solid
foundation for understanding and advancing the field.

4.3 Evaluation metrics

Our evaluation methodology is aligned with previous
studies (Yu et al., 2023), employing the mean Chamfer
Distance (CD) with the L1-norm (CD-l1) as the primary
metric to quantify the differences between the predicted
building point cloud P and the ground truth G as defined in
Equation (1). Note that a lower CD-l1 value indicates smaller
differences between the predicted data and the ground truth,
which corresponds to better performance.

dCD(P,G) =
1

|P |
∑
p∈P

min
g∈G

∥p−g∥+ 1

|G|
∑
g∈G

min
p∈P

∥g−p∥ (1)

Additionally, we incorporate the F-Score as an alternate
evaluation metric. The precision P (d), recall R(d), and
F -Score(d) for a point cloud completion at a given threshold
d are defined as Equations (2) to (4). In our experimental
setup, we establish the threshold d at 1%.

P (d) =
1

|P |
∑
p∈P

[
min
g∈G

∥p− g∥ < d

]
(2)

R(d) =
1

|G|
∑
g∈G

[
min
p∈P

∥g − p∥ < d

]
(3)

F -Score(d) =
2P (d)R(d)

P (d) +R(d)
(4)

4.4 Results

In this section, we showcase the outcomes of the methods
discussed in Section 4.2 on the Building-PCC dataset, detailed
in Table 1 and Figure 3 for quantitative and qualitative analyses,
respectively. For the quantitative aspect, 10,000 partial building
point clouds from each of the AHN3 and AHN4 datasets
served as input for evaluating the overall performance of each
method. As delineated in Table 1’s left section, AnchorFormer,
PoinTr, and AdaPoinTr significantly outperform others in terms
of average CD-l1, with PoinTr leading at an impressive 1.40.
These methods also show robustness across AHN3 and AHN4
inputs, maintaining consistent average Chamfer Distances.

AdaPoinTr, with its advanced denoising module, excels on the
F -Score metric, achieving 0.679 and 0.725 on AHN3 and
AHN4, respectively, edging out the runner-up, AnchorFormer,
by approximately 0.048 and 0.040. Overall, AdaPoinTr stands
out in comprehensive performance, closely following PoinTr
in average CD-l1 by less than 0.02, yet far surpasses other
methods in F -Score.

To further illustrate these models’ capabilities, we conducted
tests on six representative buildings for each method, presenting
these findings on the right section of Table 1 and in Figure 3.
The right section of Table 1 echoes the quantitative analysis
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Figure 3. Six visual examples of point cloud completion results by different approaches on the Building-PCC dataset. The color
coding, ranging from blue to red, represents the height field, with blue indicating lower elevations and red signifying higher elevations.
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Methods
AHN3/4

CD-l1 F -Score CD-l1 F -Score (a) (b) (c) (d) (e) (f) CD-l1

PCN 6.09 0.374 6.14 0.416 14.21 14.36 14.56 11.60 11.77 12.98 13.25
FoldingNet 4.20 0.328 5.63 0.352 10.31 15.47 16.03 15.60 15.04 14.98 14.57
TopNet 6.42 0.262 6.44 0.267 14.61 12.80 12.67 11.24 11.38 15.56 13.04
GRNet 5.21 0.399 4.89 0.463 10.90 16.39 16.83 14.56 14.86 16.29 14.97
SnowflakeNet 6.61 0.588 6.60 0.629 16.24 20.92 21.08 15.88 15.91 16.53 17.76
PoinTr 1.40 0.511 1.40 0.585 2.81 5.00 5.21 7.58 7.99 11.39 6.66
AnchorFormer 1.46 0.631 1.46 0.685 2.89 5.26 5.29 7.82 7.91 11.70 6.81
AdaPoinTr 1.42 0.679 1.41 0.725 2.87 5.17 5.18 7.75 8.04 11.66 6.78

Table 1. Comparative evaluation of point cloud completion methods on Building-PCC datasets. The left section quantifies the overall
performance across the entire test dataset, with inputs derived separately from AHN3 and AHN4 partial point clouds (with 10,000

samples respectively) , using the mean L1 Chamfer Distance (CD-l1) and mean F -Score metrics. The right section details the
performance for selected individual building samples, referenced in Figure 3, providing specific CD-l1 values for each sample labeled

(a) to (f). The last column displays the average CD-l1 across all samples. Optimal performances are denoted in bold for emphasis.

based on CD-l1, affirming that AnchorFormer, PoinTr, and
AdaPoinTr maintain superior performance, particularly PoinTr.
Figure 3 reveals that while PCN, FoldingNet, and TopNet
exhibit notable deviations from the ground truth, the rest
successfully reconstructs the overall geometric structure of
the buildings. Among these, AdaPoinTr and SnowflakeNet
distinctly excel in capturing building details. Nonetheless, the
predicted point clouds of all methods exhibit varying degrees
of incompleteness in the results and loss of sharp features and
fine details compared to the ground truth. These shortcomings
might limit their use in downstream applications. Therefore, in
Section 5, we elaborate on the specific reasons for these issues
and potential solutions.

5. Challenges

In this section, we delve into challenges faced by point cloud
completion methods when dealing with real-world building
point clouds. These challenges include imbalanced datasets,
limitations of completion structures, and issues of point cloud
normalization. Through detailed analysis, we aim to provide
insights for researchers on how to effectively utilize point cloud
completion methods in practical applications.

5.1 Impact of imbalanced datasets

In classification or semantic segmentation tasks, data
imbalance manifests as a discrepancy in sample numbers
across categories within the training dataset. This results in
models performing better on categories with more samples and
worse on underrepresented categories, affecting the overall
model performance. A strategy to counter this, is data
augmentation to balance sample numbers across categories,
preventing model overfitting to dominant data categories. In
point cloud completion tasks, while no data imbalance issue
from semantic labels exists, an uneven distribution of local
geometric structures within point clouds does. Datasets like
ShapeNet can augment data by increasing point clouds for
objects of the same category in different styles. But for
real-world building point clouds, incomplete areas are mostly
on the bottoms and facades, not on the roofs. This results in
models more easily completing geometric structures of these
areas, causing inaccuracies in predicting complete geometric
structures of missing roof parts (see Figure 4).

In response to these issues, we propose two potential research
directions. First, we can create synthetic datasets for building
point cloud completion, such as using tools like

Figure 4. AdaPoinTr prediction example using an AHN4 partial
point cloud as input (refer to Figure 1(b)). The area within the
black circle highlights the roof parts that were not successfully
predicted. The color coding from blue to red indicates elevation

from low to high.

HELIOS++ (Winiwarter et al., 2022) to simulate laser scans of
large-scale virtual urban scenes, including various urban
objects like vegetation, street furniture, and building models, to
generate building point clouds. By controlling the quantity,
location, and attributes of different categories of objects, we
can produce a diverse set of incomplete building point clouds.
Alternatively, direct simulation scans of LoD2 building models
to obtain representative incomplete data can be performed,
with random deletion of points to simulate incompleteness.
The second approach involves the use of multimodal data, such
as orthophotos or multi-view images. Although collecting and
matching these data types can be challenging, in theory, the
photo-consistency of images can assist in better perceiving the
geometric structural consistency.

5.2 Limitations on fine details

In Section 4.2, we discussed representative methods, but these
generally exhibit loss of details and over-smoothed sharp
features when predicting complete building point clouds.
These issues often lead to reduced accuracy of the point cloud,
thereby affecting the quality of downstream applications such
as point cloud-based building model reconstruction.

Detail loss refers to algorithms’ inability to accurately
reproduce small building components, like chimneys, dormers,
and roof decorations, which are relatively small geometric
structures (see Figure 5). The primary reason is the low
resolution of predicted point clouds, i.e., a fixed number of
predicted points (such as 16,384 points per building),
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(a) LoD2 building model (b) AdaPoinTr prediction

Figure 5. An example of details loss in the predict building point
cloud using AdaPoinTr. The black circle emphasizes the absence

of detailed roof superstructures.

insufficient to cover large-scale buildings with many details
comprehensively. Although increasing the number of predicted
points or predicting only missing parts can mitigate this issue,
the number of points cannot be indefinitely increased due to
memory limitations. Another strategy is to decompose large
building point clouds into subsets, predict complete structures
for subsets, and then stitch predictions together.

(a) AdaPoinTr prediction (b) Ground truth

(c) AdaPoinTr mesh (d) Ground truth mesh

Figure 6. An example of over-smoothed sharp features. The
Poisson surface reconstruction is used to extract surface mesh
from the point clouds. The color transition from blue to red

signifies a shift from lower to higher elevation levels.

As for the over-smoothed sharp features, they refer to the
excessively smoothed sharp corners or sharp edges of
buildings. These sharp features primarily arise at the
intersections of piece-wise planar surfaces of buildings, such
as where the facade meets the roof. As illustrated in Figure 6,
we employed Poisson surface reconstruction on both the
AdaPoinTr-predicted point clouds and the ground truth data to
highlight the disparities in sharp features. It is evident that the
mesh reconstructed from AdaPoinTr-predicted point clouds
exhibits more over-smoothed areas compared to the ground
truth mesh. The over-smoothed sharp features is primarily due
to the fact that the loss functions of these methods are mostly
based on the Chamfer Distance, which is a point-to-point
distance measure. For urban buildings that conform to the
Manhattan world assumption, this measure cannot ensure that
the distance error from each point to the local plane is
minimized. Therefore, we suggest incorporating the
consideration of the distance from points to local planes into
the loss function, aiming to address the issue of over-smoothed
sharp features to a certain extent.

5.3 Normalization issues

Although normalization is widely regarded as a means to
speed up training, enhance model convergence, and improve
generalization capabilities, it has become a problematic issue
in the field of point cloud completion. This is because existing
methods typically normalize partial point clouds by aligning
them with the ground truth, adjusting the partial point clouds
based on the center and scale of the ground truth. However,
in practical applications, especially for building point cloud
completion tasks, this method is not always feasible, as not
all buildings have readily available ground truth or models
for reference. If the partial point clouds cannot be accurately
aligned with the ground truth, it may lead to failures in model
training or prediction. Figure 7 illustrates the disparities in
center position and scale between the partial point cloud and
the ground truth point cloud.

(a) (b) (c)

Figure 7. An example of normalization in point cloud
completion: (a) displays the partial point cloud with its center

point and bounding box outlined in red. (b) presents the ground
truth point cloud, marked with a center point and bounding box

in green. (c) overlays (a) with the center point and bounding box
from (b), emphasizing the disparities in center position and scale

between the partial and ground truth point clouds.

To address this issue, a potential strategy is to develop a
network capable of capturing the global features of point
clouds, thereby predicting the center position and scale of
the point clouds. Alternatively, we could consider relying
on external data resources, such as GIS data, to assist in the
normalization process. These approaches have the potential to
establish a more effective and robust normalization framework
for the task of point cloud completion.

6. Conclusions

This study established the real-world benchmark
Building-PCC dataset and evaluated the performance of
current deep learning-based point cloud completion
technologies in building point cloud completion. The results
demonstrate that, despite deep learning methods excelling in
capturing local and global geometric features, the quality of
results in real-world scenarios is poor and fails to meet
downstream applications’ needs. By comparing different
technologies on the dataset, we revealed the impact of dataset
imbalance, limitations on details, and normalization issues on
point cloud completion. Finally, we propose solutions to these
challenges, including developing networks that capture global
features, improving loss functions, and utilizing external data
to assist with imbalance and normalization, offering new
directions for future research.
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