TUfE)

Point Clouds
From Calibration to Classification

Norbert Pfeifer

norbert.pfeifer@geo.tuwien.ac.at

Technische Universitat Wien, Department for Geodesy and Geoinformation
Vienna, Austria

Contributions
Gottfried Mandlburger (IfP Stuttgart, Germany), Philipp Glira (Siemens, Austria),
Martin Pfennigbauer (Riegl, Austria), Konrad Wenzel (nframes, Germany), Tran Giang



mailto:norbert.pfeifer@geo.tuwien.ac.at

Point Cloud Calibration and Orientation

3D color vs. mainly geometry
Differences: vegetation, crane

Piles of construction material

DIM: stereo occlucion

LIDAR: points between piles available
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Point Cloud Change Detection

4 data sets taken at 4 different times

Different modality
RGB, nIR, photo/lidar, GSD,
point density, shadow, ...

Classified Lidar point clouds
ground, building, vegetation




Computational Geometry — Point Cloud Legacy

= Design Process
« Given: Pointcloud p; eR3,i=1, ..n
o Find: surface s(u,v) closely interpolating p; , i.e. minimize f ( s(u;,v;) - p; )
« NURBS (...) surface, patch layout based on curvature, curvature defined in each point

m =wig Image: learning alias >




Computational Geometry — Point Cloud Legacy

= Design Process

« Given: Pointcloud p; eR3,i=1, ..n

o Find: surface s(u,v) closely interpolating p; , i.e. minimize f ( s(u;,v;) - p; )

« NURBS (...) surface, patch layout based on curvature, curvature defined in each point
= Quality Inspection

« Given: CAD model of a object, discretized as points m;
e Given: point cloud of the manufactured object, data points dj
« Find: transformation of d; onto m;, but no exact correspondence

« Replace exact with approximate, iteratively determined correspondence: ICP
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Computational Geometry — Point Cloud Legacy

= Design Process
 Given: Point cloud p; eR3,1=1, ..
« Find: surface s(u,v) closely interpc
« NURBS (...) surface, patch layout
= Quality Inspection
« Given: CAD model of a object, dis
e Given: point cloud of the manufar
e Find: transformation of dj ontom
« Replace exact with approximate,
= Visualization

« Given: Point cloud p;
« Find TIN with vertices p, that follows surface of object

e No 2D solution, e.g. Delaunay criterion,
but localized processing independent of overall shape
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Point clouds

Computational Geometry Geodesy and Geoinformation

= QObject centered (often) = Billions of points

= Pointp; (X, VY, Z) = Projected CS

= (Cartesian coordinate system = Random (0.5-30cm), systematic (up
= No datum to meter), and many gross errors

= No attributes = Attributes: color, accuracy, echo ID,

= Error free (negligible errors) FWF information, time, etc.

= Measurement process known
= No measurement process P

= Measurement along optical line of
sight

SEO)
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Point cloud research domain

Geodesy and Geoinformation

Billions of points
Projected CS

Random (0.5-30cm), systematic (up
to meter), and many gross errors

Attributes: color, accuracy, echo ID,
FWF information, time, etc.

Measurement process known

Measurement along optical line of
sight
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Data structures

kD-tree
appropriate for processing, nearest
neighbor search, etc.

octree
appropriate for visualization (e.g.
potree)

Data structure for manuel editing,
processing and visualization of point
clouds?




Point cloud research domain

Geodesy and Geoinformation
= Billions of points
= Projected CS

= Random (0.5-30cm), systematic (up
to meter), and many gross errors

= Attributes: color, accuracy, echo ID,
FWF information, time, etc.

= Measurement process known

= Measurement along optical line of
sight

Data structures

= kD-tree
appropriate for processing, nearest
neighbor search, etc.

= octree
appropriate for visualization (e.g.
potree)

= Data structure for manuel editing,
processing and visualization of point
clouds?

= Processing strategies
parallelization
tile wise processing

= Neighborhood
optimal neighborhoods, parameter
selection, etc.




Point cloud research domain

Geodesy and Geoinformation
= Billions of points s
= Projected CS s

= Attributes: color, accuracy, echo ID,

Random (0.5-30cm), systematic (up
to meter), and many gross errors s

Calibration and orientation

sensor modeling

measurement process modeling
sensor + medium/media + object

observation error models

() = g“(t) + RE(£) R'(H)(a’ + R x*(£))

FWF information, time, etc.
Measurement process known

= Measurement along optical line of !
sight
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Point cloud research domain

Geodesy and Geoinformation

Billions of points
Projected CS

Random (0.5-30cm), systematic (up
to meter), and many gross errors

Attributes: color, accuracy, echo ID,
FWF information, time, etc.

Measurement process known

Measurement along optical line of
sight

ey

Applications

land cover mapping
topographic modeling
indoor modeling
engineering surveying
deformation analysis
change detection
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Calibration of point clouds

Integrated calibration and orientation of lidar and image matching point clouds

= Where’s the problem?

= Lidar point clouds are good within surfaces and for vegetation,
not influenced by (sun) shadows

= Image matching point clouds are good on edges and have high resolution

= Aim
combine the advantages and exploit the differences

= Requirement
precise geo-referencing

= Standard method
independent bundle block adjustment and laser scanning strip adjustment

ey
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Flight block Melk (Austria)

Overview map %
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Results: data acquisition Melk
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esults: data acquisition Melk




Elevation differences with standard method

Helght dlfferences ,,L|DAR mlnus DIM“ before mtegrated strlp adjustment/AT "
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Integration of LiDAR strip adjustment and aerotriangulation

image image

In object space: S

1) LAS-to-LAS Equatlons -

2) LAS-to-GTD ‘. / / « Direct georeferencmg

3) IMG-to-GTD - Collinearity

4) IMG-to-LAS - Point to tangent plane ICP

In image space: Correqundence

5) IMG-to-IMG

» IMG (=image tie point) opa IS

\ LAS IMG (=image tie point)
GTD & E
(=ground—truth:dat:a) GTD
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Results: data acquisition Melk
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Results: data acquisition Melk

vegetation %

Helght dlfferences ,,L|DAR minus DIM“ after mtegrated strlp adjustment/AT S
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Results: data acquisition Melk
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DIM* after hybrid adjustment
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" Masked height differences ,LIDAR minus

e : Mandlburger et al.
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from LiDAR and DIM

DSM generation

S P
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LiDAR/DIM data properties: vegetation penetration

= Vegetation: DIM=top of grass surface, LIDAR=penetrates grass layer
= |mpenetrable surfaces: negligible height differences between DIM and ALS

colorized DIM point cloud ) hgight difference: LiDAR—DII\V/I._
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Classification of point clouds

Point cloud classification

= Principle: use measured and computed features to infer,
which class a point belongs to (features selection?)

All_fiiter_ER.tf | An_ritter_ew.uir ol [ an_fitter_z_sigmao.tif

Value "l J| Value ol Value
= « High 138

- High - 100 High - 18,7029

- Low - 0000604250

m @ EchoRatio | Echo width Sigma0 Tran et al.
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Classification of point clouds

Point cloud classification

= Principle: use measured and computed features to infer,
which class a point belongs to (features selection?)

=50

= Methods: manual decision trees, support vector machines, . '
random forests, Markov chains, deep convolutional neural w1
networks

= Considerations: transferability of rules (across missions, @
scales, etc.), number of classes, run time, amout of training @ "
data, representation of rarely occuring classes,
classification accuracy
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0 375 75 150 Meters 0 375 75 150 Meters Tran et al.
29

- High building - small building - Vegetation I:I Grassland I:ICars I:I Sealed surface e




Change detection in point clouds

Al: classify point clouds of different epochs + compare labels (proximity?)
A2: compute geometric point cloud difference + classify changed points

Problem 1
change in class
and change in
geometry can be
independent

Problem 2
different data
properties

Problem 3
3D changes




PCCD
envisaged
result

Cut tree
New tree

Ground to another landuse

‘ Ground change in height >0.5m
Reconstructed building

O New buildings

Unchange

Tran et al.
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PC CD Method

Exploit the power of machine learning
= Features for class and features for change

local neighborhood: normal vector, roughness, etc.
approximate height (simple terrain model)

s

change indicators
e distance to nearest point in PC of other epoch
e point distribution feature
evaluated at location of epoch 1 points
with points of epoch 2

&
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measurement process: echo ID, waveform attribute, etc.

Tran et al.
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PC CD Method
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measurement process: echo ID, waveforsg
local neighborhood: normal vector, roughnese
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Stability
|

0 20 40 60 80

change indicators

e distance to nearest point in PC of other epoch
e point distribution feature
evaluated at location of epoch 1 points 7
with points of epoch 2 _— ° [
= Sample training data, l S @ s T S il
learn model (e.g. random forestsf, . 2 o = = L
apply model to detect all chang® ™ = - ™ T .
done (?)
Tran et al.
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PC CD ML

e Unchange tree %%
» Unchange ground

e Unchange building Reference region

e New tree
e New building
New and change height ground

0 01503 06 0.9 1,2
T — KT

e Lost building
e Lost tree
Lost and change height ground

Tran et al.
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PC CD ML

e Water s §
™ Unchan&e tree "€

ou nchwgﬁcssﬁg@&ee

o Unchangechaht@dingound

e No datanchange building Reference region L

e Lost balilsinguilding s\Newrteee St

e Lost tred@st tree N\RePwdinging N
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Tran et al.
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Lost building

New building
and new
ground

New tree

Lost tree

Ground
change
in height

ey

2015 UG CG UB NB UT NT

Ref_ UG 483 05 0.1 0 0 0

Ref CG 09 10 01 0.1 0 0

Ref_UB 0 0 165 02 09 0

Ref_NB 0 02 01 46 0.1 0

Ref_UT 0 0 03 02 111 1.1

Ref NT 0 0 01 0.1 1.1 1.6

Sum 492 108 171 53 132 27

: a ' EOC 1.8 69 36 124 159 42
= @ i,\_ﬂ ok g ‘,_ | Corr 982 931 964 876 841 580

‘ uﬁ_ ~ Overall Accuracy: 92.05
e Height (m) Total number of points: 8,636,900
-5 5 12 16 18 20 >20

@ Unchanged building @ Lost building @ New building @ Unchanged tree Tran et al.

@ New tree @ Lost tree (O Unchanged ground @ Changed ground 36




Conclusions

Many open point
cloud research
guestions
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