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Abstract 
The issue of automated generalisation resounds for decades in the cartographic and academic world and 

has been envisaged as the 'holy grail' of cartography (Anderson-Tarver et al. 2011). Recently, there have 

been several achievements, such as the introduction of OS MasterMap in Great Britain and the 

replacement of the manual generalisation production line by a fully automated workflow at the Dutch 

Kadaster. Despite these successes, it is also acknowledged that further development is necessary for 

certain subjects and situations. One of these areas is the pruning of manmade water networks. Prevailing 

water thinning algorithms do not deliver satisfying results, because they do not handle the cultivated 

manmade water network correctly.  

The focus of this study is to research existing, and to develop new alternative thinning methods which 

account for landscape types. Based on effectiveness for each separate landscape type, advice will be given 

for improvement of water thinning in the Dutch situation. On a more abstract level the study will deliver a 

methodology for pruning of artificial manmade networks with regard to landscape typology and will 

research methods for evaluation of the quality of generalisation results.  

A better understanding of thinning, landscape and evaluation is gained from literature. It appears several 

thinning algorithm exist, each with its own distinguishing focus. Literature also provides an evaluation 

framework, but not all suggested methods are applicable in this research. 

The concepts from literature are tested and evaluated by several experiments. The first experiment start 

with the identification of landscape variation for the dataset. It is possible to distinguish landscape type for 

areas based on feature morphology and humidity, as several experiments show. Test areas are selected 

which represent one of the identified landscape types. In a subsequent experiment, the concept of 

geometric network improvement is tested and results show significant connectivity increase for each test 

area. 

The final experiments researched the effectivity on differing landscape types of the three alternative 

thinning algorithms. The results of the algorithms are judged based on the amount of thinning, the 

resemblance of the results with the input data and on the deviation in connectivity. These results are 

judged in coherence, for both the individual as well as the total of the test areas. It appears that the Thin 

Road Network-algorithm provides best results for all landscape types. However, there is some variation 

distinguishable for the different test areas. 

The results of this research can be used in further investigations for tailoring the method of thinning to the 

identified landscape type. The proposed metrics to measure the effectivity of thinning algorithms, 

reduction, resemblance and connectivity, provide a good basis for comparison of results of alternative 

approaches. 
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Samenvatting 
In de cartografische en academische wereld speelt het onderwerp automatische generalisatie al enkele 

decennia en het is wel aangemerkt als ‘de heilige graal’ van de cartografie (Anderson-Tarver et al. 2011). 

Recentelijk hebben zich verscheidene ontwikkelingen voorgedaan, zoals de introductie van OS MasterMap 

in Groot Brittannië en de vervanging van de handmatige generalisatie-productielijn door een volledig 

automatisch systeem bij het Nederlandse Kadaster. Ondanks deze successen wordt ook erkend dat er nog 

meer ontwikkeling nodig is voor bepaalde onderwerpen en situaties. Eén van deze onderwerpen is de 

uitdunning van kunstmatige waternetwerken. Bestaande water-uitdunningsalgoritmen leveren geen 

bevredigende resultaten, omdat ze een kunstmatig, aangelegd waternetwerk niet correct kunnen 

verwerken. 

De focus van deze studie is het onderzoeken van bestaande, en het ontwikkelen van nieuwe alternatieve 

uitdunningsmethoden die rekening houden met landschapstypering. Op basis van de effectiviteit voor elk 

landschapstype afzonderlijk zal er advies worden gegeven hoe de wateruitdunning voor de Nederlandse 

situatie verbeterd kan worden. Op een meer abstract niveau zal het onderzoek een methodologie voor de 

uitdunning van kunstmatig aangelegde netwerken opleveren die rekening kan houden met 

landschapstypering; en zullen methoden voor de evaluatie van de kwaliteit van generalisatie resultaten 

worden onderzocht. 

Een beter begrip van uitdunning, landschap en evaluatie wordt door literatuurstudie verkregen. Het blijkt 

dat er verschillende uitdunningsalgoritmen bestaan, die elk een eigen focus hebben. De literatuur voorziet 

daarnaast in een evaluatie-raamwerk, maar helaas zijn niet alle gesuggereerde methoden bruikbaar binnen 

dit onderzoek. 

De concepten van de literatuurstudie zijn door middel van enkele experimenten getest en geëvalueerd. Het 

eerste experiment identificeert landschapsvariatie in de dataset. Enkele experimenten tonen aan dat het 

mogelijk is om het landschapstype van gebieden te baseren op morfologie en vochtigheidsgraad (humidity). 

Het onderwerp van een volgende test is geometrische verbetering van een netwerk. De resultaten daarvan 

tonen een significante verbetering in connectiviteit voor elk testgebied. 

De laatste groep experimenten heeft de effectiviteit van de drie uitdunningsalgoritmen voor de 

verschillende landschapstypen onderzocht. De resultaten van de algoritmen zijn beoordeeld op de mate 

van uitdunning, de gelijkenis van de resultaten met de inputdata en op de wijziging in connectiviteit. De 

resultaten van deze drie criteria zijn in samenhang beoordeeld, zowel voor de testgebieden afzonderlijk als 

voor het geheel aan testgebieden. Hieruit blijkt dat het Thin Road Network-algoritme de beste resultaten 

geeft voor alle landschapstypen. Er zit echter wel variatie in de resultaten voor de verschillende 

testgebieden. 

In een vervolgstudie kunnen de resultaten van dit onderzoek gebruikt worden om de keus voor het toe te 

passen uitdunningsalgoritme te baseren op berekende landschapscriteria. De voorgestelde criteria om de 

effectiviteit van uitdunningsalgoritmen te meten, de mate van uitdunning, de gelijkenis met het origineel 

en het behoud van connectiviteit, geven wanneer ze in samenhang worden beschouwd inzicht om 

resultaten van alternatieven te kunnen vergelijken.
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1 Introduction 
This thesis studies the automatic pruning of artificial hydrographical networks. A specific problem 

which occurs in the automated deduction of overview maps from detailed maps, called 

“generalisation”. The main terminology is explained in the following paragraphs. 

Map making is known as a common pursuit of mankind. Ancient Babylonians and Chinese were 

already producing maps, centuries before the start of our era. Just like nowadays, they made choices 

in how to convey the important characteristics of an area. Such decisions are always made at the 

expenses of inferior characteristics to provide legibility of the end result. Whether the result is 

successful, depends on the success in delivering a message from designer to user. For topographic 

maps the purpose is to convey a faithful representation of a landscape for various applications such 

as navigation or logistical planning. The involved discipline is called Cartography. 

1.1 Cartography 
In the quest for a definition of cartography, Kraak (2010) notes that the usage of the term changed 

significantly. The term cartography was first used simply to indicate the production of maps. 

However, since the 1960’s, the emergence of digital techniques within the field of cartography 

influenced its understanding and definition.  

This development is recognisable in the definitions of Kraak (2010), Guptill & Starr (1984) and Taylor 

(1991). All three stress usage, digital techniques (i.e. storage in databases) and variance in media (i.e. 

paper, digital devices) as typical characteristics of modern cartography. The International 

Cartographic Association (ICA) defines cartography as ‘the discipline dealing with the art, science and 

technology of making and using maps’. (Schmidt 2014) 

While various definitions of the term Cartography have been suggested, this thesis will use the 

definition suggested by the ICA. It should however be noted that when using terms as cartography, 

cartographer, cartographical (-ly) the focus in this thesis is on the making of maps and not on their 

utilisation. 

1.2 Map 
What is a map? There have been several attempts to define the term. Kraak (2010, 41) offers a few 

definitions:  

 a map is ‘a graphic model of the geospatial aspects of reality’; 

 a map is ‘a  conventional  image,  mostly  on  a plane, of concrete or abstract phenomena 

which can be located  in  space’;  

 ‘a representation or abstraction of geographic reality. A tool for presenting geographic 

information in a way that is visual, digital or tactile’.   

He also cites the definition of the ICA which defines map as  

 ‘a symbolised representation of a geographical reality, representing selected features and 

characteristics, resulting from the creative effort of its author’s execution of choices, and 

designed for use when spatial relationships are of primary relevance’. (Schmidt 2014)  
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All four definitions of ‘map’ stress the modelling of certain geographical aspects of reality which is 

studied in the discipline of Topography.  

Topography is a contraction and its etymology leads back to the Greek words topos (place) and 

graphia (description). The discipline of topography is concerned with the “arrangement of the 

natural and artificial physical features of an area” (Oxford dictionary 2014). Consequently,  

topographic maps give “a detailed description or representation on a map of the physical features of 

an area”(Oxford dictionary 2014).  

The creation of topographic maps inevitably involves visual selection, symbolisation and abstraction 

to provide information for specific use cases. These use cases not only dictate the contents of a map, 

but also the extent of the geographical area it is representing. Almost all maps portray objects which 

are a reduction in size of the real geographical objects, to be able to provide large areas on a single 

map sheet. This brings in the conception of scale which is the “ratio between a distance on a map  

and the corresponding distance in the terrain.“ (Kraak 2010, p.41). This is an important concept with 

regard to generalisation. 

1.3 Generalisation 
Reduction of scale should not be narrowed to reduction in zoom factor, as is illustrated by  

Mackaness, Ruas, and Sarjakoski (2007): ‘Geographers have long understood the relevance of scale 

to the discernment of pattern and the derivation of meaning from geographic data. The power of 

the map lies in its ability to abstract space. It plays a critical role in identifying and interpreting 

process.’(2007, p.1) 

The abstraction of space in making maps includes exaggeration of important, and exclusion of 

marginal elements, which is illustrated in Figure 1 and Figure 2. 

 
Figure 1: a fragment of a 25k map Figure 2: above the same 25k map fragment reduced in 

map scale; below the same geographical area, but 
portrayed as a generalised 50k map fragment  

Both figures indicate the same issues. A simple reduction in scale is not sufficient: an overload of 

details makes the reduced map illegible. An intelligent discernment of geographical patterns is 
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frustrated by a lack of emphasis. To portray this issue in Kraaks terms: “Each map within a certain 

scale range requires its own level of detail depending on its purpose.[…] The process of reducing the 

amount of detail in a map in a meaningful way is called generalisation. The process of generalisation 

is normally executed when the map scale has to be reduced.”(2010, p.95)  

The International Cartographic Association (ICA) defines generalisation as: “…the selection and 

simplified representation of detail appropriate to the scale and /or the purpose of a map…” 

(International Cartographic Association - Commission II 1973, p.173)  

Kraak also points out that ‘generalisation entails information loss, but one should try to preserve the 

essence of the contents of the original map. This implies maintaining geometric and attribute 

accuracy, as well as the aesthetic quality of the map’ (2010, p.97).  

1.3.1 Kinds of generalisation 

Grünreich (1988) was the first to differentiate model and map generalisation with regard to Digital 

Landscape Models and Digital Cartographic Models:  Kraak (2010, p.96) expanded this framework 

and distinguishes three kinds of generalisation. Both views are supplementary and are summarized 

as follows: 

 When reality is translated into a Digital Landscape Model, selection and classification occurs 

(specified objectively in formal regulations or subjectively in the mind of the data acquirer). 

This process of abstracting objects from reality is called object generalisation’. 

 Model generalisation relates to the translation from one DLM to another DLM. The 

application of more abstraction removes elements from (multiple) layers. The generalisation 

operators used here are elimination and reclassification. 

 Cartographic generalisation simplifies resulting images to remove graphic conflicts. 

Cartographic generalisation is traditionally divided into two subclasses: graphic versus 

conceptual generalisation. The latter is primarily applicable on thematic maps (i.e. geological 

maps) and requires knowledge of the themes to be generalised, while the former is more 

focussed on topographic maps. 

The framework can be seen as a system of direct and indirect lenses on reality, as is shown in the 

figure below: 
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Figure 3: framework for abstraction levels in generalisation 

1.4 Automatic Generalisation 

Generalisation has been the sphere of work of many craftsmen until recently. Automatic 

generalisation in production environments has a relatively short history. In 1997 Peng still was 

forced to conclude that … 

“After more than three decades of effort, it is still a question whether generalisation can be 

formally defined, and whether automated generalisation can be realized.” (1997, p.i),  

… but there have been developments which have drastically changed the domain. Over the years 

several academic researches have been published in the field of automatic generalisation. 

(Burghardt et al. (2014); Stoter (2010a); Stoter (2010b); Mackaness et al. (2007) can be consulted for 

an overview of the state-of-the-art until 2014).  That generalisation research has matured is shown 

by the implementation of generalisation solutions in commercial software such as Esri and 1Spatial 

and (partial) implementations at National Mapping Agencies, thus replacing traditional manual 

labour and transforming existing production lines (Duchêne et al. 2014; ICA Commission on 

Generalisation and Multiple Representation 2013). Several National Mapping Agencies (NMAs) have 

introduced automatic generalisation in their production workflows to partially replace parts of 

manual labour: see e.g. Turkey (Bildirici 2004), Catalonia (Baella & Pla 2005), China (Yan et al. 2006), 

France (Lecordix et al. 2007), Denmark (West-Nielsen & Meyer 2007), Great Britain(Revell et al. 

2011), Italy (Garnero & Godone 2012), USA, Germany, and Switzerland. (Duchêne et al. 2014) 

Beside this progress in research and implementation, also external factors can be identified. Due to 

the economic crisis, several NMAs were facing budget cuts. They started rethinking their production 

methods and quality standards. In some cases this caused a paradigm change about quality: no 

longer cartographic and aesthetic quality are the ultimate goal, but fitness for users now has become 

the leading objective, as is illustrated by the adage “good is good enough”. The increased use of 

digital geographical information (i.e. on the internet or mobile devices) and the associated 

expectations on up-to-date-ness can also be regarded as giving impetus to this paradigm change.  

1.4.1 Application of Automated Generalisation by National Mapping Agencies 

Duchêne et al. (2014) propose at least two classifications to distinguish the NMAs’ approaches to 

automatic generalisation: (1) the period of duration to encourage research and a subsequent 
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transfer to production; and (2) the actor in and approach of the actual implementation into a 

production line, as is shown in Figure 4. 

 

Figure 4: classification matrix of NMA efforts with regard to automatic generalisation 

The addition of the thoroughness of implementation (partial vs. full) adds another dimension to this 

classification matrix, which can be used to classify the current state of automatic generalisation 

within NMAs, see Table 1. 

Table 1: classification of the current state of automatic generalisation within NMAs  

NMA 
 

PERIOD ACTOR & APPROACH THOROUGHNESS REFERENCE 
 long short in house sub-cont. partial full 

ICC (CATALUNYA)       (Baella & Pla 2014) 
 

IGN (FRANCE)     * ** (Lecordix & Maugeais 
2014) 

ORDNANCE SURVEY 
(UK) 

     ** (Revell et al. 2011; 
Regnauld 2014) 

KADASTER (NL)       (Stoter, Post, et al. 
2014) 

SWISSTOPO 
(SCHWITZERLAND) 

      (Käuferle 2014) 

USGS (USA)       (Stanislawski, Brewer, 
et al. 2014) 

LGL  BADEM-
WÜRTTEMBERG (GE) 

      (Urbanke & Wiedemann 
2014) 

* standard version, ** lite version 

The differences of implementation between the NMAs are due to some factors, as Duchêne et al. 

(2014) explain: 
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 The order to tackle automatic generalisation differed per NMA. Some started with solutions 

to solve a particular problem while others tried to develop a production system for multiple 

map scales; 

 Most NMAs adopted a ladder approach (deriving smaller-map scales from the closest larger 

map scale), but Ordnance Survey uses a star-approach; 

 The level of automation and the allied need for manual postproduction defines if the system 

should enable incremental updates. This is also connected to the view on quality taken by 

the NMA. 

1.4.2 Introduction of the case study 

This thesis studies generalisation for manmade water networks and uses the implementation of 

Dutch Kadaster as case study. Dutch Kadaster replaced the interactive, manual generalisation 

production process of the topographic map, scale 1:50.000, with a fully automated production 

process at the start of 2013. The novelty is not the introduction of generalisation automation, as 

previous paragraphs have already shown, but the uniqueness is in the thoroughness of the 

implementation and in replacing the existing, traditional map (in contrast to the introduction of the 

new OS MasterMapTM by Ordnance Survey (Revell et al. 2011; Regnauld 2014)). The Dutch 

automation encompasses the whole generalisation process, while adopting a new paradigm in 

cartographic requirements and generalisation quality assessment. (Stoter, Post, et al. 2014)  This was 

achieved by two major changes in existing paradigms. 

In contrast to traditional interactive generalisation and most recent attempts to automate 

generalisation (Stoter et al. 2009), the focus was not laid upon compliance with cartographic rules. It 

was allowed to abandon the original cartographic requirements if necessary to achieve better 

results. Examples are the changed hierarchy of topographic objects (highways replace dammed 

dikes) and the implementation of other building generalisation requirements (i.e. detached houses 

are no longer treated individually and ribbon development is allowed to be portrayed as urban area). 

This changed view, where cartographic requirements are seen as guiding principles, is the first 

characteristic of the change in paradigm. 

  
Figure 5: detached houses (left result of interactive generalisation, right result of automatic generalisation) 
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Figure 6: ribbon development (left result of interactive generalisation, right result of automatic generalisation) 

 
The second characteristic is the view on quality assessment. In the past, quality was defined in 

compliance with the generalisation requirements. These were laid down in order of the client, the 

Dutch Ministry of Defence and were unchanged for about 60 years (Stoter et al. 2012). Main focus 

was on the military use and various cartographic decisions were dictated by the needs of the soldier. 

To guide soldiers in the search of hiding places, a distinction was made on the 

map between deciduous and coniferous forest. In winter coniferous forest will 

keep its needles, when deciduous forest loses all its leaves. Someone looking for 

a shelter should take the needles for granted. 

Nowadays these kinds of map requirements seem to be fully outdated. Users and use of geo-

information have changed drastically in the last ten years. Geo-information is no longer solely the 

domain of the army and GIS experts, but is now applied in several other domains and laymen 

applications. Map users are looking for maps where the content is as up-to-date as possible and are 

willing to give in on aesthetical and cartographic requirements. The introduction of mobile devices 

also changed map use and requirements dramatically. 

These developments urged Kadaster to invite the map users to evaluate the results of automatic 

generalisation as early as possible. Instead of dictating quality, the quality standard now is set by a 

willingness to use the map. Maps are appreciated by serving the end users’ goals. This means that a 

certain threshold in quality (i.e. legibility) has to be met (Bruns et al. 2010; J. E. Stoter et al. 2012), 

but it also changes the requirements on cartographic quality. 

This new view on quality assessment gave space to experimental research in automatic 

generalisation. Users were asked to evaluate the provisional results, which enabled the ongoing 

research to target at the main interests. A design principle is that, even though errors are known in 

the generalisation process (Stoter et al. 2012), these are not solved afterwards by human 

interaction. Instead, focus is laid upon improvement of base data and sophistication of 

generalisation algorithms and processes. 

1.5 Problem statement 

Although the automated generalised maps are currently in production, there are still situations that 

can be further improved. One of the issues for improvement is the thinning of manmade water 
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networks. Existing water thinning algorithms are not applicable to manmade situations, because 

they are biased towards nature-formed water networks. Dutch hydrography network on the other 

hand bears the characteristics of a cultivated, manmade network and can be better equated to a 

road network (Stoter et al. 2012) 

For this reason, the “seemingly illogical decision” (Gould 2014, p.6) has been made to apply a road 

thinning algorithm for the thinning of hydrography (Punt & Watkins 2010), but results are not always 

convincing. Output of the generalisation process is unsatisfactory in two ways: 

1. it fails in considering landscape characteristics. Differences can be observed in e.g. feature 

morphology (natural or artificial patterns) density and water type (canals, small ponds or 

rivers).  

 

2. adjacent areas with almost equal hydrographical density are sometimes generalised totally 

different. Figure 7 below illustrates this by an equation of source and resulting data. (Area A 

is still dense, while area B is almost blank). 

 

Figure 7:  input data 
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Figure 8:  current thinning results of the same area 

1.6 Research objective 

The aims of this research project are to deliver a methodology for pruning of artificial manmade 

networks with regard to landscape typology and to research methods for evaluation of the quality of 

generalisation results.  To investigate what adaptations and additions to an existing generalisation 

workflow are useful, the Dutch situation will act as a case study in experiments to improve the 

pruning of a manmade water network using different methods like data enhancement, data 

characteristics, data enrichment, algorithm enrichment and landscape type awareness.  

1.7 Research questions 

To achieve the formulated research objective, two closely related research questions have to be 

answered. (1) What is a suitable methodology for pruning artificial manmade network which takes 

landscape typology in account? And: (2) How can thinning results be evaluated objectively? 

Both research questions can be broken down in to several sub questions. For the first question these 

can be formulated as: 

 What data enhancements are suitable to establish network and improve generalisation of 

manmade water networks? 

 Which explicit and implicit data characteristics are available or can be calculated to support 

efficient network thinning? 
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 How could these be used in generalisation of manmade water networks and what effects do 

they have? Which alternative network thinning algorithms are available? Are they suitable 

for an artificial network? 

 Does context-dependent network pruning give better results and does landscape typology 

have a positive effect when used in network pruning? What parameters suit best? 

The second research question can be broken down into two sub questions 

 Which methods exist to evaluate network pruning results objectively? 

 How can these be implemented into the research? 

1.8 Methodology 

For answering the research questions several methods are used: a literature review covering the 

background of generalisation approaches with a specific focus on existing thinning algorithms and 

the usage of contextual (landscape aware) knowledge. Existing quantitative evaluation methods are 

discussed and evaluated from theoretical and practical perspectives. Experiments are performed to 

test theory in practice and can be divided into the following:  

 data enhancement: the waterline features in the source data are very often not suitable for 

network analysis. The addition of line connectors (which may be representations of real 

topographic elements or artificial constructions) could help to establish a water network and 

result in a more satisfactory generalisation. 

 exploitation of data characteristics: Top10NL is an attribute-rich dataset which contains 

several explicit characteristics with regard to the water network. Besides the feature class 

“waterdeel” (water segment) which stores geometry and attributes of hydrographic 

features, TOP10NL also contains several other features (e.g. attribute values about main 

drainage and water names, position of culverts, sluices) which constitute the theme water 

and could provide a more satisfactory generalisation.  

 algorithm enrichment: applying alternative network thinning algorithms. 

 landscape type awareness: the relation of data pruning and terrain characteristics could be 

considered in selection of appropriate pruning algorithms and parameters. 

 evaluation: quantitative evaluation methods are researched and developed. Qualitative 

evaluation is intentionally placed out of scope for two reasons: (1) because the experiments 

are part of a larger stack of generalisation operations the achieved results are only 

intermediate results (2) and visual evaluation requires expert knowledge.  

1.9 Thesis outline 

The research is divided into three parts. The first part, Defining the scope, contains this introductory 

chapter, a literature overview and an introduction to the case study. Literature overview focusses on 

three subjects. Firstly, an overview of generalisation modelling approaches is given, followed by a 

discussion of existing thinning algorithms especially focussing on thinning of artificially created 

(water) networks. Secondly, landscape typology for the Netherlands is discussed together with an 

overview of the use of context-dependent pruning, the third subject describes current issues and 

provided methods in quality assessment of generalised data.  
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Case study introduction, defines the use case of this research in more detail: the generalisation of 

water networks for the Dutch situation.  It describes the datasets and context in which the research 

is embedded. 

In the second part, Experiments, Results and Finding several experiments are carried out to improve 

the pruning of manmade water networks by individual or joint application of one or more of the 

following methods: 

 development of location based terrain characteristic parameters to support context-

dependent pruning.   

 geometric preparation of base map data for better results in generalisation of manmade 

networks 

 exploration of use of explicit water network characteristics in TOP10NL  

 application of alternative water network thinning algorithms 

 development and application of evaluation metrics 

The experimental fieldwork has been implemented as prototype tools and results have been 

assessed by evaluation tools. All tools have been built in ArcGIS ModelBuilder, if necessary expanded 

by Python-scripts. It is conceivable that these methods will deliver differing results for different 

landscape types. The necessity of tailoring methods for different landscape types will be tested on 

several study areas and a subsequent comparison of the results of current algorithm implementation 

with those of alternatives will try to evaluate the methods.  

The results of the alternative approaches to the different landscape types are discussed and 

quantified by using appropriate evaluation methods which were identified in the Literature review 

and by own developed methods. Also the results of the alternatives are discussed in comparison and 

coherence with one another. 

The last part, Conclusion, contains a concise overview of the research results. It will also identify the 

issues for further investigation. Figure 9 gives an overview of the structure of this thesis. 
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Figure 9: a graphical overview of the research process 
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2 Literature overview 
Over time a vast amount of research has been published in the field of generalisation, network 

thinning and evaluation of generalisation research. Although these researches cover a wide variety 

of approaches, this review will treat six topics relevant to this study. These topics include the 

definition of operators versus algorithms, a discussion of generalisation modelling paradigms, the 

need for network pruning, a concise overview of network pruning algorithms, the relevance of 

landscape in generalisation and a section which discusses the difficulties in and proposed 

methodologies for evaluation of generalisation results. While the original researches focussed on a 

broad range of contexts and applications, this chapter discusses these topics within the context of 

network pruning of artificial networks.  

2.1 Operators and algorithms 
As use of operators and implementation of algorithms is common to any generalisation modelling 

paradigm, it is important to state the difference between these two concepts beforehand. 

Stanislawski, Buttenfield, et al.  (2014, p.158)  define a generalisation operator “ … as a generic 

descriptor for the type of spatial or attribute modification to be achieved on some set of geospatial 

data.”  Typical examples of generalisation operators are simplification, enlargement, displacement, 

merging, selection, symbolisation and enhancement. (This list is not exhaustive and in the literature 

sometimes synonyms are used). 

Attempts have been made to class generalisation operators , i.e. (Kraak 2010, pp.99–100), but often 

these classifications do not fit usage in an automated process. To overcome this difficulty, 

Stanislawski et al. (2014) classify operators in three classes: pre-processing, quantity reduction and 

aesthetics (visual quality) as outlined in the figure below: 

 

Figure 10: classification of vector generalisation operators 
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This study focusses on the operator which refers to “…the removal of one or more features without 

replacement.” (Stanislawski, Buttenfield, et al. 2014, p.161) Several synonyms are used for this 

operator: elimination, selection, class selection, extraction, thinning, or pruning (see Stanislawski, 

Buttenfield, et al. (2014), for the appropriate references).  

However, to efficiently and satisfactorily thin a network or more in general to apply some kind of 

generalisation, different operators are involved, often within a certain sequence. The actual 

implementation of a (series of) operator (-s) is defined as “algorithm”:  

“An algorithm refers to a specific method by which one or more operators are implemented, 

and several algorithms usually exist for the same operator.” (Stanislawski, Buttenfield, et al. 

2014, p.158)  

“An algorithm may implement one generalisation operator (e.g.  building amalgamation) or a 

combination of operators (e.g. road simplification and smoothing).” (Gould 2014, p.222).  

To summarize the differences: an operator describes at a conceptual level the generalisation action 

to be performed, whether an algorithm is the practical tailor-made implementation of a (series of) 

operator (-s) in a certain context.  

2.2 Modelling paradigms 

Results of early research in automatic generalisation were atomic algorithms which only solved 

individual generalisation problems. Examples are line generalisation, e.g. the Douglas-Peucker 

algorithm (Douglas & Peucker 1973) and displacement, e.g. Jäger (1991). In the early 1980s the need 

arose for an overarching approach which would chain all the atomic units together. Four approaches 

to generalisation modelling which are commonly distinguished (Harrie & Weibel 2007) developed 

subsequently: batch processing, condition-action modelling, human interaction modelling and 

constraint-based modelling (which includes agent based modelling).  

The first attempts to automate generalisation were based on batch processing, which was used to 

chain individual generalisation operations in a fixed sequence (Regnauld et al. 2014). All algorithms, 

parameters and input data were prerequisites to run and consequently interaction was impossible 

during runtime. A change in parameter values required to rerun the whole process. The system was 

lacking flexibility and conditional procedures. 

Condition-action modelling can be regarded as the successor of batch processing. This is a two-fold 

approach which was developed and implemented in the late 1980s. Starting with a lot of pre-defined 

conditions stored in a rule-base, the first step is to recognize which condition is applicable to each 

individual structure in the source data, which results in ‘structural knowledge’. After identification, 

an appropriate action (based on the identified condition) will be triggered for each identified 

structure to generalise the source data. While the condition-action modelling approach has got off 

to a flying start, several problems arose during implementation. The formalisation of cartographic 

rules appears to be very difficult. Furthermore the necessity of a multitude of rules for maintaining 

mutual relations of map objects appears to be overwhelming.  And in the end, the system is unable 

to evaluate the results of its operators and adapt its processes consequently. 

This complexity and corresponding issues led some in the early 1990s to develop human interaction 

modelling, a hybrid approach where both human and computer cooperate and share responsibility 

in decision-making on complex cartographical problems. The computer can perform the tasks which 
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can be formalised, but also aids the human in making complex decisions. The human guides the 

computer in providing the correct application order of algorithms and in evaluating intermediate 

results. Weibel suggested the term amplified intelligence: “…human intelligence is amplified by the 

processing power of the computer, while the limited capabilities of the computer for holistic 

reasoning as well as visual perception and quality evaluation of the generalisation results are 

amplified by the presence of human intelligence.” (Harrie & Weibel 2007, p.71). A new approach 

arose in the mid-1990s due to insufficient implementation in commercial systems, the ongoing need 

for expert users and a lacking decline in manual labour.  

Constraint-based modelling shares characteristics with condition-action based modelling as it uses a 

rule-database to achieve generalisation results. However, the function of rules in both approaches is 

different: instead of defining which actions to perform, focus is laid upon defining the environment 

and the result of the actions which should be achieved. Constraints limit the bandwidth of 

acceptable results. The process to achieve these results is far more flexible allowing the system to 

alter the order of operations during more iterations and choosing the most optimal solution 

(balancing time and results). Approaches using this modelling paradigm are agent and multi-agent 

systems which are regarded as the most potential variant of constrained based modelling (Harrie & 

Weibel 2007). 

Agent systems are capable of handling complex situations by using meso-agents (overarching 

operators), can (potentially) deal with a complete set of generalisation operators and are suited to 

integrate other modelling techniques. Their success, however, depends heavily on the accuracy of 

constraint definition and the measurement precision of evaluation rules. Other complicating factors 

are the difficulty to provide a meaningful clustering of agents into a meso-agent, and issues in 

achieving required formalisation of procedural knowledge to guide generalisation algorithms and 

parameters. A lot of research to improve and overcome the identified issues has been and is still 

being undertaken, e.g. (Lamy et al. 1999; Barrault et al. 2001; Galanda 2003; Revell et al. 2005; 

Duchêne et al. 2012). Implementations can be found at Ordnance Survey UK in the AGENT-system 

(Lamy et al. 1999) and at IGN-France in the CartaCOM-system (Duchêne et al. 2012). 

At Delft University a fifth paradigm is being researched: Vario-scale modelling (van Oosterom et al. 

2008; Meijers 2011; van Oosterom & Meijers 2011). This paradigm aims to provide a structure for 

continuous generalisation of real world objects thus enabling smooth zoom actions and consistent 

mixed-scale representations, see Figure 11 below. It also aims at solving the problem of data 

redundancy and inconsistency other approaches for multi-scale mapping are facing. Areas for 

application are generalisation of multi-scale maps or generation of transition areas for 3D 

visualisations. The current state of the research is too immature for implementation in production 

lines. 

 
Figure 11: an example of a mixed-scale map 
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2.3 Network pruning 
In all modelling approaches special attention is paid to incorporate network pruning. A lot of 

research on network pruning algorithms has previously been undertaken, which can be divided in 

two categories: road network thinning, e.g. (Thomson & Richardson 1999; Edwardes & Mackaness 

2000; Thomson & Brooks 2000; Travanca Lopes & Catalão 2002; Jiang & Claramunt 2004a; Jiang & 

Claramunt 2004b; Chaudhry & Mackaness 2005; Heinzle et al. 2005; Han & Qiao 2010; Luan & Yang 

2010; Wang 2011; Li & Zhou 2012; Altena et al. 2013; Benz & Weibel 2013; Weiss & Weibel 2013) 

and hydrographic network thinning, e.g. (Stanislawski 2008a; Stanislawski 2008b; Stanislawski 2009; 

Stansilawski et al. 2009; Buttenfield 2010; Buttenfield et al. 2010; Anderson-Tarver et al. 2011; 

Savino 2014). 

However, categorisation of network pruning algorithms based on theme (water or road) does not 

always reflect reality, which is illustrated in the figures below: 

  
Figure 12: the Dutch water network  Figure 13: a braided river 

  
Figure 14: street network in San José Figure 15: the Gotthard pass 

Geometrical and topological structures are more suitable to discern the appropriate thinning 

algorithm, as was evidenced by Li & Zhou (2012) and experienced in the Dutch implementation of a 

road thinning algorithm to prune the water network, cf. (Bruns et al. 2010).  

2.4 Existing network pruning algorithms 

Pruning of a network is often performed using a stack of methods, within a logical order: the 

identification of importance of elements within the network, the reduction of elements based on the 

established importance, identification of graphically conflicting features and subsequent elimination. 

The indication of importance of the individual objects within the network is often taken as starting 

point. Despite many variations in detail, this first step can be divided into three main categories 
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according to Liu et al. (2010): semantic-based, graph-based and stroke-based.  These will be 

discussed below. In addition the mesh-based and the stroke-mesh-based approaches will be 

discussed also. These approaches are the results of some experiments in extending or combining 

methods to overcome some limitations. 

2.4.1 Semantic-based 

Semantic-based selection uses attribute information to provide information for selective omission of 

network features. Considering a hydrographical network, examples are type of water (in hierarchical 

order: trench, watercourse 1, watercourse 2), width category of objects, part of main drainage, etc. 

The main drawback of this approach is the neglecting of topological and geometrical structures (Liu 

et al. 2010). This is illustrated in Figure 16, where a straightforward selection is performed on the 

highway network omitting objects with the attribute “on exit”. 

 

Figure 16: an incomplete road network - one of the problems a semantic selection can lead to 

2.4.2 Graph-based 

Mackaness & Beard (1993) applied graph-theory to the field of generalisation. Graph-based selection 

uses the visual representation of spatial relationships between objects to establish their importance. 

The main focus is on the connectivity of elements individually, and mathematical concepts (shortest 

path, minimum-spanning-tree and degree of centrality) are used to determine the individual ranking 

of objects within a network, which has been applied to recognize a city centre. Attempts to use the 

approach for discovering graphical patterns in networks (Heinzle et al. 2005) were promising, but did 

not compensate another issue: ignoring thematic and geometric characteristics of the objects which 

is seen as a major limitation of the method (Liu et al. 2010). 

2.4.3 Stroke-based 

Stroke-based selection is a two-step method to establish the importance of the individual network 

objects. It derives its name from the idea of a ‘stroke’ which Thomson and Richardson (1999) define 

as “… a curvilinear segment that can be drawn in one smooth movement and without a dramatic 

change in style”. The underlying assumption is “…traffic routes are built as curvature-poor as 
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possible” (Heinzle et al. 2005, p.3). The main principles are ‘good continuation’ and ‘similarity of 

characteristics’.  

A network structure is broken down into topological edges and nodes. The relative importance of 

each edge within the network is identified by aggregating the individual elements into larger ones 

based on one or more shared characteristics and predefined rules (i.e. which characteristics are 

allowed to be dissolved with higher order characteristics). The second step is performing a selection, 

using the identified hierarchy and a predefined threshold. 

The method is being criticised, i.e. by Liu et al. (2010), for neglecting overall and statistical 

information, which can lead to biased outcomes. This disadvantage must be solved will this method 

be of use in generalising networks in different landscape regions. Research to solve this problem has 

focussed on the selection of shared characteristics for stroke-construction. These can be identified 

on basis of geometry, theme or a hybrid combination of both.  

In geometric-stroke-construction three variants can be distinguished (Jiang et al. 2008): the self-fit, 

the self-best-fit and the every-best-fit. Within the self-fit approach, any edge which satisfies a 

predefined threshold angle, is a candidate for a stroke. The algorithm chooses at random which 

candidate to use. To overcome this unpredictability the self-best-fit approach has been developed. 

Here only the edge which satisfies the threshold value best (i.e. has the smallest deflection angle) 

will be used to construct a stroke.  The third variant, every-best-fit, expanded this variant further. In 

this approach, every edge which satisfies the threshold is used to construct strokes, which could 

result in one edge being part of multiple strokes. This kind of information can be used to identify a 

hierarchy for edges within the network, which is also based on the relative importance of the edges. 

Another approach is the thematic-stroke-construction, using a common attribute value to identify 

potential strokes (Zhou & Li 2012). This has been applied by Jiang & Claramunt (2004b) using street 

names, but at least three problems are identified with this method: (1) attribute values are not 

complete within the source data; (2) attribute values are not always consistent, i.e. when indicating 

sub-units of an element; (3) situations can occur where there are multiple candidates for a stroke, 

each with a corresponding attribute value. 

The hybrid-stroke-construction approach (Zhou & Li 2012) tries to use the advantages of the 

geometric approach to cover up the weakness of the thematic and vice versa. By combining the 

results of both approaches better choices can be made in constructing strokes, since information is 

available about geometric relations, but also about thematic relations.  

2.4.4 Mesh-based 

The mesh-based approach (Edwardes & Mackaness 2000; Chen et al. 2009) focusses on density. It 

centres on the concept of a mesh, an area fully enclosed by edges (i.e. roads). The density of a 

theme (i.e. a road or a waterway network) can be calculated by the construction of meshes out of 

the individual objects of the theme. The density D for each mesh individually is computed by using 

the flowing formula: 

𝐷 =
𝑃

𝐴
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where P is the perimeter and A is the area of a mesh (Li & Zhou 2012). Subsequently, the meshes 

which do not satisfy a predefined threshold are merged with one of their neighbour and the original 

edge feature must be removed. By iterating the process, all meshes will finally meet the threshold.  

A threshold in the range of 0.4 mm to 0.7 mm has been proposed in previous research (Zhou & Li 

2012), but experiments can help in establishing this value. Chen et al. (2009) provided a formula to 

calculate the mesh density threshold (𝑇𝑚): 

𝑇𝑚 =
4

𝑆𝑡𝐿𝑚 (1 −
𝑆𝑠
𝑆𝑡)

 

where 𝑆𝑠 and 𝑆𝑡 are the scale factor of respectively the source and the target map and 𝐿𝑚 is the 

size in map distance (diameter or length) of the smallest visible object on a map. While the scale 

factors are known variables, the size of the smallest visible object (𝐿𝑚) can vary depending on the 

map specifications. 

The concept of a mesh-based pruning approach is illustrated for the graph in Figure 17. The graph 

consists of 18 edges out of which 6 complete meshes can be constructed (A to F). Mesh G cannot be 

constructed because of missing edges. 

 

Figure 17: initial graph for mesh-based thinning 

In Figure 18 for each mesh the area is calculated and Figure 19 shows the accumulated length of 

edges per mesh. 

 

Figure 18: calculated area for each mesh in the initial graph 
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Figure 19: accumulated edge length for each mesh in the initial graph 

Based on these figures the density has been calculated for each mesh using the formula above as 

provided by Li & Zhou (2012). For the graph in Figure 17 this results in the figure in Table 2 

Table 2: computed densities for meshes in Figure 17 

Mesh Calculation Density (𝑫) 

A 90 / 500 0.18 
B 70 /300 0.23 
C 80 /300 0.27 
D 100 / 400 0.25 
E 100 / 500 0.2 
F 40 / 100 0.4 
G unknown unknown 

 

These density values can be used to determine which meshes have to be eliminated based on a 

provided threshold. The threshold for the generalisation of 10k to 50k data can be calculated (using 

the formula suggested by Chen et al. (2009)) assuming a diameter or length of a the smallest visible 

object of 20 meters (which is the equivalent of 0.4 mm on a 50k map):  

0.25 =
4

50.000 ∗ (0.4 ∗ 0.001) ∗ (1 −
10.000
50.000

)
 

 

This means each mesh with a density larger than 0.25 has to be eliminated in an iterative action, 

starting with the smallest mesh which has to be added to a larger neighbour. Two candidates are 

available to add the small polygon to: addition to the largest neighbouring polygon or addition to the 

polygon with the longest shared side.  

In the example below the choice was made for the largest shared side. So first, mesh F will be 

selected (having the highest density value) and will be added to mesh E. Then the densities are 

recalculated and the mesh with the highest density value will be added to its neighbour. Since the 

new mesh E’ (green n the picture below) will have a density value of 0.167, the mesh with the 

highest density value will now be mesh C (0.27). On basis of the longest shared edge, mesh C will be 

added to the newly created mesh E’ resulting in mesh E’’ (orange in the figure below) with a density 

value of 120 / 900 = 0.13. The iteration for this example will stop after two times, as all meshes will 

have values which do not exceed the calculated threshold. 
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Figure 20: calculated density (𝑫) for each mesh 

A mesh-based approach delivers usable results for a simple graph. However, there are some 

shortcomings in this algorithm. The algorithm excludes mesh G in the graph above from the analysis 

and subsequent pruning. While it is clear that mesh creation is impossible for G, this affects pruning. 

Another shortcoming of the algorithm is revealed when it is applied to real-world situations with 

dead-end roads. This is illustrated in Figure 21 when a dead-end road is added to the previous graph 

and the mesh-based approach is applied.  

 

Figure 21: shortcoming of a mesh-based approach to handle dead-end roads 

This results in a reduction of network connectivity and the undesired isolation of an edge. 

2.4.5 Extensions of algorithms 

To overcome the limitations of the aforementioned methods, there have been some experiments 

which try to extend or combine them. One of these is the stroke-mesh based approach as first 

proposed by Li & Zhou (2012) and experimentally tested by Benz & Weibel (2013) on medium-scale 

(50k) data of swisstopo. Benz & Weibel established two strengths of this algorithm: details of a 

network are handled carefully (important for medium-scale generalisation) and the general 

connectivity of the network is being maintained. 

The stroke-mesh approach rests on the concept of areal and linear segments (Benz & Weibel 2013).  

Areal segments coincide with at least one mesh edge, while linear segments do not share sides with 

edge meshes at all, see Figure 22. 
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Figure 22: areal versus linear segments 

Li & Zhou (2012) demonstrated by experimental research mesh-based thinning suits areal segments 

best, while stroke-based thinning better applies to linear segments. This led them to combining both 

methods in a hybrid approach which has alternative hierarchy establishment paths dependent on 

segment-type. Results of both pathways are incorporated in a later stage and in a new iteration a 

new selection is applied interconnecting both linear and areal segments. The initial algorithm has 

been extended by Benz & Weibel (2013) to obtain better results. This only has been tested for four 

areas and was evaluated by swisstopo experts. Results are regarded as promising, but pre-mature: 

more research is necessary on other test areas and the applicable scale range has to be established 

by experimental research. 

2.4.6 Thin Road Networks 

In the geoprocessing toolbox of the commercial software package ArcGIS an algorithm is available 

which is aimed at the thinning of networks: Thin Road Network. Only a functional description of the 

algorithm is available for end-users, which can be summarized as follows:  

A “…simplified road collection is determined by feature significance, importance, and density. 

Segments that participate in very long itineraries across the extent of the data are more significant 

than those required only for local travel. Road classification, or importance, is specified by the 

Hierarchy Field parameter. The density of the resulting street network is determined by the 

Minimum Length parameter, which corresponds to the shortest segment that is visually sensible to 

show at scale.” (ArcGIS Help 10.2 2014)  

An understanding of the optimisation concept is important to appreciate the results of the 

algorithm. “The Thin Road Network tool … is built on an underlying generic optimisation engine 

(Monnot et al. 2007a; Monnot et al. 2007b). It makes use of an in-memory cache of explicit 

topology, so as to be able to efficiently impose topological constraints (e.g. retaining connectivity of 

roads). The optimisation engine has the task of finding a ‘good enough’ solution in reasonable time 

to a combinatorial problem space, which if explored exhaustively would take an enormously long 

time to traverse. It does this by trying more drastic solutions early on, and as time passes, refines 

more local situations. […] The internals of this optimiser-based strategy are hidden from the user, as 

the functionality is exposed as an ArcGIS geoprocessing tool with a small number of user-settable 

parameters […].” (Mr. P. Hardy 2014, pers. comm., 18 November) 

linear segments 

areal segments 
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2.5 Landscape 
Previous paragraphs have shown several pruning algorithms. Some are more applicable for mesh 

structured networks, while others are more applicable to stroke-based networks, while in reality 

both networks exist in landscape. But what exactly is meant by landscape?  

In this research the definition of Pungetti is taken which sees landscape as a ‘…dynamic process 

developing on the visible earth surface, resulting from the interaction between abiotic, biotic and 

human factors which vary according to site and time.’ (Makhzoumi 1999, p.6) Important in this 

definition is the interaction between natural and artificial developments which applies to Dutch 

landscape. Differences in landscape can be categorised as landscape types, compare e.g. Farjon et al. 

(2001), and are of influence in generalisation. Figure 12 to Figure 15 already illustrated how the 

difference in structure of geographical objects is due to scenery. Brewer et al. advise that 

“...generalisation components must be varied with landscape regime.” This variance can be applied 

to algorithms, parameters and the sequence of processing steps. “Pruning is necessary in some but 

not all landscape regimes.” (Brewer et al. 2009, pp.5–6).  

With regard to network thinning, at least two approaches in establishing landscape characteristics 

are conceivable. The first approach is deductive by superimposing already defined landscape 

typologies on individual features, while the second approach is inductive and uses computation of 

feature characteristics like average feature morphology and density to identify the landscape type.  

In a deductive approach issues can be encountered since existing landscape typologies differ. They 

are designed for utilisation in a specific context (compare e.g. the classifications of Farjon et al. 

(2001, pp.77–78) and Cultural Heritage Agency of the Netherlands (CHA-NL) (2014). The first is 

designed for usage in a discussion on landscape development balancing conservation of cultural 

heritage and stimulation of economic development and has 54 classes, while the second aims at 

“listing, preserving, sustainably developing and providing access to the most valuable heritage in our 

country” (Cultural Heritage Agency of the Netherlands 2014) and consists of 9 main types which 

together hold 19 subtypes.  

The inductive approach to establish landscape typology can be based on the computation of 

geometrical characteristics of features and the density of features. It is common to distinguish 

landscape types on basis of characteristics like humidity and density (ref). This can be established by 

computing the ratio of water features compared to the overall area. Another method is based on the 

appearance of features: what is the morphology of individual features and, from a network 

perspective, how is the connectedness of the network, see 4.2.2. 

Instead of starting a quest for the most optimal landscape classification with regard to network 

thinning or starting from scratch with a massive computation to establish landscape areas, a hybrid 

approach to landscape is applied in this research. The main classification of the Cultural Heritage 

Agency of the Netherlands is taken as a starting point. This classification is evaluated for usability 

with the question in mind: “is the provided landscape typology suitable for identification of distinct 

landscape areas to orchestrate a generalisation workflow?” To answer this question, three tests are 

performed: for each landscape type (1) the feature morphology, (2) density and (3) number of 

networks are calculated for all water features. This information is used to decide if the Landscape 

typology of CHA-NL is fit to tailor the application of pruning algorithms. 
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2.6 Evaluation 
Generalisation results in quality change of data (Muller 1991), but often these changes were 

intentional, as it makes the results more fit for use at a smaller scale. “[…] the reference data and the 

data evaluated are at different scales […and…] corresponding relations identifying objects that 

represent the same object in reality.” (Stoter, Zhang, et al. 2014, p.272) Therefore, a proper 

methodological framework is needed to judge the successfulness of a generalisation procedure. This 

framework is commonly referred to as Evaluation which according to Stoter, Zhang et al. (2014) can 

be defined as: 

“… the process of examining and checking whether the desired characteristics of the 

resulting data are satisfactory for a given task.” (Stoter, Zhang, et al. 2014, p.260) 

The quality of a generalisation process from a data perspective can be established by two 

approaches: the first focusses on the question whether results can still be regarded as a faithful 

presentation of the source data, while the second approach evaluates the results based on the 

legibility of the resulting map. 

From a methodological perspective evaluation of generalisation results can be qualitative or 

quantitative. Visual inspection is a form of quantitative evaluation and entails “… confirmation of 

similar content and similar densities of hydrographic detail compared to existing topographic maps 

[…] [and] judging vertical integration of generalised hydrography with other layers, such as 

transportation and terrain […].” (Brewer et al. 2009, p.9) To enable visual evaluation, care has to be 

paid to map design to provide an unbiased representation of generalisation results. However, the 

results of such an evaluation method are susceptible to the drawbacks of every qualitative study: 

subjectivity caused by a too small sample group, unwarranted generalisation of result findings, 

misinterpretation or bias. Both perspectives can be integrated to distinguish an evaluation 

methodology, which results in the matrix below: 

 

Figure 23: decision matrix for evaluation 

2.6.1 Evaluation metrics 

To overcome these difficulties and to enable objective, quantitative evaluation, a few metrics have 

been proposed for evaluating network pruning algorithms. These can be divided in two categories: 

A B

C D

qualitative 

results source 

quantitative 
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correspondence coefficients and network statistics. The paragraphs below will discuss each 

subsequently. 

2.6.1.1 Coefficient of Correspondence 

The coefficient of correspondence was first proposed by Stanislawski et al. (2010) to assess the 

amount of network thinning and has been implemented by Buttenfield et al (2013) as a raster 

method.  

The method compares the results of thinning operations with an existing benchmark dataset and 

provides statistics to evaluate the consistency of pruning and generalisation operations. Two 

variants are proposed, the Coefficient of Line Correspondence (CLC) and the Coefficient of Area 

Correspondence (CAC). Three statistics are needed to calculate the coefficient: conflations, i.e. 

features common in results and benchmark, omissions, i.e. features only present in the benchmark 

and commissions, i.e. features only present in results. The summed attributes for CLC considers 

feature length, for CAC they consider feature areas. 

 
∑ 𝑐𝑜𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑠

∑ 𝑐𝑜𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑠 + ∑(𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 +  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠)
 

The advantage of this metric is that it provides a statistic to objectively compare different results, 

but for use in generalisation this metric could have a major limitation which is related to choosing a 

fitting benchmark dataset. When comparing results of an automatic procedure with those of a 

manual procedure, the problem could arise that displacement has been applied in the manual set 

where the automatic procedure is not displaced at all. Another complicating issue to determine 

possible causes for differences between results and benchmark is the difference in actuality 

between the datasets. Datasets are a snapshot of reality at a given time.  

For this study the use of correspondence coefficients is limited to a mutual equation of automatically 

derived results of different algorithms, where the results of the existing implemented procedure can 

serve as a benchmark dataset. 

2.6.1.2 Network Statistics 

Another approach to measure quality of thinning can be found in the application of network 

statistics. “In a network database, linear features are linked together topologically.”(Wong 2005, 

p.304). Two approaches to assess network qualities can be distinguished. The first approach assesses 

the connectivity of an entire network, where the second approach assesses the accessibility of 

network elements. The first approach and can be divided in two methods: the assessment of the 

connectivity level and the determination of the capacity to support circuits by a network. Both will 

be researched in the following paragraphs, but first the concept of topology will be explained. 

2.6.1.2.1 Assessing network connectivity level 

The way segments are linked within a network and the relationships of these linkages to one 

another are described in terms of topology. Fundamental to assessing the connectivity of a network 

is planar graph theory. A graph is a graphical abstraction of a topological network which can be 

deconstructed in edges and nodes (Rodrigue 2013). An edge is a linear segment which is defined by 

the two nodes (vertices) at either end of the linear feature (Wong 2005). In a planar graph on each 

intersection of crossing edges a node is obliged. Figure 24 below shows a conceptual representation 

of a “real-world” structure and its topological equivalent as graph with edges and nodes. 
 



 

37 

 

   

Figure 24: conceptual representation of a “real world” network (left) and a topological representation with edges and 
nodes (right) 

The topological representation makes it clear that this network consists of 12 edges and 9 nodes. 

This information can be used to calculate network connectivity statistics. Wong (2005) proposes two 

formulas. The first is to calculate the level of connectivity and builds on the idea that every network 

consists of a number of nodes and a number of edges. Given a fixed number of nodes, a higher 

number of edges increases the connectivity level of a network. The number of edges, however, 

should meet a certain minimum amount (𝑒𝑚𝑖𝑛) to connect every node within the fixed number. To 

assess the level of connectivity of a network, the 𝛾-index can be calculated. This is a fraction 

representing the relation between the actual (𝑒) and the maximal possible (𝑒𝑚𝑎𝑥) amount of edges 

in the network.  

To calculate 𝑒𝑚𝑖𝑛 (the minimum amount of edges needed to connect all nodes) the formula 

𝑒𝑚𝑖𝑛 = 𝑣 − 1 

can be used, where 𝑣 is the number of nodes in the network. For the network in Figure 24, the 

minimal number of edges should be 8, since 𝑒𝑚𝑖𝑛 = 9 – 1. Three edges can be removed from the 

network still keeping the network connectivity intact. However, this cannot be a random 

combination of edges, since it is not allowed to split the network in two separate networks.  

Another important statistic in assessing an existing network is the maximal connectivity index. This 

index can be used to calculate the maximum possible number of edges for a fixed number of nodes. 

This statistic presupposes a planar graph topology, i.e. edges are not allowed to cross or intersect 

each other and can be expressed as 

𝑒𝑚𝑎𝑥 = 3(𝑣 − 2) 

where 𝑣 is the fixed number of nodes within a network. The 𝑒𝑚𝑎𝑥 for Figure 24 is 21 edges, since 3 x 

(9-2) = 21. This is demonstrated in Figure 25 below, where a maximum number of 9 edges can be 

added until violating the rule of planar graph topology: 

 

  

 

Figure 25: an example of maximum number of possible edges based on planar graph topology 
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𝑒𝑚𝑎𝑥 does not prescribe which connections have to be made to maximize the connectivity of the 

network, but it provides usable information for establishment of the connectivity level of a network 

which can be calculated by the 𝛾-index: 

𝛾 =  
𝑒

𝑒𝑚𝑎𝑥
 

where 𝑒 is the actual number of edges in the network. The 𝛾-index for the network in Figure 24 is 9 / 

21 = 0.42857. 

2.6.1.2.2 Capacity of network circuits 

Another important feature of network structures is the capacity of circuits. A circuit can be defined 

“as a closed loop along a network […] [where] the beginning node of the loop is also the ending 

node” (Wong 2005, p.308). Circuits are important indicators of alternative routes within a network.  

They will not appear in minimally connected networks, but the addition of an edge to a minimally 

connected network results in the appearance of a circuit. To calculate the number of circuits within a 

network a subtraction of the minimal number of edges from the actual number of edges has to be 

calculated. In simplified form, the formula (Wong 2005, p.308)  can be written as:  

𝑒 − 𝑣 +  1 

Equivalent to the lines of reasoning for establishing the 𝛾-index, an index to equate the numbers of 

circuits of networks can be calculated, which is known as the 𝛼-index. First, the number of maximum 

possible circuits has to be calculated by  

2𝑣 − 5 

This formula still obeys the rules of planar graph theory: prohibiting crossing or intersection of 

edges. The simplest form of a two-dimensional area is a triangle which consists of 3 nodes. This 

results in 1 circuit (2 x 3 – 5 = 1).  These two figures now can be used to calculate the 𝛼-index, which 

relates the actual number of circuits to the possible number of circuits: 

𝛼 =
𝑒 − 𝑣 + 1

2𝑣 − 5
 

2.6.1.2.3 Application of γ- and α-indices in this study 

Both the 𝛾- and the 𝛼- index are useful to equate the quality of networks (Wong 2005) and will be 

used in this study to compare network connectivity of input data with output data and to 

differentiate the outcomes of several algorithms.  

An implementation of connectivity statistics has been made by the author in ArcGIS ModelBuilder 

and can be found in paragraph 4.4. This implementation will be used to evaluate the generalisation 

operations.  
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3 Case study introduction 
The previous chapters indicated network pruning is part of a whole system of generalisation 

operators. These operators are usually part of a sequence to fulfil a generalisation task. Results of 

individual operators must be evaluated in coherence with each other. Besides these coherence, also 

the dependence on input data as well as the quality specifications of the desired output must be 

taken into account.  

This chapter briefly discusses two subjects which are of importance for setting the experimenting 

context: first the specifications of the input and output datasets. The input dataset is Top10NL, an 

object oriented geodatabase. The target dataset is TOP50, a dataset aimed at cartographical use. 

The second topic is the generalisation workflow implemented at Kadaster, which is of importance to 

pinpoint the place of the pruning algorithms in the implemented sequence.  

3.1 Top10NL: the source dataset 
In the Netherlands, a system of key registers is regulated by Law. One of these key registers is the 

Basis Registratie Topografie and contains since 2008 a midscale topographic dataset at scale 

1:10.000, TOP10NL. This is the standard base dataset for the appropriate scale with obligatory use 

for governmental parties. 

The history of TOP10NL goes back to the start of this century, when the Dutch Mapping Agency 

(then known as Topografische Dienst Nederland) started a joint research project together with the 

universities of Delft, Wageningen and Enschede on object oriented databases. In this research 

technology, user-aspects and data-models were considered while establishing new product 

specifications. Finally TOP10NL would substitute its predecessor TOP10vector. (Bakker & Kolk 2003) 

3.1.1 Characteristics 

Top10NL has a number of distinguishing characteristics. The main characteristics, seamless data, 

object orientation, geometric multiplicity, attribution, planar partition and relative height level, are 

explained in this paragraph. 

In contrast to Top10vector, TOP10NL is seamless data. Geographical entities are stored as single 

objects, no longer split by map edges. (Kadaster 2013, pp.8–9) 

Top10NL is an object-oriented database. “In an object-oriented description the world is seen as a 

collection of objects and characteristics which are incorporated in the data-model as entities and 

attributes… An object is a terrain element that has an identity, about which we can talk and that can 

be manipulated.” (Bakker & Kolk 2003, p.843) However, the definition of an object is ultimately 

dependent upon the intended application. Bakker and Kolk illustrate this by the example of a bridge. 

A bridge could be discriminated from a road as an individual object, but equally well as characteristic 

of that road.  It all depends on the ultimate application.  

Internal demands at Kadaster as an NMA (production of topographic datasets and maps) require the 

capturing of geographical objects for the 10K map. These objects are stored in distinguished object 

classes, see Table 3. 
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Table 3: object classes in Top10NL 

Entities 

Road segment 

Railroad segment 

Water segment 

Terrain 

Building 

Specific terrain element/ construction 

Administrative area 

Geographic area 

Functional area  

  

Several characteristic of entities are stored as attributes, which can be identifying, describing, 

geometric, meta and temporal. Each object or entity has a unique identifier (UID): TOP10ID, which is 

unique for the whole dataset, but is meaningless regarding object characteristics. Objects are given 

meaning by descriptive characteristics, which constitute of classifications such as water types (stored 

in domains) and unique attributes such as names (Bakker & Kolk 2003). Some attributes can store 

multiple attribute values. 

The geometries of entities from all object classes in Top10NL are stored as points, lines or polygons 

to define their location and shape. Most objects in the object class Road segments can have multiple 

geometries. Connections can be visualised as area or (centre-) line features, while crossings can be 

visualised as area or point features (Bakker et al. 2005). Intentions were to adopt the concept of 

geometric multiplicity for Water segments (Bakker & Kolk 2003), but this did not make it in the 

eventual implementation.  

The object classes water polygons, land cover and road polygons (waterdeelVlak, terreinVlak and 

wegdeelVlak) together form planar land cover, (Kadaster 2013, p.10) which means the whole of 

Dutch territory (on the European continent) is covered by a polygon from one of these feature 

classes, which are topologically related. Besides these topological partition, there are object classes 

stored separately, and these can be superimposed on the planar partition. Examples are buildings, 

specific terrain element and administrative areas. (Bakker & Kolk 2003) 

Top10NL was initially designed to store Z-values of objects (Bakker & Kolk 2003, p.846), but there 

has never been an implementation. Instead, relative object heights are stored in a height-level 

attribute. This attribute indicates the relative height-level of objects for local situations. Between 

design and implementation there was a shift in definition values which should be attributed to 

indicate height-level. By design ground level was intended to be attributed height-level ‘0’ (Bakker & 

Kolk 2003), but in implementation (almost) all objects visual from air have to be attributed height-

level ‘0’ (Kadaster 2013, pp.26–27). This shift is justified by the fact data acquisition is from aerial 

photography which is not suited for proper identification of ground-level. However, there are 

developments utilizing laser scanning and point clouds, which culminated in the release of a new 

product 3DKaartNL, building on the researches of Stoter (2012) and Oude Elberink (2010).  
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For hydrography height-level indicates locations of bridges and culverts. They should be considered 

in establishing a hydro-network. 

3.2 TOP50raster: a concise overview 

The target dataset for the generalisation workflow is TOP50raster, which is one of the three digital 

map series in the product family TOPraster. TOP50raster is a generalised digital cartographical map, 

scale 1:50.000. It is produced for use as overview map in the Military, but also as reference data in 

GIS systems. The product is derived from a cartographic object oriented database, which inherits the 

characteristics from TOP10NL. This dataset is not suited for GIS-analysis due to applied 

generalisation techniques like displacement and omission.  The focus of the product is to provide an 

intelligible overview of an area. 

3.3 Preceding work on automatic generalisation in the Dutch context 

In 2013 interactive generalisation was replaced by an automated procedure, after an extended 

period of research and development. The prior research developed in five phases.  

 

Figure 26: phases in the research and implementation of automatic generalisation at Kadaster 

Within the project ‘Ruimte voor Geo-Informatie’ a group of researchers (from industry and NMA) 

investigated automatic generalisation of TOP10NL to derive TOP50NL data. (Hardy et al. 2008) The 

objective of this study was to answer the question “what automatic generalisation could offer, 

taking the current object models, products and generalisation-specifications for granted”. A number 

of experiments were set up, which focussed on roads and buildings. Water network thinning was 

neglected. (Stoter & Smaalen 2008) Results of these experiments were very promising. A consequent 

study took previous results and experiences and investigated how both can inform Map 

requirements and specifications to fit automated generalisation. (Stoter et al. 2009). 

The next research phase was in 2010 when a team of experts performed an innovation sprint within 

five weeks. This innovation concept is called a HIGH5. The objective of the HIGH5 was to generalise a 

50k visualisation fully automatically from TOP10NL data with available commercial tools within a set 

amount of time. The results of this feasibility study should provide insight in the potential of fully 

automatic generalisation. (Bruns et al. 2010, p.3). It was explicitly stated there was no intention to 

copy the existing 50k map, but the main generalisation principles should be acknowledged. (Bruns et 

al. 2010, pp.3–4) In this phase the first attempts at Kadaster were made to automatically generalise 

waterways from 10k to 50k. (Bruns et al. 2010).  

2008: RGI 
research

2010: HIGH5 
week

2011: proof of 
concept

2012: 
development

2013: 
implementation
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In the subsequent phases, (proof of concept and development), the workflow was expanded and 

became more mature: it covered a greater diversity of generalisation issues and the generalisation 

workflow was also tested on other areas in the Netherlands. By implementation of multicore 

processing the workflow became mature enough to replace the existing interactive generalisation 

workflow. 

3.4 Resulting workflow 

Starting point for this research is the current implementation of generalisation at Kadaster : a 

TOP10NL dataset which has been prepared by data validation and data-enrichment and has been 

translated to the data scheme of TOP50 (Stoter et al. 2011). This is where the generalisation starts. 

The generalisation process can be divided in three sub steps (Figure 27): geometric generalisation, 

displacement and visual enhancement. The thinning of the water network is embedded in the first 

sub step, geometric generalisation. 

 

Figure 27: overview of generalisation process 

The procedure for waterline features in the geometric generalisation is indicated by the workflow in 

Figure 28, which can be divided in five subsequent actions. 

 

Figure 28: current implementation of water thinning 

1. Generalisation of culverts. In the traditional generalisation-specification there are rules which 

require the translation of culverts to normal waterways under specific constraints. 

2. Add cow dykes features to complete the water network. (dam, koedam) Cow dykes are small 

artificial connecting lines to the water features. 

3. Add the boundaries of water polygons as lines to complete the water network and populate a 

hierarchy field for all water features to ensure a certain hierarchy.  

4. Prune the water network by application of Esri’s Thin Road Network-algorithm with a minimum 

length parameter value of 300 meter. 

5. Erase water line features overlapping with road sidings since these features because graphic 

conflicts on the map. 

The experiments in the next chapter extent the second and third action and research alternating 

thinning algorithms (action 4).  The last action is out of scope in this research. 

Preparation

•Validation

•Enrichment

Geometric 
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3.4.1 Partitioning 

One additional concept is important to discuss before advancing to experimentation: partitioning. 

This addresses the impossibility to process the entire dataset for the Netherlands at once. Partitions 

divide the source data into smaller subunits and are constructed from artificial and existing 

topographical (linear) objects which are important enough to be maintained during the process and 

delineate a reasonable area and number of features. 

The set of partitions should cover all features in the dataset. The inner boundaries of the partition 

dataset are constructed from the main road network pattern, the outer boundaries from the 

nation’s border or the coastline. Some artificial connections between the inner partition boundaries 

and the outer boundaries should be added (Stoter, Post, et al. 2014), see Figure 29. 

 

Figure 29: extension of line elements to partition borders 

The process results in approximately 480 partitions which can be processed individually. 

 

Figure 30: the Netherlands divided in partition for processing 

Inner boundary 

Outer boundary 

Artificial connection 
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4 Experiments, results and findings 
This chapter is structured in five sections. The first section (4.1) explains the prototyping workflow. 

In the next section the analysis of landscape characteristics will be addressed in several experiments. 

The main quest in these experiments is to establish the usability of the landscape typology dataset of 

CHA-NL in generalisation experiments (4.2) and to select representative datasets for experimenting 

(4.3). The third section (4.4) discusses the implementation of evaluation algorithms which will be 

used in the subsequent experiments to evaluate the results of generalisation approaches. This 

finishes the preparatory experiments.  

In the following section an algorithm is researched to improve network connectivity (4.5) and three 

different generalisation algorithms are applied (0). Both experiments are applied to the selected test 

partitions to get results for different landscapes.  

The final section contains the evaluation of findings (4.7) for each generalisation algorithm and an 

equation of results between landscape types and applied generalisation methods. 

4.1 Prototyping workflow 
Each aforementioned experiment addresses a part of the research question and together they form 

the prototyping framework. The coherence of experiments in this framework is explained in Figure 

31. In the framework three components can be distinguished: preparation, thinning and evaluation.  

The Preparation algorithms are used to investigate the initial situation of the test data, to enrich 

water features with landscape type, to enhance network connectivity of the water features and to 

identify test areas. In subsequent processing this information will be used as input and benchmark 

data. Part of the preparation is an evaluation of network improvement using three metrics: (1) an 

equation of the number of networks in the initial and improved situation, (2) the identification of the 

connectivity level of networks and (3) the computation of the number of circuits within a network. 

Metric 1 is used to evaluate the improvement of the preparation; metrics 2 and 3 are used for 

comparison in the subsequent stages. Last two metrics are identified as network statistics 

The Thinning component applies three different pruning algorithms to the test areas. The third and 

last component evaluates the results of the three pruning algorithms on basis of network statistics 

for each individual landscape type, but also compares the results against each other and the base 

dataset. 
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Figure 31: prototyping workflow 

All algorithms (with one exception which contains a Python script) are created using ArcGIS 

Modelbuilder. ArcGIS models use the following symbology convention: 

 

Figure 32: ModelBuilder symbology convention 

Instead of providing all the technical details, this chapter contains a summary of the algorithms in 

conceptual images. This aims at avoiding reader confusion with an overload of technical details. The 
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symbology convention used in the conceptual images is displayed in Figure 33. Intermediate output 

which serves as input to subsequent processes will be neglected in these images. 

Input Proces Output

 

Figure 33: conceptual images symbology convention 

Both models and script are included in full detail in the appendices. 

4.2 Analysis of landscape characteristics 

The attribution of landscape type to water features is based on an existing classification. The 

landscape type dataset as provided by CHA-NL is evaluated by two criteria to determine if this 

dataset is a usable source to define landscape type of a partition. The first criterion is to calculate 

the humidity factor for each landscape type. The second criterion is to calculate a feature 

morphology index. The paragraphs below provide a description of both methods. 

4.2.1 Calculate humidity factor for each landscape type 

The humidity factor is the ratio between the area covered by water features and the overall area of 

the landscape type and ranges from 0 to 100. It can be used to indicate the overall density of water 

for a specific area. Landscapes which are not covered by water features have a water density of 0, 

while a density of 100 indicates a landscape completely covered by water features. 

These figures can be used to characterise the water areas. An approximation of area 𝐴 covered by 

water features which are represented as waterlines in TOP10NL (waterlines with a width smaller 

than 6 meter) is calculated using the formula 

𝐴 = 𝑙 ∗ 𝑤 

where 𝑙 represents the accumulated length of all water features and 𝑤 represents the assumed 

average width of the class. Dependent on class type the value of 𝑤 varies according to the values in 

the table below. 

Table 4: assumed average class width 

class type assumed average 
width (𝒘) 

greppel 1.5 
sloot, 0,5 – 3 m 
sloot, 3 – 6m 2.5 

 

The statistics for wet areas are calculated using the formula: 

𝑤𝑒𝑡 𝑎𝑟𝑒𝑎𝑠 =
𝐴𝑔𝑟𝑒𝑝𝑝𝑒𝑙 + 𝐴𝑠𝑙𝑜𝑜𝑡0,5 − 3𝑚 + 𝐴𝑠𝑙𝑜𝑜𝑡3 − 6𝑚 + 𝐴𝑤𝑎𝑡𝑒𝑟𝐴𝑟𝑒𝑎𝑠

𝑡𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎
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4.2.1.1 Algorithm 

The model calculateWaterStatisticsForLandscapeType (included in Appendix A) calculates both the 

percentage of the area covered by water areas, small waterlines, wide waterlines and trenches and 

the ratio of wet and dry areas for each landscape type.  

The algorithm can be broken down in three subsequent actions. Water features and Landscape-type 

features are conflated using the intersect tool of ArcGIS. This information is used to calculate the 

surface of the areas covered by water and in this action information is retained about the original 

water features. The last action in the algorithm makes all the information relative by calculating 

percentages which can be used in equations. 

Landscape-type 
polygons

Conflate 
landscapes 
and water 
features

Waterlines / 
water polygons

Calculate 
surface per 
landscape 

type

Calculate 
percentages 

for each 
landscape 

Landscape type 
polygons with 
water satistics

 

Figure 34: conceptual overview of the calculateWaterStatisticsForLandscapeType-algorithm 

4.2.1.2 Results 

The algorithm results in statistics on humidity of landscape – type areas and in statistics which 

reflect the composition of water features per landscape type. The results of the algorithm are 

portrayed in the graph in Figure 35. This shows the distribution of water type classes for each 

landscape type. 

 

Figure 35: composition of wet feature types per landscape type 
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The humidity level is portrayed as a choroplet map in Figure 36. 

 

Figure 36: humidity per landscape type 

These results show that the landscape typology classification of CHA-NL contains the necessary 

variation in humidity. 

4.2.2 Establish geo-morphology of line features 

Besides humidity, feature morphology also provides information about landscape type. The main 

idea here is that some landscape types will have mostly straight lines, e.g. polder landscape or 

former histosols (areas with moor), where other landscape types will have more naturally formed 

winding lines, e.g. hilly areas. It is possible to calculate a feature morphology index per landscape 
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type. The feature morphology index 𝑀 is the ratio between straight and winding features within a 

given area and can be expressed as 

𝑀 =
𝑓

𝑣
∗ 2 

where 𝑓 is the total number of line features within the area and 𝑣 is the total number of vertices for 

these features. Because a straight line always has a starting and an end point, a multiplication by 2 is 

performed. An 𝑀-value close to 0 indicates an area with almost only straight features, whereas 

areas with an 𝑀-value close to 1 consist mainly out of winding features.  

4.2.2.1 Algorithm 

This algorithm computes a feature morphology index for a given set of line features and can be 

found in Appendix B. The concept of the feature morphology index is explained in 4.2.2. The 

technical implementation is explained here. Prerequisite to this tool is the conflation of landscape 

type polygons with waterline features (see 4.2.1.1). 

Conflated 
waterline 
featuers

Preparation
Landscape 
morhology 
statistics

Geometry 
replacement

Statistic
computation

 

Figure 37: conceptual overview of feature morphology algorithm 

The tool iterates the different landscape types selecting all waterlines belonging to one landscape 

type. For each iteration it performs the following actions for the selected landscape: 

 The input data is prepared by dissolving all connecting elements in the same class (not 

permitting multiparts) to create longest possible lines and remove pseudo nodes. (For the 

Dutch situation this classes are created from the unique combinations of the attribute values 

for water type (type water) and width class (breedteklasse).  The second preparation action 

is the removal of bias caused by unnecessary detail in the line geometries. To achieve this, 

point reduction is applied (using the Douglas Peucker algorithm as applied in the Simplify 

Line tool of ArcGIS with a threshold value of 2 meters). The results are only used in this 

algorithm. 

 All resulting line features are fed into the Feature Vertices To Line-tool, which creates a 

point feature for every vertex. For each point feature the parent attributes are stored, which 

can be used to diversify statistics.  

 For the given set, statistics are calculated for the total number of features, the total number 

of vertices. These statistics are also computed per class (using the classification indicated 

above). The final step is to calculate a feature morphology index for each class and for the 

total line set. 

4.2.2.2 Results 

The results of the algorithm are displayed in Figure 38.  
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Figure 38: feature morphology index per landscape area for all water features and diversified by water type 

4.2.3 Conclusion 

The results of the two preceding experiments show the landscape typology dataset of CHA-NL is a 

usable source to define landscape type of a partition. The typology offers enough variation in 

humidity-level and average feature morphology to be used as context-identifier. 
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4.3 Selection of test partitions 
As discussed in 3.4.1, the source dataset TOP10NL is divided in approximate 480 partitions for 

processing purposes. By performing a spatial overlay with landscape type features, the partitions can 

be classified according to landscape. Although the spatial relationship between partition and 

landscape type can be M: N, there are partitions which are fully contained by one landscape type 

polygon. For each landscape type the smallest partition from the subset of single-landscape 

partitions is selected as candidate for prototyping. 

4.3.1 Algorithm 

The algorithm (full details in Appendix C) intersects landscape areas with partitions, which results in 

new polygons. The number of landscape types for each original partition is established and each 

original partition with only one landscape is a candidate for prototyping. The last action in isolating 

test partitions is the selection of the smallest test area per landscape type. 

Partition 
polygons

Intersect Test partitions

Select 
partitions with 

only one 
landscape 

Select smallest 
partition for 

each 
landscape 

Landscape 
typology

 

Figure 39: conceptual model of algorithm to select test partitions 

4.3.2 Results 

The algorithm results in the selection of twelve partitions with a unique landscape type (Figure 40). 

Seven unique landscape types are omitted (Table 5) as they do not contain complete partitions. 

These landscape types are excluded from prototyping. These are not necessary to prove the concept 

of landscape-typology as context identifier. 

Table 5: omitted landscape types 

De Peel 

Droogmakerijen 16e-19e eeuw 

Hollandse kustzone 

Kustzone van Zuidwest-Nederland 

Midden-Nederlandse laagveengebieden 

Noordelijke laagveengebieden 

Waddeneilanden 
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Figure 40: preliminary test partitions 

4.4 Evaluation algorithms 
The prototyping framework described in section 4.1 also includes several evaluations of 

intermediate results and a comparison between intermediate and final results. Three metrics are 

proposed and the corresponding algorithms are explained here. Discussions of results are included 

at later stages where the algorithms are applied. 

4.4.1 Count number of networks 

The evaluation algorithm numberOfNetworks (Appendix D) computes the number of networks 

within the dataset. This is used to evaluate the improvement of the network connectivity. The 

concept is fairly simple: buffer all features with a distance of 1 meter (an arbitrary value) and allow 

for multipart features. This will result in one multipart polygon for all present water features. This 

multipart polygon is subsequently broken into multiple features. Since this new features are not 

connected, they form a good representation of the number of networks. 
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Figure 41: number of networks algorithm 

The focus of this algorithm is on a dataset. It informs about the number of networks, but it does not 

provide details about connectivity or structure of each network.   

4.4.2 Network connectivity statistics 

Network statistics focus on the connectivity level (𝛾 - index) and the number of circuits (𝛼- index) for 

a network and are an implementation of the theory as described by Wong (2005), see also section 

2.6.1.2 on Network Statistics. The algorithm (Appendix E) can be summarized at conceptual level as 

shown in Figure 42 below. Prerequisite to the algorithm is a planar topological graph. 

Topological 
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Network 
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Add statistical 
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Create node 
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Count number 
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Figure 42: network statistics algorithm 

These metrics will be used in the following experiments on base-data-improvement and in the 

evaluation of thinning algorithms. 

4.5 Base data enhancement: improve connectivity 

One of the assumptions in this thesis is that better connected networks will deliver better results in 

thinning. It is appropriate to elaborate a little on the concept of “better connected networks”. The 

underlying idea is that in the human mind choices for thinning are not solely determined by the 

existence of connections in the terrain, but also (and maybe foremost) by the perception of 

continuous structures on a map. Interrupted lines (for example, watercourses in extension of each 

other, but interrupted by a road) may form a closed network in the human perception, although no 

physical connection exists, as illustrated in Figure 43. 

These lines, though interrupted, form a 
perceptual continuous structure

 

Figure 43: a cartographer perceives a continuous network, though the physical connection is missing  
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The following paragraphs describe an experiment which focusses on the issue of better-connected-

networks and tries to simulate the human’s perception. Figure 44 below shows a conceptual 

representation of a fictive topographical situation. It contains ditches, small and broad waterlines, 

isolated and linked water areas, and a road. 

 

Dyke, cow dyke (dam, koedam)

Culvert

Road

Edge match link

Dry ditch, trench (greppel)

Waterway, 0,5 – 3 meter (sloot)

Waterway, 3 – 6 meter (sloot)

Water area
 

Figure 44: Initial topographical situation and Legend for Figure 44 to Figure 50 

From this initial situation networks can be created, but parts which belong to the perceptual 

network remain unlinked, as shown below in Figure 45. 

 

Figure 45: initial network form waterline elements 

4.5.1 Improving connectivity of a water network from TOP10NL 

There are two approaches to improve the connectivity of the network. By adding (geometrical) 

information which is present in the geographical dataset (Heinzle et al. 2005) and by constructing 

perceptual links. The addition of culverts and cow dykes to the network belong to the first approach; 

the calculation and addition of artificial connecting lines (replacing water areas by centrelines) and 

perceptual links (see below for an explanation) belong to the second one. The current Kadaster 

workflow has already implemented the addition of culverts and cow dykes. 

4.5.1.1 Addition of culverts 

Culverts (duikers) are tubes to connect watercourses below the earth surface. Their main function is 

to maintain the connection between waters or drainage of adjacent lands, cf. Winkel (2012, pp.15–
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5): “…de instandhouding van de verbinding tussen wederzijds gelegen wateren of de afwatering van 

aangrenzende landerijen.” Although culverts are invisible on aerial photographs, they should be used 

in water network construction. This is acknowledged in the design of the Top10NL data model, 

which includes culverts in the watercourse lines. Figure 46 illustrates the network becomes less 

fragmented after addition of culverts. The number of networks is reduced from 5 to 4. 

 

Figure 46: add culverts to network 

4.5.1.2 Addition of cow dykes 

Top10NL also includes the object cow dyke (dam, koedam) which contributes to the construction of 

a water network. Cow dykes are earth bridges which connect two pastures (or a pasture and a road) 

across a stream or ditch, to allow cows to move between pastures. They often contain a culvert pipe 

to allow water to pass underneath, cf. Winkel (2012, pp.15–1): “Ontsluiting van een perceel, dwars 

over een waterloop, door middel van demping (al dan niet met doorlaatbuis)”. 

Surprisingly, given their consistency with water features, cow dykes are not included in Top10NL in 

the watercourse lines, but in the object class specific terrain element/ construction. To construct the 

water network this objects should be added to the watercourse line object class. The addition of cow 

dykes again defragments the network, reducing the number of parts from 4 to 3, see Figure 47. 

 

Figure 47: add cow dykes 

4.5.1.3 Replace water areas in the network with connecting lines 

Water areas are retained in the resulting 50K map. However, because they are important parts of 

the water network they should be used in the construction of the network. Because the tools cannot 

handle features with different geometry, water polygons have to be translated to polylines. In this 

research polygons are replaced by their calculated centrelines while retaining the topological 

relationship with adjacent waterlines. Results of this approach showed to be most suitable (they did 
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not cause crashing algorithms) and efficient (they resulted in clean geometries) in pruning 

algorithms. Figure 48 illustrates the reduction of networks from 3 to 2 parts, after addition of water 

polygon centrelines to the network. 

 

Figure 48: replace water areas in the network with connecting lines 

4.5.1.4 Calculation of perceptual links 

The connectivity of the network can be further improved by the introduction of perceptual links, 

which has already been advocated above. To summarize this concept: two waterlines in extension of 

each other, but divided by a road are perceived by the human eye as a continuing line in a network. 

By creating lines in the database for these virtual elements, the connectivity of the network can be 

improved. In Figure 49 the addition of a perceptual link reduces the number of networks to 1, 

providing better connectivity for waterlines. 

 

Figure 49: add perceptual links 

Using these preparatory steps improves the connectivity of an initially fragmented water network, as 

the final result in Figure 50 shows.  
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Figure 50: resulting network 

4.5.2 Algorithm 

The concepts explained in paragraph 4.5.1 are implemented in an algorithm which is explained in 

Figure 51 (for full implementation, see Appendix F). The algorithm starts with data directly taken 

from Top10NL: water areas (waterdeelVlak), waterlines (waterdeelLijn) and a subclass of specific 

terrain constructions (inrichtingselementLijn). This data is topologically checked, connected water 

areas are replaced by their centreline, all line features are merged into one dataset and the 

algorithm concludes with the construction of perceptual links to create an improved network. 

water line 
features

select cow 
dykes

perceptual 
network

remove 
isolated water 

areas

Construct 
centrelines for 

connected 
water areas

Combine 
datasets and 

construct 
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features

merge 
datasets

  

Figure 51: algorithm to improve network connectivity 

4.5.3 Results of the connectivity improvement algorithm 

The algorithm was executed on all partitions and the results are evaluated using the 

countWaternetworks tool. Table 6 shows the results of all subsequent processing actions and 

provides information on intermediate and final results of the algorithm. COUNT gives the number of 

networks for the test data. Ideally, this number should reduce after each processing action. MIN 

displays information about the number of features within the smallest network; MAX indicates the 

number of connected features in the largest network (and during processing this number should 

increase); the final metric MEAN provides statistics on the average number of features for all 

networks in the specific area. 
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Table 6: results of improving the network 
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The results can be displayed in a more transparent way by looking at the reduction of the number of 

networks for test areas in each subsequent action, see Figure 52. 

 

Figure 52: effect of network connectivity improvement on number of networks for each test area 

The reduction in network numbers indicates the connectivity of features improved. This indicates 

the increase of the number of features per network. Both graphs below (Figure 53 and Figure 54) 

display this development: the number of features for the largest network in each test area increases 

after each improvement step. 

 

Figure 53: effect of network connectivity improvement on the number of features for the largest network 

In general the same is true for the average amount of features for all networks in the test areas. It is 

however important to bear in mind the possible bias in these results.  
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Figure 54: effect of network connectivity improvement on average number of features in networks 

In conclusion, the results of this algorithm show significant improvement in network connectivity. 

However, not all features are connected and isolated features still exist, which is indicated by red 

circles in Figure 55 for one of the test areas (partition 1). Maps for all test areas are includes as 

“Input data” in Figure 91 to Figure 101 in Appendix J. 

 

Figure 55: results of improved network algorithm 

4.6 Thinning experiments 

In the following paragraphs, the results of three thinning algorithms (Thin Road Networks, Stroke-

based and Mesh based) are analysed using simple statistical analyses. All thinning experiments start 

with the results of the improve-connectivity-algorithm (paragraph 4.5 and Appendix F). The results 

of the experiments are represented as maps in Appendix J and Appendix K and are statistically 

evaluated using the proposed metrics in the text below 

4.6.1 Thin Road Network approach 

As discussed in paragraph 2.4.6, the commercial software package ArcGIS offers a network thinning 

algorithm. Although not exhaustively documented, the results of the tool can be compared with the 

outcomes of other thinning algorithms and a comparison can be made between the results in test 

areas with different landscape characteristics.  
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4.6.1.1 Algorithm 

For this research the Thin Road Network-tool of ArcGIS has been used, but it was expanded with a 

preceding preparatory step (see Appendix G).  

This preparatory step can be divided in three actions. First, the input feature class is copied to secure 

input data from being edited; next, two fields are added for processing purposes to the copied  

feature class (hierarchy field and invisibility field); and last, all values for the hierarchy field are set to 

‘1’, which attributes the same hierarchy value to all features.  

Thinning algorithm

Preparation

Perceptual 
network

Copy input 
data

perceptual 
network

Select 
remaining 

lines

Thin Road 
Network

Set hierarchy 
for all fields

Add 
processing 

fields

 

Figure 56: Thin Road Network-based algorithm 

The prepared data is fed into the Thin Road Network. The minimum length –parameter for features 

to retain is set to 300 meters, which is the same value as is used in the current Kadaster 

implementation process and which is deducted from the manual specifications. 

4.6.1.2 Results of Thin Road Network algorithm 

The results obtained from the Thin Road Network algorithm are shown for each test partition in 

Table 7. This table (as well as Table 8 and Table 9 below) has the same structure as Table 6, but is 

expanded with statistics on the largest network within each partition (Edges, 𝛾– and 𝛼– index). 

Table 7: results of Thin Road Network algorithm 

 total number of 
features 

number of networks and statics on 
features in individual networks 

Largest network 

Partition Input Result COUNT MIN MAX MEAN Edges 𝜸 – index 𝜶 - index 

1 445 317 19 1 168 17 168 0.348 0.019 

17 108 54 19 1 32 3 32 0.333 -0.016 

49 29 14 5 1 8 3 8 0.444 0.091 

93 820 766 16 1 711 48 711 0.396 0.094 

198 1560 1408 13 1 1306 108 1306 0.369 0.053 

217 137 94 6 1 53 16 53 0.327 -0.019 

260 397 280 20 1 213 14 213 0.376 0.061 

298 300 173 31 1 71 6 71 0.408 0.104 

345 582 459 52 1 311 9 311 0.366 0.048 

403 802 615 106 1 381 6 381 0.360 0.038 

442 667 528 15 1 190 35 190 0.401 0.098 
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Data from this table can be compared with the data in Table 6 and shows significant decreases in 

number of networks for each partition (COUNT-column) and of number of features for the largest 

network (MAX-column) 

A surprising aspect of this data is the occurrence of negative values for the 𝛼– index of two 

partitions.  Analysis of the network and its features indicate errors in the topological network. The 

largest network of partition 17, for example, appears to consist of two networks. Caused by the 

computation of centrelines for water area features. The created centreline is not connected to 

existing water line features. 

 

Figure 57: not-connected water centre line area causing gaps in largest network 

The valid results will be used in a comparison of the results of the alternative thinning algorithms. 

4.6.2 Stroke-based approach 

The second thinning experiment, the stroke-based approach, is based on continuity of lines and is 

explained in full detail in paragraph 2.4.3.  

4.6.2.1 Algorithm 

The algorithm used in this experiment is based on the implementation in the research of Post 

(2014). In his master thesis, he researched stroke- and mesh-based thinning approaches in the 

context of road network generalisation. These algorithms have not been tested before in the context 

of thinning water networks. The models were adapted to fit the approach in this thesis. Figure 58 

gives an overview of the algorithm. Appendix H can be consulted for full implementation. 

27 cm 
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Figure 58: stroke-based algorithm 

First, the algorithm creates a topological line structure consisting of nodes and edges to ensure the 

processing handles all features only once.  Next, it runs iteratively over all edges and connects each 

edge to the neighbouring edge with the smallest deflection angle. The deflection angle between 

both edges must be smaller than 20 degrees for invoking a merge-action. The iteration stops when 

there are no more candidates which can be merged. 

The stroke-based algorithm is in essence not a thinning algorithm. Rather it should be regarded as a 

selection algorithm to identify a geometry-based hierarchy for a network. In a subsequent 

processing action the real thinning must be implemented and results are dependent on the 

sophistication of such an algorithm (i.e. it should also take density and connectivity into account). 

For this research a straightforward selection on feature length is implemented. 

4.6.2.2 Results of Stroke-based algorithm 

The results of the stroke-based experiments for each partition are presented in Table 8. The table 

also includes statistics (number of edges, 𝛾- and the 𝛼-index) for the largest network in each 

partition. 

Table 8: results of Stroke-based algorithm 

 total number of 
features 

number of 
networks 

number of features in 
individual networks 

largest network 

partition input results input results min max mean edges 𝜸 – index 𝜶 - index 

1 445 168 118 37 1 24 4.541 6 0.50000 0.14286 

17 108 52 68 21 1 26 2.476 19 0.35185 0.00000 

49 29 8 15 5 1 3 1.600 1 0.00000 0.00000 

93 820 496 58 58 1 101 8.552 81 0.42857 0.13600 

198 1560 516 48 104 1 53 4.962 29 0.34524 0.00000 

217 137 41 23 15 1 11 2.733 8 0.38095 0.00000 

260 397 139 112 35 1 34 3.971 19 0.39583 0.06452 

298 300 102 148 36 1 32 2.833 24 0.36364 0.02326 

345 582 268 140 83 1 41 3.229 21 0.35000 0.00000 

403 802 408 241 152 1 55 2.684 47 0.34815 0.01124 

442 667 269 99 50 1 46 5.380 29 0.46032 0.17073 
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The MAX number (most features) does not equal the number of Edges for the largest network 

because the features are merged together to create a topological structure of edges and nodes. One 

edge can consist of multiple input features. 

Zero values for respectively the 𝛾 – and the 𝛼 –indices represent two phenomena. For the 𝛾 –index, 

a 0 value indicates a minimal connected network, consisting of a single edge. Networks with a 𝛾 – 

index value of 0 will always have an 𝛼 –index value of 0, which implies there are no circuits.  A zero 

value for the 𝛼 -index implicates a network without any circuits. This is the implication of a network 

with multiple edges, but without alternative routes in the network (c.f. paragraph 2.6.1.2.2). This is 

illustrated by the results of the Stroke algorithm in Figure 59. Maps for all test areas are includes as 

“Strokes” in Figure 102 to Figure 112 in Appendix K. 

 

Figure 59: largest network without circuits 

4.6.3 Mesh-based approach 

The mesh-based approach is based on density of lines. The concept is explained in full detail in 

paragraph 2.4.4. The problem of overcrowded areas, which are identified on basis of a 

predetermined threshold value, is solved by removal of the longest shared edge with adjacent 

features. 

4.6.3.1 Algorithm 

The mesh-based approach starts with the results of the improve connectivity model (paragraph 4.5 

and Appendix F). Figure 60 gives a conceptual overview. 
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Figure 60: mesh-based algorithm 

To prepare all data for processing, the first action in the algorithm is the construction of a 

topological structure with nodes and edge. Subsequently the edges are input to the mesh algorithm 
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and meshes (polygons) are created. For each mesh the density is calculated and the densest mesh is 

selected. Based on the longest shared side for this mesh, an edge is removed from the topological 

structure. This mesh creation and edge removal-process is repeated until the densest mesh meets a 

predefined threshold density-value. 

4.6.3.2 Results of Mesh-based algorithm 

Table 9 presents the results obtained from the application of the mesh-based algorithm on each 

partition and statistics for the largest network in each partition. Negative values for the 𝛼 –Index 

(partition 298 and 403) indicate broken, incomplete networks. These results are excluded from 

further analyses. 

Table 9: results of Mesh-based algorithm 

 total number of 
features 

number of 
networks 

number of features in 
individual networks 

largest network 

partition input result input results min max mean edges 𝜸 – index 𝜶 - index 

1 445 445 118 338 1 49 4.364 16 0.444  0.130  

17 108 100 68 63 1 84 3.746 32 0.344  0.000  

49 29 26 15 14 2 27 5.143 7 0.583  0.285  

93 820 789 58 162 1 227 10.920 100 0.388  0.076  

198 1560 1482 48 228 1 823 13.658 348 0.406  0.107  

217 137 133 23 52 1 52 5.788 24 0.381  0.049  

260 397 389 112 168 1 71 4.988 31 0.356  0.017  

298 300 288 148 190 1 113 3.363 51 0.327  -0.019 

345 582 553 140 210 1 150 5.371 73 0.386  0.072  

403 802 783 241 339 1 213 5.038 95 0.317  -0.030 

442 667 661 99 179 1 296 7.905 132 0.411  0.113 

 

The most surprising aspect of this data is the significant increase in the number of networks (with 

exception of partition 17), while hardly any thinning occurs (compare the number of resulting 

features with the number of input features). The reason for this is the thinning breaks existing 

networks in multiple parts, resulting in loss of continuing patterns. 

 

4.7 Findings 
As explained in the introduction, generalisation involves the abstracting of space, enabling the map 

reader to discern patterns and structures in topographical data (Kraak 2010). One of the tools to 

achieve generalisation is the reduction of detail in a map. However, this must be done in a 

meaningful way, to assure resemblance with structures in the input data and retain connectivity in 

the results. Along these three metrics the results of the thinning algorithms are evaluated: reduction 

of features, resemblance with input data and connectivity of features within the network. 

The paragraphs below discuss the results for the three thinning algorithm in coherence. Based on 

the relative outcomes, the thinning algorithms will be ranked on average results for all partitions, 
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but also for each individual partition, using the ranks 1, 2 and 3 (where 1 is the least important, while 

3 is the most important). The scores will be evaluated in a simple multi-criteria analysis (MCA). 

4.7.1 Reduction of features 

The first criterion to compare and evaluate the results of the thinning algorithm alternatives for the 

different partitions is the reduction in features for the test areas. Table 10 and Figure 61 show the 

number of features for the input data (the prepared data of paragraph 4.5), and the results for the 

three algorithms. The reduction of features is compared to the input data for each thinning 

algorithm and is expressed as a relative decline. The largest negative percentage presents the largest 

decrease in feature count.  

Table 10: results of thinning algorithm evaluated by feature amount reduction 

partition input meshes % strokes % TRN % RANK 

1 445 445 0% 168 -62% 317 -29% STM 

17 108 100 -7% 52 -52% 54 -50% STM 

49 29 26 -10% 8 -72% 14 -52% STM 

93 820 789 -4% 496 -40% 766 -7% STM 

198 1560 1482 -5% 516 -67% 1408 -10% STM 

217 137 133 -3% 41 -70% 94 -31% STM 

260 397 389 -2% 139 -65% 280 -29% STM 

298 300 288 -4% 102 -66% 173 -42% STM 

345 582 553 -5% 268 -54% 459 -21% STM 

403 802 783 -2% 408 -49% 615 -23% STM 

442 667 661 -1% 269 -60% 528 -21% STM 

average change  -4%  -60%  -29% STM 

 

After comparison of the results in Table 10, the three algorithms can be ranked. The overall 

performance of the algorithm can be ranked as Stroke-based (3 points), TRN-based (2 points) and 

mesh-based (1 point). The same is true for ranking the individual partitions. However, it must be 

noted that the TRN-based algorithm shows more variance in the individual test areas, as shown in 

Figure 61. The application of other, more-hydrography based thinning algorithms could provide 

better results, but this is not part of this study. 
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Figure 61: results of thinning algorithm evaluated by feature amount reduction 

4.7.2 Resemblance 

The second criterion for comparison of the outcomes of the alternative algorithms is resemblance 

with the input data. Resemblance can be defined as “X showing the same character as Y”. It is not 

easy to find a metric which can be used for this, but the feature morphology can be used as an 

evaluation metric. The concept or the Feature Morphology Index (FMI) was introduced and applied 

in 4.2.2. FMI is a value expressing the relation between a number of features and the number of 

corresponding vertices. This can be used to evaluate average feature morphology within an area and 

can also be used for comparison between areas or to evaluate the effects of different approaches.  

Table 11: comparison of change in average feature morphology per algorithm for each partition 

partition input strokes % meshes % TRN % RANK 

1 0.235 0.076 -68% 0.228 -3% 0.174 -26% MTS 

17 0.389 0.200 -49% 0.374 -4% 0.251 -35% MTS 

49 0.475 0.214 -55% 0.442 -7% 0.353 -26% MTS 

93 0.648 0.340 -47% 0.644 -1% 0.626 -3% MTS 

198 0.761 0.411 -46% 0.771 1% 0.745 -2% MTS 

217 0.643 S0.278 -57% 0.617 -4% 0.590 -8% MTS 

260 0.629 0.270 -57% 0.630 0% 0.558 -11% MTS 

298 0.517 0.228 -56% 0.542 5% 0.392 -24% MTS 

345 0.689 0.383 -44% 0.689 0% 0.637 -8% MTS 

403 0.675 0.444 -34% 0.672 0% 0.639 -5% MTS 

442 0.616 0.300 -51% 0.611 -1% 0.588 -5% MTS 

Average deviation in FMI -51%  -1%  -14% MTS 

 

The FMIs of the mesh-based approach deviate the least from the input’s FMIs. However, these 

figures are misleading since there is minimal reduction in amount of features (see the previous 

section). Input and output features are almost equal.  

The stroke-based approach results in the most deviation and lowest FMI – values. This indicates the 

remaining features in these results are mainly winding. This can be explained by effect of the radical 
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elimination of all features shorter than the threshold. All remaining features are longer than the 

threshold value and longer features are likely to be more winding than shorter features.  

The results in the FMIs of the TRN-based approach reflect a middle position. Taking the feature 

reduction (on average 29%) into account these results reflect a good representation (an average 

deviation of 14%) of the morphology of the input data. In contrast to the results of the stroke-

thinning algorithm, the TRN-based algorithm preserves connecting features which do not meet the 

length threshold value and seems to take connectivity (see the results in the next paragraph) into 

account. 

 

Figure 62: morphology index per algorithm per partition 

In summary, the approaches can be ranks as: mesh-based (3 points), TRN-based (2 points) and 

stroke-based (1 point). 

4.7.3 Connectivity 

The third criterion to compare the results is the connectivity level of the features. At first glance 

using network statistics seems the logical choice. Unfortunately, these metrics can only be applied to 

one network at a time. For the comparison of the connectivity of the test partition it is not useful. 

For this reason a different metric is chosen for comparison, the reduction in number of networks.  

Table 12: comparison of reduction in number of networks for each algorithm 

 input meshes % strokes % TRN % RANK 

1 118 338 186% 37 -69% 19 -84% TSM 

17 68 63 -7% 21 -69% 19 -72% TSM 

49 15 14 -7% 5 -67% 5 -67% TSM 

93 58 162 179% 58 0% 16 -72% TSM 

198 48 228 375% 104 117% 13 -73% TSM 

217 23 52 126% 15 -35% 6 -74% TSM 

260 112 168 50% 35 -69% 20 -82% TSM 
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298 148 190 28% 36 -76% 31 -79% TSM 

345 140 210 50% 83 -41% 52 -63% TSM 

403 241 339 41% 152 -37% 106 -56% TSM 

442 99 179 81% 50 -49% 15 -85% TSM 

average change +100%  -36%  -73% TSM 

 

Comparing the results of stroke-based, mesh-based and TRN-based algorithms (Table 12), it can be 

seen that the most radical reduction in number of networks occurs when applying a TRN-based 

algorithm, while application of a mesh-based approach results in an increase of networks for most of 

the test partitions. The stroke-based algorithm results in the second best reduction, but is not always 

stable: for partition 93 the number of networks stays the same and for partition 198 the number of 

networks increase. 

 

Figure 63: feature reduction per algorithm for each partition 

Considering the connectivity-metric, results can be ranked as: TRN-based (3 points), stroke-based (2 

points) and mesh-based (1 point). 

4.7.4 Largest network analyses 

The proposed evaluation metrics for networks statistics (𝛾- and 𝛼- indices) have been calculated for 

the largest network in each partition and are included in together with the visual results in Appendix 

K. However, these results are not useful for comparison because the visual results in Appendix K 

show that the largest network is not always located in the same geographical area (most evident in 

partition 1, 198 and 442); and because the extent of the largest network for each other partitions 

varies significantly (compare the number of edges within the largest networks in Table 7 to Table 9 

and the results in Appendix K). 
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4.8 Overall conclusion and summary 
The scores on the individual metrics (Reduction, Resemblance and Connectivity) for the three 

thinning algorithms together indicate the most suitable approach. The total score can be computed 

by accumulation of the individual scores. All metrics have equal weights in the MCA, because the 

three criteria are of equal importance. 

 stroke-based mesh-based TRN-based 

Reduction 3 1 2 

Resemblance 1 3 2 

Connectivity 2 1 3 

Total 6 5 7 
The results of the MCA indicate a clear hierarchy for the performance of algorithms: the Thin Road 

Network scores best, followed the by stroke-based algorithm. The results of the mesh-based 

algorithm should be considered not useful, because it scores are lowest for both reduction (an 

average decrease of -4%) and connectivity (an average increase of +100%). 

The experiments in this chapter each addressed an aspect of the research questions, but it is 

important to notice all are part of a prototyping framework. The prototyping framework was divided 

in three stages, preparation, thinning and evaluation. Each subsequent stage was dependent upon 

the results of its predecessor, but it appeared to be possible to measure intermediate results. The 

individual results as well as all results in coherence provided insight of the impact of preparatory 

work on thinning experiments. Also the influence of landscape typology on thinning algorithm was 

measured, but this did not provide significant deviation in comparison with the average results. 

However, the variance in the feature-reduction results of the TRN-based method could be basis for 

investigation of other thinning algorithms (more dedicated to hydrography).  



 

71 

 

5 Conclusion 
This research was conceived during the design of automatic generalisation of a topographic map 

series. Results of this generalisation were unsatisfactory in appreciation of landscape characteristics 

and in consistency and coherence of generalisation results. To study and tackle these issues, the 

present study was designed to deliver a methodology for pruning of artificial manmade networks 

with regard to landscape typology and to research methods for evaluation of the quality of 

generalisation results. 

5.1 Overview of results 

The first question, “What is a suitable methodology for pruning artificial manmade network which 

takes landscape typology in account?”, addresses the concept of methodology on tailoring thinning 

algorithms for networks, based on landscape typology. The question is answered by the introduction 

of a prototyping framework (4.1), which offers methods to identify landscape type for network 

features (4.2) and to improve connectivity within a network (4.5). 

The identification of landscape type for an area was researched using a hybrid approach (4.2). An 

existing landscape classification dataset has been evaluated on its merits to show variance in feature 

morphology and humidity. Results showed enough variety in the landscape for use in the selection 

of test areas (4.3). This experiment also revealed the usability of morphology (4.2.2) and humidity 

(4.2.1) as metrics to characterise an area. 

It was also shown that the connectivity of a network can be improved by adding existing geometries 

and computed perceptual links to the dataset (4.5). This results in reduction of number of networks. 

In conclusion, the results of this algorithm show significant improvement in network connectivity. 

However, it appears that network improvement still allows the existence of isolated features (4.5.3). 

The usage and behaviour of this enhanced network in alternative thinning algorithms was subject of 

the next set of experiments (4.6). The application of three thinning algorithms have been 

researched: a stroke-based approach, a mesh-based approach and a TRN-based approach.  

The stroke-based algorithm (4.6.2) is in essence not a thinning algorithm. Rather it should be 

regarded as a selection algorithm to identify a geometry-based hierarchy for a network. In a 

subsequent processing action the real thinning must be implemented and results are dependent on 

the sophistication of such an algorithm (i.e. it should also take density and connectivity into 

account). (4.6.2.1) 

The most significant aspect in the results of the mesh-based algorithm (4.6.3) is the increase in the 

number of networks, while hardly any thinning occurs. The reason for this is the thinning breaks 

existing networks in multiple parts, resulting in loss of continuing patterns. (4.6.3.2) 

The results of the TRN-based approach (4.6.1) show to be most promising both in general and in the 

test scores for the individual areas (4.6.1.2).   

The second research question “How can thinning results be evaluated objectively?” centred on the 

concept of Evaluation. In the Literature study the concepts and relevance of existing evaluation 

algorithms have been discussed (2.6). It appeared existing evaluation methods have limited 
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application possibilities for this study, due to requirements on benchmark data (2.6.1.1) or network 

structures (2.6.1.2 and 4.7.4). Therefore new three evaluation metrics on Reduction, Resemblance 

and Connectivity were designed for use in comparison of alternative thinning approaches (4.7). 

In a comparison of the results of the three approaches an evaluation was executed based on the 

coherence of these metrics. Each test area was scored on its performance and the ranking was 

decided by using a Multi Criteria Analysis (4.8). The results of the MCA indicate a clear hierarchy for 

the performance of algorithms: the Thin Road Network scores best, followed the by stroke-based 

algorithm. The results of the mesh-based algorithm should be considered not useful, because it 

scores are lowest for both reduction and connectivity. 

5.2 Limitations and recommendations for further research 

Although the study has successfully demonstrated the identification of landscape typology and its 

use for evaluation purposes, it has provided limited results in tailoring the choice for the used 

thinning algorithms with regard to landscape type. It is possible to distinguish landscape type by 

humidity and feature morphology and to use this to tailor the pruning algorithm, but the researched 

thinning algorithms did not provide significant differences in results on the individual landscape 

types (4.7).  

It would be interesting to assess the effects of different thinning algorithms on the identified 

landscape types (i.e. (Savino 2014; Brewer et al. 2009; Buttenfield 2010). The proposed framework 

provides room for inserting and comparison of different thinning solutions.  

A future study investigating data enrichment from external data sources to acquire a more 

sophisticated hierarchy for thinning purposes and its effect to generalisation results would be very 

interesting,  
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Appendices 

 Calculate humidity - algorithm 

 

Figure 64: model to calculate humidity for each landscape type 
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 Feature morphology algorithms 

 

Figure 65: main morphology index model which finalizes the computation of statistics 
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Figure 66: sub model for morphology index, computes statistics iterating over landscape types. 
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 Selection of test partitions 

 

Figure 67: selection of test partitions 
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 Count number of networks – algorithm 

 

Figure 68: number of networks 
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 Network statistics – algorithm 

 

Figure 69: model to calculate connectivity indices 
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 Improve network connectivity algorithm 

 

Figure 70: main model to improve network connectivity and reduce number of networks 

The algorithm starts with data directly taken from Top10NL: water areas (waterdeelVlak), waterlines 

(waterdeelLijn) and a subclass of specific terrain constructions (inrichtingselementLijn). This data is 
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topologically checked and the algorithm uses them to create an improved network. This is 

accomplished in six sub models. 

The first sub model 1) prepSelectCowDykes selects all cow dykes (line features) from specific terrain 

construction (inrichtingselementLijn) and creates a new feature class.  

 

Figure 71: prepare select cow dykes 

The second sub model 2) mergeAll snaps over- and undershoots of cow dykes to waterlines 

(waterdeelLijn) to ensure the topological validity of the network. Subsequently the cow dykes and 

waterlines are merged into a new dataset, mergeAll. 

 

Figure 72: merge all 
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The third and fourth sub model deal with water polygons. The third sub model 3) prepareWaterArea, 

detects isolated waterAreas (which are not touched by other water polygons or by waterlines or cow 

dykes) and removes them from the selection. All other water areas are part of a larger network and 

should be considered in network analysis. These are copied. 

 

Figure 73: prepare water area 

The fourth sub model 4) polygon2Centreline replaces non-isolated water polygons with their 

calculated centrelines. This model was developed by my colleague Jan Bakermans. Some slight 

adaptations have been made. 
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Figure 74: polygon to centreline  
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In the fifth sub model 5) createNetwork, the set of merged waterlines and cow dykes is 

supplemented with the computed centrelines. In addition, artificial perceptual links are also 

computed and added to the dataset. 

 

Figure 75: create network 
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 Thin Road network 
Preparation: Copy input feature class to secure input data from being edited. Add hierarchy field for 

processing purposes. Add invisibility field for processing purposes. Set value to 1 (all geometries the 

same hierarchy value). Thin Network with a minimum length of 300 meters. 

 

 

Figure 76: simple model to thin network 
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 Stroke-based algorithm 
Create new feature class to secure input data from being altered. Add and calculate field to save 

original ObjectID. Create Topological line structure by breaking lines at vertices and rebuilding the 

line features using Unsplit. Create point features for on start and end points of lines. Remove 

identical points and points on dangling lines. 

 

 

Figure 77: main model for stroke-based approach 
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Figure 78: sub model to prepare topological structure with edges and nodes 
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Figure 79: iterate strokes thinning algorithm 
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Create edge-primitives. Select one edge-primitive to process. Calculate the direction of the 

intersecting lines. Calculate the direction of the "first edge". Join both datasets into one. Calculate 

angle between lines. Select the lines with the smallest angle in between. Dissolve both lines into one 

and update original feature ID field of the processed feature which was merged. Delete selected 

original features. Append dissolved features to original dataset. Update original feature ID field of 

the processed feature which was not merged. This can be used to stop processing. 

 

Figure 80: first sub model to create edge primitives to calculate directions with 

Create edge primitives by breaking up features 
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Figure 81: sub model to select one edge primitive which intersects with a node 
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Select all small edges lines that intersect with a node. Find the first edge (based on id) that intersects 

with a node. Get the id of the selected edge. Select the edge-part based on the id of the first found 

edge 

 

Figure 82: select direction of intersecting lines 
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Select the node that intersects with the selected edge primitive. Select all edge primitives that 

intersect with the selected node. Remove the edge primitive from the selection that was indicated 

was "the first edge" in the sub tool "SelectOneSmallLine".  Establish the orientation of all selected 

primitives and compare these with the orientation of the first edge primitive. All edge primitives 

which orientation are not in line with the first edge’s orientation are flipped (by the python script 

below) and for each edge primitive the direction is computed. 

Figure 83: Python script to change the direction of a line 

#------------------------------------------------------------------------------- 
# Name:        Flip line 
# Purpose:     Change direction of input features. This can be a feature layer 
#              or a feature class 
# 
# Author:      altenv 
# 
# Created:     31-10-2014 
# Copyright:   (c) altenv 2014 
# Licence:     <your licence> 
#------------------------------------------------------------------------------- 
 
#set env 
import arcpy 
from arcpy import env 
 
env.workspace = arcpy.GetParameterAsText(0) 
inFeatures         = arcpy.GetParameterAsText(1) 
 
# operation 
try: 
    arcpy.FlipLine_edit(inFeatures) 
 
# error handling 
except Exception, e: 
    # If an error occurred, print line number and error message 
    import traceback, sys 
    tb = sys.exc_info()[2] 
    print "Line %i" % tb.tb_lineno 
    print e.message 
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Figure 84: sub model to join directions 

Create a join field to make a join between both datasets possible. Calculate the join field. Join both 

datasets into one. 

Add angle field. Calculate the deflection angle. Select deflection angles smaller than 20 degrees. Find 

the first edge (based on id) that intersects with a node. Get the id of the selected edge. Select the 

edge based on the id of the edge with the smallest deflection angle. Get id of both edges. 



 

101 

 

 

Figure 85: sub model to calculate deflection angle of lines 
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 Mesh-based algorithm 
Before starting the iteration, a preparatory model is run once which performs three actions to 

validate the data: 1) creation of an outer boundary based on the feature envelope. This is necessary 

to prevent the emerging of isolated meshes. Isolated meshes cannot be added to a neighbouring 

mesh, and will cause an endless loop; 2) removal of slivers from the dataset by integrating lines. 

Lines will be collapsed if they are within 1 meter of each other; 3) removal of overlapping features 

which are caused by the previous integration. First, all lines are split by their vertices, next duplicate 

lines are removed and last lines are unsplit, thus removing pseudo nodes. 

 

Figure 86: preparatory model 
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After this preparation the meshes can be processed. The algorithm used is based on the work of 

(Post 2014)  for his master thesis. The model has been adapted on two points: the FME algorithm to 

select the densest mesh has been rebuilt in ArcGIS ModelBuilder. This is more convenient and 

speeds up the process, since FME does not have to be launched for each iteration. Some alterations 

in calculating the threshold and Density values have been made to get the iteration working. 

 

Figure 87: mesh-based algorithm 
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The first sub model 1) calculateMeshDensities: calculates the density of the meshes and determines 

which meshes do not meet the threshold. 

 

Figure 88: sub model to calculate mesh densities 
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This is done by first creating a field Density which then is populated by a computation for each mesh 

of the density. Meshes with a density above the threshold value are copied to a separate feature 

class for processing purposes. By applying summary statistics the mesh with the highest Density 

value is selected and this value is output for use in subsequent models. 

The second sub model 2) selectDensestMesh selects the densest mesh in the set of meshes. 

 

Figure 89: sub model to select the densest mesh 
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This is done by calculating the densest mesh value using summary statistics. (To keep the model 

valid, this value is rounded based on a predefined round factor). Input features are copied so input 

data remains untouched. Round values in density field based on the round factor. Select the densest 

mesh, based on the retrieved value and copy this to a new feature class. 

The third sub model 3) removeBorderLine removes the edge between two merged meshes.  

 

Figure 90: sub model to remove edge between two merged meshes 
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It first selects all edges on the border of a mesh. Next, it selects the densest mesh in the meshes by 

spatial overlaying and merges this mesh with an adjacent mesh. The merge is based on the longest 

shared border.  From the initial selection all edges that share a border with the new meshes are 

removed. The edge between the two merged meshes remains selected. This edge is eliminated from 

the edge dataset. 
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 Resemblance with input data 

 

Figure 91: resemblance with input data after thinning for partition 1 
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Figure 92: resemblance with input data after thinning for partition 17 
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Figure 93: resemblance with input data after thinning for partition 49 
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Figure 94: resemblance with input data after thinning for partition 93 
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Figure 95: resemblance with input data after thinning for partition 198 
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Figure 96: resemblance with input data after thinning for partition 217 
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Figure 97: resemblance with input data after thinning for partition 260 
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Figure 98: resemblance with input data after thinning for partition 298 
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Figure 99: resemblance with input data after thinning for partition 345 
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Figure 100: resemblance with input data after thinning for partition 403 
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Figure 101: resemblance with input data after thinning for partition 442  
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 Largest network analysis 
This appendix contains two tables and eleven comparison maps. Table 13 displays data about the 

computed connectivity index for largest network per partition for each algorithm and Table 14 

presents information about the circuit index for largest network per partition for each algorithm. 

Table 13: connectivity index for largest network per partition for each algorithm 

 

 

Table 14: circuit index for largest network per partition for each algorithm 

P
a
r
t
i
t
i
o
n 

Largest 
network 
equal? 

𝜶 – index 
input 

𝜶 – index 
TRN 

𝜶 – index 
Strokes 

𝜶 – index 
Meshes 

1 no 0.032 0.019 0.14286 0.130  

1
7 

yes -0.011 -0.016 0.00000 0.000  

4
9 

yes 0.051 0.091 0.00000 0.285  

9
3 

yes 0.041 0.094 0.13600 0.076  

1
9
8 

no 0.063 0.053 0.00000 0.107  

2
1
7 

no 0.003 -0.019 0.00000 0.049  

2
6
0 

yes 0.027 0.061 0.06452 0.017  

Partition Largest 
network 
equal? 

𝜸 – index 
input 

𝜸 – index 
TRN 

𝜸 – index 
strokes 

𝜸 – index 
meshes 

1 no 0.357 0.348 0.444  0.364 

17 yes 0.328 0.333 0.344  0.312 

49 yes 0.383 0.444 0.583  0.381 

93 yes 0.361 0.396 0.388  0.343 

198 no 0.375 0.369 0.406  0.369 

217 no 0.337 0.327 0.381  0.333 

260 yes 0.352 0.376 0.356  0.353 

298 yes 0.401 0.408 0.327  0.262 

345 yes 0.400 0.366 0.386  0.317 

403 yes 0.371 0.360 0.317  0.284 

442 no 0.344 0.401 0.411  0.346 
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2
9
8 

yes 0.097 0.104 0.02326 -0.019 

3
4
5 

yes 0.000 0.048 0.00000 0.072  

4
0
3 

yes 0.055 0.038 0.01124 -0.030 

4
4
2 

no 0.015 0.098 0.17073 0.113 
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Figure 102: retained largest network after thinning for partition 1 
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Figure 103: retained largest network after thinning for partition 17 
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Figure 104: retained largest network after thinning for partition 49 
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Figure 105: retained largest network after thinning for partition 93 
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Figure 106: retained largest network after thinning for partition 198 
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Figure 107: retained largest network after thinning for partition 217 
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Figure 108: retained largest network after thinning for partition 260 
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Figure 109: retained largest network after thinning for partition 298 
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Figure 110: retained largest network after thinning for partition 345 
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Figure 111: retained largest network after thinning for partition 403 
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Figure 112: retained largest network after thinning for partition 442 
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