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Point Cloud Calibration and Orientation
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Dense Image Matching (RGB)Airborne LiDAR

• 3D color vs. mainly geometry
• Differences: vegetation, crane
• Piles of construction material
• DIM: stereo occlucion 
• LiDAR: points between piles available

DIM
LiDAR

How can these point clouds
be „brought together“
in order to understand their differences? 

Mandlburger et al.



Point Cloud Change Detection

 4 data sets taken at 4 different times
 Different modality

RGB, nIR, photo/lidar, GSD, 
point density, shadow, …

 Classified Lidar point clouds
ground, building, vegetation
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Computational Geometry – Point Cloud Legacy

 Design Process
• Given: Point cloud pi ∈R3, i = 1, … n
• Find: surface s(u,v) closely interpolating pi , i.e. minimize f ( s(ui,vi) - pi )
• NURBS (…) surface, patch layout based on curvature, curvature defined in each point
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Computational Geometry – Point Cloud Legacy

 Design Process
• Given: Point cloud pi ∈R3, i = 1, … n
• Find: surface s(u,v) closely interpolating pi , i.e. minimize f ( s(ui,vi) - pi )
• NURBS (…) surface, patch layout based on curvature, curvature defined in each point

 Quality Inspection
• Given: CAD model of a object, discretized as points mi

• Given: point cloud of the manufactured object, data points dj

• Find: transformation of dj onto mi , but no exact correspondence
• Replace exact with approximate, iteratively determined correspondence: ICP

 Visualization
• Given: Point cloud pi

• Find TIN with vertices pi that follows surface of object
• No 2D solution, e.g. Delaunay criterion, 

but localized processing independent of overall shape
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Point clouds

Computational Geometry
 Object centered (often)
 Point pi ( xi , yi , zi )
 Cartesian coordinate system
 No datum
 No attributes
 Error free (negligible errors)
 No measurement process
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Geodesy and Geoinformation
 Billions of points
 Projected CS
 Random (0.5-30cm), systematic (up

to meter), and many gross errors
 Attributes: color, accuracy, echo ID, 

FWF information, time, etc. 
 Measurement process known
 Measurement along optical line of

sight



Point cloud research domain

Data structures
 kD-tree

appropriate for processing, nearest
neighbor search, etc.

 octree
appropriate for visualization (e.g. 
potree)

 Data structure for manuel editing, 
processing and visualization of point
clouds? 
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Point cloud research domain

Data structures
 kD-tree

appropriate for processing, nearest
neighbor search, etc.

 octree
appropriate for visualization (e.g. 
potree)

 Data structure for manuel editing, 
processing and visualization of point
clouds? 

 Processing strategies
parallelization
tile wise processing

 Neighborhood
optimal neighborhoods, parameter
selection, etc. 
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Point cloud research domain

Calibration and orientation
 sensor modeling
 measurement process modeling

sensor + medium/media + object
 observation error models
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Geodesy and Geoinformation
 Billions of points
 Projected CS
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Glira et al.Image: Riegl



Point cloud research domain

Applications
 land cover mapping
 topographic modeling
 indoor modeling
 engineering surveying
 deformation analysis
 change detection
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Calibration of point clouds

Integrated calibration and orientation of lidar and image matching point clouds

 Where‘s the problem?
 Lidar point clouds are good within surfaces and for vegetation, 

not influenced by (sun) shadows
 Image matching point clouds are good on edges and have high resolution

physical explanation: 
aperture size of current laser scanners vs. photogrammetric cameras

 Aim
combine the advantages and exploit the differences

 Requirement
precise geo-referencing

 Standard method
independent bundle block adjustment and laser scanning strip adjustment
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Flight block Melk (Austria)
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Abbey and city of Melk
aerial image

Overview map

Flight strips

Mandlburger et al.



Results: data acquisition Melk
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Dense Image Matching
3D RGB point cloud

nframes



Results: data acquisition Melk
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Airborne LiDAR
3D point cloud

Riegl



Elevation differences with standard method 
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Height differences „LiDAR minus DIM“ before integrated strip adjustment / AT

0                           100                       200 m

Mandlburger et al.



Integration of LiDAR strip adjustment and aerotriangulation
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Equations
• Direct georeferencing
• Collinearity
• Point to tangent plane ICP

correspondence

Glira et al.



Results: data acquisition Melk
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Height differences „LiDAR minus DIM“ before integrated strip adjustment / AT
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Mandlburger et al.



Results: data acquisition Melk
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Height differences „LiDAR minus DIM“ after integrated strip adjustment / AT

vegetation

vegetation vegetation

Mandlburger et al.



Results: data acquisition Melk
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Height differences „Lidar minus DIM“ Masked height differences „LiDAR minus DIM“ after hybrid adjustment

0                           100                       200 m

Mandlburger et al.



DSM generation from LiDAR and DIM
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LiDARDIM: Default 
settings 
DIM: Refined
settings 
LiDAR+DIM

Precision (1σ):
LiDAR: 2cm
DIM: 10cm = 1.67 * GSD

Mandlburger et al.



LiDAR/DIM data properties: vegetation penetration

 Vegetation: DIM=top of grass surface, LiDAR=penetrates grass layer
 Impenetrable surfaces: negligible height differences between DIM and ALS
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colorized DIM point cloud height difference: LiDAR-DIM

beach volleyball court

soccer fieldrunning trackA B
Mandlburger et al.



Classification of point clouds

Point cloud classification
 Principle: use measured and computed features to infer, 

which class a point belongs to (features selection?)
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Echo widthEchoRatio Sigma0 Tran et al.



Classification of point clouds

Point cloud classification
 Principle: use measured and computed features to infer, 

which class a point belongs to (features selection?)
 Methods: manual decision trees, support vector machines, 

random forests, Markov chains, deep convolutional neural
networks

 Considerations: transferability of rules (across missions, 
scales, etc.), number of classes, run time, amout of training
data, representation of rarely occuring classes, 
classification accuracy
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Change detection in point clouds

 A1: classify point clouds of different epochs + compare labels (proximity?)
 A2: compute geometric point cloud difference + classify changed points
 Problem 1

change in class
and change in 
geometry can be
independent

 Problem 2
different data
properties

 Problem 3
3D changes
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Cut tree

Ground change in height >0.5m

Reconstructed building

New buildings

Unchange

New tree

Ground to another landuse

2005

2011

PC CD 
envisaged

result

Tran et al.



PC CD Method

 Exploit the power of machine learning
 Features for class and features for change
1. measurement process: echo ID, waveform attribute, etc.
2. local neighborhood: normal vector, roughness, etc.
3. approximate height (simple terrain model)
4. change indicators

• distance to nearest point in PC of other epoch
• point distribution feature

evaluated at location of epoch 1 points
with points of epoch 2

32
Tran et al.



PC CD Method

 Exploit the power of machine learning
 Features for class and features for change
1. measurement process: echo ID, waveform attribute, etc.
2. local neighborhood: normal vector, roughness, etc.
3. approximate height (simple terrain model)
4. change indicators

• distance to nearest point in PC of other epoch
• point distribution feature

evaluated at location of epoch 1 points
with points of epoch 2

 Sample training data, 
learn model (e.g. random forests), 

apply model to detect all changes,
done (?)

33
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PC CD ML
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PC CD ML
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Conclusions

Many open point
cloud research
questions
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