
MSc. Thesis
Geomatics for the Built Environment

Automatic Extraction of an IndoorGML
Navigation Graph from an Indoor Point

Cloud

Puck Flikweert
January 2019

ISBN 978-94-6366-130-0

A U TO M AT I C E X T R A C T I O N O F A N I N D O O R G M L N AV I G AT I O N G R A P H
F R O M A N I N D O O R P O I N T C LO U D

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Puck Flikweert

January 2019

Puck Flikweert: Automatic extraction of an IndoorGML navigation graph from an indoor
point cloud (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

ISBN 978–94–6366–130–0

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

in cooperation with:

CGI The Netherlands
Transport, Post & Logistics

Supervisors: Dr. Ravi Peters
Dr. Lucı́a Dı́az Vilariño
ir. Robert Voûte (CGI Nederland)

Co-reader: ir. E. Widyaningrum

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

Because of urbanisation, more than 50% of the global population now lives in cities,
a number that is ever-increasing. This leads to a need for more dense and complex
building constructions, driven by the fact that people are living increasingly close to
one another. These structures are often so large that it becomes difficult to navigate
in the environment without any assistance. Especially for people with restricted
mobility, such as wheelchair users, or the blind or partially sighted, it can pose a
challenge to find the best path in a building.

Consequently there is a need for navigation graphs that provide a way to struc-
ture connectivity information and routes in an indoor environment. Existing meth-
ods generally obtain information on the location of various rooms, corridors and
their interconnectivity from 2D floor plans or 3D building models. However, these
plans and models often were created by the architect when the building was planned,
but never updated with new information after the building was built and came into
use. Manually updating them is very labour-intensive. Therefore, in this research
a method is developed for obtaining a navigation graph from an indoor environ-
ment by automatically extracting the information needed from a point cloud. The
navigation graph is modelled according to the Open Geospatial Consortium (OGC)
standard IndoorGML, which provides a basic structure for indoor navigation. The
point clouds used in this research are gathered with a hand-held Mobile Laser Scan-
ner (MLS), which also saves the path (trajectory) taken in the building.

This all leads to the main research question: How can a navigation network in In-
doorGML format automatically be extracted from a cluttered indoor point cloud and its
trajectory?
In order to answer this question this research focuses on the detection of doorways,
and how they connect indoor spaces, such as rooms and corridors. A new way of
door detection is proposed, which is based on the identification of walls using the
3D Medial Axis Transform (MAT) of the point cloud. After this it is explored how
the established connectivity relationships can be extended with accessibility infor-
mation, such as the location of stairs, and the dimensions of doors. Additionally it
is researched how a more detailed navigation graph can be created by subdividing
large spaces that have multiple connections.

In this thesis it is proven that geometric input for a navigation graph can auto-
matically be obtained from a point cloud. 100% of doors could be detected in the
dataset that the methods were developed on, and when testing the methods on an-
other point cloud, this number decreased to 70% , due to unforeseen situations. All
spaces connected by detected doors, stairways and sloped surfaces were included
in the graph, from which a more extensive navigation graph could be produced by
subdividing corridors. This final product was compared to networks drawn by hu-
mans on a corresponding floor plan, from which it can be concluded that the graph
produced by the methodology of this thesis is a good basis for a navigation.

v

A C K N O W L E D G E M E N T S

First of all I would like to express my gratitude to my supervisors for guiding me
through this research. Many thanks to my first mentor Ravi Peters, who provided
me with plenty of feedback, programming support, and always had a quick re-
sponse to my questions. I would also like to thank my second mentor Lucı́a Dı́az
Vilariño for figuratively, but also literally, going to great lengths to support me by
showing enthusiasm and interest in my research. And Robert Voûte, thank you
for your positive energy, constant input and for motivating me to always take the
extra step. I also want to thank my co-reader Elyta Widyaningrum for providing
additional feedback on the research.

I would also like to thank all of the other tutors involved in the Geomatics pro-
gramme for teaching us all they know, and making the lectures and projects chal-
lenging and engaging. Besides this, I want to thank my colleagues at the department
of Design Informatics for teaching me even more about spatial algorithms, building
modelling and architecture, and giving me input for my research.

In addition, I am grateful for all the support given by everyone at CGI The Nether-
lands, who provided me with a great environment to develop this research in. I
would especially like to credit Bart Staats for making me acquainted with the field
of indoor modelling, and offering help in developing some of the methods. More-
over, many thanks to all my fellow trainees for your daily support and sometimes
necessary distractions.

A special thanks to Kotryna Valečkaitė for creating the front page of this thesis.
Furthermore many thanks to Matthijs Theelen for adding the final touches, and
supporting me in many other ways during the final months of my thesis.

Last, but not least, I would like to express my gratitude to my friends and family
who supported me during my years at TU Delft. Especially many thanks to my
parents, providing me with endless encouragement and comfort, to the friends who
are always there for me, and to my fellow Geomatics students, for challenging me
and making the past years a few of the most enjoyable of my life.

vii

C O N T E N T S

1 introduction 1

1.1 Use of indoor point clouds . 1

1.2 Indoor navigation networks . 2

1.3 IndoorGML . 3

1.4 Thesis overview . 4

1.5 Research questions . 4

1.6 Research scope and goal . 5

1.7 Reading guide . 5

2 theoretical background 7

2.1 IndoorGML . 7

2.2 Voxelisation and walkable space . 9

2.2.1 Voxelisation of point clouds . 9

2.2.2 Obtaining the walkable voxel space 10

2.3 2D polygon modelling . 11

2.3.1 α-shapes . 12

2.3.2 Douglas-Peucker . 12

2.4 Medial Axis Transform . 13

2.4.1 2D MAT for polygons . 13

2.4.2 3D MAT for point clouds . 13

3 related work 17

3.1 Object and model reconstruction from point clouds 17

3.2 Indoor navigation networks . 19

3.3 Doorway detection in point clouds . 20

3.4 Division of subspaces . 21

3.5 Conclusions related work . 23

4 methodology 25

4.1 Wall sheet extraction using 3D MAT . 25

4.2 Doorway detection from 3D MAT wall sheets and trajectory 28

4.2.1 Geometry intersection . 29

4.2.2 Voxelised method . 31

4.3 IndoorGML network creation . 33

4.3.1 Merging clusters separated by height 33

4.3.2 Extracting the connectivity graph 35

4.3.3 Geometry modelling . 36

4.3.4 Accessibility information extraction 37

4.4 Subspacing . 37

4.4.1 Subspacing using the MAT . 38

4.4.2 Subspacing of stairs and slopes 40

5 implementation, experiments and development results 41

5.1 Tools and datasets . 41

5.1.1 Software . 41

5.1.2 Hardware . 42

5.1.3 Datasets . 43

5.2 Implementation . 45

5.2.1 Voxelisation and walkable space 45

5.2.2 Wall sheet extraction . 45

5.2.3 Doorway detection . 51

ix

x contents

5.2.4 Connectivity graph . 53

5.2.5 Geometry modelling for floor voxels 55

5.2.6 Subspacing the network . 57

5.2.7 Accessibility information . 59

5.2.8 Structure of the database . 59

5.3 Experiments . 61

5.3.1 Door detection . 61

5.3.2 Navigation network . 62

6 results and evaluation of test data 63

6.1 Wall sheet extraction . 63

6.2 Door detection . 66

6.2.1 Upwards-looking door detection applied on wall sheet voxels . 66

6.2.2 Sideways-looking door detection applied on wall sheet voxels 67

6.2.3 Evaluating doors detected . 68

6.3 Network creation . 69

6.3.1 Connectivity NRG . 69

6.3.2 Subspacing the connectivity NRG 70

6.3.3 Accessibility NRG . 72

6.3.4 Evaluating the network . 73

7 conclusions, reflection and recommendations 75

7.1 Conclusions . 75

7.2 Discussion . 78

7.3 Contribution to research . 78

7.4 Recommendations for future work . 79

a subspaced network test 87

a.1 Test Person 1 . 87

a.2 Test Person 2 . 88

a.3 Test Person 3 . 89

L I S T O F F I G U R E S

Figure 1.1 Example of the lattice model (brown lines) created in Esri
Campus Viewer (screenshot taken from https://youtu.be/

Gb1pk0Xzyhg) . 2

Figure 1.2 Connectivity NRGs for an floor plan 4

Figure 2.1 The different NRGs in IndoorGML [OGC, 2014] 7

Figure 2.2 The thick wall model in IndoorGML [OGC, 2014] 8

Figure 2.3 SSM as defined in IndoorGML [OGC, 2014] 8

Figure 2.4 Example of an octree structure [Lobos et al., 2010] 10

Figure 2.5 4- versus 8- connectivity for pixels 10

Figure 2.6 Obtaining the walkable voxel space from an indoor point
cloud as proposed by Staats [2017] 11

Figure 2.7 Top view of all voxels belonging to one room 11

Figure 2.8 Different values for α resulting in different polygons [Gar-
diner et al., 2018] . 12

Figure 2.9 The steps of the Douglas-Peucker algorithm visualised for a
linestring . 13

Figure 2.10 2D example of medial balls in a shape [Peters, 2018] 14

Figure 2.11 Ball shrinking iterations [Peters, 2018], legend in 2.11b 14

Figure 2.12 Geometric characteristics of a medial ball (2D side view) . . . 15

Figure 3.1 Modelling a convex hull for segmented point cloud parts [Pu
and Vosselman, 2009] . 18

Figure 3.2 Steps done in creating a dual graph from a 2D floor plan
[Yang and Worboys, 2015] . 19

Figure 3.3 Straight-MAT in a 2D polygon representing a hallway [Lee,
2004] . 20

Figure 3.4 The trajectory of the laser scanner (in red), the vertical pro-
file of the floor (in green) and profile of the ceiling (in blue)
[Dı́az-Vilariño et al., 2017] . 21

Figure 3.5 Door-to-door (D1-S1-D3) versus S-MAT (D1-M1-M2-M3-D3)
route [Liu and Zlatanova, 2011] 23

Figure 4.1 An overview of the steps done to obtain an IndoorGML graph 25

Figure 4.2 Example of a wall that was scanned on both sides 26

Figure 4.3 Medial sheet formed inside a wall (green) 26

Figure 4.4 θ and r of a medial ball in a wall (side view) 27

Figure 4.5 Histograms showing normalised distribution of radius val-
ues in two MAT sheets . 27

Figure 4.6 Voxels (in red) that lie on the floor inside a doorway 28

Figure 4.7 Examples of false doors in building of development point cloud 29

Figure 4.8 Flowchart of door detection in a point cloud using 3D MAT
sheets and trajectory . 30

Figure 4.9 Steps in rotating a medial sheet and finding the 2D convex hull 31

Figure 4.10 Door detection method by looking at wall sheet voxels around
a trajectory voxel . 32

Figure 4.11 Clusters in one corridor having a different ID, because of
slight variation in z value . 34

Figure 4.12 Floor space in same room assigned different ids, because of
larger variation in z value . 35

Figure 4.13 Average x,y of an L-shaped polygon 35

Figure 4.14 Example of an IndoorGML connectivity graph with a stairway 36

Figure 4.15 Equal-parts subdivision of a space 38

xi

https://youtu.be/Gb1pk0Xzyhg
https://youtu.be/Gb1pk0Xzyhg

xii list of figures

Figure 4.16 Node generation based on MAT in an L-shaped corridor with
T-junction . 38

Figure 5.1 Development point cloud, captured in the Architecture fac-
ulty of Delft University of Technology, the Netherlands 43

Figure 5.2 Test point cloud, captured in one of the buildings of Technis-
che Universität Braunschweig, Germany 44

Figure 5.3 Clipped part of development point cloud, used for testing
wall sheet generation . 45

Figure 5.4 Tests executed for filtering on number of points (initial filter
of median radius < 0.6m) . 46

Figure 5.5 Tests executed for filtering on median radius, with initial fil-
ter of number of points > 1000 47

Figure 5.6 Tests executed for filtering on median separation angle, with
initial filter of number of points > 1000 48

Figure 5.7 Tests executed for filtering standard deviation of radius in
sheets, with initial filter of number of points > 1000 49

Figure 5.8 Histogram showing dispersion of median nz values in fil-
tered sheets . 50

Figure 5.9 Blue: sheets with the absolute value for nz < 0.5, Red: sheets
with the absolute value for nz > 0.5 50

Figure 5.10 Three doors are found when intersecting the convex hull of
a MAT sheet with the trajectory 51

Figure 5.11 A MAT wall sheet (left) generated in a point cloud (right)
with one closed door . 51

Figure 5.12 When a wall sheet does not cover the whole door frame, a
door is not detected when testing for intersection 52

Figure 5.13 Voxels (in red) marked as unfit to be used in region growing
algorithm, because they could be inside door frames 52

Figure 5.14 Line generation for voxel detection on floor in doorways . . . 53

Figure 5.15 Point cloud used for testing the connectivity graph creation on 53

Figure 5.16 Result of walkable space detection where all separate rooms
and corridors are marked in different colours, and stairs/s-
lopes shown in light grey . 54

Figure 5.17 Connectivity graph of an indoor point cloud (red = stair or
slope, green = door, orange = room) 54

Figure 5.18 Example of two rooms not being separated enough 55

Figure 5.19 The voxels belonging to the corridor used to test the best
value for α . 55

Figure 5.20 Polygons as result of different values for α 56

Figure 5.21 Polygons as result of different target percentages in ST ConcaveHull 56

Figure 5.22 Medial axis of the corridor with Douglas-Peucker filtering . . 57

Figure 5.23 Results of subspacing a corridor by projecting the location of
adjacent doors on the medial axis 58

Figure 5.24 Subspaced connectivity graph of an indoor point cloud (green
= room/corridor, orange = stair, red = doorway, white = sub-
spaced node) . 58

Figure 5.25 Door width and height extracted for the accessibility NRG
(red= door node, purple = point cloud voxel) 59

Figure 5.26 Relationships between three tables making up the non-subspaced
connectivity graph . 60

Figure 5.27 Dependencies of the Subspaces table in the connectivity graph 60

Figure 5.28 All doors manually indicated in the test point cloud dataset . 61

Figure 6.1 Side-by-side comparison of test point cloud and results ob-
tained by 3D MAT wall sheet generation 63

Figure 6.2 Wall sheets are not grown in walls that are blocked from view
by a door . 64

list of figures xiii

Figure 6.3 Wall sheets cannot be grown in a wall that is very thin 64

Figure 6.4 MAT sheets where filtering proposed in methodology does
not work . 65

Figure 6.5 Individual points in wall, floor and stair sheets filtered based
on nz . 65

Figure 6.6 The results of upwards-looking door detection 66

Figure 6.7 Some results of sideways-looking door detection 67

Figure 6.8 Doors that are left undetected when applying the methods
proposed . 67

Figure 6.9 All doors detected by the algorithms in the test point cloud
dataset . 68

Figure 6.10 The walkable voxel space divided into different rooms 69

Figure 6.11 Connectivity network of the test point cloud (green = room/-
corridor, orange = stair, red = doorway) 70

Figure 6.12 Result of subspacing the corridors of both floors in the test
point cloud . 71

Figure 6.13 A 3D view of the subspaced connectivity graph generated for
the test point cloud (green = room/corridor, orange = stair,
red = doorway, white = subspaced node) 71

Figure 6.14 Subspaced connectivity network of test point cloud (green =
room/corridor, orange = stair, red = doorway, white = sub-
spaced node) . 72

Figure 6.15 A door with a calculated height of 1.8 m (red = door centre
node, pink = voxels on floor of door, green = voxels in top of
door) . 73

Figure 6.16 Locations in the subspaced navigation graphs showing un-
necessary nodes close together 73

Figure 6.17 Test person 2 subdividing rooms and adding connections be-
tween door nodes . 74

Figure A.1 The navigation network in the test point cloud as drawn by
test person 1 . 87

Figure A.2 The navigation network in the test point cloud as drawn by
test person 2 . 88

Figure A.3 The navigation network in the test point cloud as drawn by
test person 3 . 89

L I S T O F TA B L E S

Table 4.1 Theoretical parameters for filtering MAT sheets 28

Table 5.1 Summary of characteristics of datasets used 43

Table 5.2 Values for parameters for filtering MAT sheets 50

Table 6.1 Results of door detection . 68

xv

List of Algorithms
4.1 Line pixelation algorithm . 33

4.2 Merging clusters that differ one voxel in height 34

4.3 Linestrings are split at the location of subspaced nodes 39

4.4 Recursive function linestringLookup . 39

4.5 Finding connectivity between subspaced nodes 40

xvii

A C R O N Y M S

BIM Building Information Modeling

BLE Bluetooth Low Energy

CRS Coordinate Reference System

GHT Generalized Hough Transforms

GML Geography Markup Language

GPS Global Positioning System

IMU Inertial Measurement Unit

ISPRS International Society for Photogrammetry and Remote Sensing

k-NN k-Nearest Neighbours

MAT Medial Axis Transform

MLS Mobile Laser Scanner

NRG Node-Relation Graph

OGC Open Geospatial Consortium

PCL Point Cloud Library

RFID Radio-frequency identification

S-MAT Straight-Medial Axis Transformation

SLAM Simultaneous Localization and Mapping

SSM Structured Space Model

UML Unified Modeling Language

UWB Ultra-wideband

VDN Variable Density Network

WKB Well-Known Binary

WKT Well-Known Text

WLAN Wireless Local Area Network

xix

1 I N T R O D U C T I O N

Availability of outdoor navigation applications has seen an enormous increase in the
past 20 years, among others due to the deactivation of the Selective Availability act
on Global Positioning System (GPS) in May 2000. This discontinuation of adding in-
tentional errors to the civilian GPS signal lead to higher positioning accuracy [Adra-
dos et al., 2002]. Together with the explosive rise in the number of people owning
a mobile computing device, it paved the way for more widely available outdoor
navigation aids. However, seeing that a GPS receiver needs an unobstructed line of
sight to at least four satellites, this positioning technique can almost never be used
in an indoor environment, which initially resulted in less significant progress in the
field of indoor navigation. But, with the development of indoor positioning sys-
tems, using for example Bluetooth Low Energy (BLE) beacons, Wireless Local Area
Network (WLAN), Ultra-wideband (UWB) and Radio-frequency identification (RFID)
tags [Deak et al., 2012], the field is rapidly catching up.

Besides needing a way to localise the object or person to be navigated, there are
other requirements for navigation [Nakagawa and Nozaki, 2018], including: a map
or model of the environment that is traversed; a graph or network model represent-
ing navigable routes in the environment, a way for the person to be navigated to
interpret the path (wayfinding); and, a path-finding algorithm calculating the op-
timal path. The focus of this thesis lies with the second: automatically generating
a network graph of an indoor environment. A fundamental requirement for this
is to have up-to-date detailed information on how the environment looks like, in a
format that can be used in an automated process. For these purposes, point clouds
are an ideal fit, because they can be quickly gathered from an indoor environment,
making use of either static or dynamic laser scanners.

1.1 use of indoor point clouds

With the development of hand-held 3D laser scanners, it has become easier to gener-
ate point clouds of indoor environments. Various authors acknowledge the need for
indoor point clouds to assess the way a building was built, versus the way a build-
ing was planned [Bosché et al., 2014; Alattas et al., 2017; Hong et al., 2015; Volk
et al., 2014; Staats et al., 2017]. This is because recent indoor point clouds contain
up-to-date information on how the interior of a building looks like, as opposed to
a floor plan or 3D model that was created during the planning phase. Point clouds
can be obtained using static or dynamic laser scanners, the advantage of the first
being that the data is often more accurate, but of the latter that it is faster in use and
less occlusion will take place, because one can also walk behind occluding objects.
Dynamic laser scanners are also called Mobile Laser Scanner (MLS) and have as an
additional benefit that some of them also include the path that was walked with the
scanner, which can be used in extracting useful information from the point cloud
[Dı́az-Vilariño et al., 2017; Staats et al., 2017].

Point clouds do not only include information about the location of structural el-
ements, such as walls, floors, ceilings and stairs, but also about the placement of
obstacles. Therefore this means that they contain information on empty or free
space in an indoor environment [Broersen et al., 2015], in which can be navigated.
However, a point cloud can easily contain millions of points, taking up gigabytes

1

2 introduction

of memory [Schnabel et al., 2007]. Although a human can detect various elements
in a point cloud by looking at it, to a computer it is nothing more than millions
of unrelated xyz coordinates. Hence, there is need for point cloud processing algo-
rithms, with which a computer can automatically find and reconstruct elements in
the indoor environment.

1.2 indoor navigation networks
Besides using indoor point cloud data for the creation of 3D geometric models, it
can also be used in generating a navigation network model of the environment. As
well as knowledge about structural elements in a building, network models require
information on different spaces and connectivity relationships between them.

With an increasing number of people living in densely populating areas around
the world, buildings are becoming larger and more complex. Kwan and Lee [2005],
Brown et al. [2013], Rueppel and Stuebbe [2008] and Boguslawski et al. [2016] draw
attention to the need of a 3D network model for indoor navigation, the latter stress-
ing the importance of routing networks for complex buildings in disaster scenarios
and emergency response. Navigation networks can especially be helpful to people
restricted in their mobility, such as wheelchair users, or blind or partially sighted
people, who cannot always follow traditional route signs [Mirza et al., 2012].

Sithole [2018] and Nakagawa and Nozaki [2018] identify different kinds of indoor
navigation networks, which can be summarised as:

1. graph structures linking spaces (e.g. rooms and corridors) in the indoor envi-
ronment;

2. grid models based on the tessellation of indoor space in cells or voxels;

3. ‘continuous’ potential field methods, that have the starting point serve as re-
pelling force, and the ending point as attracting force.

Potential field methods [Koren and Borenstein, 1991; Ge and Cui, 2002] are used
most often with autonomous drones and robots, having walls and obstacles serve
as repelling forces to prevent collision. As the focus of this thesis is on pedestrian
navigation, and processing costs of potential field methods are high, they are not
considered in this research.

Figure 1.1: Example of the lattice model (brown lines) created in Esri Campus Viewer (screen-
shot taken from https://youtu.be/Gb1pk0Xzyhg)

https://youtu.be/Gb1pk0Xzyhg

1.3 indoorgml 3

There are existing methods that create grid model navigation networks from in-
door point clouds, usually based on pixels (2D grid cells), or on 3D volumetric
pixels, called voxels. Example of this are implemented by Nakagawa and Nozaki
[2018], who project a point cloud in a 2D square grid, detecting the location of walls
and objects based on density and height of points in a cell, and Wang et al. [2018],
who create a 2D hexagonal grid model from a floor plan. Mahdaviparsa and Mc-
Cuen [2018] create a network model for emergency response by incorporating 3D
models of buildings in the Esri Campus Viewer Tool to make floor plans. Using the
tool all floors are covered by a continuous lattice (see Figure 1.1), which are used as
a dense navigation network. Different floors can be manually linked in the Campus
Viewer by adding vertical lines at locations of stairs and elevators.

Staats et al. [2017] and Staats et al. [2018] create a voxelised point cloud and
classify voxels that are ‘walkable’ (floor, stairs, ramps), and Fichtner et al. [2018]
create an octree structure in the free space of a point cloud, defining connectivity
between neighbouring free cells. However, the networks generated are usually very
dense. For example in the lattice graph of Mahdaviparsa and McCuen [2018] a room
can be filled with hundreds of nodes, which are the locations where the lattice has
junctions. Pathfinding algorithms such as breadth-first and depth-first search run
in an order of time O(|V|+ |E|), where |V| corresponds to number of vertices, and
|E| to number of edges [Cormen et al., 2009] in a navigation graph. This proves that
a less dense navigation network would lead to faster pathfinding; a useful trait in
for instance emergency response.

1.3 indoorgml

For this reason, this research will focus on the first type of navigation network: a
graph structure linking indoor spaces. In 2014 the Open Geospatial Consortium
(OGC) published IndoorGML, a standard providing a framework for this type of
indoor navigation network [OGC, 2014]. IndoorGML is an application schema of
the Geography Markup Language (GML), focussing on semantics, geometry and
topology of indoor environments.

However, IndoorGML does not extensively cover geometric and semantic prop-
erties, to prevent too much overlap with other indoor building modelling stan-
dards such as CityGML and Building Information Modeling (BIM). Networks in
IndoorGML are based on Poincaré duality [Munkres, 1984]. Distinction is made
between primal space and dual space. The primal space defines the separate spaces
in an indoor environment, such as rooms and corridors, also called ‘cells’ or ‘states’.
The dual space defines a node in every cell, and edges between nodes that have
a relationship (‘transitions’). Relationships in IndoorGML can be described as ad-
jacency, connectivity or accessibility, and are all three separately saved as a Node-
Relation Graph (NRG). Adjacency occurs when two cells share a wall or another
type of border. An example of a connectivity relationship between nodes is when
they share a wall with a door, or when they are connected by stairs. Accessibility
is described using geometric information, such as whether a wheelchair user can
traverse a certain transition, which is not possible if there are stairs.

IndoorGML provides support for the decomposition of large indoor spaces into
subspaces (called subspacing or subdivision), which is very useful for the definition of
a more complete navigation network. When subdividing indoor spaces into smaller
cells a better assumption for indoor distances can be made, allowing for better route
calculation and visualisation. An example of a hallway where subspacing would be
desirable, is shown in Figure 1.2. Without subspacing the route is drawn through
walls (Figure 1.2a), but when the hallway is subspaced (Figure 1.2b) the navigation
graph becomes more representative of real paths a person would take. A more
detailed explanation of IndoorGML is given in Section 2.1.

4 introduction

(a) Example of a Connectivity NRG
for a hallway and rooms

(b) Subspaced Connectivity NRG for
a hallway and rooms

Figure 1.2: Connectivity NRGs for an floor plan

1.4 thesis overview
In conclusion, a graph-based indoor navigation network is a valuable asset for fast
route calculation, which is necessary for emergency response, and is also useful in
the navigation of people restricted in their mobility. Up-to-date point clouds are a
suitable basis for indoor navigation networks, provided that geometric information
and connectivity relationships can be extracted from them. Moreover, point clouds
can be generated in every kind of indoor environment, making them usable in
many situations, especially when obtained with a MLS. By constructing the network
as an IndoorGML model, it will be less dense than the network of a grid-based
model, and support is given for a fast calculation of routes through the indoor
environment. However, methods that automatically construct an IndoorGML model
from an indoor point cloud are not extensively developed or researched yet, which
provides the motivation behind this thesis.

Therefore a methodology is introduced to obtain input for an IndoorGML model
by automatically detecting different indoor spaces, stairs, slopes and doors in a
point cloud, and determining connectivity relationships between them. A new way
of door detection is introduced, making use of the 3D Medial Axis Transform (MAT)
(see Peters [2018]) to detect walls in a point cloud. Indoor spaces with multiple
connections, such as corridors, are subspaced by analysing the 2D floor geometry
of the space, modelled as a polygon. Its 2D MAT is created, forming the skeleton
of the polygon, and on this skeleton new nodes are created at doors and junctions
in the space. Besides this accessibility information, such as the location of stairs
and the dimensions of doors, are retrieved from the point cloud and added to the
model.

1.5 research questions
Based on the problem statement in the introduction the main research question is
defined as:

How can a navigation network in IndoorGML format automatically be extracted from a
cluttered indoor point cloud and its trajectory?

In this context a cluttered indoor point cloud is a point cloud with dynamic and
static objects, such as people and furniture, blocking construction elements of the
building. The end product of this graduation thesis is an IndoorGML model that is
automatically generated from an indoor point cloud.

The following sub-questions to make the aims more specific:

Ravi Peters

Ravi Peters

Ravi Peters

Ravi Peters

1.6 research scope and goal 5

1. What information can be extracted from a point cloud in order to create an
IndoorGML connectivity and accessibility Node-Relation Graph (NRG)?

2. In what way can connecting elements (e.g. doorways and entries) between
two indoor spaces be detected?

3. In what way can separate indoor spaces (e.g. rooms and corridors) be de-
tected, and how can these, in combination with the connecting elements, be
used in modelling the connectivity NRG?

4. In what circumstances should indoor spaces in the navigation network be
subdivided into subspaces, and how can this be done in a way that is efficient
in terms of size of the network?

5. How suitable is IndoorGML as a data model for mapping a navigation net-
work from an indoor point cloud?

1.6 research scope and goal
The focus of this thesis will be on the generation of a connectivity NRG for In-
doorGML using indoor point clouds gathered in a dynamic way with a hand-held
MLS, also making use of the trajectory of the scanner. Extension of the connectiv-
ity NRG to an accessibility NRG is researched, based on geometric properties in the
point cloud. The other type of graph, adjacency NRG, will not be considered in
this research, because it is the least relevant for navigation purposes. Moreover 3D
geometry modelling of indoor space will only be done as far as deemed necessary
for the IndoorGML model. Multiple floors of buildings will be considered in the
method, but the use case of the topic concerns human navigation, so only naviga-
ble floor space will be regarded. For the subdivision of certain cells in the graph,
only geometric or topologic characteristics will be taken into account. Semantic
information, such as the location of important objects and points of interest in the
environment, cannot always be extracted from an indoor point cloud.

This research is a proof of concept; an exploration of whether it is possible to
directly obtain an IndoorGML-structured navigation graph from an indoor point
cloud. It does not consider the search for the fastest or best method to accomplish
the results. However, the focus will be on creating a generic method that can work in
different types of buildings. This excludes for instance Manhattan world solutions,
which can only be applied on buildings that fall in a rectangular grid. Finally the
application of the IndoorGML model in a navigation system will not be researched,
as it is out of scope of the problem statement.

1.7 reading guide
The theoretical background needed to understand important concepts in this the-
sis are discussed in Chapter 2. Related work on the research question and sub-
questions is presented in Chapter 3. In Chapter 4 the methodology developed to
answer the research questions is explained, followed by the implementation details
in Chapter 5. Results are shown and discussed in Chapter 6, after which answers
to the research questions and conclusions are debated in Chapter 7.

Ravi Peters

2 T H E O R E T I C A L B A C KG R O U N D

In this chapter theories that are used in the methodology of this thesis are explained.
First of all IndoorGML is described, going into detail on the specifics of the standard
(see Section 2.1). The information that can be used as an input for an IndoorGML
file is obtained by analysing an indoor point cloud. A large part of the analysis
is done after voxelisation of the point cloud, which is explained in Section 2.2.1.
Stairs, floors and slopes are identified from these voxels with the method described
in Section 2.2.2. Voxels representing separate rooms and corridors are modelled as
polygons using α-shapes, explained in Section 2.3.1. These polygons are simplified
with the Douglas-Peucker algorithm (Section 2.3.2). Finally, in this thesis the 2D
medial axis is used to get the centrelines of hallway polygons, whereas the 3D
version is applied on the point cloud to obtain information on the location of walls.
The concepts behind this are described in Section 2.4.

2.1 indoorgml
IndoorGML [OGC, 2014] is a standard developed by the Open Geospatial Consor-
tium (OGC) for the exchange of indoor spatial information, focused especially on
indoor navigation. It aims to provide support in location based services and in-
door route analysis, and is based on the notion that an indoor environment can be
divided into organisational or structural cells, which represent for instance rooms
or corridors. These cells are non-overlapping and each have a unique identifier.
Relationships between cells can be represented by the Node-Relation Graph (NRG),
of which there are three types: adjacency NRG, connectivity NRG and accessibility
NRG (Figure 2.1). In the latter more user specific information can be saved, such
as the width of a door, or whether a certain edge is traversable by a wheelchair
user. Relationships in IndoorGML are based on Poincaré duality [Munkres, 1984],
in which the cells are regarded as primal space, and connections between cells as
the dual space. The NRG represents this dual space, and this graph (V, E) consists of
nodes (V), representing the cells (States), and edges (E) indicating the relationships
(Transitions).

Figure 2.1: The different NRGs in IndoorGML [OGC, 2014]

There are two different types of representations of cellular space in IndoorGML.
The first being the thin wall model, used in Figure 2.1, in which rooms and corridors
are represented by nodes, and doors and walls as edges. The other type is the thick
wall model (see Figure 2.2), in which besides rooms and corridors also doors and

7

8 theoretical background

walls are represented by nodes, and their relationships by edges. This is a more
extensive way of modelling the indoor environment and, because of the inclusion
of doors, can also be more useful for indoor navigation purposes. Information on
the location and adjacency of walls is less important for navigation, because it is
more useful to know which nodes can be traversed, instead of those that cannot,
which is also represented in the connectivity NRG.

Figure 2.2: The thick wall model in IndoorGML [OGC, 2014]

In IndoorGML the inclusion of geometry is not compulsory. A valid IndoorGML
model can be a logical NRG, meaning that there is only topological information
present, and no information about the location of cells, or their geometry. However,
for navigation purposes it is more convenient to include geometry in both the pri-
mal (cell) space, as 2- or 3D geometric information about the cell, and in the dual
(graph) space, as location of a node. This idea is represented in the Structured Space
Model (SSM), as shown in Figure 2.3.

Figure 2.3: SSM as defined in IndoorGML [OGC, 2014]

2.2 voxelisation and walkable space 9

In practice IndoorGML has been implemented by various authors, including a
method to go from CityGML to IndoorGML [Kim et al., 2014], and from Building
Information Modeling (BIM) to IndoorGML [Teo and Yu, 2017]. A general study on
the implementation of IndoorGML is described by Kang and Li [2017], who describe
criteria for when to partition a cell into subspaces, such as when a space contains
two different functions (e.g. kitchen and living room), is ‘big’, like a hallway or
convention hall, and when obstacles may limit movement in the space. They also
describe the concepts of horizontal and vertical distance, and how different building
floors can be connected. No related work has been found on automatically obtain-
ing an IndoorGML model from a point cloud, at the time of writing this thesis. An
alternative to IndoorGML would be a Chinese standard, called IndoorLocationGML
[Zhu et al., 2016], which is more concerned with the relative and absolute location
of objects in the indoor environment and indoor distances, and not so much with
semantics and accessibility of places. Because IndoorGML provides a better op-
portunity to save information on the type of node (stairs, corridors, doors, rooms),
which gives more information to users on the accessibility of a place, it has been
decided not to work with IndoorLocationGML.

2.2 voxelisation and walkable space

Point clouds of buildings are usually large in size and unstructured, needing algo-
rithms to process them, filter noise and obtain useful information from the data. A
way to structure a point cloud for easier and faster processing is voxelisation (Sec-
tion 2.2.1. From the voxels that are created in this process, the floors, slopes and
stairs can be detected by the methods described in Section 2.2.2. These methods are
used in this thesis as a basis for the navigation graph.

2.2.1 Voxelisation of point clouds

Voxels are defined as ‘volumetric pixels’ by Nourian et al. [2016], who present a
computational method to get a voxelised model from a point cloud. A bounding
box is defined for the extent of the point cloud, which is then divided by the voxel
size in all three directions (x, y and z), finding out how many voxels fit in each
direction. For each voxel it is determined whether it is filled with point cloud
points, or empty. Only the filled voxels are saved in the data model. Noise filtering
can be applied by setting a threshold for the minimal number of points to be in a
voxel in order for it to be saved.

Broersen et al. [2015] obtain the voxelised model by using an octree structure
(Figure 2.4), which is the three dimensional version of a quadtree. In this method the
space is recursively divided into eight cubes, called octants or leaves, until certain
boundary conditions are fulfilled. These boundary conditions can for instance be
the smallest defined leaf size, number of recursions, or a certain density of points in
a leaf. In the case of Broersen et al. [2015] the maximum number of octant divisions
can be defined by the user. Each voxel in the octree gets assigned a locational
code, based on a space filling curve. This code can be used for a fast lookup of
neighbouring voxels, or parent nodes in the octree. Instead of looking at which
leaves are filled, Broersen et al. [2015] look at the leaves that are without points.
These leaves can be regarded as empty, and thus they are traversable for navigation.
This idea can especially be applied for drone routing, because drones are not in
need of a floor surface directly below them.

10 theoretical background

Figure 2.4: Example of an octree structure [Lobos et al., 2010]

2.2.2 Obtaining the walkable voxel space

Staats [2017] developed a method to find all walkable voxels in a voxelised point
cloud, and automatically classified them as stairs, ramps or regular floor space.
The voxelisation method used is the one based on an octree [Broersen et al., 2015],
in which the smallest leaves are used as voxels to do processing on. The point
clouds researched are gathered with a ZEB-REVO laser scanner, which is a hand-
held Mobile Laser Scanner (MLS) and can be operated by a walking person. The
research makes use of the idea that the person gathering the point cloud was walk-
ing on a floor. Besides making use of the voxelised point cloud, also the trajectory
of the scanner is voxelised. Voxels from the point cloud that lie directly underneath
trajectory voxels are classified as seed voxels, because it can be said that these vox-
els have been walked upon. A region growing step is added to cluster voxels that
lie in the same floor space. Based on the angle that the trajectory makes with the
horizontal, stairs and ramps can be identified, because the steeper a person walks,
the more likely they are to be walking on stairs.

In the clustering step the voxelised point cloud is sliced at every z (height) interval
of the voxels, so the point cloud should be oriented correctly with regard to the
horizontal. Every slice consists of all voxels at a certain height value, so can also be
regarded as a layer of 2D pixels. When there are voxels present that were identified
as floor space, according to the trajectory, their neighbours are identified as the
same, and their neighbouring voxels as well. Neighbourhood in this case is based
on 8-connectivity for pixels (see Figure 2.5). A schematic visualisation of all steps
in this method are shown in Figure 2.6.

4-connectivity 8-connectivity

current
pixel

current
pixel

Figure 2.5: 4- versus 8- connectivity for pixels

2.3 2d polygon modelling 11

Figure 2.6: Obtaining the walkable voxel space from an indoor point cloud as proposed by
Staats [2017]

2.3 2d polygon modelling
The walkable space, obtained with the methods described in Section 2.2, can be
divided into different indoor cells (rooms, halls and corridors) after the locations
of doors are found, assuming that a space always ends at a door, stair or slope.
An indoor cell consists of all voxels belonging to that space, which eventually are
made up of centre points and size of the voxels (see Figure 2.7 as an example of
voxels belonging to one indoor space). These groups of voxels can be modelled
as a polygon using α-shapes, as explained in Section 2.3.1. In order to simplify the
polygons, which often create too detailed skeletons in the 2D Medial Axis Transform
(MAT) (see Section 2.4.1), the Douglas-Peucker algorithm is applied (see Section
2.3.2).

Figure 2.7: Top view of all voxels belonging to one room

12 theoretical background

2.3.1 α-shapes

For the modelling the geometry an α-shape approach is used [Edelsbrunner et al.,
1983], which is very suitable for modelling polygons around sets of points. The
floor voxels that are defined for each indoor space can basically be considered as
sets of 2D x,y-coordinates, for now called a set of points, for which the α-shape
can be defined. The shape of the output polygon is dependent on the parameter α
(Figure 2.8). Generally it can be said that the smaller the value for α, the smaller the
area of the polygon created. When α → 0 the shape is just the input point set and
when α→ ∞ the output will be the convex hull of the input points.

The first step in this algorithm is to apply Delaunay triangulation [Delaunay,
1934] for all points. Then, for each Delaunay triangle, it is tested if the radius of its
circumcircle, r, is smaller than α. If this is true, the Delaunay triangle is added to
the set for the output polygon.

Figure 2.8: Different values for α resulting in different polygons [Gardiner et al., 2018]

2.3.2 Douglas-Peucker

The Douglas-Peucker algorithm [Douglas and Peucker, 1973] can be used to down-
sample linestrings and in this way simplify their geometry. This can in turn be
applied on a polygon, which is basically a collection of line segments that make
up a closed curve. The algorithm is visualised in Figure 2.9. In step 1 the original
linestring is shown, and threshold ε. A straight line is drawn between the first and
the last point (AB), shown as dashed line a in step 2. The point furthest from this
straight line is searched, and it is checked whether the distance from this point C to
the closest point on the straight line is smaller than the threshold value ε. In step
2 it can be seen that b > ε, so C is kept, and two new straight lines are drawn, AC
and CB. In step 3, again, for both lines the furthest remaining points are searched,
and their distances to the lines are checked. Distance d > ε, so point E is kept, but
distance c < ε, so point D is not kept in the new linestring. The final results are
shown in step 5.

2.4 medial axis transform 13

a

b
2

3
c d

4

5

ε1 A B

C

D E

Figure 2.9: The steps of the Douglas-Peucker algorithm visualised for a linestring

2.4 medial axis transform

The Medial Axis Transform (MAT) was originally proposed by Blum [1967], who
used it in the analysis of biological shapes. The 2D MAT for polygons is used in this
thesis in the partitioning of indoor spaces in the connectivity NRG to subspaces (see
Section 4.4) and is explained in Section 2.4.1. Moreover, the 3D MAT for point clouds
[Peters, 2018] is used for a novel way of detecting walls in an indoor point cloud, as
presented in Section 4.1, which is discussed in Section 2.4.2.

2.4.1 2D MAT for polygons

The medial axis of an object is made up of all points that have more than one closest
point on the exterior (boundary) of the object. From these points circles can be
drawn with a radius equal to the distance to the boundary, which are thus touching
the object in two or more points. Together, the points and their corresponding
circles make up the MAT, representing the skeleton of the object (see Figure 2.10).

2.4.2 3D MAT for point clouds

3D MAT
The MAT for a 3D object includes all points that have more than one closest point to
the surface of the object. Instead of circles, balls can be drawn that touch these two
or more points on the surface. These balls, together with their centres, are called
medial balls. The circles in Figure 2.10 can be considered as cross-sections of 3D
balls, as the general concept of the algorithm is similar in both 2- and 3D. In the
method of Peters [2018] a 3D MAT is automatically generated for geographical point
clouds. This method consists of two steps. At first a set of medial balls is calculated

14 theoretical background

(a) A shape (b) Corresponding medial axis and
some medial circles

Figure 2.10: 2D example of medial balls in a shape [Peters, 2018]

for the point cloud, using the ball-shrinking algorithm [Ma et al., 2012]. Secondly,
by applying a region growing algorithm the medial balls are grouped into medial
sheets. When applied on a geographical point cloud the results can be used for
object recognition in landscapes, such as the identification of waterways [Broersen
et al., 2017]. In this thesis the medial sheets are used for wall recognition in an
indoor point cloud (see Section 4.1).

To begin with, medial balls have three main characteristics:

1. each medial ball touches two or more points of the original point cloud,

2. each medial ball is tangent to the surface wherever it touches points, and

3. there are no points of the original point cloud inside a medial ball.

The first characteristic is similar to the definition as discussed in Section 2.4.1,
but instead of the ball touching the boundary of an object, it can touch two or more
points in a point cloud.

According to the second characteristic a medial ball should be tangent to the
local surface where it touches a point. This means that centre (c) of the medial ball
should be aligned with the normal vector (~n) of the point. In a geographic point
cloud normal vectors are usually not inherently present. Peters found the normal of
each point p by using a KD-tree to find its k-Nearest Neighbours (k-NN), and fitting
a plane through them. The vector orthogonal to this plane is the normal vector of
the point. It can be concluded that c should be somewhere on infinite line L that
goes through p and has direction ~n.

(a) Initial ball (b) Second iteration (c) Third iteration (d) Fourth iteration
yields an empty
ball

Figure 2.11: Ball shrinking iterations [Peters, 2018], legend in 2.11b

In order to comply to the third characteristic, the ball-shrinking algorithm is ap-
plied [Ma et al., 2012], for which the series of iterations is illustrated in Figure 2.11.

2.4 medial axis transform 15

In the first step (Figure 2.11a) for point p in the point cloud the first medial ball
centre c is computed, based on the location of p, ~n and initial ball radius ri. Then
the nearest neighbour for c in the original point cloud is computed, which is called
point q. For the second iteration (Figure 2.11b), a new radius r and centre c are com-
puted for the triplet p, ~n and q. This process is repeated until the new radius does
not change compared to the previous iteration. When this happens the medial ball
complies to the third characteristic, because the closest point to c is found to be q,
meaning there are no points left inside the ball. When the ball-shrinking algorithm
is applied on all points in the point cloud, the set of centres and corresponding radii
(c,r) of all medial balls represents the MAT.

Medial sheets

In order to structure the set of medial balls created for a point cloud, they are
grouped into medial sheets. These sheets are the 3D equivalent of the skeleton that
can be seen in the 2D example in Figure 2.10.

To group medial balls together in sheets, we look at geometric characteristics
of medial balls, as shown in Figure 2.12. In this Figure we can see the following
characteristics:

• the radius, r: the distance from the centre of the ball to a point on the surface,
either p or q;

• the vectors ~cp and ~cq: vectors that are drawn between the centre of the medial
ball and the points of the original point cloud that touch the medial ball;

• the separation angle, θ: the angle between vectors ~cp and ~cq;

θ

c

p
q

r

surface

Figure 2.12: Geometric characteristics of a medial ball (2D side view)

Region growing is applied by Peters in order to get the medial sheets. A random
point is selected from the MAT, and its neighbours are checked whether they have a
similar value for θ, within a certain threshold. If a neighbouring point satisfies that
condition, it is saved as part of a medial sheet, and the neighbouring points of that
point are checked as well. This process continues until there are no neighbouring
points left to check. In this way all MAT points are structured into medial sheets.

3 R E L AT E D W O R K

In this chapter an overview is given on related work to the topic of this thesis. It
starts with a general overview about reconstruction from point clouds in the built
environment (Section 3.1). Then a summary is given of work related to indoor
navigation networks (Section 3.2). In Section 3.3 the detection of doors in point
clouds is discussed, and finally in Section 3.4 the division of subspaces for indoor
navigation networks is described.

3.1 object and model reconstruction from point
clouds

Indoor point clouds are often gathered in two ways, either with a static or dynamic
scanning device. Static laser scanners, such as terrestrial laser scanners, can be set
up at one location at the time, and each time obtain parts of the point cloud, which
have to be stitched together [Dold and Brenner, 2006]. This is called registration
and can be done manually or automatically with software.

The point clouds used in this research are gathered by a dynamic laser scan-
ner: the Mobile Laser Scanner (MLS) device ZEB-REVO, which uses a Simultaneous
Localization and Mapping (SLAM) algorithm [Durrant-Whyte and Bailey, 2006] to
process the output point cloud. SLAM detects the position of the scanner, and the
change in position of certain objects that are automatically detected. Based on this
the output point cloud is adjusted. The ZEB-REVO has an Inertial Measurement
Unit (IMU) to detect movements of the device, but does not fully depend on this. To
account for drift, shapes are detected in the point cloud, and in the final processing
step the point cloud points are adjusted according to these shapes. Moreover, the
locations of the MLS are saved as the trajectory, which provides useful information
to the point cloud (see Section 3.3).

The advantage of static laser scanners is that they gather more accurate point
clouds. However, because they have to be set up at a new spot in the environ-
ment every time, they are more labour-intensive. Generally there is also more noise
present, because of occlusion by objects. With a MLS one can walk more easily be-
hind an object and capture more of the environment, which is its biggest advantage
besides obtaining the trajectory of the scanner.

In order to extend the IndoorGML model with information about indoor spaces,
it is necessary to detect and reconstruct geometric elements, such as walls, floors,
and furniture. The methods in this thesis especially focus on the detection of walls
and floors, obtained from a voxelised point cloud. Besides being able to detect
elements in a voxelised model, as described for floors, stairs and slopes in Section
2.2.2, many authors reconstruct elements from the points in the point cloud directly.

Hichri et al. [2013] give an overview of various techniques that are used in recon-
structing a Building Information Modeling (BIM) from point clouds. They identify
three steps: acquisition of the point cloud, segmentation of the point cloud, and
BIM creation. Hichri et al. [2013] argue that segmentation can be done based on
similarity and closeness of points, region growing with normal vectors of points,
or distance between planar faces. From the segmented point cloud objects can be
modelled, and attributes can be assigned to them based on the semantics detected.
Tang et al. [2010] also give an overview modelling BIM from point clouds, but define

17

18 related work

a step of ’data preprocessing’, in which unwanted data is filtered, and surfaces are
estimated from the point cloud. They define BIM modelling not only as geometry
modelling, but also categorising objects and relationships between objects.

A well-known method for shape detection and reconstruction in point clouds is
RANSAC [Schnabel et al., 2007], which is for instance used for wall surface recon-
struction by Quirk et al. [2006], and wall and floor plane detection in point clouds
by Thomson and Boehm [2015]. By random sampling of points in a point cloud it
can detect shapes like planes, spheres, cylinders, and more. This method is also in-
cluded in the Point Cloud Library (PCL) [Rusu and Cousins, 2011], an open project
focused on the processing of point clouds, in order to detect and reconstruct ele-
ments. The PCL contains more algorithms that can help structure a point cloud,
speeding up other processes. Examples of these are normal vector estimation, and
kd-tree construction. It also includes algorithms for noise filtering, surface recon-
struction, and more. They can be used for reconstruction of objects in an indoor
environment [Rusu et al., 2008].

Pu and Vosselman [2009] apply another way of shape detection in point clouds,
in which first the point cloud is segmented, using surface growing algorithm. This
algorithm is based on region growing of points in the point cloud, starting from a
seed point, and checking whether its neighbours are on the same plane (or other
predefined shape) defined from the point and its normal vector, and have a small
difference in normal vector. After all points are clustered, surface is modelled,
usually as a convex or concave polygon (see Figure 3.1).

Figure 3.1: Modelling a convex hull for segmented point cloud parts [Pu and Vosselman,
2009]

A disadvantage of both the RANSAC and planar surface growing methods is
that the shape of the surface to be detected needs to be known. In case of walls that
are curved instead of planar this needs to be manually defined beforehand, and
adjusted in the threshold. Also the convex hull modelling can be inaccurate, as can
be seen in Figure 3.1d. Moreover the methods are both very reliant on thresholds,
such as the distance of a point to the surface, and difference in normal vectors.

A benchmark test for indoor modelling was developed by the International Soci-
ety for Photogrammetry and Remote Sensing (ISPRS), also freely providing indoor
point clouds to researchers to test their methods on [Khoshelham et al., 2017]. In
the benchmark three elements of an indoor model are evaluated: the geometric
reconstruction, the semantics (type, function or material) of objects, and topology
of spaces (connectivity and adjacency). Khoshelham et al. [2017] note that most
researchers now focus on the first: geometric reconstruction, but recommend re-
searchers to also put more focus on the last two elements.

3.2 indoor navigation networks 19

3.2 indoor navigation networks
Duality is a reoccurring theme in graph-based indoor navigation networks. Yang
and Worboys [2015] describe how to obtain a navigation graph from existing 2D
building plans using dual graph to model relationships. First a structure graph
is created from the building plans, which shows walls and doors, and, based on
the same idea as IndoorGML where every room gets assigned a node, and rooms
sharing a wall get an edge in the dual graph. Then the dual graph is filtered to only
keep the edges that pass a wall with a door, just like the connectivity Node-Relation
Graph (NRG) in IndoorGML. These steps are shown in Figure 3.2.

Figure 3.2: Steps done in creating a dual graph from a 2D floor plan [Yang and Worboys,
2015]

The same idea of duality is also used by Boguslawski et al. [2011], who applies it
on a 3D building model, placing nodes in rooms, and connecting rooms that share
a wall surface in the model. Jamali et al. [2015] also make a 3D network, but do not
need a complete 3D building model. They use data gathered by a laser rangefinder,
which can use laser beams to determine the distance from the scanner to an object.
Of every room all corners are measured as x,y and z coordinates. At the location
of the laser rangefinder in the room a node is placed. The connection between the
nodes is obtained by Delaunay triangulation.

The idea of using the 2D Medial Axis Transform (MAT) (see Section 2.4.1) in build-
ing plans as a basis for routes in corridors is discussed by Meijers et al. [2005] and
Lee [2004] (see Figure 3.3). It is also applied on obtaining outdoor road centrelines
[Haunert and Sester, 2007]. An advantage named is that it also works for concave
shaped polygons, and polygons with holes (representing e.g. columns or furniture).

A more recent development introduces the use of indoor point clouds as an input
for a navigation network. Dı́az-Vilariño et al. [2016] use region growing for the seg-
mentation of a point cloud, and later classification of the segments. In this method
obstacles are taken into account in the network. A Voronoi Diagram is created,
with walls serving as constraint edges. The dual of the Voronoi Diagram, which is
a Delaunay triangulated network, makes up the navigation graph. All Voronoi cell
centres serve as nodes, and a connection is made with cell centres of Voronoi cells

20 related work

Figure 3.3: Straight-MAT in a 2D polygon representing a hallway [Lee, 2004]

that share an edge. In this method a Variable Density Network (VDN) is created,
meaning that the density of Voronoi cells can increase around important areas, so
extra nodes are added. VDN is also discussed by Boguslawski et al. [2016], who use
it to generate a navigation graph from a 3D model of a building without obstacles.
For this method corners of cells are detected, as an input for the graph. However,
the density of the cells produced by this method is too high for the purposes of
this thesis. As discussed in Section 1.2, larger scale networks based on connection
between indoor spaces are considered in this thesis, because of efficiency and com-
patibility with the IndoorGML standard.

Another method that has been researched is cuboid reconstruction and merging
in a point cloud [Tran et al., 2017], which creates a more general graph, having a
node in every cell. This results in connectivity and adjacency relationships similar
to IndoorGML. However, this method is limited by a Manhattan world assumption,
and connectivity relationships are defined by manual insertion of doors.

A recent development in the generation of navigation graphs from indoor point
clouds using hand-held MLS is making use of the scanner trajectory. This is for
instance applied by Staats [2017] and Staats et al. [2018], where both point cloud
and trajectory are voxelised (see Section 2.2.2). The detection of walkable space is
a good basis for an indoor navigation network, because it includes information on
where a person can be. Trajectory information can also be used in door detection
[Dı́az-Vilariño et al., 2017], which is extended on in Section 3.3. By segmenting the
trajectory at the locations of doors it can be identified which points in the point
cloud belong to a certain indoor space, with exception of points that are gathered
through the doorway. When classifying points based on the room they belong to,
different indoor spaces can be detected, and an IndoorGML navigation network can
be generated.

3.3 doorway detection in point clouds

One of the most crucial steps needed to create a connectivity graph from an indoor
point cloud is the detection of traversable doors or openings. When this information
is known, connectivity relationships can be defined between different indoor spaces.

Dı́az-Vilariño et al. [2014] and Dı́az-Vilariño et al. [2015] establish door and door-
way detection in a point cloud by using Generalized Hough Transforms (GHT) [Bal-

3.4 division of subspaces 21

lard, 1981] to detect edges in orthoimages generated from a point cloud. By assum-
ing general parameters for these edges, doors can be classified. Edge detection is
also implemented by Dı́az-Vilariño et al. [2016]. Instead of using colour informa-
tion, wall planes are rotated in such a way that they can be read as a binary image.
Pixels are assigned a value based on whether they contain points or not. These edge
detection methods highly depend on the parameters that are defined for the size of
doors. Doors that have non-standard sizes are ruled out for detection. Also closed
doors are detected, but there is no way of knowing whether they can be traversed
for real, or are closed permanently.

Besides methods based on edge detection, there are methods that use the tra-
jectory of the MLS. One is described by Dı́az-Vilariño et al. [2017], in which the
height of the point cloud along the trajectory is analysed. When seeing a decrease
in height, a door is probable to be at that location (see Figure 3.4). This method only
works in buildings where door frames are clearly lower than the ceiling. Moreover
a decrease in height could also indicate low hanging objects, such as low hang-
ing lamps, making the method dependent on parameters indicating what value for
drop in height is enough. In the research the point cloud is labelled into different
regions, each containing all points that were scanned between two doors in the tra-
jectory. A ray-casting method is carried out to evaluate the completeness of these
regions, in order to find out whether parts of the indoor environment are occluded
by objects. This is done by projecting the point cloud in a 2D grid, and selecting
grid cells with the highest density of points as walls. From a grid cell selected as
the scanning origin, it is checked which cells are occluded by walls. A ray-casting
algorithm is also used by Nikoohemat et al. [2017] to detect openings in a voxelised
point cloud. In this method distinction can be made between real openings and
false ones caused by occlusions. By searching for voxels nearby trajectory points
that represent door centres, doors can be detected.

Figure 3.4: The trajectory of the laser scanner (in red), the vertical profile of the floor (in
green) and profile of the ceiling (in blue) [Dı́az-Vilariño et al., 2017]

From research it appears that in order to guarantee that a door can be traversed,
and is not a permanently closed door or glass pane in the shape of a door, a human
is required to walk through the door. This can be implemented by making use of
the trajectory of a hand-held MLS.

3.4 division of subspaces
To provide for a more accurate measure of distance in a navigation network, and
thus better route calculation and visualisation, some cells should be subdivided into

22 related work

smaller subspaces (see Section 1.3). There are two main questions that come forth
from literature: which cells should be subdivided, and how should the subdivision
be done?

Jung and Lee [2015] define a set of rules in a flowchart as to when an indoor
space should be subdivided. The space should be both navigable and accessible,
and moreover a transition space, connecting at least two spaces in a navigation
graph. In an indoor environment these kinds of spaces are usually squares or
hallways. Kang and Li [2017] also discuss about when to apply subspacing, and
mention size of the space and the presence of obstacles. If a space is large, has a
concave structure, or has many objects blocking sight to other parts of the space,
subspacing should be done.

Some authors define semantic criteria on how to subspace a indoor cell, such as
subdivisions based on ‘functional area’ or ‘functional space’ around objects [Krūminaitė
and Zlatanova, 2014; Diakité and Zlatanova, 2017]. However, from a point cloud it
is difficult to get semantic information on the use of cells and objects they contain.
Information like functional space around objects would be difficult to automatically
extract. This leads to the conclusion that when using only a point cloud, the sub-
division should be based on geometric elements. There is a distinction in literature
between the subdivision of an area to provide more nodes, and the addition of extra
nodes in a navigation network at convenient locations.

Methods based on the subdivision of areas geometrically include ones based on
Voronoi diagrams [Wallgrün, 2005; Boguslawski et al., 2016], triangulation [Lamarche
and Donikian, 2004], or the complete subdivision of a floor plan to a grid [Afyouni
et al., 2012]. However the subdivision of space in a grid is very coarse and will slow
down calculation times for path-finding algorithms. Diakité et al. [2017] discuss
criteria for how to subdivide indoor environments for IndoorGML. Distinction is
made between types of criteria, the first one being geometry-driven criteria, such as
the shape of the cell. Topology-semantic-driven criteria take into account the place-
ment of doors, and subdivide a corridor such that each subspace contains a door.
The last one are navigation-driven criteria, which are based on the walkable surface
in the cell. The visualisation of Transitions in a navigation graph is also discussed.
Instead of a straight line, a Transition can be visualised as a gml:LinearString, which
means that intermediate points on the line can be defined. This means that in some
cells it is not necessary to add extra nodes, but just to edit the geometry of the
Transition.

A method that focuses more on the addition of nodes in a navigation network
is the Straight-Medial Axis Transformation (S-MAT) [Eppstein and Erickson, 1999].
It abstracts the skeleton of a polygon, that represents a route in the middle of the
cell. This is also shortly discussed earlier in this chapter in Section 3.2, where
Meijers et al. [2005] and Lee [2004] are named to have implemented this in corridors
from 2D floor plans. A method based on the S-MAT is the ‘door-to-door’ approach
[Liu and Zlatanova, 2011]. Instead of creating a route in the middle of a polygon,
routes are created between doors, and corners of concave polygons. Both methods
are shown in Figure 3.5. The ‘door-to-door’ approach argues that routes can be
calculated and visualised in a more natural way, especially in situations like D1-D2

(”door-to-door”) versus D1-M1-D2 S-MAT in Figure 3.5.

In conclusion, geometric subdivision of indoor cells is in most literature based
on the floor plan of the space. This could be extracted from an indoor point cloud,
by extracting the outline of the floor. Depending on the level of noise that polygon
generated from the point cloud floors will have, nodes could be added based on
one of the discussed methods.

3.5 conclusions related work 23

Figure 3.5: Door-to-door (D1-S1-D3) versus S-MAT (D1-M1-M2-M3-D3) route [Liu and Zla-
tanova, 2011]

3.5 conclusions related work
As discussed in Section 3.1 there is a need for obtaining useful information from
point clouds, and reconstruction of geometric elements from a point cloud is an
essential element in the modelling of a navigation graph. Existing methods focus
on the modelling of 3D building models, such as BIM, and most start with a step of
structuring the point cloud before modelling objects. Most methods are sensitive to
noise and settings of different parameters.

The majority of research on creating indoor navigation networks (see Section 3.2)
is based on existing 2D floor plans or 3D building models, which can be outdated,
as discussed in Section 1.2. Many of them are based on the idea of duality, which
is a reoccurring theme in IndoorGML, or the MAT of 2D polygons to get the middle
line of corridors. Navigation graph extraction from point clouds often result in
grid-based, dense networks, not suitable for IndoorGML. Methods making use of
the trajectory of MLS show promising results, and can for instance be used in door
detection.

Doorway detection is discussed in Section 3.3. Doors are an important element of
an IndoorGML connectivity NRG and can be detected from point clouds using edge
detection methods, or methods using the trajectory of the MLS. The advantage of
the second is that these methods provide a check on whether a door-shaped object
can also be walked through, making it less prone to errors.

Finally subspacing of indoor navigation graphs can be done to improve the mea-
sure of distance and visualisation and calculation of routes (see Section 3.4). It can
be done based on knowledge on functional objects in an indoor environment, but
this information is hard to obtain from a point cloud. Therefore it would be more
obvious to apply subspacing based on the geometry of a space, adding nodes at con-
venient places in the environment. This can be done using the S-MAT, and another
approach based on this is ‘door-to-door’ routes, which cut off routes in corners and
therefore can give an even more accurate measure of distance.

4 M E T H O D O LO GY

The goal of this thesis is to automatically construct a navigation network in In-
doorGML format from an indoor point cloud. The methodology used to obtain the
network is explained in this chapter. First the 3D Medial Axis Transform (MAT) of a
point cloud is found (see Section 2.4.2), which results in sheets of points represent-
ing the skeleton of the point cloud. These sheets are filtered to only keep the ones
that were formed inside walls, as explained in Section 4.1. The original point cloud,
wall sheets and trajectory are voxelised (see Section 2.2.1), and are used together to
detect doors in the point cloud (Section 4.2). Then the voxelised walkable space is
created, as explained in Section 2.2.2. For the segmentation of walkable voxels into
separate spaces, using the detected doorways. Connectivity relationships between
spaces are defined, from which a connectivity Node-Relation Graph (NRG) can be
created (Section 4.3), and extended to an accessibility NRG. All doors and separate
spaces are assigned a node, and connectivity relationships between them define the
edges. The addition of geometry information for each node in the network is dis-
cussed in Section 4.3.3. Finally, based on the geometry of the spaces, subdivision of
connecting nodes in the navigation network is discussed in Section 4.4.

A summary of these steps is shown in Figure 4.1.

Indoor point cloud
3D MAT sheet

creation (Peters,
2018)

Filter wall sheets
(Sec. 4.1)

Laser scanner
trajectory

Filtered 3D MAT
wall sheets

Voxelisation
(Broersen et al.,

2015)

Input

Existing

Own work

ProductDelete point cloud
voxels on floor inside

door frames
(Sec. 4.2)

Walkable voxel
detection & clustering
(Staats et al., 2018)

 Separate spaces
(rooms, corridors)

and stairs, slopes
Find location of doors

(Sec. 4.2)

Create node in doors,
spaces, stairs and

slopes + connectivity
(Sec. 4.3)

Subspacing of
complex spaces

(Sec. 4.4)

IndoorGML

Modelling of basic
geometry of separate

spaces
(Sec. 4.3)

Extract accessibility
information
(Sec. 4.3)

Figure 4.1: An overview of the steps done to obtain an IndoorGML graph

4.1 wall sheet extraction using 3d mat
Finding the MAT for 3D point clouds is discussed in Section 2.4.2. It has previously
been applied to aerial point clouds, in which it can be used to identify buildings,
waterways and other structures in the landscape. The 2D MAT has been applied in

25

26 methodology

floor plans to obtain polygon centrelines, which can be used as a basis of a route
in a corridor, as described in Section 3.2. However, when applying the 3D MAT

on an indoor point cloud, the results do not give clear centrelines of corridors and
rooms. Unlike a 2D floor plan, which is often a complete, structured representation
of the indoor environment, a point cloud is cluttered with static and dynamic ob-
jects (e.g. people and furniture), occluding parts of the space. This often leads to
medial sheets not being found in the middle of corridors, providing an unreliable
basis for route generation. However, medial balls are created inside walls that were
scanned on both sides (see Figure 4.2). These balls are close together and have sim-
ilar characteristics, so are grown into medial sheets (see Section 2.4.2). The centres
of all medial balls belonging to a medial sheet in a wall are shown in Figure 4.3.
By applying filtering parameters these wall sheets can be distinguished from the
other sheets. This does mean that only walls that were scanned on both sides can
be detected. It is however assumed that the location of other walls is not essential
in a navigation network, just the ones that include doors that have been walked
through, so that the two rooms adjacent to it can be separated.

(a) Empty space in a wall that was scanned
on both sides

(b) Example of some medial balls formed in
the empty space

Figure 4.2: Example of a wall that was scanned on both sides

(a) Front view of medial sheet inside wall (b) Top view of medial sheet inside wall

(c) Side view of medial sheet inside wall

Figure 4.3: Medial sheet formed inside a wall (green)

4.1 wall sheet extraction using 3d mat 27

In order to distinguish between noisy sheets and wall sheets the geometric char-
acteristics of medial balls (see Figure 2.12), and the total number of points in a
sheet are used. These together make up five apparent characteristics with which
wall sheets can be identified. First of all the separation angle θ is approaching 180

◦,
which is the maximum value of θ in any medial ball, meaning that the average
value of θ of all balls a wall sheet should be high. The second characteristic is the
consistently low value of the radius r. Seeing that the centres of the medial balls
are inside the walls, the distance from the centre to the corresponding point cloud
points is generally quite small. For example, if the thickness of a wall is around 0.3
m, this would result in a radius of approximately 0.3/2 = 0.15m. One of the medial
balls as seen in Figure 4.2b is schematically visualised in Figure 4.4, together with
its θ and r.

width of wall

point on medial ball

point of original point cloud

medial ball centre

r
θ

Figure 4.4: θ and r of a medial ball in a wall (side view)

The third characteristic also has to do with the radii. As already concluded,
compared to other medial sheets the radius of medial balls inside walls is very
low. Moreover, because the thickness of a wall does not change, the value is also
constantly low. This can be used for more advanced filtering, by taking the standard
deviation of radii in a medial sheet into account. This will help avoiding a medial
sheets falsely being selected as wall sheet. A histogram of radius values in a medial
sheet inside a wall is shown in Figure 4.5, as well as a histogram of a medial sheet
that has a low median radius value, but is not inside a wall. As can be seen, the
standard deviation of the distribution of radii in the wall sheet is much lower than
that of the sheet not inside a wall.

0.0 0.2 0.4 0.6 0.8 1.0
Radius [m]

0

10

20

30

40

50

Fr
eq
ue
nc
y
(n
or
m
al
ise

d)

Distribution of radius values in MAT sheets
MAT sheet inside a wall
MAT sheet not inside a wall

Figure 4.5: Histograms showing normalised distribution of radius values in two MAT sheets

28 methodology

The fourth characteristic used to filter the medial sheets is based on the direction
of the normal vectors of the medial balls. It is used to filter out medial sheets gen-
erated between two floors in a building. In wall sheets normal vectors are pointed
sideways, whereas in floor sheets they are pointed either upwards or downwards,
resulting in a large absolute value for nz, the z component of the normal vectors.
This means that when the median nz is low, the sheet is vertical, and thus could be
inside a wall.

Lastly most of the sheets generated have a low number of points. The sheets that
are formed inside walls commonly have a high number of points, because walls
are relatively large objects in an indoor environment. A summary of requirements
for these five characteristics is given in Table 4.1. Tests on these characteristics are
described in Section 5.2.2 to define values for the parameters.

Parameter Value in MAT sheet
Total number of points High
Radius r Median < half the max. thickness of walls
Separation angle θ Median approaching 180

◦

Radius r Low standard deviation
Z value normal vector nz Absolute median approaching 0

Table 4.1: Theoretical parameters for filtering MAT sheets

4.2 doorway detection from 3d mat wall sheets
and trajectory

In the proposed method indoor spaces need to be separated at the location of doors,
to distinguish between different rooms. For this purpose not only the location of
doors need to be detected, but also the voxels that lie on the floor inside a door
frame (Figure 4.6). Two rooms connected to one another with a door need to be
separated by at least an 8-neighbourhood (see Section 2.2.2), creating an adequate
gap for the walkable space clustering algorithm.

Figure 4.6: Voxels (in red) that lie on the floor inside a doorway

4.2 doorway detection from 3d mat wall sheets and trajectory 29

The doorway detection method proposed in this research can only detect doors
that have been walked through with the laser scanner, making use of the trajectory.
It has been decided not to use an edge detection or ray-casting method that does not
include the trajectory, in order to prevent false positives - doorways being detected
at locations where there is no opening - from occurring. Examples of potential
false positives, that could be detected by those methods, are shown in Figure 4.7.
Both occur in the point cloud used to develop the methods on, also described in
Section 5.1.3. Making use of the trajectory of the laser scanner, the validity of doors
is ensured. It should be noted that these non-valid doors could sometimes be of
use in emergency response, but in this case excessive force is needed, equivalent to
breaking a thin wall. The methods used in this thesis are described in the following
Sections 4.2.1 and 4.2.2.

(a) A permanently closed door (b) A glass pane in place of a door frame

Figure 4.7: Examples of false doors in building of development point cloud

4.2.1 Geometry intersection

The flowchart in figure 4.8 represents the steps taken to get locations of doors in a
point cloud from a medial sheet in a wall, using the geometry intersection method.
This method fits in the ’Find location of doors’ step of Figure 4.1, but does not
require the point clouds to be voxelised. At first a plane is fitted through the points
in a medial sheet selected as a wall (see Figure 4.9 step 1 and 2). This is done
by taking the mean normal vector from all points, and defining the mean x, y, z
coordinate as a point on the plane. The trajectory needs to be transformed from
points to line segments. The points in the trajectory are saved in order of time,
so a line segment is generated between each point (i) and the next (i + 1). The
line equation of these line segments is intersected with the plane equation, after
which it is calculated whether the intersection point lies on the line segment. The
intersection points that apply, are kept for the next check.

30 methodology

Fit plane through wall
sheet

3D intersection of
plane with trajectory

Rotate wall sheet
points and all

intersection points
to horizontal plane

Create convex hull
around wall sheet

points

Check if intersection
points are inside

convex hull
Reproject door points
to original orientation

MAT wall sheet

Door
points

Trajectory of
laser scanner

Input

Processing

Product

Figure 4.8: Flowchart of door detection in a point cloud using 3D MAT sheets and trajectory

A rotation matrix is applied on the medial sheet points and intersection points,
to project them parallel to the XY plane (see Figure 4.9 step 3). The normal vector
to the original plane is ~v = (a, b, c)T , and the normal vector to the XY plane is
~w = (0, 0, 1)T .

The rotation matrix (R) is defined based on the work of Cole [2015].

R =

 cos θ + u2
x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uyux(1− cos θ) + uz sin θ cos θ + u2
y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ cos θ + u2
z(1− cos θ)

In which ~u = (ux, uy, uz) is the unit vector, where u2

x + u2
y + u2

z = 1, and θ the
rotation angle about an axis in the direction of ~u. ~u is defined as:

~u =
~v× ~w
|~v| =

(b,−a, 0)T
√

a2 + b2 + c2

And θ is defined as:

θ =
(~v, ~w)

|~v| =
c√

a2 + b2 + c2

In this case uz is always 0, so the rotation matrix can be rewritten as:

R =

cos θ + u2
x(1− cos θ) uxuy(1− cos θ) uy sin θ

uyux(1− cos θ) cos θ + u2
y(1− cos θ) −ux sin θ

−uy sin θ ux sin θ cos θ

After applying the rotation matrix, the Z component of the transformed points

is temporarily removed, after which a 2D convex hull is created around the sheet
points (see Figure 4.9 step 4). For each intersection point it is then checked whether
they are inside this convex hull, meaning that the trajectory crosses the wall segment
there. This is done by reconstructing the convex hull for each intersection point with
the sheet points. If the convex hull stays the same, it means that the point is inside.
If the convex hull changes, it means that the point is outside. The points that are
proven to be inside are rotated back to the original orientation of the plane, showing
the location of the doors. For this the inverse of the rotation matrix is used.

This method is limited to the detection of doorways that also have a part of a wall
above them, because otherwise the sheets on the left and right side of the doorway
will not be connected, and therefore not be able to generate a convex hull that can
intersect with the trajectory.

4.2 doorway detection from 3d mat wall sheets and trajectory 31

Z

X

Y Z

X

Y

Z

X

Y

Z

X

Y

1 2

34

Figure 4.9: Steps in rotating a medial sheet and finding the 2D convex hull

4.2.2 Voxelised method

The method discussed in Section 4.2.1 has some limitations, as mentioned above,
which is why another door detection method has been developed, using a voxelised
version of the medial sheets. Because of this, it is also better related to the walkable
voxels, which are used to define indoor spaces in a later step. For an explanation of
the voxelisation method, see Section 2.2.1.

There are two variations on door detection using the voxelised trajectory, wall
sheets and point cloud:

1. Door detection by finding wall sheet voxels above the trajectory.
2. Door detection by finding wall sheet voxels around the trajectory.

Wall sheet voxels above trajectory

The first variation needs a door to have a wall above it. Using the voxelised tra-
jectory, a lookup function is done for each trajectory voxel to check whether there
exists a wall sheet voxel above it. If such a voxel exists, it can be said that this
trajectory voxel is inside a door frame. A key advantage as opposed to other meth-
ods that look for walls above the trajectory (as discussed in Section 3.3), is that in
this method the walls are already detected from the original point cloud. A drop
in height above the trajectory as detected in original methods could have various
meanings. Besides it being a door frame, it could be caused by low hanging objects
in a room or hallway. If a hallway is cluttered with low-hanging objects that are the
same height above the floor as a door frame, the 3D MAT wall sheets will ensure
detection of exclusively all voxels that are inside a door frame. It will prevent the
possibility of false positives to occur.

Besides using the wall sheet voxels to obtain trajectory voxels that are inside a
doorway, they can also be used to detect voxels on the floor in a door frame, as
visualised in Figure 4.6. This can be done by again projecting the wall sheet voxels
down, and checking whether original point cloud voxels exist below them.

Wall sheet voxels around trajectory

Not all doors will have a wall above them, as some are of the same height as the
ceiling. This is why the second variation of the method exists. In this method all
wall sheet voxels that lie in a specific radius around a trajectory voxel are detected.
In order to speed up the algorithm a 2D ‘slice’ is taken at the height of the trajectory,

32 methodology

north trajectory voxel

wall sheet voxel in radius

checked trajectory voxel

α1

α2 azimuth

wall sheet voxel not in radius

(a) Situation when trajectory goes
along a wall (top view)

north

α1

α2

(b) Situation when a pair of voxels is
on the same side of the door (top
view)

north

α1

α2

(c) Situation when a pair of voxels
is opposing each other in a door
(top view)

trajectory voxel falsely detected as door

(d) Situation when a corridor is nar-
row and door voxels are falsely
detected (top view)

Figure 4.10: Door detection method by looking at wall sheet voxels around a trajectory voxel.
Legend in (a)

and only wall sheet voxels inside the radius at this height are regarded. For each
of these wall sheet voxels, the angle that it makes with the north, as seen from the
trajectory voxel, is calculated. This angle is also called the azimuth, shown in Figure
4.10. In the case of pixels in a Cartesian grid the direction of the North is the same
as the direction of the y-axis.

Each wall sheet voxel within the radius of a single trajectory voxel is paired with
all other wall sheet voxels in this range. This means that for a trajectory voxel with
n wall sheet voxels in its radius, there will be (n

k) = (n!
k!(n−k)!) pairs. For each pair

the difference in azimuth is calculated. Trajectory voxels that lie alongside walls,
will have only pairs of wall sheet voxels that have a small difference in azimuth (1-
α2) (see Figure 4.10a), whereas trajectory voxels that lie inside doors will also have
pairs of wall sheet voxels that have a big difference in azimuth (see Figure 4.10c).
This difference in angle is approximately 180

◦. In this way doors can be detected by
looking around the trajectory voxels.

However, in a narrow corridor the around method would define many consecu-
tive trajectory voxels to be inside a door (see Figure 4.10d). This situation can be
prevented, by grouping all detected door voxels with their neighbours. If a group
of neighbouring voxels is small, the group is probably inside a door, while when
there is a large number of voxels in a neighbour group, it is not.

After detecting the trajectory voxels that are inside a door frame, these voxels can
be used to detect voxels on the floor inside the doorframe (see Figure 4.6). For each
trajectory voxel that is defined to be in a door, one pair of MAT sheet voxels needs
to be selected. Specifically it should be the pair that lies opposite of each other in a
doorframe and has the shortest distance to one another. An example of this is the
pair of selected voxels in Figure 4.10c. A line should be generated between those
two voxels, which should be voxelated in a way that 8-connectivity is ensured. The
voxels defined to be on this line are used to detect voxels that lie on the floor inside

4.3 indoorgml network creation 33

a door by projecting them down. Because the pair of voxels lies at the same height,
a 2D line formula is used.

The pseudocode for the line-pixelation algorithm is given in Algorithm 4.1. The
input is a pair of voxels that lie opposite one another in a door frame. Because this
voxel pair has the same height, the z-value is not taken into account in the line gen-
eration, but added to the pixels on the line later. In the voxelisation step, explained
in Section 2.2.1, all voxels get an integer value for x, y and z. This means that
the distance between 4-neighbouring voxels at the same height is 1, and between
8-neighbouring voxels at the same height is

√
2 ≈ 1.41 (Figure 2.5). This is rounded

up to 1.5 to ensure 8-connectivity in the line pixelation.

Algorithm 4.1: Line pixelation algorithm
Input: A pair of voxels V1, V2 at the same height
Output: A list of voxels that lie on the line between them

L = {L1, L2, . . . , Ln}
1 minx ← min(V1x, V2x)
2 maxx ← max(V1x, V2x)
3 miny ← min(V1y, V2y)

4 maxy ← max(V1y, V2y)

5 z← V1z
6 L← ∅
7 # generate a grid of voxels between the 2 segment voxels
8 for i← minx to maxx + 1 do
9 for j← miny to maxy + 1 do

10 # calculate distance from voxel to line generated between V1 and V2
11 distVoxLine← Distance(Point(i, j), Line(V1, V2))
12 if distVoxLine ≤ 1.5 then
13 L+ = Point(i, j, z)

4.3 indoorgml network creation

After voxels on the floor inside door frames are detected, the clustering method as
discussed in Section 2.2.2 is used to find the walkable voxels. Clusters of voxels all
get a unique identifier. The geometry of the clusters and locations of doors can be
used together to define connectivity relationships between indoor spaces via doors.
First a merging step is done on the results of the clustering method (Section 4.3.1),
because some spaces are separated in height. In Section 4.3.2 it is explained how the
connectivity graph is created, and after that how the spaces get geometry (Section
4.3.3). Finally in Section 4.3.4 it is explained how accessibility information is added
to the graph.

4.3.1 Merging clusters separated by height

Merging overlapping clusters

In the walkable space detection algorithm, described in Section 2.2.2, the voxelised
point cloud is sliced at all height intervals, so the clusters consist of voxels at only
one z-value. They can be regarded as slices of 2D pixels. The voxelisation method
results in a voxel size of approximately 5 to 8 cm in all directions. This means that
when there is a slight change in height, two layers of clusters that are in the same
space, but have a different z value, will not be defined as belonging to the same
room (see Figure 4.11).

34 methodology

Figure 4.11: Clusters in one corridor having a different ID, because of slight variation in z
value

In order to solve this problem, a merging step is added after clustering, explained
in Algorithm 4.2. It finds clusters that are overlapping and only 1 voxel in height
apart from each other. The clusters are merged by updating the cluster ID of one of
them, and the process is repeated until the number of distinct cluster IDs remains
the same, meaning that there are no more clusters to be merged in this way.

Algorithm 4.2: Merging clusters that differ one voxel in height
Input: A set of walkable voxels V
Output: An updated set of walkable voxels V

1 di f f Len← 1
2 newLen← length(distinct(Vid))
3 while di f f Len > 0 do
4 oldLen← newLen
5 # execute SQL query
6 “SELECT V1.Vid, V2.Vid
7 FROM V AS V1, V AS V2
8 WHERE (V1.x = V2.x AND V1.y = V2.y AND V1.id 6= V2.id AND

|V1.z−V2.z| ≤ 1)”
9 V2.Vid ← V1.Vid

10 newLen← lenght(distinct(Vid))
11 di f f Len = oldLen− newLen

Merging clusters based on trajectory

When larger variations in floor height occur in one room, for example with the
presence of stairs, the merging of clusters based on vertical neighbourhood will not
work (see Figure 4.12). To join those clusters the trajectory of the laser scanner can be
used. The trajectory does not only hold information on where the laser scanner was,
but also when it was there. There is a time stamp included in all trajectory voxels.
Together with the location of doorways (described in Section 4.2), the trajectory can
be split at the location of doors. Each part of the trajectory, which goes from a
door to another door, is given a similar ID. All separate clusters that are below a
trajectory part are grouped in the same cluster. This only needs to happen in the
case of stairs included in a single room, and not when a stair connects two spaces.
Therefore for all separate clusters that are to be grouped, it is also checked if they
are connected to more than one door. If so, the cluster is not grouped.

4.3 indoorgml network creation 35

Figure 4.12: Floor space in same room assigned different ids, because of larger variation in
z value

4.3.2 Extracting the connectivity graph

When all walkable voxels are clustered based on the indoor space they belong to,
a connectivity graph can be extracted from this. The type of graph that is aimed
for in this thesis is the IndoorGML thick wall model (see Figure 2.2, which also
contains nodes at the location of doors. In this subsection it is explained how a
basic IndoorGML connectivity graph is obtained from the walkable voxel clusters
and locations of nodes.

Node creation

Initially, in the method discussed up until this point, every time the laser scanner
trajectory crosses a door, a node is created in this door. This will lead to doors
that were walked through multiple times having multiple nodes, which should be
merged into one. This can be done by executing a neighbour search for all trajectory
voxels in doors, and grouping the ones that are close to each other.

average point

Figure 4.13: Average x,y of an L-shaped polygon

The location of room and corridor nodes should be determined by the geometry
of these spaces. The node that represents such a space should of course also be
inside the space. This is straightforward for convex spaces, because simply the aver-
age x and y value can be taken from all voxels that belong to that space. Finding a
point inside a concave space is more complicated, because this average value could
end up being outside of the shape (Figure 4.13). For this a polygon first needs to
be modelled around all voxels belonging to the room or corridor cluster. This is

36 methodology

discussed further in Section 4.3.3. Another solution is to randomly pick one of the
voxels belonging to the cluster, but this will often not be a general representation of
the shape.

Stairs and slopes

Besides detecting which voxels are walkable floors, Staats [2017] also defined which
voxels are part of stairs or slopes. In IndoorGML stairs are part of the class Transi-
tionSpace, just like corridors, and can thus be separate indoor cells, represented with
a node in the network. Using the timestamps of voxels in the trajectory, as done in
Section 4.3.1, it can be checked which two indoor spaces the stair is connecting. If
one of those spaces is not connected to a door, as for instance the top floor in Figure
4.12, they should not be assigned a separate ID, but the same as the other floor.

Connectivity determination

Connectivity is determined based on the location of door, stair and slope nodes
and the coordinates of the voxels belonging to floor clusters. Every door, stair
and slope that has been detected is connecting two indoor spaces with each other,
which is why the connectivity network is built up from these nodes. By applying a
neighbourhood search to every door node it is detected which two spaces lie right
beside it, and thus which two spaces it is connecting. For the stairs and slopes a
node is created at the top and bottom of the stairs (see Section 4.4.2). For the top
stair node it is known that it is connected with the bottom stair node, and a space
or doorway at the top. The bottom stair node is connected with the top stair node
and a space or doorway at the bottom. With this information determined the first
version of the connectivity NRG can be generated.

An example of an IndoorGML connectivity NRG that is not subspaced is shown
in Figure 4.14.

TransitionSpace
ConnectionSpace
GeneralSpace

Figure 4.14: Example of an IndoorGML connectivity graph with a stairway

4.3.3 Geometry modelling

The modelling of a 2D geometry for all rooms and corridors in the navigation net-
work is important for various reasons. Firstly, it is necessary to find the shape of
an indoor space for the placement of nodes in the graph, as mentioned in Section
4.3.2. Not only is it needed for the placement of single nodes in rooms, but also
for the placement of extra nodes in more complex shapes, such as long corridors
with multiple connections. This idea is discussed in further detail in Section 4.4.
Secondly, the geometry of a space can be used as an addition to the IndoorGML
model. In this case the geometries of the spaces should be non-overlapping, and

4.4 subspacing 37

ideally the geometries of adjacent spaces should touch. For IndoorGML geometry
modelling the 2D model can be extruded to a 3D model, using height information
from the point cloud.

The 2D geometry of a group of voxels representing a certain room is modelled
using the α-shape, as described in Section 2.3.1. This method is very dependent
on the value chosen for parameter α, which is why in the implementation (Section
5.2.5) tests are discussed that provide an overview of the optimal value for α.

4.3.4 Accessibility information extraction

As concluded in Section 3.4 it is not possible to obtain some kinds of accessibil-
ity information from a point cloud, such as opening hours, or accessibility rights
for certain people. As a proof of concept, it is therefore decided to include only
geometric accessibility information, such as the location of stairs. However, it is
not specified in IndoorGML how to save this information in the model, because
an accessibility NRG varies depending on the different restrictions for different peo-
ple. This is why the method in this thesis is limited to saving this information in a
database, so that it can be obtained at a later moment to construct a person-specific
accessibility graph. Two types of accessibility information are extracted as a proof
of concept:
• The location of stairs and sloped surfaces, which is already available from

previous methods discussed.
• The width and height of doors. The width can be detected by finding the

closest point cloud voxels around a trajectory voxel marked as a door in the
horizontal plane. Using the same method as the door detection method look-
ing around the trajectory (see Section 4.2.2) the distance between the pair of
voxels on both sides of the doorway can be calculated. The height of the door
can be found by counting how many voxels there are above and below the tra-
jectory voxel inside a door before a point cloud voxel is detected. This number
has to be multiplied with the voxel size.

4.4 subspacing
Based on related work on subdivision of indoor spaces for navigation networks
(Section 3.4) it is decided to only apply subdivision on indoor spaces that connect
multiple spaces, such as corridors (TransitionSpace in IndoorGML). This information
can be retrieved from the connectivity NRG, by analysing the number of connections
that a node makes, and selecting all nodes that are connected to two or more nodes.

The α-shapes created by the method described in Section 2.3.1 are used as input
for the subspacing step. Various methods are described in Section 3.4 for the sub-
spacing of 2D polygons for navigation networks. Probably the most straightforward
and easy, especially for straight corridors, is subdivision of the geometry into equal
parts, and placing a node in the centres of the parts (Figure 4.15a). Although this
method will produce extra nodes in an indoor space, these nodes are often not at
the most convenient locations for navigation, as shown in example (Figure 4.15b).
The route created between the two doors is not representative of the route that a
person would prefer to walk. Therefore a more complex subdivision method is pro-
posed in this section, based on the MAT of the space and location of doors connected
to this space.

38 methodology

Route between two doors in hallway

a

1
4a

1
4a

1
4a

1
4a

Location of subspaced nodes
Subdivision of geometry

(a) Subdivision of a polygon into equal parts

a

1
4a

1
4a

1
4a

1
4a

Location of subspaced nodes
Route between two doors in hallway

(b) Route from one door to another when hall-
way is equally subdivided

Figure 4.15: Equal-parts subdivision of a space

4.4.1 Subspacing using the MAT

An explanation of how the MAT of 2D polygons is defined can be found in Section
2.4.1. For an indoor space that has to be subdivided the α-shape generated around
all its voxels can be used. The 2D MAT will be in the middle of the corridor, consist-
ing of line segments representing the skeleton of the polygon. For every door that is
connected to the corridor the closest point on the MAT should be found, and added
as a node to the network (see Figure 4.16). Extra nodes can be defined at T-junctions
and in sharp turns, because here more than two line segments of the MAT come to-
gether in one point. If a coordinate only occurs once in the set of line segments it
means that this point is an endpoint. When the locations of subspaced nodes are
found, connectivity relationships between them are not automatically defined. For
this an analysis of the order of line segments in the MAT is done.

MAT

Location of subspaced nodes

Projection of doors on MAT

Figure 4.16: Node generation based on MAT in an L-shaped corridor with T-junction

The internal connectivity between subspaced nodes of an indoor space can be
found by doing an analysis based on the order of line segments in the MAT. First
of all the line segments are revised and line segments with subspaced nodes on
them are split at that location (Algorithm 4.3). After this step the connectivity re-
lationships can be defined for a node by looping through MAT line segments and
connecting them end-to-end, until a next node is found. The pseudocode for this
algorithm can be found in Algorithm 4.5. It makes use of the recursive function
linestringLookup, in which the lines are connected end-to-end, explained in Algo-
rithm 4.4.

4.4 subspacing 39

Algorithm 4.3: Linestrings are split at the location of subspaced nodes
Input: List of x,y coordinates of subspace nodes (value) Coords, Collection

of linestrings representing the MAT Lmat, List of end points of the
MAT EndP

Output: Updated collection of linestrings that are split at nodes LmatFilt
1 # First split linestrings that have a node somewhere on them into 2 parts
2 LmatFilt← ∅
3 foreach linestring L in Lmat do
4 onDoor← False
5 foreach Coord in Coords do
6 if Distance(L,Coord) < 0.001 then
7 onDoor← True
8 L1 = First point on L
9 L2 = Second point on L

10 Append Linestring(L1, Coord) to LmatFilt
11 Append Linestring(L2, Coord) to LmatFilt

12 if not ondoor then
13 Append L to LmatFilt

Algorithm 4.4: Recursive function linestringLookup
Input: Next point to be found FindPoint, Previous point visited PrevPoint,

Dictionary of ID (key) and geometry (value) of subspaced nodes
and endings of MAT EndNodes, Collection of linestrings (split at
location of nodes) representing the MAT LmatFilt, List of
linestrings Lnodes

Output: List of linestrings between 2 nodes Lnodes
1 # When an end node is reached, stop recursions
2 foreach ID,EndNode in EndNodes do
3 if FindPoint == EndNode then
4 return

5 foreach linestring L in LmatFilt do
6 L1 = First point on L
7 L2 = Second point on L
8 #Prevent recursion from going back and forth between the same points

with the ’and not’ clause
9 if FindPoint == L1 and not PrevPoint == L2 then

10 Append L to Lnodes
11 Run linestringLookup with L2 as FindPoint, and FindPoint as

PrevPoint (the rest stays the same)
12 return Lnodes

13 else if FindPoint == L2 and not PrevPoint == L1 then
14 Append L to Lnodes
15 Run linestringLookup with L1 as FindPoint, and FindPoint as

PrevPoint (the rest stays the same)
16 return Lnodes

40 methodology

Algorithm 4.5: Finding connectivity between subspaced nodes
Input: Dictionary with ID of subnode (key) and x,y coordinates of node

(value) Sn, Collection of linestrings (split at location of nodes)
representing the MAT LmatFilt,Dictionary of ID (key) and
geometry (value) subspaced nodes and endings of MAT EndNodes

Output: Dictionary with pairs of connected nodes (key) and
multilinestring geometry between them (value), ConnDict

1 foreach ID,Coord in Sn do
2 foreach linestring L in LmatFilt do
3 LineList = List(L)
4 L1 = First point on L
5 L2 = Second point on L
6 if L1 == Coord then
7 LineList = linestringLookup with FindPoint = L2, PrevPoint =

Coord, EndNodes = EndNodes, LmatFilt=LmatFilt,
Lnodes=LineList

8 Add (endpoint,ID) to ConnDict with value LineList

9 else if L2 == Coord then
10 LineList = linestringLookup with FindPoint = L1, PrevPoint =

Coord, EndNodes = EndNodes, LmatFilt=LmatFilt,
Lnodes=LineList

11 Add (endpoint,ID) to ConnDict with value LineList

4.4.2 Subspacing of stairs and slopes

As discussed in Section 4.3.2 in IndoorGML stairs are referred to as TransitionSpace.
A staircase will be marked with a node in the connectivity NRG. The stair node
needs to be subspaced, in order to make a more complete navigation network. It
does not state in IndoorGML how this must be implemented, so it has been chosen
to divide the stair node into two: one node at the top, and one at the bottom, at
which locations the stairs connect two different spaces.

These locations are found by analysing the trajectory voxels in order of capture
time, and detecting the locations at which a change occurs between floor voxel and
stair or slope voxel. In order to prevent multiple nodes occurring for the same stair
that has been walked on multiple times, a neighbour search similar to the one for
door nodes is executed, as described in Section 4.3.2.

5 I M P L E M E N TAT I O N , E X P E R I M E N T S
A N D D E V E LO P M E N T R E S U LT S

The implementation details of the methodology of this thesis are discussed in this
chapter. First the hardware, software and datasets used are discussed in Section
5.1. Distinction is made between two datasets: the development point cloud, on
which the methods were developed, and the test point cloud, of which the results
are shown in Chapter 6. The implementation of the methodology proposed in
Chapter 4 is presented in Section 5.2. Lastly experiments to evaluate the results of
the methods on the test point cloud are presented in Section 5.3

5.1 tools and datasets

The software, hardware and datasets used to develop and evaluate the methodology
are discussed in this section, starting with a discussing on software (Section 5.1.1).
Secondly the hardware used for gathering the point clouds and type of computer
used to run the algorithms are described in Section 5.1.2, and finally the develop-
ment and test datasets are reported in Section 5.1.3.

5.1.1 Software

In this section an overview is given of software used in this thesis. An elaboration
on how they were used is given in Section 5.2.

Python

The programming language Python (version 2.7) is used in the implementation of
most steps of the methodology, because of its ease in prototyping and the availabil-
ity of various external packages to support the algorithms. The following Python
packages are used in this thesis:

• NetworkX1 can be used for creation, manipulation and structuring of network
graphs. It is used in this thesis to analyse the navigation network generated
by the methodology.

• NumPy2 is an extension for Python to support numerical algorithms for multi-
dimensional arrays. In this thesis NumPy is used for working with multi-
dimensional arrays and linear algebra operations.

• psycopg2
3 supports database transactions from Python. It is used to connect

to a PostgreSQL database where the point cloud, trajectory and network are
stored.

• pykdtree4 is used to generate a KD-tree for point clouds, in order to execute
faster neighbour search.

1 https://networkx.github.io/

2 http://www.numpy.org/

3 http://initd.org/psycopg/

4 https://github.com/storpipfugl/pykdtree

41

https://networkx.github.io/
http://www.numpy.org/
http://initd.org/psycopg/
https://github.com/storpipfugl/pykdtree

42 implementation, experiments and development results

• SciPy5, and especially SciPy Spatial6 offers a variety of spatial and geometric
functions, of which Delaunay triangulation is used for the creation of the α-
shapes for floor plan reconstruction.

• Shapely7 supports the manipulation and analysis of 2D geometric objects. It is
used to read and write Well-Known Text (WKT) and Well-Known Binary (WKB)
strings, bridging the gap between Python and PostgreSQL.

• skel3d8 is developed by Peters [2018] to retrieve the 3D Medial Axis Trans-
form (MAT) from a point cloud in Python. It also offers functions for setting
parameters for processing the MAT.

PostgreSQL9
with PostGIS10

PostgreSQL (both version 9.5 and 10 used) is a free database management system
used to store the point cloud, trajectory, its octree and the connectivity network.
PostGIS (both version 2.3 and 2.4 used) is an extension on PostgreSQL, which pro-
vides support for geometric objects, and comes with a variety of spatial functions.

CloudCompare
11

An open source point cloud and mesh visualisation and processing software used
for file format conversions and visualisation purposes in this thesis.

Paraview
12

An open source analysis and visualisation software for scientific purposes. It is
used for the visualisation of the voxelised point cloud and connectivity network.

5.1.2 Hardware

ZEB-REVO
Both the point cloud used in the development phase and the one used in the eval-
uation of the methods were captured with a ZEB-REVO laser scanner. This is a
hand-held Mobile Laser Scanner (MLS), which can be used while walking around
in a building. In order to process the output, Simultaneous Localization and Map-
ping (SLAM) is used, as explained in 3.1. This is an algorithm that uses a combination
of the Inertial Measurement Unit (IMU) and object recognition in the point cloud to
locate the scanner. The further away the scanner is from the starting point, the
worse the accuracy. The following specifications are listed in a brochure for the
ZEB-REVO laser scanner [GeoSLAM, 2017]:

• Scanning range: 30 m (outdoors may range 15–20 m)

• Data acquisition rate: 43,200 points/sec

• Relative accuracy: 1–3 cm

• Absolute positioning accuracy: 3–30 cm, after 10 minutes of scanning

Computer

With regards to experiments which discuss processing time of algorithms, the spec-
ifications of the computer used are given.

• Laptop: Dell Latitude 5580 running on Windows 10

5 https://www.scipy.org/

6 https://docs.scipy.org/doc/scipy/reference/spatial.html

7 https://github.com/Toblerity/Shapely

8 https://github.com/Ylannl/skel3d

9 https://www.postgresql.org/

10 https://postgis.net/

11 https://www.danielgm.net/cc/

12 https://www.paraview.org/

https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/spatial.html
https://github.com/Toblerity/Shapely
https://github.com/Ylannl/skel3d
https://www.postgresql.org/
https://postgis.net/
https://www.danielgm.net/cc/
https://www.paraview.org/

5.1 tools and datasets 43

• Processor: Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz

• Sytem type: 64-bit Operating System, x64-based processor

5.1.3 Datasets

Two indoor point clouds and their trajectories were used in this thesis. The first
one is used to develop the methodology on, and the second one is used to test the
algorithms and validate the methodology.

Development dataset

The point cloud and trajectory used to develop the methods on is captured in the
Architecture faculty of Delft University of Technology, the Netherlands (Figure 5.1),
using a ZEB-REVO hand-held laser scanner. The point cloud consists of more than
37.8 million points. It is made up of two floors of a building, but also includes
rooms that are on ‘half a floor’, and a big room that spans two floors in height.
It contains multiple staircases. For each experiment and test in this chapter only
parts of this point cloud are used for development, to save processing time of the
algorithms.

Figure 5.1: Development point cloud, captured in the Architecture faculty of Delft University
of Technology, the Netherlands

Test dataset

The test dataset used to independently evaluate the methods proposed in this thesis
is one of the International Society for Photogrammetry and Remote Sensing (ISPRS)
benchmark datasets [Khoshelham et al., 2017], captured with a ZEB-REVO laser
scanner in one of the buildings of Technische Universität Braunschweig, Germany
(Figure 5.2). The point cloud consists of almost 21.7 million points. The building
was unfurnished at the time of capture, so there is less clutter and occlusion of
walls than in the development dataset. It consists of two floors, connected with a
staircase. There are no rooms at unequal floors, and both floors are approximately
the same height. Some rooms are passed by, but not scanned thoroughly.

A summary of both point clouds and some of their characteristics are given in
Table 5.1.

Dataset Nr of points Furniture Multiple floors Unequal floors
Development 37.8 million Yes Yes Yes
Test 21.7 million No Yes No

Table 5.1: Summary of characteristics of datasets used

44 implementation, experiments and development results

Figure 5.2: Test point cloud, captured in one of the buildings of Technische Universität Braun-
schweig, Germany

5.2 implementation 45

5.2 implementation

5.2.1 Voxelisation and walkable space

The walkable voxel detection algorithm making use of octree generation is de-
scribed in Section 2.2. It includes some parameters that influence the outcome.

Voxel size The ideal size for smallest leaves of the octree for the detection of
walkable voxels is determined by Staats [2017] to be 7 cm, because this is small
enough to detect stairs, and much smaller voxels will lead to longer processing
times. The octree generation depends on input of octree depth, not voxel size. In
order to get the right voxel size, the depth has to be adjusted to give the right
output.

Filtering As point clouds gathered with laser scanners often have some noise
in the output, a filtering can be applied making use of the voxels. By leaving out
voxels that don’t have more than a certain number of points inside them, noisy
voxels can be eliminated. This number has been tested by Staats [2017], but no
specific value is recommended.

Dynamic objects A filtering is also applied to remove dynamic objects, such
as people walking through a room. This is done by comparing two different time
frames of the captured point cloud. When a room is passed by twice, for instance,
it is checked whether all voxels generated from the first round are also generated
again in the second round. This is done based on the timestamps of the points. The
difference in timestamps is another parameter to be taken into account.

5.2.2 Wall sheet extraction

As discussed in Section 4.1 there are five main parameters to be taken into account
when distinguishing between medial sheets inside walls, and medial sheets not
inside walls, also expressed in Table 4.1.

In summary the separation angle θ of medial balls inside a wall sheet should
be approaching 180

◦. The radii should have low median values (half the thickness
of walls), and low standard deviations. Furthermore the z component of normal
vectors of the MAT points should have a low median value, because they point
sideways. Lastly the total number of points in a sheet should have a high value.
This has been translated in a number of tests on a clipped part of the development
point cloud, shown in Figure 5.3. The point cloud covers two floors, both having
hallways with rooms adjacent to them.

Figure 5.3: Clipped part of development point cloud, used for testing wall sheet generation

46 implementation, experiments and development results

Test 1: Number of Points

One of the theoretical requirements is that the number of points in a sheet should
be high. In this test it is determined what number is high enough. Firstly all sheets
that have a radius smaller than 0.6 m are left out, to remove the most apparent
noise. The results for sheets having less than 500 points gave much noise, so it is
decided to show results for sheets that have number of points between 500 and 1000

in red, and more than 1000 points in blue in Figure 5.4a. In Figure 5.4b sheets with
a number of points between 1000 and 1500 are shown in red, and above 1500 in
blue. As can be seen, the first criteria filter out a lot of noise, and no wall sheets
are removed. With the second criteria some (parts of) wall sheets are removed, so
the best value for the parameter would be a minimum of 1000 points per sheet. It
should be noted that these parameters are highly dependent on the density of a
point cloud.

(a) In red sheets left out when nr of points is between 500 and 1000

(b) In red sheets left out when nr of points is between 1000 and 1500

Figure 5.4: Tests executed for filtering on number of points (initial filter of median radius <
0.6m)

5.2 implementation 47

Test 2: Median Radius

The second test done is by filtering the sheets based on median radius. As discussed
the median radius should be comparatively small, because the sheets formed inside
walls should have a median radius about the same size as half the thickness of the
wall. Tests are shown in Figure 5.5, with initial filtering of sheets that have a number
of points higher than 1000. These tests show that filtering of sheets with median
radius between 0.2 and 0.4 m could leave out wall sheets, whereas a filtering with
median radius above 0.4 m only removes non-wall sheets.

(a) Blue: sheets with median radius < 0.2 m, Red: sheets with median radius between 0.2
and 0.4 m

(b) Blue: sheets with median radius < 0.4 m, Red: sheets with median radius between 0.4
and 0.6 m

Figure 5.5: Tests executed for filtering on median radius, with initial filter of number of
points > 1000

48 implementation, experiments and development results

Test 3: Median separation angle

Theoretically the value of the separation angle of medial balls, θ, should be ap-
proaching 180

◦ when in a wall sheet. Experiments have been done with initial
filtering that sheets must have more than 1000 points. In the wall sheets the sepa-
ration angle is saved in radians, so the maximum value is π radians. Test are done
with θ having a median of minimum 0.9π, 0.8π and 0.7π. In Figure 5.6 the results
of tests are shown. As can be seen in Figure 5.6a there wall sheets removed when
filtering sheets with a median θ below 0.9π, but below 0.8π there are no wall sheets
removed. The ideal value for θ would thus be 0.8π radians.

(a) Blue: sheets with median θ having a median of minimum 0.9π, Red: sheets with median
θ between 0.8π and 0.9π

(b) Blue: sheets with median θ having a median of minimum 0.8π, Red: sheets with median
θ between 0.7π and 0.8π

Figure 5.6: Tests executed for filtering on median separation angle, with initial filter of num-
ber of points > 1000

Test 4: Standard deviation radius

The fourth test for wall sheet filtering is done based on the standard deviation of
radii in sheets. As discussed the smaller the standard deviation, the larger the
chance that a MAT sheet is inside a wall. The results of the tests executed are shown
in Figure 5.7. It can be seen that when filtering sheets with a standard deviation
of the radius below 0.03 m will filter out wall sheets, whereas above 0.04 m the
filtering has no effect on the wall sheets any more. The value of this parameter is
thus set at 0.04 m.

5.2 implementation 49

(a) Blue: sheets with the standard deviation of the radius < 0.02 m, Red: sheets
with standard deviation of the radius between 0.02 and 0.03 m

(b) Blue: sheets with the standard deviation of the radius < 0.03 m, Red: sheets
with standard deviation of the radius between 0.03 and 0.04 m

(c) Blue: sheets with the standard deviation of the radius < 0.04 m, Red: sheets
with standard deviation of the radius between 0.04 and 0.05 m

Figure 5.7: Tests executed for filtering standard deviation of radius in sheets, with initial
filter of number of points > 1000

50 implementation, experiments and development results

Test 5: z-value normal vector n
The final test done is to find the optimal value for the absolute value of nz, the z
component of the normal vector of the points. This is done to distinguish between
wall and floor sheets. The initial filtering for this combines all previously found
parameters in test 1 to 4, to keep all sheets in walls and floors at first. There is a
big gap in the z-value of normal vectors in all filtered sheets, because the sheets are
either floor-, or wall sheets. This is shown in the histogram in Figure 5.8. The limit
for nz can be put anywhere between 0.2 and 0.9. The results of testing with a value
of 0.5 for nz is shown in Figure 5.9.

Figure 5.8: Histogram showing dispersion of median nz values in filtered sheets

Figure 5.9: Blue: sheets with the absolute value for nz < 0.5, Red: sheets with the absolute
value for nz > 0.5

A summary of the found values for each parameter is shown in Table 5.2.

Parameter Value in MAT sheet
Total number of points > 1000

Median radius r < 0.4 m
Separation angle θ > 0.8π radians
Standard deviation radius r < 0.04 m
Z value normal vector nz Between 0.2 and 0.9

Table 5.2: Values for parameters for filtering MAT sheets

5.2 implementation 51

5.2.3 Doorway detection

Geometric door detection

The geometric door detection algorithm, as explained in Section 4.2.1, is imple-
mented in Python. A plane is fitted through all points belonging to one MAT wall
sheet. The trajectory is tested for intersections with this plane. Using the plane
parameters the wall and intersection points are rotated to the horizontal plane, so
the z value can be temporarily removed. A convex hull is fitted around the 2D wall
points, and it tested for the intersection points whether they lie inside this convex
hull. The ConvexHull function from scipy.spatial is used for this. For a wall sheet
spanning two floors, with four door-shaped gaps, three locations of doors are found
(Figure 5.10). This is because the fourth door is a closed portal, and was not walked
through (Figure 5.11).

X axis (int)

302520151050
Y axis (int)

0 2 4 6 8 10

Z axis (int)

0

2

4

6

8

10

12

Point cloud points
Door intersections

Figure 5.10: Three doors are found when intersecting the convex hull of a MAT sheet with
the trajectory

Figure 5.11: A MAT wall sheet (left) generated in a point cloud (right) with one closed door

However, the method is not flawless. An example where this method does not
find a door that has been walked through is given in Figure 5.12. Moreover, if a

52 implementation, experiments and development results

doorway is of the same height as the ceiling, first the wall sheets to the right and left
side should be found to create a convex hull for, adding another step of complexity.
Because of the limits that this method poses, and the fact that it needs an extra step
to separate the voxelised walkable space - this method has not been included in the
final results, and only the voxelised door detection has been regarded.

X axis (int)

26.025.525.024.524.023.523.022.522.0
Y axis (int)

26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0

Z axis (int)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Point cloud points

Figure 5.12: When a wall sheet does not cover the whole door frame, a door is not detected
when testing for intersection

Voxelised door detection

The voxelised door detection method, as explained in Section 4.2.2, is developed
for doors with a MAT wall sheet above them (upwards-looking method), and doors
that are of the same height as the ceiling (sideways-looking method). Both are
implemented by executing database statements from Python, making use of the
psycopg2 module. For the first method an example of finding voxels of the original
point cloud below the MAT wall sheets is shown in Figure 5.13. These voxels are
given an attribute in the database that marks them as unfit to be used in the region
growing algorithm. There are also some voxels found inside walls, but this does
not have any effect on the region growing, because they are not on a floor anyway.
Besides detecting voxels on the floor inside a doorway, also the locations of doors
in the trajectory are detected, which are later used for node creation inside doors.

Figure 5.13: Voxels (in red) marked as unfit to be used in region growing algorithm, because
they could be inside door frames

5.2 implementation 53

Although the development point cloud had no examples of doors being of the
same height as the ceiling, the second method, which looks at both sides of the
trajectory to find potential doors, is tested as well. An example is shown in Figure
5.14a, where two voxels are detected in the MAT sheet that lie on opposite sides of
each other in a door frame. A line is generated between the two points in Figure
5.14b. The voxels of the original point cloud that lie directly beneath this line
are also marked as unfit for region growing, making sure they are not taken into
account for this next step. The location of this door is marked in the trajectory as
well.

(a) Points that are opposite one another in
a door frame, having the shortest dis-
tance to one another

(b) Line with 8-connectivity generated
from those points

Figure 5.14: Line generation for voxel detection on floor in doorways

5.2.4 Connectivity graph

Connectivity relationships need to be established in the indoor environment by
looking at which two spaces are connected by a door node, and which spaces are
connected to both the top or bottom of a stairway or slope. As described in Section
4.4.2 stairs and slopes get a node at their top and bottom, for which connectivity re-
lationships are established. This is done based on the locations where the trajectory
changes from floor to slope or stair, and vice versa. After this walkable voxels are
found by applying the region growing algorithm, as explained in Section 2.2.2. It is
executed on a part of the development point cloud, which also incorporates slopes,
stairs and different floor levels (Figure 5.15).

Figure 5.15: Point cloud used for testing the connectivity graph creation on

54 implementation, experiments and development results

The walkable voxel region growing algorithm is executed with the restriction
that voxels that were detected inside door frames cannot be used. This generates
clusters representing separate indoor spaces (see Figure 5.16). For every door, stair
and slope it is then determined which two spaces it is connecting. This information
is represented in the connectivity Node-Relation Graph (NRG), shown in Figure 5.17.
The nodes in rooms are defined at convenient locations for visualisation. As can be
seen, the resulting graph is not useful for navigation yet. Both the large corridor
and hall, which are respectively shown as dark blue and yellow in Figure 5.16, only
have one node, making routes through these spaces differ a lot from reality. This
shows that subspacing is necessary for the connectivity NRG, of which the results
are shown in Section 5.2.6.

Figure 5.16: Result of walkable space detection where all separate rooms and corridors are
marked in different colours, and stairs/slopes shown in light grey

Figure 5.17: Connectivity graph of an indoor point cloud (red = stair or slope, green = door,
orange = room)

The red region in the bottom left of Figure 5.16 actually consists of two separate
spaces. A door location has been detected between them, but not enough voxels
have been removed between the two spaces, which leads to them still being con-
nected in the doorway (see Figure 5.18). This has been overcome for the subspaced
connectivity graph (see Figure 5.24) by creating a buffer around the voxels inside
the doorframe that were removed, and removing more voxels inside this buffer.

5.2 implementation 55

Figure 5.18: Example of two rooms not being separated enough

5.2.5 Geometry modelling for floor voxels

In order to get a 2D polygon representing the floor space of every room and cor-
ridor in the network, an α-shape is modelled around all voxels belonging to each
indoor space. An α-shape is very dependent on the parameter α, that defines which
triangles of the Delaunay triangulation must be kept in the point cloud, and which
can be discarded. Therefore multiple values for this parameter are tested on a set
of voxels belonging to a corridor that has both an L-shape and a T-junction (Figure
5.19). The best value of α also depends on the shape of the 2D MAT it will create in
the resulting polygon, which is discussed in Section 5.2.6.

Figure 5.19: The voxels belonging to the corridor used to test the best value for α

α-shape creation is implemented in Python, using the Delaunay triangulation
function from the scipy.spatial package, and filtering triangles based on whether
size of their circumcircle is smaller than α. For different values of α the results
in Figure 5.20 are obtained. It can be observed that a polygon created with an α
value of 5 will be very sharp around the edges of corners, which is an advantage,
but it also produces more noise in the rest of the corridor, for instance at locations
with small gaps in the data. An α value of 15 does not cover more gaps, but instead
produces more noise, which makes the value of 10 a good option for approximating
the shape of a hallway. It takes 8.6 seconds to create this shape using the script in
Python.

56 implementation, experiments and development results

300 400 500 600 700
x value voxels (integer)

400

450

500

550

600

650

700

y
va

lu
e

vo
xe

ls
(in

te
ge

r)

Alpha shape (based on scipy.geometry) around corridor voxels

Polygon with alpha of 15
Polygon with alpha of 10
Polygon with alpha of 5

Figure 5.20: Polygons as result of different values for α

Besides the conventional way to create the α-shape – by applying Delaunay trian-
gulation and filtering the triangles based on their circumcircle – the ST ConcaveHull
function of PostGIS is also tested. This function does not filter triangles based on
α, but produces a shape that has an area at ‘target percentage’ of the convex hull.
This target percentage is the variable that can be changed in the function. As shown
in Figure 2.8 the area of the output shape decreases with smaller α, although not
linearly. The results of ST ConcaveHull with different target percentage values are
shown in Figure 5.21. The shapes look very much alike, although they should be
differing in area. The documentation13 notes that the result often ‘overshoots’, so
this could be the cause of the shapes looking much alike. When low values for the
target percentage are used the processing time increases rapidly, but no results are
obtained that represent the geometry of the corridor in an according way. The time
it takes to create the shape with target percentage of 0.1 is 1025.24 seconds, so ap-
proximately 17 minutes. Since the output shape and processing time of the α-shape
in Python are both better, it can be concluded that for this purpose the α-shape
creation in Python is a better option than the concave hull creation in PostGIS.

300 400 500 600 700
x value voxels (integer)

400

450

500

550

600

650

700

y
va

lu
e

vo
xe

ls
(in

te
ge

r)

Concave hull (based on PostGIS) around corridor voxels

Concave hull with target percentage area 0.9 of convex hull
Concave hull with target percentage area 0.6 of convex hull
Concave hull with target percentage area 0.1 of convex hull

Figure 5.21: Polygons as result of different target percentages in ST ConcaveHull

13 https://postgis.net/docs/ST_ConcaveHull.html

https://postgis.net/docs/ST_ConcaveHull.html

5.2 implementation 57

5.2.6 Subspacing the network

In order to subspace the nodes in corridors the 2D MAT is created for the geometry
representing the corridor (see Section 2.4.1). The resulting skeleton should not have
too many branches, to prevent nodes being formed at locations where they are
unnecessary. On the other hand could the lack of branches cause nodes not to be
formed at junction points and in L-turns. An optimal value for filtering the shape
of the 2D MAT is discussed in this Section.

The MAT is produced for the polygon created with an α value of 10. For this
the ST ApproximateMedialAxis function of PostGIS is used (Figure 5.22a). As can
be observed, the unfiltered result has too many for the purposes of this research,
and should be filtered. A filtering function of PostGIS is used for this: ST Simplify.
This function uses the Douglas-Peucker algorithm (see Section 2.3.2) to simplify the
polygon first, after which the MAT is defined for it. The results of this are shown
in Figure 5.22b-5.22d. With a filtering value of 1 there are still some branches at
unwanted locations, whereas with a filtering value of 3 the branch in the L-turn is
still kept, but no branches due to noise are present. When a value of 4 is used the
branch in the L-turn disappears.

300 400 500 600 700
x value voxels (integer)

400

450

500

550

600

650

700

y
va

lu
e

vo
xe

ls
(in

te
ge

r)

Medial Axis of a polygon

Medial Axis
Polygon with alpha of 10

(a) Medial axis of the corridor without filter-
ing

300 400 500 600 700
x value voxels (integer)

400

450

500

550

600

650

700

y
va

lu
e

vo
xe

ls
(in

te
ge

r)

Medial Axis of a polygon

Medial Axis with filtering value of 1
Polygon with alpha of 10

(b) Medial axis of the corridor with Douglas-
Peucker filtering value of 1

300 400 500 600 700
x value voxels (integer)

400

450

500

550

600

650

700

y
va

lu
e

vo
xe

ls
(in

te
ge

r)

Medial Axis of a polygon

Medial Axis with filtering value of 3
Polygon with alpha of 10

(c) Medial axis of the corridor with Douglas-
Peucker filtering value of 3

300 400 500 600 700
x value voxels (integer)

400

450

500

550

600

650

700

y
va

lu
e

vo
xe

ls
(in

te
ge

r)

Medial axis of a polygon

Medial Axis with filtering value of 4
Polygon with alpha of 10

(d) Medial axis of the corridor with Douglas-
Peucker filtering value of 4

Figure 5.22: Medial axis of the corridor with Douglas-Peucker filtering

After the medial axis of the polygon representing a hallway is found, the closest
location for each door on the medial axis is found and saved as a node. Coordinates
in the medial axis that have three or more connections, such as junction points in cor-
ners, are also assigned a node. The connection between these nodes is determined,
and all are saved in the subspaced connectivity graph. The results of applying this
on the corridor in the point cloud that was used to create the connectivity graph for
(marked in blue in Figure 5.16) are shown in Figure 5.23.

58 implementation, experiments and development results

200 300 400 500 600
x (int)

300

400

500

600

700

800

900

y
(in

t)

Original door locations
Junction points projected on Medial Axis

Figure 5.23: Results of subspacing a corridor by projecting the location of adjacent doors on
the medial axis

Finally, when applying subspacing on the connectivity NRG that is shown in Fig-
ure 5.17, the results are as shown in Figure 5.24. The routes represented by this
graph are much more realistic than the non-subspaced graph, although the 2D MAT

does not provide the best subdivision of the large hall (shown in yellow in Figure
5.16). In a wide open hall there are multiple routes a person can take, instead of
only the centre line.

Figure 5.24: Subspaced connectivity graph of an indoor point cloud (green = room/corridor,
orange = stair, red = doorway, white = subspaced node)

5.2 implementation 59

5.2.7 Accessibility information

Besides information on the location of stairs and slopes in the network, the width
and height of doors are also extracted as accessibility information (see Figure 5.25).
The door height is obtained by finding the closest voxels in the original point cloud
in the positive and negative z direction from the door node. The same algorithm as
described for finding MAT wall sheet voxels around the trajectory (see Section 4.2)
is used in finding the closest voxels on opposing sides of a door frame, from which
the door width can be obtained. The height and width are calculated in terms of
voxels, and are converted to meters by multiplying the number of voxels in the
height or width by the voxel size. This information is saved in the database table
that contains the location of the doors.

(a) Points found in the width of the door,
used for calculating door width

(b) Points found in the height of the door,
used for calculating door height

Figure 5.25: Door width and height extracted for the accessibility NRG (red= door node,
purple = point cloud voxel)

5.2.8 Structure of the database

For every step in the methodology that deals with voxels and the final network,
the results are stored in a database, from which the final connectivity NRG can
be retrieved. The structure of database and dependencies of tables is shown in
a Unified Modeling Language (UML) diagram in Figure 5.26, only for the tables
needed in a non-subspaced graph. The Stairs&Slopes table has an id, which is
unique to the node, a stair id, that refers to the stair or slope it belongs to, and
a stair route id, existing for the situation when a staircase is very wide and needs
multiple routes across it. A stair is connected to one space or door, and the other
part of the stair route id. A door is connecting two spaces, which can be either
Stair&Slope spaces, or Rooms. The name Rooms refers to either corridors or rooms;
indoor cells that have a flat floor.

The table that contains information on subspaced nodes is added in Figure 5.27,
and relationships of the three other tables with the Subspaces table are shown. A
record in the Subspaces table refers to which room it belongs to, and saves an array
of neighbours for that node. This array can contain Stair&Slope nodes, Door nodes
or other Subspace nodes. When a subspaced connectivity graph is constructed,
spaces listed as connections for the Doors or Stairs&Slopes table are first checked
whether they occur in the Subspaces table.

60 implementation, experiments and development results

Doors

+ id: varchar

+ x: int

+ y: int

+ z: int

+ space1: varchar

+ space2: varchar

+ doorheight: real

+ doorwidth: real

Rooms

+ id: varchar

+ x: int

+ y: int

+ z: int

+ geometry: geom

Stairs&Slopes

+ id: int

+ stair_id: int

+ stair_route_id: int

+ type: int

+ x: int

+ y: int

+ z: int

+ conn_id: varchar

Figure 5.26: Relationships between three tables making up the non-subspaced connectivity
graph

Doors

+ id: varchar

+ x: int

+ y: int

+ z: int

+ space1: varchar

+ space2: varchar

+ doorwidth: real

+ doorheight: real

Rooms

+ id: varchar

+ x: int

+ y: int

+ z: int

+ geometry: geom

Stairs&Slopes

+ id: int

+ stair_id: int

+ stair_route_id: int

+ type: int

+ x: int

+ y: int

+ z: int

+ conn_id: varchar

Subspaces

+ id: int

+ room_id: varchar

+ x: int

+ y: int

+ z: int

+ neighbours: array[varchar]

Figure 5.27: Dependencies of the Subspaces table in the connectivity graph

5.3 experiments 61

5.3 experiments
In this section the experiments used to evaluate the functioning of the methods on
the test point cloud are described.

5.3.1 Door detection

One metric for evaluating the door detection method is by calculating the percent-
age of correctly detected doors. An analysis is done on the following:

1. How many correct doors are identified?

2. How many doors are identified that are not really there?

3. How many doors are not identified, but are actually there?

In order to do this correctly doors in the test point cloud have been manually
detected. For the test point cloud, all doors are identified, as shown in Figure
5.28. With the methodology proposed in this thesis only the doors that are walked
through (marked in green) can be detected. For the doors in orange it is unsure
whether these are openings that can be walked through, but they look like doors in
the point cloud. In Chapter 6 the results of this experiment are shown.

Opening not walked trough
Opening walked through

Potential opening

(a) Doors indicated in 1st floor of test point cloud

Opening not walked trough
Opening walked through

Potential opening

(b) Doors indicated in 2nd floor of test point cloud

Figure 5.28: All doors manually indicated in the test point cloud dataset

62 implementation, experiments and development results

5.3.2 Navigation network

After doors are detected and the walkable space is divided into separate rooms and
corridors, the navigation network is generated. In the connectivity NRG the structure
of this network is already fixed. Each indoor space should have a node, as do all
doorways, and their connectivity determines the edges. The subspacing of indoor
spaces with multiple connections is something to be left to interpretation, because
there are no strict guidelines found in IndoorGML. The choice of constructing a
MAT in the corridors, and then creating nodes on this linestring at the location of
doors, is not proven to be the best way of subspacing. This is why three individuals
have been asked to draw a navigation network, with nodes in all doors, and at
least one node in a room. The networks drawn are shown in Appendix A. They
are compared with the results of subspacing on the test point cloud in Section 6.3.4,
to see whether the way that nodes were drawn in corridors corresponds with the
way the MAT subspaces a corridor. In order to do so, the location of nodes and the
connections between them will be compared.

6 R E S U LT S A N D E VA L U AT I O N O F T E S T
DATA

In this chapter the results of applying all methods on the test point cloud (Figure
6.1a) are presented and analysed. First of all the Medial Axis Transform (MAT)
wall sheets that were generated for the point cloud are visualised and discussed
in Section 6.1. After this the results of door detection based on these wall sheets
is shown in Section 6.2. Stairs and rooms are found, and together with the doors
the navigation graph is created (see Section 6.3). The results evaluated using the
experiments defined in Section 5.3.

6.1 wall sheet extraction

The results of growing 3D MAT sheets and filtering them according to the parameters
found in Chapter 5.2.2 are shown in Figure 6.1b.

(a) Point cloud used for generation of results

(b) Results obtained by applying MAT growing algorithm and fil-
tering sheets based on parameters

Figure 6.1: Side-by-side comparison of test point cloud and results obtained by 3D MAT wall
sheet generation

63

64 results and evaluation of test data

At first glance the sheets look indeed like they are grown in walls, and that they
can be used for the further methods of this thesis. However, the results are not
flawless compared to the sheets obtained with the development dataset. In most
rooms in the test point cloud the doors are opened, and therefore partly occlude
the wall behind them. No wall sheet can thus be grown in this wall, which could
lead to those specific doors not being detected. An example is shown in Figure 6.2.

Figure 6.2: Wall sheets are not grown in walls that are blocked from view by a door

Besides this there is another situation in which medial sheets cannot be formed,
shown in Figure 6.3. In the hallways on both floors there is a wall with a door in it
subdividing the hall into two parts. These walls are so thin that medial balls cannot
be formed inside them, and thus doors are not detected on that location. However,
because the corridor is subspaced in a later step, the fact that these two doors are
not detected is not crucial to the network. In both cases the door is connecting one
part of the corridor to another, which could be seen as one space altogether anyway.

Figure 6.3: Wall sheets cannot be grown in a wall that is very thin

Another new phenomenon occurring is that some sheets are grown in walls con-
tinue to grow in an adjacent floor, or even staircase, causing the effects shown in
Figure 6.4.

6.1 wall sheet extraction 65

(a) Sheets that are partially grown in a
wall, and partially in a floor

(b) Sheets that are partially grown in a
wall, and partially in stairs

Figure 6.4: MAT sheets where filtering proposed in methodology does not work

One of the sheets in Figure 6.4b is filtered out in the initial results, because the
biggest part is a floor and stair, whereas the other sheet, which is mostly wall, is
present. For the examples that grow inside a floor, in Figure 6.4a, it is the same case.

In order to distinguish between walls and floors or stairs in these sheets, the
direction of the normal vectors should again be taken into account, but now for
individual points. These normal vectors are computed automatically in the medial
balls that the points belong to. Making use of the normals, the sheet is not filtered
in its entirety on the basis of median nz, but all points are individually regarded.
The results of this are shown in Figure 6.5. As can be seen, not all floor points are
filtered, especially not at the edges, but the results are sufficient to continue on to
the next step in the methodology; door detection.

(a) Points in wall/floor sheets individually
filtered

(b) Points in wall/stair sheets individually
filtered

Figure 6.5: Individual points in wall, floor and stair sheets filtered based on nz

66 results and evaluation of test data

6.2 door detection

Using the results obtained in Section 6.1 both the upwards-looking and sideways-
looking door detection methods are implemented. The results are evaluated based
on the locations of doors that were manually defined in Section 5.3.1.

6.2.1 Upwards-looking door detection applied on wall sheet voxels

The location of doors in the trajectory are found by selecting all trajectory voxels
that are directly below wall sheet voxels. The results of this are shown in Figure
6.6a. Besides this the voxels in the original point cloud that are below wall sheet
voxels are marked as unfit for use in region growing, to create a gap in the floor
space between two different rooms (Figure 6.6b).

(a) The locations of doors based on trajectory voxels in red

(b) The voxels of the original point cloud that lie inside the doorframe in
red

Figure 6.6: The results of upwards-looking door detection

6.2 door detection 67

6.2.2 Sideways-looking door detection applied on wall sheet voxels

Some results of the sideways-looking method are shown in Figure 6.7. The doorway
marked in Figure 6.7a would not have been found without the sideways-looking
method, because it does not have a wall above it.

(a) The locations of doors based on trajectory voxels in red

(b) The voxels of the original point cloud that lie inside the door-
frame in red

Figure 6.7: Some results of sideways-looking door detection

Although it works for some doors, the sideways-looking door detection algorithm
does not work as well as in the development dataset. This is caused by some wall
sheets not forming in walls that are blocked by doors in the point cloud. This is
also discussed in Section 6.1. Examples of doors that are left undetected are shown
in Figure 6.8.

Figure 6.8: Doors that are left undetected when applying the methods proposed

68 results and evaluation of test data

6.2.3 Evaluating doors detected

A summary of which doors have been detected, and which doors have not is shown
in Figure 6.9. It can be seen that the results on the second floor are better, which is
caused by the fact that most of the doors on this floor had a wall sheet above them,
except the one door in the thin wall in the corridor. On the first floor, where walls
were often blocked by opened doors, not all doors could be detected. This issue is
described in Section 6.1. There were no doors detected at locations where there are
no doors.

Opening walked through but not detected
Opening walked through and detected

Non-walked through or unknown opening

(a) Doors detected in 1st floor of test point cloud

Opening walked through but not detected
Opening walked through and detected

Non-walked through or unknown opening

(b) Doors detected in 2nd floor of test point cloud

Figure 6.9: All doors detected by the algorithms in the test point cloud dataset

In Table 6.1 a summary is given of these parameters. 70% of all doors that were
walked through are detected.

Opening Number
Walked through detected 16

Walked through not detected 7

Not walked through 12

Unknown whether opening or inaccessible 10

Doors falsely detected 0

Table 6.1: Results of door detection

6.3 network creation 69

6.3 network creation

The connectivity network created for the test point is shown in this Section. First the
non-subspaced connectivity Node-Relation Graph (NRG) is shown in Section 6.3.1,
and in Section 6.3.2 the subspaced graph is presented. In Section 6.3.3 the retrieval
of accessibility information is discussed.

6.3.1 Connectivity NRG

After applying the region growing of walkable space with the voxels inside door
frames taken out (see Section 4.2), the different rooms and corridors in the vox-
elised model are detected. Together with the information on the location of doors,
the connectivity NRG is created. There are two floors in the test point cloud, both
consisting of a corridor with rooms adjacent to them. The result of colouring all
voxels according to the id of their rooms is shown in Figure 6.10 for both floors. In
the bottom centre of both floors grey-coloured regions, connected by a blue region,
can be seen. These are the stairs that connect the two floors.

(a) Walkable voxels of floor 1 classified into different rooms, indicated with colours

(b) Walkable voxels of floor 2 classified into different rooms, indicated with colours

Figure 6.10: The walkable voxel space divided into different rooms

In Figure 6.11 the resulting connectivity network is shown. The orange nodes
are generated at the top and bottom of the two stairs which are connected by a flat
platform. The spaces are shown with a green node, and doors with a red node. As
can be seen, the network is incomplete the first floor because not all doors were
detected. Both rooms on the bottom right of Figure 6.11a are made part of the
corridor, because doors could not be detected. The connectivity NRG of the second

70 results and evaluation of test data

floor is more complete, although the resulting network is not suitable for routing
purposes yet, which is why subspacing is applied.

(a) Connectivity network resulting from the walkable space and known doors of floor 1

(b) Connectivity network resulting from the walkable space and known doors of floor 2

Figure 6.11: Connectivity network of the test point cloud (green = room/corridor, orange =
stair, red = doorway)

6.3.2 Subspacing the connectivity NRG

In order to subspace the corridors on both the first and second floor an α-shape
is created for the voxels belonging to these regions. The MAT of the α-shape is
extracted and, based on the MAT and the location of doors, subspace nodes are
defined. The result generating the α-shape and MAT for both corridors is shown in
Figure 6.12. It can be noted that at some locations in the subspaced graph nodes are
too close to one another, which does not provide added value for navigation. In a
next step these nodes are merged with one another, to provide a cleaner navigation
graph. The values found for α and the Douglas-Peucker filtering in Section 5.2.6
do not create the best looking corridor polygons for the test point cloud. However
the resulting graph from the 2D MAT does provide useful additional nodes in sharp
turns and close to doors, which are both beneficial additions for the connectivity
NRG. The MAT even produces additional nodes at convenient locations, such as in
the top left of Figure 6.12a, where nodes are created in rooms that were walked by,
but not visited, because they are protruding from the corridor α-shape. Nonetheless
these nodes will not be seen as separate rooms, but regarded as subspaces of the
corridor.

6.3 network creation 71

300 400 500 600 700 800 900 1000
x (int)

250

300

350

400

450

500

y
(in

t)

Original door locations
Junction points projected on Medial Axis

(a) Subspacing based on the α-shape and MAT in the corridor in floor 1

200 300 400 500 600 700 800 900
x (int)

350

400

450

500

y
(in

t)

Original door locations
Junction points projected on Medial Axis

(b) Subspacing based on the α-shape and MAT in the corridor in floor 2

Figure 6.12: Result of subspacing the corridors of both floors in the test point cloud

A 3D overview of the subspaced connectivity NRG created by the methods is
shown in Figure 6.13. It can be seen that the stairs connect the two floors in the
network, and the distance between two rooms in this building could be estimated
reasonably accurate. In Figure 6.14 the graph is shown for both floors separately.
The extra nodes created in the rooms that were passed by can be seen more clearly
here.

Figure 6.13: A 3D view of the subspaced connectivity graph generated for the test point
cloud (green = room/corridor, orange = stair, red = doorway, white = subspaced
node)

72 results and evaluation of test data

(a) Subspaced connectivity network of floor 1

(b) Subspaced connectivity network of floor 2

Figure 6.14: Subspaced connectivity network of test point cloud (green = room/corridor,
orange = stair, red = doorway, white = subspaced node)

6.3.3 Accessibility NRG

For all detected doors in the test point cloud the width and height are calculated
and saved in the database. For most doors (13 out of 16) the height is determined
to be around 2.0 m, and the width varies between 0.9 and 1.2 m, which are normal
values for doors. However, there are three doors that are calculated to be 1.8 m high,
which is not a standard size for a door. An example of one of these doors is shown
in Figure 6.15. It can be seen that the voxels in the top and bottom of the door
are correctly detected, and there is no noise apparent in the door frame. This leads
to two possible explanations: 1) the doors in question are really 1.8 m high, or 2)
the low height of the doors is caused by measurement error. The second statement
is plausible, because the ZEB-REVO positioning accuracy can decrease to 30 cm
after 10 minutes of scanning (see Section 5.1.2). The Simultaneous Localization
and Mapping (SLAM) algorithm could have processed the point cloud with this low
positioning accuracy, leading to the door height decreasing with 20 cm.

6.3 network creation 73

Figure 6.15: A door with a calculated height of 1.8 m (red = door centre node, pink = voxels
on floor of door, green = voxels in top of door)

6.3.4 Evaluating the network

The final subspaced connectivity network is compared with the hand-drawn net-
works found in Appendix A. One thing that should be noted is that the second
floor of the test point cloud contains two rooms which seem to be subdivided by
vertical lines in the floor plan generated from the point cloud (bottom right corner,
and second space from top right corner). These rooms can probably be subdivided
into smaller rooms with wall panels, which was not the case during the gathering of
the point cloud. The algorithm did thus not create separate spaces for these rooms,
but two of the test persons thought they were separate.

The networks drawn by all three test persons show some sort of subdivision
of the hallway into different nodes. The graphs of test persons 1 and 2 show a
subdivision similar to the one generated by the 2D MAT, as in the methods of this
thesis. Test person 3 also based the network on a centre line in the corridor, but did
not draw a node at the closest location to every door. Instead of this they created
one node to connect multiple doors. This could however lead to routes being drawn
inaccurately.

When comparing the drawn networks to the ones created in this thesis, it can be
seen that the automatic method sometimes produces too many nodes, often close
together (see Figure 6.16).

(a) Detail of subspaced connectivity
graph on floor 1

(b) Detail of subspaced connectivity
graph on floor 2

Figure 6.16: Locations in the subspaced navigation graphs showing unnecessary nodes close
together

74 results and evaluation of test data

Another point of improvement for the automatically generated graph would be
to not only subspace corridors, but also specific rooms that connect more spaces.
Adding more nodes, or more connections between existing nodes, is beneficial to
the network. A good example of this is shown by test person 2, in the graph on the
first floor (see Figure 6.17). If a person can walk a straight line between two doors
in a room, these nodes should be connected as well. This idea can also be applied
in a corridor, and could be executed by analysing if a straight line can be drawn
between the two doors, without it crossing the border of the polygon representing
the space.

Figure 6.17: Test person 2 subdividing rooms and adding connections between door nodes

7 C O N C L U S I O N S , R E F L E C T I O N A N D
R E C O M M E N DAT I O N S

7.1 conclusions
To draw conclusions for this research, first the sub-questions defined in the intro-
duction are answered separately. After this the main research question is answered.

1. What information can be extracted from a point cloud in order to create an IndoorGML
connectivity and accessibility Node-Relation Graph (NRG)?

Various research exists on the detection and reconstruction of geometric elements
in indoor point clouds, such as walls, floors and furniture. With these methods a
point cloud can be converted to a Building Information Modeling (BIM) or CityGML,
which can then be used for analysis of the building. Fewer research has been done
directly extracting navigation graphs from indoor point clouds. In order to create a
navigation graph, it is necessary to know where a person can be in a building. For
this the navigable, or walkable, space has to be determined, and doorways have to
be detected to split this walkable space into different rooms.

In this research it has been proven that besides information on geometric ele-
ments, an indoor point cloud can also provide connectivity and accessibility infor-
mation. This is done by voxelising the point cloud, and detecting which voxels
are walkable, so are part of the floor, stairs or a slope. In combination with door
detection in the voxelised point cloud, connectivity relationships between different
indoor spaces are found.

For extending the connectivity NRG to an accessibility NRG geometric information
can be gathered from the voxelised point cloud. In IndoorGML the accessibility
NRG can also contain information on opening hours and restriction rights of certain
spaces. This would be impossible to obtain from a point cloud, and would require
additional sources to be combined with the network. Some geometric information,
such as the occurrence of stairs and slopes, is already present in the connectivity
NRG from the walkable voxelspace. A method is proposed to calculate the width
and height of all detected doors. However, when applying this method on the test
point cloud, some doors were calculated to be 1.8 m high, which is lower than
regular doors. It is expected that these door heights are falsely occurring, due to
low accuracy of the test point cloud.

2. In what way can connecting elements (e.g. doorways and entries) between two indoor
spaces be detected?

In related research the detection of doors, doorways and/or openings in indoor
point clouds is often based on ray-casting, edge detection or making use of the tra-
jectory of hand-held laser scanners. The method proposed in this thesis is utilising
the idea of the latter, in combination with a new concept of obtaining 3D Medial
Axis Transform (MAT) of the indoor point cloud and filtering it to retain medial
sheets that are formed inside walls.

When retrieving the 3D MAT of an indoor point cloud, some of the medial sheets
will be generated inside walls that were scanned on both sides. These sheets can
be distinguished from others by looking at the geometric characteristics of medial
balls belonging to points in the sheets. Characteristics of medial balls in wall sheets
include a low radius, separation angle close to 180

◦ and low value for z-direction
of the normal vector. For this thesis tests are executed that find the optimal values

75

76 conclusions, reflection and recommendations

for these parameters, which results in the selection of wall sheets from the 3D MAT,
which are used in the door detection method.

One method of door detection that makes use of the wall sheets relies on mod-
elling a surface from the points, and intersecting this surface in 3D with the trajec-
tory of the laser scanner. However, this method proved to be vulnerable to flaws
while trying it on a development dataset, and was therefore discontinued.

The other proposed method is based on voxelisation of the trajectory and MAT

wall sheets, whereupon an analysis is done on which trajectory voxels are located
inside doorways. In the first part of this method a trajectory voxel is identified to
be inside a door when there is a wall sheet voxel above it. Most doors in an indoor
environment have some space between the top of the door frame and the ceiling,
which results in wall sheet voxels being present above the door frame. However,
some doors are of the same height as the ceiling. For this case another method is
developed, which looks around the trajectory to find voxels in MAT sheet on both
sides of the doorway. This sideways-looking method is based on the idea that when
walking through a door, a wall will be both on your left and right side.

The methods were developed on a point cloud, in which 100% of doors walked
through could be found. However, in the testing phase with another point cloud, it
appeared that these combined methods do not work in all cases. Especially when
walls around the door in a point cloud are occluded by large objects, such as opened
doors, MAT sheets are not formed inside the wall. In order for this method to work
accordingly, the person scanning the indoor environment should walk through all
doors that need to be in the network, and also scan the wall behind opened doors.

3. In what way can separate indoor spaces (e.g. rooms and corridors) be detected, and
how can these, in combination with the connecting elements, be used in modelling the
connectivity NRG?

For the purpose of defining separate indoor spaces in the voxelised point cloud
two different elements of the indoor environment are crucial to be detected: all
indoor walkable space, and all connecting elements (doorways). Not only the lo-
cations of doorways are determined, but also the voxels on the floor inside door
frames are identified, for the reason that the walkable voxel finding algorithm grows
voxels into regions based on neighbourhood. When detecting voxels on the floor
inside a door frame, they create a barrier for the region growing, ensuring that all
rooms in the indoor space grow into separate regions.

An α-shape polygon is modelled around voxels belonging to a room or corridor.
This method relies on the parameter α, for which the ideal value could not be
determined in this research, as it differs per polygon. Inside the boundaries of the
alpha-shape a point is chosen as a node for the connectivity NRG. Door nodes are
based on the location of doors in the trajectory. Connectivity relationships between
doors, stairs, slopes and indoor spaces are found by observing which two spaces
are connected by a door, stair or slope.

4. In what circumstances should indoor spaces in the navigation network be subdivided
into subspaces, and how can this be done in a way that is efficient in terms of size of the
network?

In what circumstances In related literature the consensus is that indoor
spaces, connecting multiple other spaces, often require subspacing in the network.
Examples of these are corridors and stairways, which are called TransitionSpaces, as
defined in IndoorGML. In a connectivity NRG they can be detected by analysing
the number of nodes that a node is connected to. These nodes could require sub-
spacing in order to improve the usability of the network. If an indoor space is
only connected to one other space, but has a large area and a concave geometry,
subspacing could also be preferable.

how The method used in this researched is based on the MAT, or skeleton, of
a polygon. This polygon is the α-shape modelled for a group of voxels belonging

7.1 conclusions 77

to an indoor space. The 2D MAT is defined as the middle of a polygon and can
thus represent a route that a person would walk through the space, which is a
natural basis of subspacing. In case of a corridor connecting multiple rooms, the
closest point on the medial axis is found for all connected doors. These locations
are used as new nodes, called subspaced nodes. Nodes at junction points, such as
in the corners of corridors, or at a T-junction, are also added as nodes. Connectivity
between the subspaced nodes is defined by finding out which nodes are directly
connected with each other via the medial axis.

5. How suitable is IndoorGML as a data model for mapping the navigation network of
indoor point clouds?

IndoorGML is a standard especially developed as a data model for indoor navi-
gation. Having a standard ultimately dedicated to indoor navigation is a great step
towards the integration of indoor navigation networks. The navigation module, of
which the connectivity and accessibility NRG are a part, offers a data model with
a variety of categories for nodes and connections between nodes. Besides naviga-
tion graphs for walkable space, IndoorGML also offers modules for other types of
space, such as Radio-frequency identification (RFID) and Wireless Local Area Net-
work (WLAN) space, that can be used as an aid for localisation.

However, although the standard provides many possibilities, it also provides
some restrictions. The connectivity NRG is seen as a basis for the navigation graph,
but this alone is often not suitable for navigation. If the indoor environment in-
cludes a corridor that is connecting multiple spaces, the connectivity graph can
provide a misrepresentation of routes a human would take in reality. Therefore,
subspacing is necessary to make the graph more realistic, but no guidelines for this
are given in IndoorGML. The same applies for the inclusion of stairs in the network,
for which no guidelines are provided on subspacing either. Based on the results of
this thesis it can be stated that the 2D MAT provides a good basis for subspacing a
corridor, but for wider open spaces, such as big halls, it does not generate the best
results, because the centre line of a large space is often not the only route that can
be travelled. For the suspacing of stairs or slopes it is recommendable to add a node
at the top and bottom of the stairs.

A deficiency in IndoorGML is the lack of use cases where the standard has been
implemented in navigation applications. This kind of research would be beneficial
for the standard, in order to improve its usability and applicability. In conclusion,
although IndoorGML is an extensive standard for indoor navigation, there are still
essential developments to be done in some parts of the data model.

How can a navigation network in IndoorGML format automatically be extracted from a
cluttered indoor point cloud and its trajectory?

In conclusion, a point cloud provides a good source for extracting geometric in-
formation for an IndoorGML connectivity and accessibility NRG. It can be used to
detect separate indoor spaces, doors, stairs and slopes, and moreover the connectiv-
ity between these elements. In this thesis a new door detection method is proposed
using wall sheets created by the 3D MAT of the point cloud. In some situations this
method needs to be extended, but the first results are promising. In order to make
the connectivity NRG more usable for navigation purposes, some spaces should be
subspaced. Besides this geometric accessibility information can be extracted by
defining the shape (doors) or type (stairs, slopes) of elements. Finally it can be
concluded that IndoorGML is still in need of more development, but it provides a
good basis for indoor navigation information.

78 conclusions, reflection and recommendations

7.2 discussion

Although the application of the proposed methods on the development point cloud
gave promising results, the test point cloud provided insight into some limitations
of using MAT wall sheets in door detection. The creation of wall sheets is sensitive
to objects preventing walls from being scanned. Especially when doors are left
open, thus blocking the wall behind, wall sheets will not be formed close enough
to doorways to be useful for door detection.

Moreover it should be noted that many of the parameters found in Chapter 5

are sensitive to changes in point clouds. Especially the values found for filtering
parameters of medial sheets to retain wall sheets can differ depending on the point
cloud. One parameter states that walls have a high number of points, but this
number will change with varying point cloud density.

Another restriction of the method is that every door in the indoor environment
needs to be walked through in order to be taken into the network. However, as also
discussed in this thesis, it can also be a good way to make sure that no false doors,
such as permanently closed doors and glass panes, are detected.

The automatic detection of elevators in a point cloud is also a point of discussion.
Especially when gathering data with a hand-held Mobile Laser Scanner (MLS) like
the ZEB-REVO, an elevator will cause difficulty in the Simultaneous Localization
and Mapping (SLAM) algorithm that makes one point cloud out of the scanned
points. Detecting elevators from the outside and climbing stairs to different floors
would be the best option to include them in the network.

7.3 contribution to research

This thesis provides some new insights to research on point clouds and indoor
navigation graphs. First of all a new way of using the 3D MAT of a point cloud is
introduced. By filtering the sheets of points obtained as a result of the MAT, medial
sheets inside walls are retained. The results of this method can not only be used for
the purposes of door detection in this thesis, but could potentially also assist in the
reconstruction of 3D geometric models from indoor point clouds.

Based on the MAT wall sheets a new door detection method is introduced. It is
based on existing methods that use the trajectory of the laser scanner and find doors
by looking above the trajectory for drops in height, compared to the ceiling. Instead
of looking at the complete point cloud, only the wall sheets are taken into account to
avoid false doors being detected when walking under low-hanging objects. Seeing
that not all doors have a wall above them, the method is extended by looking around
the trajectory and detecting locations where a wall sheet surrounds the trajectory on
both the left and right side. This method could also be applied for door detection
in a voxelised point cloud without making use of the MAT wall sheets, although
furniture could cause false doors being detected in that case.

Finally, this thesis introduces a method to retrieve a navigation network directly
from a point cloud, without needing existing building models or floor plans. It is
beneficial to use point clouds for obtaining information about the indoor environ-
ment, because the interior of buildings has often changed since their corresponding
models or floor plans were created. The resulting navigation graph is modelled ac-
cording to the IndoorGML standard, in which format few models exist at the time
of writing. This research could thus also be seen as a use case and contribution in
the development of IndoorGML.

7.4 recommendations for future work 79

7.4 recommendations for future work
In this thesis it has been proven that geometric information for an IndoorGML
navigation graph can be obtained from a point cloud. However, the methods still
have some shortcomings, and will therefore not work in every point cloud. Besides
this more information can be extracted to make the network more complete. For
those reasons a summary of recommendations for future research is given.

• More research should be done on the filtering parameters to obtain 3D MAT

sheets inside walls. Especially the minimum number of points inside a sheet
should be examined, because this is dependent on the point density of the
original point cloud.
• The door detection methods proposed in this thesis could be extended by

analysing the voxelised point cloud. The same sideways-looking method as
proposed for the trajectory and 3D wall sheets could be used for the trajectory
and the point cloud, although furniture could cause false doors being detected
in this case.
• Node generation for stairs and slopes works fine in case when a stair or slope

is connecting two spaces at different height levels, but more complex stair
structures should also be researched, such as spiral staircases or a stairway
with multiple branches.
• A 2D α-shape polygon is modelled around voxels belonging to an indoor

space, in this way creating a floor plan of the environment. This could be
improved by doing more research on the best value of α, letting it depend
on the level of noise in a point cloud, and implementing an algorithm that
automatically aligns polygons adjacent to each other to let them have a shared
boundary. The height of indoor spaces can be extracted from the point cloud
to extrude the spaces to 3D cells.
• The subspacing method is shown to be useful for a corridor, but needs to be

improved for large, wide rooms such as conference halls and airport terminals.
In these spaces multiple paths can be taken besides the centre line created by
the 2D MAT.
• Instead of using only the 2D MAT of polygons for subspacing, the polygons

could be analysed to extend the routes from skeletal to ‘door-to-door’ routes
(see Figure 3.5), creating even more realistic routes in the environment. This
can also be applied by analysing between which nodes in the network a
straight line can be drawn, without the line ever crossing the polygon bound-
ary that it is in.
• The accessibility NRG can be extended with more geometric information, such

as the width of corridors. This can be extracted from the 2D MAT at subspaced
nodes, because the diameter of the medial circle is equal to the width of the
corridor at that location. Also a method for elevator detection in a point cloud
should be found, so that routes for people in wheelchairs can be extended to
multiple floors.
• The point clouds used in this thesis are gathered in a local Coordinate Refer-

ence System (CRS), which is not referenced to a known world point. In order
for the indoor navigation graph to be used in a seamless indoor/outdoor nav-
igation application it should be georeferenced to a regional or global CRS, so
that it connects with the outdoor world.
• As the processing of point clouds in Python is comparatively slow, the meth-

ods developed in this thesis could be sped up by using another programming
language, such as C or C++. Moreover parallel computing could be applied
to some methods that take up the most time.
• Finally, it would be useful to create a navigation application that uses an In-

doorGML network as an input for routing. This would be beneficial to the
development of the standard, which is currently missing use cases.

B I B L I O G R A P H Y

Adrados, C., Girard, I., Gendner, J.-P., and Janeau, G. (2002). Global positioning sys-
tem (GPS) location accuracy improvement due to selective availability removal.
Comptes Rendus Biologies, 325(2):165–170.

Afyouni, I., Ray, C., and Claramunt, C. (2012). Spatial models for context-aware
indoor navigation systems: A survey. Journal of Spatial Information Science, (4).

Alattas, A., Zlatanova, S., Oosterom, P. V., Chatzinikolaou, E., Lemmen, C., and Li,
K.-J. (2017). Supporting indoor navigation using access rights to spaces based
on combined use of IndoorGML and LADM models. ISPRS International Journal
of Geo-Information, 6(12):384.

Ballard, D. (1981). Generalizing the Hough transform to detect arbitrary shapes.
Pattern recognition, 13(2):111–122.

Blum, H. (1967). A transformation for extracting new descriptors of shape. Models
for Perception of Speech and Visual Forms, pages 362–380.

Boguslawski, P., Gold, C. M., and Ledoux, H. (2011). Modelling and analysing 3d
buildings with a primal/dual data structure. ISPRS Journal of Photogrammetry
and Remote Sensing, 66(2):188–197.

Boguslawski, P., Mahdjoubi, L., Zverovich, V., and Fadli, F. (2016). Automated
construction of variable density navigable networks in a 3d indoor environment
for emergency response. Automation in Construction, 72:115–128.

Bosché, F., Guillemet, A., Turkan, Y., Haas, C. T., and Haas, R. (2014). Tracking
the built status of MEP works: Assessing the value of a scan-vs-BIM system.
Journal of Computing in Civil Engineering, 28(4):05014004.

Broersen, T., Fichtner, F., Heeres, E., De LIefde, I., Rodenberg, O., Meijers, B., Ver-
bree, E., Van der Spek, S., and Ten Napel, D. (2015). Project pointless: Identify-
ing, visualising and pathfinding through empty space in interior point clouds
using an octree approach. Geomatics Synthesis Project 2015/16.

Broersen, T., Peters, R., and Ledoux, H. (2017). Automatic identification of wa-
tercourses in flat and engineered landscapes by computing the skeleton of a
LiDAR point cloud. Computers & Geosciences, 106:171–180.

Brown, G., Nagel, C., Zlatanova, S., and Kolbe, T. H. (2013). Modelling 3d to-
pographic space against indoor navigation requirements. In Progress and new
trends in 3D geoinformation sciences, pages 1–22. Springer.

Cole, I. R. (2015). Modelling CPV. PhD thesis, Loughborough University.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. MIT press.

Deak, G., Curran, K., and Condell, J. (2012). A survey of active and passive indoor
localisation systems. Computer Communications, 35(16):1939–1954.

Delaunay, B. (1934). Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematich-
eskii i Estestvennyka Nauk, 7(793-800):1–2.

Diakité, A. A. and Zlatanova, S. (2017). Spatial subdivision of complex indoor
environments for 3d indoor navigation. International Journal of Geographical In-
formation Science, 32(2):213–235.

81

82 BIBLIOGRAPHY

Diakité, A. A., Zlatanova, S., and Li, K.-J. (2017). About the Subdivision of Indoor
Spaces in IndoorGML. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, IV-4/W5:41–48.

Dı́az-Vilariño, L., Boguslawski, P., Khoshelham, K., Lorenzo, H., and Mahdjoubi,
L. (2016). Indoor Navigation From Point Clouds: 3D Modelling And Obstacle
Detection. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLI-B4:275–281.

Dı́az-Vilariño, L., Khoshelham, K., Martı́nez-Sánchez, J., and Arias, P. (2015). 3d
modeling of building indoor spaces and closed doors from imagery and point
clouds. Sensors, 15(2):3491–3512.

Dı́az-Vilariño, L., Martı́nez-Sánchez, J., Lagüela, S., Armesto, J., and Khoshelham,
K. (2014). Door recognition in cluttered building interiors using imagery and
lidar data. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XL-5:203–209.

Dı́az-Vilariño, L., Verbree, E., Zlatanova, S., and Diakité, A. (2017). Indoor Mod-
elling From SLAM-Based Laser Scanner: Door Detection To Envelope Recon-
struction. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLII-2/W7:345–352.

Dold, C. and Brenner, C. (2006). Registration of terrestrial laser scanning data using
planar patches and image data. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 36(5):78–83.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Carto-
graphica: The International Journal for Geographic Information and Geovisualization,
10(2):112–122.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110.

Edelsbrunner, H., Kirkpatrick, D., and Seidel, R. (1983). On the shape of a set of
points in the plane. IEEE Transactions on Information Theory, 29(4):551–559.

Eppstein, D. and Erickson, J. (1999). Raising roofs, crashing cycles, and playing
pool: Applications of a data structure for finding pairwise interactions. Discrete
& Computational Geometry, 22(4):569–592.

Fichtner, F. W., Diakité, A. A., Zlatanova, S., and Voûte, R. (2018). Semantic enrich-
ment of octree structured point clouds for multi-story 3d pathfinding. Transac-
tions in GIS, 22(1):233–248.

Gardiner, J. D., Behnsen, J., and Brassey, C. A. (2018). Alpha shapes: Determining
3d shape complexity across morphologically diverse structures.

Ge, S. and Cui, Y. (2002). Dynamic motion planning for mobile robots using poten-
tial field method. Autonomous Robots, 13(3):207–222.

GeoSLAM (2017). ZEB-REVO solution. https://geoslam.com/wp-content/

uploads/2018/04/GeoSLAM-ZEB-REVO-Solution_v9.pdf. Accessed: 2019-01-
23.

Haunert, J.-H. and Sester, M. (2007). Area collapse and road centerlines based on
straight skeletons. GeoInformatica, 12(2):169–191.

Hichri, N., Stefani, C., De Luca, L., Veron, P., and Hamon, G. (2013). From point
cloud to bim: a survey of existing approaches. In XXIV International CIPA
Symposium, page na. Proceedings of the XXIV International CIPA Symposium.

https://geoslam.com/wp-content/uploads/2018/04/GeoSLAM-ZEB-REVO-Solution_v9.pdf
https://geoslam.com/wp-content/uploads/2018/04/GeoSLAM-ZEB-REVO-Solution_v9.pdf

BIBLIOGRAPHY 83

Hong, S., Jung, J., Kim, S., Cho, H., Lee, J., and Heo, J. (2015). Semi-automated
approach to indoor mapping for 3d as-built building information modeling.
Computers, Environment and Urban Systems, 51:34–46.

Jamali, A., Rahman, A. A., Boguslawski, P., Kumar, P., and Gold, C. M. (2015). An
automated 3d modeling of topological indoor navigation network. GeoJournal,
82(1):157–170.

Jung, H. and Lee, J. (2015). Indoor Subspacing to Implement IndoorGML for Indoor
Navigation. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XL-2/W4:25–27.

Kang, H.-K. and Li, K.-J. (2017). A standard indoor spatial data model—OGC In-
doorGML and implementation approaches. ISPRS International Journal of Geo-
Information, 6(12):116.

Khoshelham, K., Vilariño, L. D., Peter, M., Kang, Z., and Acharya, D. (2017). The
ISPRS Benchmark on Indoor Modelling. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W7:367–
372.

Kim, J.-S., Yoo, S.-J., and Li, K.-J. (2014). Integrating IndoorGML and CityGML
for indoor space. In Web and Wireless Geographical Information Systems, pages
184–196. Springer Berlin Heidelberg.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent limi-
tations for mobile robot navigation. In Proceedings. 1991 IEEE International Con-
ference on Robotics and Automation. IEEE Comput. Soc. Press.

Krūminaitė, M. and Zlatanova, S. (2014). Indoor space subdivision for indoor nav-
igation. In Proceedings of the Sixth ACM SIGSPATIAL International Workshop on
Indoor Spatial Awareness - ISA 14. ACM Press.

Kwan, M.-P. and Lee, J. (2005). Emergency response after 9/11: the potential of
real-time 3d GIS for quick emergency response in micro-spatial environments.
Computers, Environment and Urban Systems, 29(2):93–113.

Lamarche, F. and Donikian, S. (2004). Crowd of virtual humans: a new approach
for real time navigation in complex and structured environments. Computer
Graphics Forum, 23(3):509–518.

Lee, J. (2004). A spatial access-oriented implementation of a 3-d GIS topological
data model for urban entities. GeoInformatica, 8(3):237–264.

Liu, L. and Zlatanova, S. (2011). A ”Door-to-Door” Path-finding Approach for
Indoor Navigation. Proceedings Gi4DM 2011: GeoInformation for Disaster Manage-
ment, Antalya, Turkey, 3-8 May 2011.

Lobos, C., Payan, Y., and Hitschfeld, N. (2010). Techniques for the generation of 3d
finite element meshes of human organs. In Informatics in Oral Medicine, pages
126–158. IGI Global.

Ma, J., Bae, S. W., and Choi, S. (2012). 3d medial axis point approximation using
nearest neighbors and the normal field. The Visual Computer, 28(1):7–19.

Mahdaviparsa, A. and McCuen, T. (2018). Comparison between current methods
of indoor network analysis for emergency response through BIM/CAD-GIS
integration. In Advances in Informatics and Computing in Civil and Construction
Engineering, pages 627–635. Springer International Publishing.

Meijers, M., Zlatanova, S., and Pfeifer, N. (2005). 3d geoinformation indoors: struc-
turing for evacuation. In Proceedings of Next generation 3D city models, volume 6.
Germany Bonn.

84 BIBLIOGRAPHY

Mirza, R., Tehseen, A., and Kumar, A. V. J. (2012). An indoor navigation approach to
aid the physically disabled people. In 2012 International Conference on Computing,
Electronics and Electrical Technologies (ICCEET). IEEE.

Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley, Menlo Park,
CA.

Nakagawa, M. and Nozaki, R. (2018). Geometrical Network Model Generation
Using Point Cloud Data for Indoor Navigation. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, IV-4:141–146.

Nikoohemat, S., Peter, M., Elberink, S. O., and Vosselman, G. (2017). Exploiting
Indoor Mobile Laser Scanner Trajectories for Semantic Interpretation of Point
Clouds. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, IV-2/W4:355–362.

Nourian, P., Gonçalves, R., Zlatanova, S., Ohori, K. A., and Vo, A. V. (2016). Vox-
elization algorithms for geospatial applications. MethodsX, 3:69–86.

OGC (2014). OGC Indoor GML. (14-005r5).

Peters, R. (2018). Geographical point cloud modelling with the 3D medial axis transform.
PhD thesis, TU Delft.

Pu, S. and Vosselman, G. (2009). Knowledge based reconstruction of building mod-
els from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and
Remote Sensing, 64(6):575–584.

Quirk, P., Johnson, T., Skarbez, R., Towles, H., Gyarfas, F., and Fuchs, H. (2006).
RANSAC-assisted display model reconstruction for projective display. In IEEE
Virtual Reality Conference (VR 2006). IEEE.

Rueppel, U. and Stuebbe, K. M. (2008). BIM-based indoor-emergency-navigation-
system for complex buildings. Tsinghua Science and Technology, 13(S1):362–367.

Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (PCL). In 2011
IEEE International Conference on Robotics and Automation (ICRA). IEEE.

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M. (2008). Towards
3d point cloud based object maps for household environments. Robotics and
Autonomous Systems, 56(11):927–941.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for point-cloud
shape detection. Computer Graphics Forum, 26(2):214–226.

Sithole, G. (2018). Indoor Space Routing Graphs: Visibility, Encoding, Encryption
and Attenuation. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLII-4:579–585.

Staats, B. R. (2017). Identification of walkable space in a voxel model, derived from
a point cloud and its corresponding trajectory. Master’s thesis, Delft University
of Technology.

Staats, B. R., Diakité, A. A., Voûte, R. L., and Zlatanova, S. (2017). Automatic Gener-
ation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
IV-2/W4:393–400.

Staats, B. R., Diakité, A. A., Voûte, R. L., and Zlatanova, S. (2018). Detection of
doors in a voxel model, derived from a point cloud and its scanner trajectory,
to improve the segmentation of the walkable space. International Journal of Urban
Sciences, pages 1–22.

BIBLIOGRAPHY 85

Tang, P., Huber, D., Akinci, B., Lipman, R., and Lytle, A. (2010). Automatic re-
construction of as-built building information models from laser-scanned point
clouds: A review of related techniques. Automation in Construction, 19(7):829–
843.

Teo, T.-A. and Yu, S.-C. (2017). The Extraction of Indoor Building Information from
BIM to OGC IndoorGML. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLII-4/W2:167–170.

Thomson, C. and Boehm, J. (2015). Automatic geometry generation from point
clouds for BIM. Remote Sensing, 7(9):11753–11775.

Tran, H., Khoshelham, K., Kealy, A., and Dı́az-Vilariño, L. (2017). Extracting Topo-
logical Relations between Indoor Spaces from Point Clouds. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W4:401–
406.

Volk, R., Stengel, J., and Schultmann, F. (2014). Building information modeling
(BIM) for existing buildings — literature review and future needs. Automation
in Construction, 38:109–127.

Wallgrün, J. O. (2005). Autonomous construction of hierarchical voronoi-based route
graph representations. In Spatial Cognition IV. Reasoning, Action, Interaction,
pages 413–433. Springer Berlin Heidelberg.

Wang, W., Ai, T., and Gong, C. (2018). Indoor Route Planning under Hexagon
Network Considering Multi-constrains. ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, XLII-4:693–696.

Yang, L. and Worboys, M. (2015). Generation of navigation graphs for indoor space.
International Journal of Geographical Information Science, 29(10):1737–1756.

Zhu, Q., Li, Y., Xiong, Q., Zlatanova, S., Ding, Y., Zhang, Y., and Zhou, Y. (2016). In-
door multi-dimensional location GML and its application for ubiquitous indoor
location services. ISPRS International Journal of Geo-Information, 5(12):220.

A S U B S PA C E D N E T W O R K T E S T

a.1 test person 1

gonagoya
1 node

stairs
a

or LIVTo o d

i
rendering I
ex de

(a) The navigation network of floor 1 of the test point cloud as drawn by test person 1

gonagoya
1 node

stairs
a

or LIVTo o d

i
rendering I
ex de

(b) The navigation network of floor 2 of the test point cloud as drawn by test person 1

Figure A.1: The navigation network in the test point cloud as drawn by test person 1

87

88 subspaced network test

a.2 test person 2

(a) The navigation network of floor 1 of the test point cloud as drawn by test person 2

(b) The navigation network of floor 2 of the test point cloud as drawn by test person 2

Figure A.2: The navigation network in the test point cloud as drawn by test person 2

a.3 test person 3 89

a.3 test person 3

(a) The navigation network of floor 1 of the test point cloud as drawn by test person 3

(b) The navigation network of floor 2 of the test point cloud as drawn by test person 3

Figure A.3: The navigation network in the test point cloud as drawn by test person 3

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede. The figures and diagrams were mostly
drawn using IPE. The results including voxels are created with Paraview, and with
point clouds in CloudCompare. For some objects on the front page: Vector Design
by Vecteezy.com

https://www.vecteezy.com

	1 Introduction
	1.1 Use of indoor point clouds
	1.2 Indoor navigation networks
	1.3 IndoorGML
	1.4 Thesis overview
	1.5 Research questions
	1.6 Research scope and goal
	1.7 Reading guide

	2 Theoretical Background
	2.1 IndoorGML
	2.2 Voxelisation and walkable space
	2.2.1 Voxelisation of point clouds
	2.2.2 Obtaining the walkable voxel space

	2.3 2D polygon modelling
	2.3.1 -shapes
	2.3.2 Douglas-Peucker

	2.4 Medial Axis Transform
	2.4.1 2D MAT for polygons
	2.4.2 3D MAT for point clouds

	3 Related Work
	3.1 Object and model reconstruction from point clouds
	3.2 Indoor navigation networks
	3.3 Doorway detection in point clouds
	3.4 Division of subspaces
	3.5 Conclusions related work

	4 Methodology
	4.1 Wall sheet extraction using 3D MAT
	4.2 Doorway detection from 3D MAT wall sheets and trajectory
	4.2.1 Geometry intersection
	4.2.2 Voxelised method

	4.3 IndoorGML network creation
	4.3.1 Merging clusters separated by height
	4.3.2 Extracting the connectivity graph
	4.3.3 Geometry modelling
	4.3.4 Accessibility information extraction

	4.4 Subspacing
	4.4.1 Subspacing using the MAT
	4.4.2 Subspacing of stairs and slopes

	5 Implementation, experiments and development results
	5.1 Tools and datasets
	5.1.1 Software
	5.1.2 Hardware
	5.1.3 Datasets

	5.2 Implementation
	5.2.1 Voxelisation and walkable space
	5.2.2 Wall sheet extraction
	5.2.3 Doorway detection
	5.2.4 Connectivity graph
	5.2.5 Geometry modelling for floor voxels
	5.2.6 Subspacing the network
	5.2.7 Accessibility information
	5.2.8 Structure of the database

	5.3 Experiments
	5.3.1 Door detection
	5.3.2 Navigation network

	6 Results and evaluation of test data
	6.1 Wall sheet extraction
	6.2 Door detection
	6.2.1 Upwards-looking door detection applied on wall sheet voxels
	6.2.2 Sideways-looking door detection applied on wall sheet voxels
	6.2.3 Evaluating doors detected

	6.3 Network creation
	6.3.1 Connectivity NRG
	6.3.2 Subspacing the connectivity NRG
	6.3.3 Accessibility NRG
	6.3.4 Evaluating the network

	7 Conclusions, reflection and recommendations
	7.1 Conclusions
	7.2 Discussion
	7.3 Contribution to research
	7.4 Recommendations for future work

	A Subspaced network test
	A.1 Test Person 1
	A.2 Test Person 2
	A.3 Test Person 3

