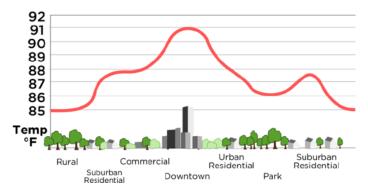
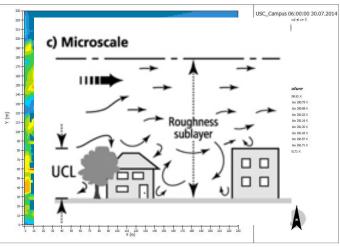
GeoBIM for microclimate simulations

Natasja van Heerden & Panagiotis Arapakis




Urban microclimate

- Meso scale
 - Urban Heat Island Effect
- Micro scale
 - Influence of shadowing, vegetation, structure materials, water
- Importance

Delft

 Providing correct data for calculations

Microclimate Simulation tools

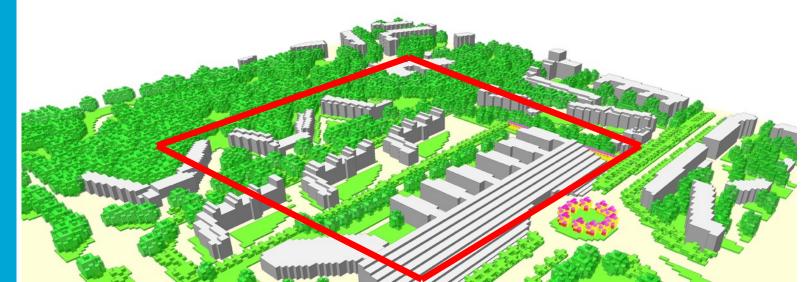
RayMan

CFD

• Comparing tools:

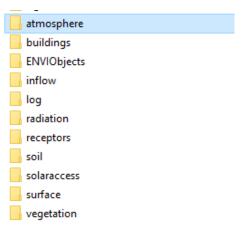
- Simplification of models
- Variables
- Ease of use
- One main focus

ENVI _MET


 Most complete tools: CitySim Pro & ENVImet

ENVI-met

ŤUDelft

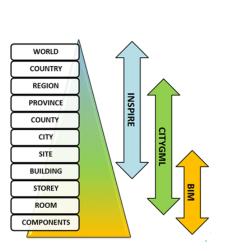

- Computation Fluid Dynamics(CFD)
- Resolution (0.5-10m)
- Modelling of airflow, moisture and heat exchange processes between surfaces, building physics, vegetation, bioclimatology and pollution

ENVI-met outputs

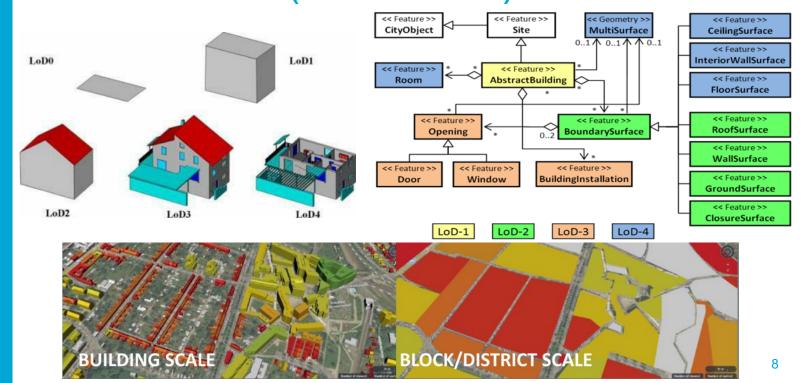
- Calculate a wide variety of parameters
 - Atmosphere (Air temperature, thermal comfort etc..)
 - Buildings (SVF, longwave emitted etc..)
 - Trees (Plant CO2 Flux, Stomata resistance etc..)
 - Soils (Surface temperature, Shadow % etc..)
- Voxel data (binary)
- Aggregated data (text)

Use of digital 3D models

- 3D models (CAD geometries)
- Semantic 3D models
 - BIM (building scale)
 - IFC, gbXML..
 - 3D GIS (City district scale)
 - CityGML, CityJSON..


ENVI-met scale

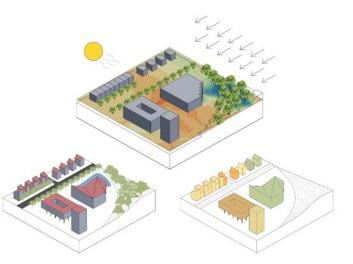
- Area input file
 2.5 D
 - 3D



– Limited to < (~ 300*300*100)</p>

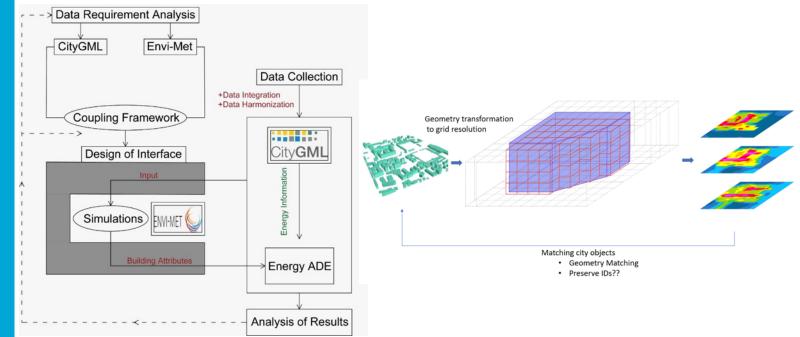
Building information in 3D city model (CityGML + Energy ADE), BIM (if available)

My work


 The use of 3D models in microclimatic studies – First steps to couple CityGML with ENVI-met

By Panagiotis Arapakis

Mentors : Giorgio Agugiaro, Daniela Maiullari


Aims

- Establish an automate data flow between ENVI-met & CityGML standard (Minimize human intervention)
- Store useful results back to the 3D City model to use them as input for other studies

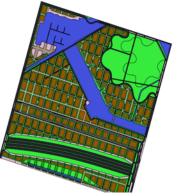
Methodology

ŤUDelft

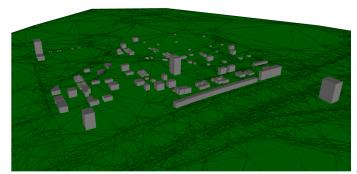
Test case

- Almere (Floriade 2022)
 - Newly developed area with 660 building Units
 - International Horticultural Expo
 - Growing Green Cities





Floriade CityGML model


Legend Land_Use_Almero Asphalt Basalt Concrete Grass Gravel Soil Unknown

Water

ENVI-met requirements

- Input (Configuration File)
 - Voxelized model (Area Input File) (2.5D)
 - Weather at its boundaries
 - Databases (materials and plants)
 - Simulation parameters (day, extent, roughness value etc)

Chang	e or crea	ate mode	domain s	settings						×
Mode	Change	or create	e model d	omain se	ettings			_		
Mode		Location			Model Geometry		Concent Design			
Geor	Model	Change of Model Lo		model de	omain settings Georefe	rence		EN	11/1	
Defa Nesti	Geore Defaul	Model G Georefe	Model L		e model domain set	-	gs for Walls and Roofs		EN	×
Desc	Nestin			Change	or create model do	main settings		1	LIN	v 1
	Descri	Default : Nesting	Georefe	Model I			for Nesting Grids			ENVI
		-	Default	Model	Change or create n	odel domain set	tings			
		Descript	Nesting	Geore	Model Location		Model Description			FNVI
			Descrip	Defaul	Model Geometry		A brave new area			A holistic microclimate model
				Nestin	Georeference and D	M Level				
				Descri	Default Settings					You are here: start » onlinehelp » spaces » settings_description
					Nesting Grids					Settings_Description
					Description and Cop	yrights				Settings_beschption
							Copyright Information			Book Creator
							The creator or distributor is responsible fo	r following Copyright Law	vs	Add this page to your book Manage book (0 page(s))
		1								I Help
										This website uses cookies for visitor traffic analysis. By using the website, you agree
										with storing the cookies on your computer. OK More information

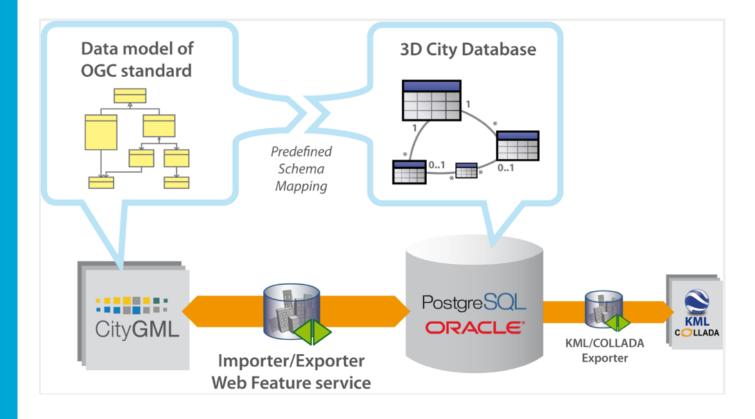
Urban Data

Buildings

Trees

Soils DEM

- Height (integer) matrix data
 Base height (set to 0) matrix data
 Id (integer) matrix data
- Simple trees (Database Link) matrix data
 3D trees Independent tags
- Database link matrix data
- ➢Reference Height (float)
- ≻Values (Integer) matrix data


16

Mapped classes & attributes

Weather parameters	User input		
Projection System	CRS		
UTM Zone	Bounding Box		
location longitude	Bounding Box		
location latitude	Bounding Box		
building zTop	Building, Measured_height		
building zBottom	Building, lod0_footprint_geometry		
building NR	Building lod0_footprint_geometry		
simple plants 2D	Vegetation, Solitary Vegetation Object ,height&crown diameter)		
plants 3D	LandUse, Usage 'Forest'	Vegetation, Solitary Vegetation Object height&crown diameter)	
soils 2D	<i>Building = (</i> default soil)	Land Use, gen_attribute (Material)	Plant_Cover Usage, 'Forest'
dem (+z reference)	TIN_Relief(+BoundingBox)		

TUDelft

Reading and writing Data

Reading data

	id integer		classname character varying(256)								class character varying(256)	function character varying(1000)		ı usage character varying(1000)		lod0_multi_surface_id integer
17	2399	4	LandUse	La		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	••	130846
18	2400	4	LandUse	La		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	••	130850
19	2402	4	LandUse	La	Gi '	'Gr	01 20		2(pc		Vegetation	Grassland	•	Grassland	••	130852
20	2404	4	LandUse	Le		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	• •	130858
21	2421	4	LandUse	Le	Т1 '	' In	03 20		2(pc		Vegetation	Agriculture	•	Agriculture	• •	130892
22	2424	4	LandUse	Le	Т1 '	' In	03 20		2(pc		Vegetation	Agriculture	•	Agriculture	• •	130898
23	2426	4	LandUse	Le	Т1 '	' In	03 20		2(pc		Vegetation	Agriculture	•	Agriculture	••	130900
24	2427	4	LandUse	La	Т1 '	' In	01 20		2(pc		Vegetation	Agriculture	•	Agriculture	••	130906
25	2430	4	LandUse	Le	Gi '	'Gr	01 20		2(pc		Vegetation	Agriculture	•	Agriculture	••	130908
26	2432	4	LandUse	La	Gi '	'Gr	01 20		2(pc		Vegetation	Grassland	•	Grassland	••	130912
27	2433	4	LandUse	Le	St '	' B1	01 20		2(pc		Traffic	Road	•	Road	• •	130916
28	2341	4	LandUse	Le		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	• •	130732
29	2344	4	LandUse	Le	Gi '	'Gr	01 20		2(pc		Vegetation	Agriculture	•	Agriculture	• •	130736
30	2347	4	LandUse	Le		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	••	130746
31	2353	4	LandUse	Le	Gi '	'Gr	01 20		2(pc		Vegetation	Agriculture	•	Agriculture	••	130756
32	2359	4	LandUse	Le		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	• •	130768
33	2363	4	LandUse	La		Un	01 20		2(pc		Undeveloped area	Unknown	•	Unknown	• •	130778

Writing data

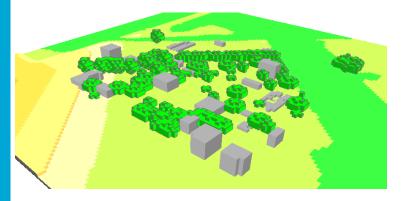
 Energy ADE TimeSeries & WeatherData classes

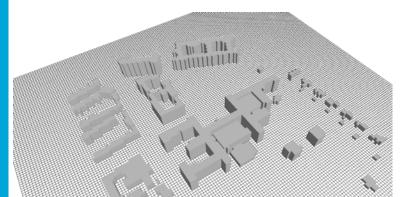
id integer		classname character varying(256)			acquisition_method character varying	interpolation_type character varying	 sc values_array ct numeric[]	values_unit character varying	array_leng integer
2	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.720,19.780,18.145,16.8	Celsius Degrees	31
26	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.800,19.887,18.153,16.8	Celsius Degrees	31
85	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.884,19.946,18.235,16.8	Celsius Degrees	31
106	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.860,19.923,18.168,16.8	Celsius Degrees	31
109	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.842,19.873,18.154,16.8	Celsius Degrees	31
117	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.841,19.904,18.160,16.8	Celsius Degrees	31
149	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.811,19.881,18.150,16.8	Celsius Degrees	31
213	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.792,19.862,18.144,16.8	Celsius Degrees	31
260	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.862,19.933,18.169,16.8	Celsius Degrees	31
357	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.861,19.903,18.164,16.8	Celsius Degrees	31
362	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.852,19.858,18.152,16.8	Celsius Degrees	31
372	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.698,19.790,18.136,16.7	Celsius Degrees	31
395	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.754,19.836,18.152,16.8	Celsius Degrees	31
428	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.778,19.815,18.107,16.7	Celsius Degrees	31
476	202	RegularTimeSeries	UUID_		Simulation	ConstantInSucceedingInterval	{20.847,19.941,18.203,16.9	Celsius Degrees	31

Interface Settings	X Min Y Min Grid Start 4.371 52.0023 0	Smooth DEM
	X Max Y Max 4.379 52.007 0	Fill Dummy grid
 Provide the input SciGModeler 	Rotation	Preview Write INX
 File City Model Properties Connect to 3DCityDB Initialize to 3DCityDB Polygon C Set Password Blgd5Tak\$ Open ENVI-get output Grid 5 SclGModeler Converts Preview Help Help New Load Polygon Set Password Blgd5Tak\$ Open ENVI-get output Grid 5 SclGModeler SclGModeler Converts Preview Help Help Signple Plant Buffe 	ion 2 ion 2	? × e P Apply Fill Dummy grid
Polygon Coordinates in WGS84 Set ENVI-met Materials ?	×	
X Min Y Min Default Wall Material Default Wall O Brick Wall Light Concret Default Roof Material Default Roof Material Default Roof Roof Tile X Max Y Max Apply	te Wall	85600 85700 85800

TUDelft

Results


- Area Input files
 - Different resolutions
 - From different source datasets
- Results in vector format (Point Cloud)
 - Visualization
 - Easier processing
- Augmented CityGML classes
 - Buildings with average outdoor temperature
 - Many more outputs can be examined

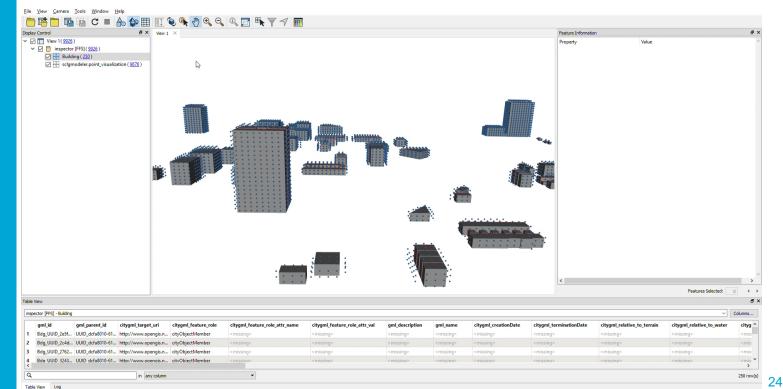


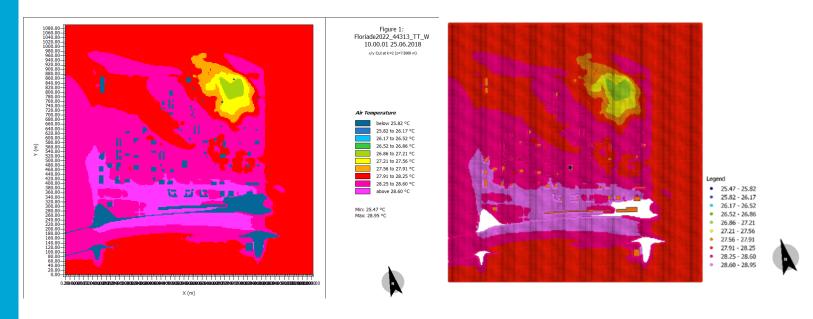
22



Area input files

TUDelft





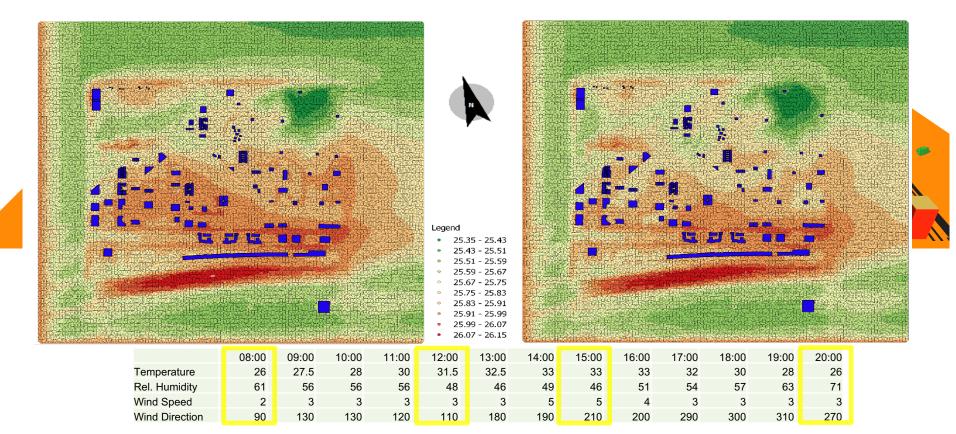
23

Point cloud on same crs

Implementation quality check of interface

2 sets of simulations

A. Three test (simulations) conducted to study the effect of different vegetation type


B. Simulations of two different scenario

- Full Forcing data from Lelystand Station
- Duration 31h (17:00 23.59)

Vegetation Tests

Scenario simulations

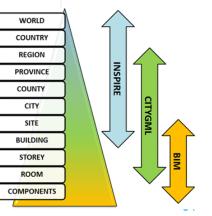
Conclusions

- Successfully implementation of the bidirectional interface
 - CityGML can be used to prepare automatically a voxelized model of ENVI-met
 - We can retrieve the results AND store them
- Birth of ScIGModeLer
- Methodology already applicable to other outputs
- Even more outputs can be stored back

Limitations – Future work

- Test interface
- Evaluate mapping of more CityGML classes
- Examine and return more attributes
- Construction of 3D area input file & automatic preparation of weather files

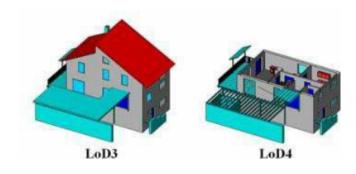


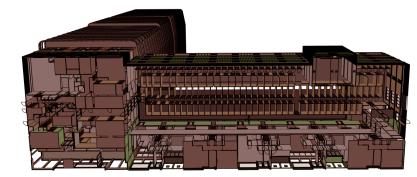

How more?

- Area input file
 - 2.5 D

-3D

 Incorporating more detailed geometry & building components information

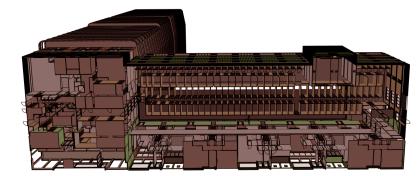



reated by corpus delic on Noun Project

How more?

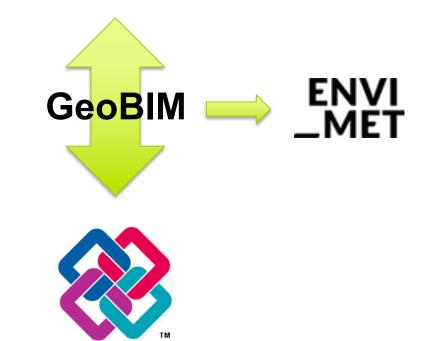
City**GML**

+ Energy ADE



reated by corpus delic on Noun Project

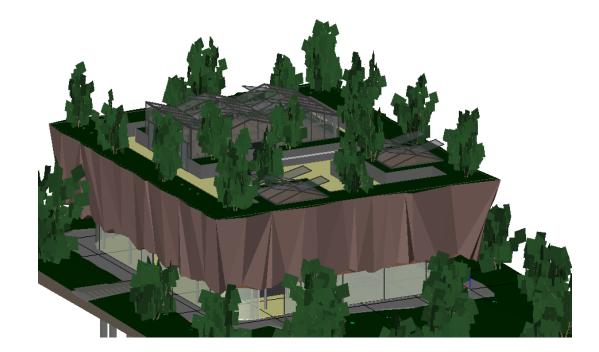
How more?



Created by corpus from Noun Project

How more?

City**GML**



reated by corpus delic

Floriade IFC model

Research Questions

How can **BIM** information be **integrated** in a **3D city model**, in order to improve **microclimate simulations**?

- What **data** is needed for **microclimate simulation**? Where can this information be found in IFC and CityGML schemes **and real data**?
- What **IFC entities** should be selected for a smooth conversion and simulation? What **guidelines** for designers could help the process?
- At what **level of detail** (LOD) should the CityGML be for the best result of the microclimate simulation in ENVI-met?
- How to convert the BIM information effectively in a 3D city model, to be usable in microclimate simulations? What geometrical issues do we run in to and how to deal with this?

Delft

Initial semantic mapping and available data

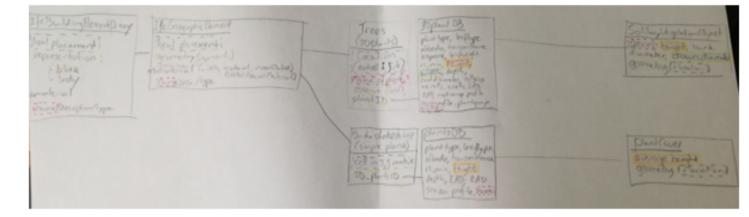
Required elements	Representation in IFC schema*	Representation in existing data	
Building:	✓ IfcBuilding and	\checkmark	
	IfcBuildingElement		
Geometry	✓IfcBuilding (Body Geometry)	\checkmark	
Walls/Roof	✓IfcWall, IfcRoof	\checkmark	T
Material	✓ IfcRelAssociatesMaterial	\checkmark	
	(IfcMaterialDefinition (4),		
	IfcMaterialUsageDefinition (4))		
Trees	✓IfcGeographicElement	~	
Vegetation	✓IfcGeographicElement	~	
Soil	✓IfcGeographicElement	~	
Infrastructure	✓IfcCivilElement (4)	~	
	(IfcGeographicElement (2x3))		
Water	IfcGeographicElement	x	
Location	✓IfcSite	~	
Terrain height	✓IfcSite	~	

IfcGeographicElement IFC4

eated by corpus delicti on Noun Project

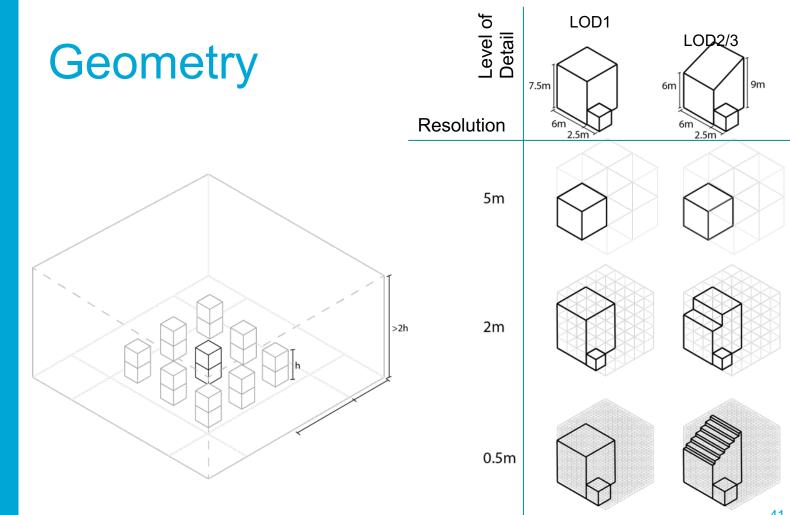
Mapping

Requir	ed elements	In IFC schema	In existing IFC data	In CityGML schema	In existing CityGML data
Model	geometry				
Locatio	on data	\checkmark	~	\checkmark	\checkmark
Buildin	g 2D/3D	\checkmark	\checkmark	\checkmark	\checkmark
Wall/si	ngle wall	\checkmark	\checkmark	~	~
Greeni	ng			×	×
3D Plai	nts	\checkmark	~	\checkmark	~
Simple	plants	\checkmark	~	\checkmark	~
Soils	Soils	√ ~	~	~	×
	Infrastructure	√ ~	~	\checkmark	~
Water		~	×	\checkmark	~
Source	S				
DEM 2	D/3D	\checkmark	~	\checkmark	~



Example [Vegetation]

- What information to define input file
- information for **vegetation from IFC** (including exact entities, elements, characteristics)
- information for **vegetation from CityGML** (including exact classes, elements, characteristics)



ŤUDelft

Created by corpus deli from Noun Project

A Similar case: gbXML vs IFC

Green Building XML

An industry supported standard for storing and sharing building properties between 3D Architectural and **Engineering Analysis Software**.

https://gbxml.org

Early conclusions

- We can find the needed detailed information in BIM but:
 - The modelling has to follow guidelines and include such information in the design;
 - An improved method is needed to exchange the information between different formats (not 1:1 mapping);
 - Manual integration still needed in some cases.
- Once the method will be ready, it will be possible to test very efficiently the impact of the designed building on the environment, without additional effort.

Conclusions

- Effective reuse of existing information (3D city) models and BIM)
- Good integration methodology is critical to achieve efficient workflow
- As long as modelling criteria and requirements

Possible next

Integration of simulation results in 3D city model and improvement with energy information.

