

Point Clouds From Calibration to Classification

Norbert Pfeifer

norbert.pfeifer@geo.tuwien.ac.at

Technische Universität Wien, Department for Geodesy and Geoinformation Vienna, Austria

Contributions Gottfried Mandlburger (IfP Stuttgart, Germany), Philipp Glira (Siemens, Austria), Martin Pfennigbauer (Riegl, Austria), Konrad Wenzel (nframes, Germany), Tran Giang

Point Cloud Calibration and Orientation

- 3D color vs. mainly geometry
- Differences: vegetation, crane
- Piles of construction material
- DIM: stereo occlucion

Mandlburger et al.

• LiDAR: points between piles available

Point Cloud Change Detection

- 4 data sets taken at 4 different times
- Different modality RGB, nIR, photo/lidar, GSD, point density, shadow, ...
- Classified Lidar point clouds ground, building, vegetation

Computational Geometry – Point Cloud Legacy

- Design Process
 - Given: Point cloud $\mathbf{p}_i \in \mathbb{R}^3$, i = 1, ..., n
 - Find: surface s(u,v) closely interpolating p_i , i.e. minimize $f(s(u_i,v_i) p_i)$
 - NURBS (...) surface, patch layout based on curvature, curvature defined in each point

Computational Geometry – Point Cloud Legacy

- Design Process
 - Given: Point cloud $\mathbf{p}_i \in \mathbb{R}^3$, i = 1, ..., n
 - Find: surface s(u,v) closely interpolating p_i , i.e. minimize $f(s(u_i,v_i) p_i)$
 - NURBS (...) surface, patch layout based on curvature, <u>curvature defined in each point</u>
- Quality Inspection
 - Given: CAD model of a object, discretized as points m_i
 - Given: point cloud of the manufactured object, data points **d**_{*j*}
 - Find: transformation of \mathbf{d}_j onto \mathbf{m}_i , but no exact correspondence
 - Replace exact with approximate, iteratively determined correspondence: ICP

Computational Geometry – Point Cloud Legacy

- Design Process
 - Given: Point cloud $\mathbf{p}_i \in \mathbb{R}^3$, i = 1, ...
 - Find: surface s(*u*,*v*) closely interpo
 - NURBS (...) surface, patch layout k
- Quality Inspection
 - Given: CAD model of a object, dis
 - Given: point cloud of the manufa
 - Find: transformation of \mathbf{d}_j onto \mathbf{m}
 - Replace exact with approximate,
- Visualization
 - Given: Point cloud **p**_i
 - Find TIN with vertices \mathbf{p}_i that follows surface of object
 - No 2D solution, e.g. Delaunay criterion, but <u>localized processing</u> independent of overall shape

Point clouds

Computational Geometry

- Object centered (often)
- Point \mathbf{p}_i (x_i, y_i, z_i)
- Cartesian coordinate system
- No datum
- No attributes
- Error free (negligible errors)
- No measurement process

Geodesy and Geoinformation

- Billions of points
- Projected CS
- Random (0.5-30cm), systematic (up to meter), and many gross errors
- Attributes: color, accuracy, echo ID, FWF information, time, etc.
- Measurement process known
- Measurement along optical line of sight

Geodesy and Geoinformation

- Billions of points
- Projected CS
- Random (0.5-30cm), systematic (up to meter), and many gross errors
- Attributes: color, accuracy, echo ID, FWF information, time, etc.
- Measurement process known
- Measurement along optical line of sight

Data structures

- kD-tree appropriate for processing, nearest neighbor search, etc.
- octree appropriate for visualization (e.g. potree)
- Data structure for manuel editing, processing and visualization of point clouds?

Geodesy and Geoinformation

- Billions of points
- Projected CS
- Random (0.5-30cm), systematic (up to meter), and many gross errors
- Attributes: color, accuracy, echo ID, FWF information, time, etc.
- Measurement process known
- Measurement along optical line of sight

Data structures

- kD-tree appropriate for processing, nearest neighbor search, etc.
- octree appropriate for visualization (e.g. potree)
- Data structure for manuel editing, processing and visualization of point clouds?
- Processing strategies parallelization tile wise processing
- Neighborhood optimal neighborhoods, parameter selection, etc.

10

Geodesy and Geoinformation

- Billions of points
- **Projected CS**
- Random (0.5-30cm), systematic (up to meter), and many gross errors
- Attributes: color, accuracy, echo ID, FWF information, time, etc.
- Measurement process known
- sight WGS84

Calibration and orientation

- sensor modeling
- measurement process modeling sensor + medium/media + object
- observation error models

$$\mathbf{x}^{e}(t) = \mathbf{g}^{e}(t) + R_{n}^{e}(t) R_{i}^{n}(t) (\mathbf{a}^{i} + R_{s}^{i} \mathbf{x}^{s}(t))$$

Geodesy and Geoinformation

- Billions of points
- Projected CS
- Random (0.5-30cm), systematic (up to meter), and many gross errors
- Attributes: color, accuracy, echo ID, FWF information, time, etc.
- Measurement process known
- Measurement along optical line of sight

Applications

- land cover mapping
- topographic modeling
- indoor modeling
- engineering surveying
- deformation analysis
- change detection

Calibration of point clouds

Integrated calibration and orientation of lidar and image matching point clouds

- Where's the problem?
- Lidar point clouds are good within surfaces and for vegetation, not influenced by (sun) shadows
- Image matching point clouds are good on edges and have high resolution physical explanation: aperture size of current laser scanners vs. photogrammetric cameras
- Aim combine the advantages and exploit the differences
- Requirement precise geo-referencing
- Standard method independent bundle block adjustment and laser scanning strip adjustment

Flight block Melk (Austria)

Mandlburger et al.

Elevation differences with standard method

Mandlburger et al.

Mandlburger et al.

DSM generation from LiDAR and DIM

Mandlburger et al.

LiDAR/DIM data properties: vegetation penetration

- Vegetation: DIM=top of grass surface, LiDAR=penetrates grass layer
- Impenetrable surfaces: negligible height differences between DIM and ALS

Classification of point clouds

Point cloud classification

Principle: use measured and computed features to infer, which class a point belongs to (features selection?)

Classification of point clouds

Point cloud classification

- Principle: use measured and computed features to infer, which class a point belongs to (features selection?)
- Methods: manual decision trees, support vector machines, random forests, Markov chains, deep convolutional neural networks
- Considerations: transferability of rules (across missions, scales, etc.), number of classes, run time, amout of training data, representation of rarely occuring classes, classification accuracy

Change detection in point clouds

- A1: classify point clouds of different epochs + compare labels (proximity?)
- A2: compute geometric point cloud difference + classify changed points
- Problem 1
 change in class
 and change in
 geometry can be
 independent
- Problem 2 different data properties
- Problem 33D changes

PC CD

PC CD Method

- Exploit the power of machine learning
- Features for class and features for change
- 1. measurement process: echo ID, waveform attribute, etc.
- 2. local neighborhood: normal vector, roughness, etc.
- 3. approximate height (simple terrain model)
- 4. change indicators
 - distance to nearest point in PC of other epoch
 - point distribution feature evaluated at location of epoch 1 points with points of epoch 2

PC CD Method

- Exploit the power of machine less
- Features for class and features for civility
- 1. measurement process: echo ID, wavefor
- 2. local neighborhood: normal vector, roughnes
- 3. approximate height (simple terrai a 0,6 0,9 12km
- 4. change indicators
 - distance to nearest point in PC of other epoch
 - point distribution feature evaluated at location of epoch 1 points with points of epoch 2
- Sample training data, learn model (e.g. random forests)
 apply model to detect all chang done (?)

2007

Stability

20 40

60

80 100

2015

16

PC CD ML

PC CD ML

Lost building							
New building and new ground							
New tree	2015	UG	CG	UB	NB	UT	NT
Lost tree	Ref_UG Ref_CG Ref_UB Ref_NB Ref_UT Ref_NT	48.3 0.9 0 0 0 0 0	0.5 10 0 0.2 0 0	0.1 0.1 16.5 0.1 0.3 0.1	0 0.1 0.2 4.6 0.2 0.1	0 0 0.9 0.1 11.1 1.1	0 0 0 0 1.1 1.6
Ground change in height	Sum EOC Corr Overall A	49.2 1.8 98.2 Accurac	10.8 6.9 93.1 zy: 92.0	17.1 3.6 96.4 5	5.3 12.4 87.6	13.2 15.9 84.1	2.7 42 58.0
Height (m) -5 5 12 16 18 20 >20 • Unchanged building • Lost building • New building • Unchanged tree • New tree • Lost tree • Unchanged ground • Changed ground	Total nur	nber of	points	s: 8,636	,900	Tran e	et al.

Conclusions

Many open point cloud research questions

References

- Tran et al., 2018 (accepted): Classification of image matching point clouds over an urban area. International Journal of Remote Sensing.
- Tran et al., 2018: Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds. Sensors 18.
- Mandlburger et al., 2017: Improved Topographic Models via Concurrent Airborne LIDAR and Dense Image Matching. ISPRS Annals IV-2/W4.
- Glira et al., 2016: Rigorous Strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors. Photogrammetric Engineering & Remote Sensing 82.
- Glira et al., 2015: A Correspondence Framework for ALS Strip Adjustments based on Variants of the ICP. Photogrammetrie, Fernerkundung, Geoinformation 2015.
- Pfeifer et al., 2014: OPALS—A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems 45.
- Otepka et al., 2013: Georeferenced point clouds: A survey of features and point cloud management. ISPRS International Journal of Geo-Information 2.