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Abstract

Unlike outdoor environments, there is no wide-spread solution to positioning inside a building. In-
door solutions rely on pre-installation of infrastructure, such as Bluetooth beacons or ultra-wide band
technology. Recently, there has been growing interest in the use of Augmented Reality (AR) for indoor
positioning. AR devices use an algorithm known as Simultaneously Localisation and Mapping (SLAM)
to scan an environment and find a position inside. This make it possible to estimate a position on-the-
fly without any pre-installations. The Microsoft Hololens (MH) is a head-mounted display AR device
that is able to perform SLAM. The use of SLAM for indoor positioning can be beneficial in the case of
Emergency Response (ER). The place of impact in ER is unknown and there is no time to install any
infrastructure beforehand.

Two problems arise with the use of SLAM for indoor positioning. (1) A position is a pin point in space
that is defined by a reference frame. In the case of SLAM, the frame is the scanned object. In most
situations, a map or floor plan is more appropriate as reference frame, in order to give a full context.
(2) The SLAM algorithm suffers from drift, a growing error over time. This research tries to solve these
problems using shape registration. The SLAM output can be aligned to a reference floor plan, by use of
a spatial matching technique. This alignment is a continuous process to account for the drift errors of
the SLAM algorithm.

Three spatial matching techniques are compared: Iterative Closest Points (ICP) iteratively tries to min-
imize the distance between two shapes using least squares; Instantaneous Kinematics (IK) is a variant
on ICP that makes use of a velocity vector; and Hough Transform makes use of the Hough domain
properties, where rotation is invariant to translation and scale. These algorithms are compared on their
accuracy, computation time and robustness.

It is concluded that the Hough Transform algorithm gives the most accurate results and is fastest. In this
research it was found that an average accuracy of < 1m can be maintained over 80% of the experiments,
with maximum errors up to 5 meter. In 20% of the experiments, the error can extremely diverge up
to >100 meter. It is suggested that the quality of the scan and the existence of artefacts (e.g.furniture,
people) are the cause of these errors. That makes the method unsuitable for indoor positioning in the
case of Emergency Response, that needs extremely reliable systems. Research is needed to create a more
robust method, that uses better outlier detection methods. However, the results are promising and do
open the door for indoor navigation using Augmented Reality.
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the opportunity you to work in a professional environment. Your enthusiasm and dedication have truly
helped to take this thesis to a higher level. Lastly, I would like to thank Martijn Meijers for co-reading
the thesis.

I look back with delight on the many coffee moments, virtual meetings and activities together with the
CGI trainees. Thank you for giving so much input on my project and the many great discussions. I
would like to offer my special thanks to Floor and Bart-Peter for proofreading this thesis. Thank you
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1 Introduction

It is difficult to imagine the world nowadays without the Global Positioning System (GPS). Navigation
applications are omnipresent and every mobile phone has the ability to tell you how to go from point A
to B. However, this concerns outdoor navigation. Reliable indoor positioning and localization is still a
challenging task. There is no large-scale solution: the signals coming from satellites are too low for GPS
to function in an indoor environment. Most positioning systems inside buildings rely on pre-installed
infrastructure, such as Ultra-wideband (UWB) or Bluetooth beacons, or use a priori information, such as
Wi-Fi fingerprinting to position or localize indoors (Yang and Shao, 2015; Rubino et al., 2013; Molina
et al., 2018).

All-the-while, the interest in indoor positioning is growing, as can be found in numerous sectors: pub-
lic spaces, such as airports and shopping malls see the need for indoor positioning to navigate, due
to the increasing complexity and size of indoor environments. The use of multi-media in cultural en-
vironments increased the interest to use location-based services to present information about nearby
objects to visitors. Visually impaired individuals can greatly benefit from indoor positioning services in
combination with audio-based navigation services. Lastly, the demand for positioning indoors is often
discussed in the case of Emergency Response (ER), that can benefit from increased situational awareness
in the case of a disaster.

1.1 Using Augmented Reality for indoor positioning

In recent times, applications that enhance the real world with virtual objects in real-time have emerged.
Augmented Reality (AR) allows you to interact with the environment in a new way. Hardware platforms
using AR could be your every-day smartphone, that can achieve simple AR applications. The more
complex AR systems involve an understanding of the environment and need more specialized devices.
One such device is the Microsoft Hololens (MH). The Hololens is a head-mounted display that can
visualize 3D models and is able to have these interact with the environment. It has its own processing
unit and runs on a Windows 10 OS (Kim et al., 2017).

A technique that is used in AR has attracted the attention for indoor positioning: Simultaneous Localiza-
tion and Mapping (SLAM) is a method that makes use of sensors, such as RGB cameras, depth cameras or
laser range finders, to continuously map a space and find its own location inside the mapped space. In
AR it is a necessary functionality, in order to walk around in a partly virtual and partly real world. To be
able to walk around an object, the position of the object within the space, as well as the position of your-
self needs to be known. SLAM is not limited to AR, but is a technique also found in robotics, driverless
cars and Unmanned Airborne Vehicles (UAVs). Multiple researches have proposed to use a SLAM-based
method for indoor positioning (Brito et al., 2019; Rantakokko et al., 2011; Li et al., 2019a). They argue it
is a promising method, because it allows for indoor positioning without any existing infrastructure, as
the SLAM technique is able to both map an environment and position someone simultaneously.

1.2 Problem statement

In some scenarios it is impossible to use an indoor positioning system that needs any pre-existing in-
frastructure or survey. In the case of firefighting, first responders have no more than a couple of minutes
to get familiar with the building beforehand. Therefore, pre-installation of a positioning system is not
possible. However, it is crucial to know the positions of first responders inside a building, not only to
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improve the safety of the personnel, but also to improve the efficiency of the operation. A navigation aid
could help firefighters not only by giving directions to the place of accident, but also by finding a way
back if situations get too dangerous. Positioning could help firefighters with situational awareness: vis-
ited rooms could be marked as such in the case of evacuation, limiting the amount of double-searched
rooms; hazardous materials, but also elements useful in operations, such as fire extinguishers could
be marked on the spot. For these kind of situations, standard positioning systems using Bluetooth or
WLAN are not fit, so alternatives should be explored.

AR and SLAM have the potential to be used as accurate indoor positioning method in the case of ER.
However, the SLAM method has two limitations: (1) the method only retrieves a position relative to
the space that it scanned. Therefore, it is impossible to navigate to new spaces using only SLAM. (2)
Over time the method will suffer from drift (Hübner et al., 2019; Li et al., 2019a). Drift is an error that
gets bigger over time, making the algorithm less reliable if it is not accounted for. It is dependent on
the device that is performing the SLAM how high the drift error is. Fonnet et al. (2017) proposed an
approach to solve these issues using existing Building Information Modeling (BIM) data. The virtual
building is roughly positioned manually according to the real-life situation. Afterwards the BIM is fitted
to the mesh more accurately using a registration algorithm. This solves both issues: navigation to non-
visited areas can be achieved using the existing model. Drift errors are minimized by recalibrating the
devices position through registration. To our knowledge, no one has implemented this method yet.

The use of 3D reference data for indoor positioning seems the logical option. The verticality of buildings
is one of the defining elements that makes indoor positioning differ from outdoor positioning. Large
buildings have many floors, sometimes with more complex structures such as entresols or ramps. These
are difficult to convey in 2D data. However, in the case of ER, 3D BIMs are usually not at hand, but 2D
alternatives are accessible (Zlatanova et al., 2015). Therefore, the reference data model that is used will
be constrained to two dimensions.

1.3 Research objectives and research questions

The goal of this research is to develop a method to estimate the position of the MH in a building, without
use of any pre-existing infrastructure. Because the availability of floor plans is higher than the avail-
ability of 3D models, it is chosen to work with a floor plan as a reference to register the model scanned
with SLAM to. While ignoring a dimension means that some data is lost, it is justified by (1) the assumed
orthogonal configuration of walls in general and (2) the correct orientation of the MH SLAM, that auto-
matically aligns the ground plane to the horizontal plane (for more information, see section 2.3). The
positioning method has the potential to be used in situations such as Emergency Response, when there
is no time available for installing infrastructure and when there is no 3D BIM at hand. The method
should communicate an estimation of the position accuracy at real-time. The developed approach can
ultimately help to improve and speed up decision making in ER situations. While the MH is used in
this thesis, the method should generalize to other devices that use SLAM for positioning. It should also
generalize to the use of 3D models instead of floor plans.

1.3.1 Research questions

Based on the the objectives, a main research question has been developed. The main research question
is:

How can the Microsoft Hololens improve indoor positioning, using the on-the-fly produced mesh and an existing
floor plan?

The following sub-questions will accommodate the main research question:

1. What spatial matching techniques are feasible to match a 3D mesh acquired in real-time from the
Microsoft Hololens with an existing 2D floor plan?
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2. What is the most promising spatial matching technique in terms of accuracy and speed?

3. How can the indoor positioning of the Microsoft Hololens be improved by making use of the
researched positioning method?

4. In which cases does the researched positioning method fail to estimate the position on a 2D floor
plan?

1.4 Research methodology

The objective of this thesis is to estimate the position of the MH on an existing 2D floor plan. To do
this, this research is divided into three parts: (1) the selection of spatial matching techniques; (2) the
implementation of the positioning method; (3) the evaluation of the implemented method.

(1) A literature review is conducted to find appropriate spatial matching techniques. These will be
selected and compared on various criteria, such as complexity, ability to perform partial registration
and robustness to outliers. Three registration algorithms are selected for implementation:

• Iterative Closest Points (ICP)

• Local Quadratic Approximation and Instanteneous Kinematics (IK)

• Hough Transform (HT).

These will be elaborated on in detail.

Figure 1.1: Workflow of positioning the Microsoft Hololens inside a 2D floor plan

(2) The method that is implemented in this thesis consists of a dual system. An illustration of the system
can be found in fig. 1.1. On one side is the SLAM algorithm of the MH. This algorithm produces useable
meshes in real-time, with the position of the device inside this 3D model. The other side of the system
contains the floor plan and the position inside the floor plan. The aim of the method is to find the correct
transformation matrix that transforms the position inside the 3D model to the position on the floor plan.
To be able to do that, the meshes produced by the MH are retrieved every 15 seconds. These are filtered
on vertical elements and transformed into a point cloud, in order to be fit for spatial matching. Using
the spatial matching techniques that are found in the desk research, the point cloud is registered to the
floor plan. The transformation matrix that is found to register the meshes to the floor plan is used to
transform the position of the device inside the 3D model to the position on the floor plan. Every 15
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seconds, the process is repeated to account for the drift errors.

(3) The Architecture building of the TU Delft will be used as a case study to evaluate the implemented al-
gorithms. Ground truth positions will be measured in the building and all algorithms will be evaluated
on three criteria:

• Computation time: the average time it takes to compute the algorithm.

• Accuracy: the accuracy of the computed position compared to the ground truth.

• Robustness: the capability to work with all sort of environments, included cases like outdated
floor plans, big halls without walls or a bad initial registration.

These aspects will be explained in further detail in chapter 4.

1.5 Research scope

This thesis focusses on estimating the position of the MH on a 2D floor plan. A system is developed that
works on the MH and shows its location on the 2D floor plan. While many 2D floor plans are in reality not
to scale, in this thesis it is assumed that they are. This can be justified by the fact that the first responders
have access to floor plans to scale. The method is evaluated on accuracy, speed and robustness. The
method is tested on a general case, as well on particular cases that involve more complex forms, such as
large rooms; incongruencies between floor plan and real world; and doors. While the proposed method
should test in which of the particular cases the method fails, it is not meant to deal with all these cases
successfully.

The processing power of the MH is mentioned as a limiting factor of the device (Brito et al., 2019). If the
MH appears to have problems with the processing power, it suffices to establish a real-time connection
with a computer and use that device for the computations. Although this is considered infeasible for
real life situations, it does not detract from the method itself. This is justified by the fact that the first
generation of MH is used in this thesis, that has less processing power than the already on the market
second version of the MH.

1.6 Reading guide

The document will continue with the theoretical background in chapter 2. In chapter 3, the related work
on the research questions will be discussed. Following that, the methodology is elaborated on in chapter
4. The case study is described in chapter 5. Afterwards the implementation is explained in chapter 6
and the results are shown in chapter 7. Lastly, the conclusion, discussion and future work is found in
chapter 8.
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2 Theoretical background

The following chapter will provide theoretical background on the topic of this thesis. The first topic that
will be elaborated on is Emergency Response (ER) in section 2.1. Section 2.2 gives an overview of indoor
positioning methods and their suitability to ER. In section 2.3, 2D and 3D solutions for positioning meth-
ods will be compared. The Microsoft Hololens and Augmented Reality in general will be introduced in
the last section, 2.4.

2.1 Emergency response

Emergency response is part of disaster management (Zlatanova and Holweg, 2004). Disaster manage-
ment is the ”understanding, managing and reducing of risks” (Zlatanova and Fabbri, 2009, p.1) and is often
used interchangeably with emergency management, risk management, crisis management or hazard
management. Risk in this context means the ”probability for a negative, damaging outcome from an incident
or by a natural event” (Zlatanova and Fabbri, 2009, p.1). Disaster management can be divided into four
phases: (1) mitigation; (2) preparation; (3) response and (4) recovery. A visualization of the emergency
management cycle is shown in fig. 2.1. The first two phases find place before a disaster or hazard has
happened. In the mitigation phase (sometimes mentioned together with prevention) measures are made
to prevent hazards or disasters from happening, or to reduce the exposure to possible events. Dykes are
an example of this, that stop rivers from flooding. Another example is the installation of fire alarms
in buildings, that help catching fires in an early stage. In the preparation phase, active preparations
are performed to get ready for a possible disaster. Rescue forces, such as the police, ambulance or fire
brigade are trained during this phase. The response phase is directly after an emergency happened and
can last from hours to days. Lastly, the recovery phase finds place after the acute emergency, where
detriments are removed and long-lasting support is given. This fourth phase can last weeks up to years.
Every phase of disaster management can take advantage of geo-information using diverse applications
(Zlatanova and Fabbri, 2009; Zlatanova and Holweg, 2004). The type of data that is needed is dependent
on the characteristics of each phase.

”Emergency response is the disaster management phase with the most extreme requirements” (Zlatanova, 2008,
p.1631). In the ER phase the first hours after an event are the most critical. In these hours, the conse-
quences of an event on people’s lives and properties can be mitigated most. The dynamics of the phase
are much higher than in other phases. Situations can change any moment. There are a lot of people
involved, all with different responsibilities. Lastly, access to data and other sources might be obstructed
(Zlatanova, 2008; Tashakkori et al., 2015).

In disaster management, spatial information is an important aid. Following the characteristics of ER, the
type information that is needed to support rescue forces should be adapted. Data used for ER can be
grouped into two categories: static and dynamic data. Static data already exists before a disaster has
happened. It could be reference data (e.g. maps, photographs or 3D models) or more specific data, that
is linked to an event, such as the location of fire hydrants or hazardous materials. The dynamic nature
of disasters also holds the need for dynamic data and (near) real-time information. As situations can
change any moment, continuous monitoring is needed (Dilo and Zlatanova, 2011; Zlatanova and Fabbri,
2009). A clear information-driven approach to ER is safer and more effective (van der Meer, 2018).

The time spent to reach the location of a disaster from outside the structure is often much shorter than
the time spent navigating indoors (Kwan and Lee, 2005). Indoor navigation is generally slower: Rescue
forces need to deal with blocked areas, inaccessible spaces and smoke. Therefore routes are continually
adapted on the situation and travel distances are increased. On top of that, high rise buildings and
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Figure 2.1: The disaster management cycle (adapted from Zlatanova and Fabbri, 2009)

underground structures are increasingly complex. This does not only make navigation harder, it also
increases the vulnerability to disasters (Tashakkori et al., 2015).

Until a decade ago, fire fighters were using books instead of digital systems containing floor plans of
the ground floor of large buildings in the area they are responsible for. van Capelleveen et al. (2008)
predicted that the physical entities will be replaced for digital maps. Currently, not all physical maps
are replaced by their digital counterparts (van der Meer, 2018). Indoor positioning datasets are available
for public buildings or buildings with higher risks. These are integrated in indoor/outdoor digital
environments, such as the Mobiel Operationeel Informatiesysteem (MOI). However, the indoor position
on these maps is communicated via radio and speech. Therefore, it remains difficult to keep track of
positions of all personnel as a supervisor (Nilsson et al., 2014; van der Meer, 2016).

The need for indoor positioning in ER is high. Many system architectures have been proposed for indoor
navigation; indoor/outdoor environments; 3D and 2D indoor visualization in ER situations (See for
example Dilo and Zlatanova, 2011; Snoeren et al., 2007; Tashakkori et al., 2015; Zlatanova and Fabbri,
2009; van der Meer, 2018). However, literature on useful indoor positioning techniques in ER are limited.
The next section will elaborate on this.

2.2 Indoor positioning

Positioning and localization are often used intertwined. Other notions, such as place, area and pose
diffuse this field of research even further. It is necessary to develop an understanding of position in the
perspective of indoor environments. The framework of Sithole and Zlatanova (2016) will be used on this
matter (the following citations will al be from this research). An illustration of the difference between
position, location, place, area and pose is shown in fig. 2.2. A position defines a pin point in space that is set
within a reference frame (Sithole and Zlatanova, 2016, p.91). The position is absolute, with a specificity
that depends on the device that gives the position. A location is defined as ”the smallest physically defined
space in a building” (p. 92). ”A place refers to a particular object and the uncertain (functional) space around
it” (p. 92). The location is certain, defined by physical borders (e.g. someone is in the study room). The
location is always with a context (someone is inside of some place that has a meaning). Lastly, an area
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bounds multiple locations. A location is physically defined by boundaries such as walls, while an area is
unbound by these. A floor of a building is an area, with the rooms as distinct locations. While Sithole and
Zlatanova (2016) do not mention a pose, it is still a concept worth mentioning. A pose is the combination
of a position and an orientation or direction. Indoor positioning is the acquisition of a position indoors,
while indoor localization is the acquisition of a location indoors.

(a) Position: I am at x,y: (5.2, 6.0) (b) Location: I am in the study room (c) Place: I am at the desk

(d) Area: I am on the first floor (e) Pose: I am at x,y (5.2, 6.2), looking in the di-
rection of x,y (0.9, -0.2)

Figure 2.2: Differences between location; area; place; position; and pose.

Rantakokko et al. (2010) define sixteen user requirements that a positioning system should implement
in ER. Only the requirements considered in this research will be discussed here. A positioning system in
ER requires:

1. An accuracy in the horizontal plane of <1 meter, so a commander can determine the specific room
a person occupies.

2. Constant availability of the positioning data.

3. Estimation of localization errors (uncertainty).

4. Direct deployment; no pre-installation of the positioning system should be needed.

Other requirements, such as an accuracy in the vertical plane of <2m to know which floor is occupied
are also necessary, but not in the scope of this thesis. The developed positioning system will be weighted
against these four requirements.

There are a few approaches to active indoor positioning. Yang and Shao (2015) categorize these into four
groups: Time of Arrival (ToA); Angle of Arrival (AoA); combined ToA/AoA; and Received Signal Strength
Indicator (RSSI). ToA, sometimes Time Difference of Arrival (TDoA), relies on a time between a receiver
and a transmitter and works very similar to GPS. With at least three anchors, 2D positioning and with at
least four anchors, 3D positioning can be performed. AoA, or Direction of Arrival (DoA) approaches use
the incoming direction from a transmitter. The direction is computed using phase differences between
antennas. Only two anchors are needed, but the algorithm relies on direct line of sight and therefore
is vulnerable to multipath errors. Hybrid AoA/ToA use both systems to reduce the number of anchors
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nearby and increase accuracy. Lastly RSSI uses the strength of transmitters to identify unique spaces.
RSSI is simple and robust compared to the other techniques (Deak et al., 2012). However, it requires a
fingerprinting survey in advance and the accuracy will degrade fast in places with a moving crowd.
Deak et al. (2012) argue that computer vision techniques are passive positioning techniques, because
the person does not carry a device him/herself. However, I argue that this is also an active positioning
technique, where a person can have a mobile device that uses these techniques for positioning. Such a
system can use Simultaneous Localization and Mapping (SLAM) methods to position in an environment.
This will be elaborated on in section 3.1.

Deak et al. (2012) identify five possible positioning technologies: Wireless Local Area Network (WLAN),
Ultra-wideband (UWB), field strength systems, Radio Frequency Identification (RFID) and next-generation
indoor positioning systems. WLAN can be combined with RSSI and ToA. The advantage of WLAN with RSSI
is that the infrastructure of WLAN is usually already in place. Therefore, the installation costs are low.
WLAN and ToA can be used together for large indoor spaces, but need to be combined with another tech-
nique to retrieve accurate results: the error for a 10 MHz band can rise up to 30 meters. ToA is therefore
more effective in combination with UWB, where it can give a resolution up to 30 centimetre (Yang and
Shao, 2015). It is affected less by multipath errors. Unlike WLAN systems, UWB has high installation costs.
Also RFID systems are usually not present in environments and need to be installed. These systems rely
on an electromagnetic communication between readers and tags. The tags have a range of around ten
meters. Usually they are combined with a signal strength technique (RSSI).

Next-generation positioning methods make use of a variety of sensors. A system that is proposed by
Rantakokko et al. (2011); Nilsson et al. (2014) is based on dual foot-mounted Inertial Navigation System
(INS) and inter-agent ranging using UWB. The base of the positioning system are the two INS that are
placed on both feet of a person. Using two instead of one INS reduces the drift error that is accumulated.
A UWB transceiver is placed on every agent and is used to find the relative position of agents in respect
to one another, as opposed to finding a fixed position using static UWB. This data is used to correct for
the accumulated drift errors of the agents (Nilsson et al., 2014; Rantakokko et al., 2011). Also AR devices
could be placed in the last strand of technologies: next-generation indoor positioning systems. These
use a variety of sensors and the SLAM technique for positioning.

System Technique Accuracy Pre-installation

Microsoft RADAR WLAN + RSSI 2-4m Fingerprinting survey
(Bahl and Padmanabhan, 2000)
Aeroscout (Deak et al., 2012) WLAN + ToA 1-5m Tags installation
Ubisense (Deak et al., 2012) UWB + ToA 15cm-0.3m UWB installation
BLIP (Deak et al., 2012) RFID + RSSI 9cm Beacons installation
Active Bats RFID + ToA / AoA 10cm-10m Beacons installation
(Hightower and Borriello, 2001)
Inter-agent ranging Mobile UWB + INS 1.4-3.5m None
(Rantakokko et al., 2011)
SLAM - not known None

Table 2.1: Examples of positioning technologies and techniques.

Examples of various positioning technologies and techniques can be found in table 2.1. It can be seen
that the most accurate results can be achieved using UWB or beacons. However, both methods need
pre-installation of the method and are therefore not suitable in the case of AR. The solution using mobile
UWB and INS is the only solution meeting this requirement, but is not able to achieve an accuracy < 1
meter. To date, positioning using SLAM, without use of any markers that are used as reference points has
to our knowledge not yet been researched.
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2.3 2D and 3D solutions in Emergency Response

The need for spatial data in ER is clear. Using 3D information is in many ways better than its 2D variant.
The shape of buildings is better visible and therefore a better understanding of complex environments
is accomplished (van der Meer et al., 2018). Some objects, such as ventilation shafts, are better perceived
in 3D. However, the fact is that the work field uses mostly 2D data models. Many buildings lack a 3D
model and the existing models usually are the BIM design, that show buildings as planned and not as built
(Zlatanova et al., 2015). Therefore inconsistencies due to renovations, such as lower ceilings or higher
floors, occur. Next to that, in a 3D model, some areas block the view on other areas. An advantage of
using 2D data is the good understanding and detail of separate building layers (van der Meer et al.,
2018). The best practice is to combine a 2D and a 3D visualization, if available. Such a system is found
in van der Meer et al. (2018).

2.4 Augmented Reality

AR devices extend reality with placement of virtual objects, or holograms. It is the ”set of set of technologies
and devices able to enhance and improve human perception, thus bridging the gap between real and virtual space”
(Manuri and Sanna, 2016, p.18). Augmented Reality (AR) is not a stand-alone concept, but rather exists
on a spectrum of mixed reality concepts, with the ’real reality’ on one side and Virtual Reality (VR) on
the other side (Chatzopoulos et al., 2017). Where VR does not have a physical element, Augmented
Reality (AR) blends the virtual and the real. Extended reality is seen as the overarching concept of
virtual and real environments. AR is defined by three requirements: (1) it needs to combine virtual
and real content; (2) it is interactive in real-time and (3) it is registered in 3D (Manuri and Sanna, 2016,
p.18).

Two paradigms exists within AR devices: (1) see-through, head-mounted systems that show the real
world as is and overlay that with virtual content. The MH falls under this category, but is not the only
device. The Google Glass has received some attention before. Currently, also Magic Leap and Nreal
Light are state-of-the-art see-through AR devices (Magic Leap, 2020; nreal, 2020). (2) Display, hand-
held systems that show the real world through a video stream in real-time by cameras. Examples are
the Google Tango project or apps on a standard smartphone (such as Pokémon GO). The benefit of
head-mounted displays is that both hands can be kept free of equipment, unlike hand-held systems. In
particular in ER applications, the hands should be kept free from any devices that could also be carried
in any other way.

Environmental understanding is inherent to AR applications, simply because it needs to interact with
the environment. Recently there has been interest in mapping and positioning as an outcome, instead
of a necessary technology for AR to function. Most of the research into this field makes use of the MH,
although research is also done with the Kinect technology (such as Klein and Murray, 2007).

2.4.1 Microsoft Hololens

The Microsoft Hololens is a mixed reality head-mounted display system with a variety of sensors. There
are two versions on the market, the Hololens 1 and 2. The second version has a better processing unit
and unlike the first version it uses neural networks to come to a better spatial awareness system: scanned
objects are segmented into walls, ceiling, floors and platforms. In this thesis, the first MH is used, as this
was the available device. It has a 32-bit architecture of Intel, with four cores (Microsoft, 2019). A picture
of the device can be found in fig. 2.3.

The sensors of the MH include an RGB-camera, a Time of Flight (ToF) depth sensing camera and four
greyscale tracking cameras. The ToF camera has a ’long throw’ and a ’short throw’ mode. The short
throw (distances 0 to 0.8m) mode is mainly used for hand gestures, while the long throw (distances
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Figure 2.3: Microsoft Hololens (Ramadhanakbr, 2016)

0.8m to about 3.5m) is used for mapping (Hübner et al., 2020). Fig. 2.4 shows the configuration of these
cameras. The device also has an Inertial Measurement Unit (IMU).

Figure 2.4: Hololens cameras used for tracking and mapping (Hübner et al., 2020)

The MH has been used for marker-based localization by Hübner et al. (2018). By referencing the pose of a
marker on a 3D model and in the scan of the device, the position inside the 3D model can be determined.
While the process of placing one or multiple markers in the building and referencing these on a floor
plan or BIM significantly takes less time than installing any beacons or other devices, it requires a lot of
manual work. Therefore is not a suitable method with regard to the use case in this thesis: Emergency
Response. Nonetheless, errors between virtual and real world were as little as 3-4 centimeter in a 40m2

room.
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The following chapter goes into detail on the SLAM technology and on various registration techniques
that can reference the acquired model to existing data. Various registration techniques will be discussed
in section 3.2 and three are elaborated on in sections 3.2.1, 3.2.2 and 3.2.3.

3.1 SLAM

The Simultaneous Localization and Mapping algorithm uses RGB cameras, depth cameras or laser range
finders, sometimes enhanced with INS to map a space and position itself inside. Devices that apply SLAM
are found in AR, driverless vehicles and robotics. While recent years have seen an uprise in interest into
the SLAM algorithms, researchers have been looking into mapping and localization problems by apply-
ing estimation-theoretic methods for many years. The problem stems from robotics and automation and
has been introduced as early as 1986. However, SLAM as a joint problem of mapping and localization as
a single estimation problem was presented at the 1995 International Symposium on Robotics Research
(Durrant-Whyte and Bailey, 2006).

A typical system consists of four modules: a front end, back end optimization, loop closure detection
and mapping (Li et al., 2019a, p.117). This framework is shown in fig. 3.1. The front end uses the sensor
data to provide an initial camera motion value for the back end. The loop closure detection uses image
similarity to determine whether the device has already been at that place before. The back end obtains
a global optimal estimate based on the input of the front end and the loop closure detection. The output
is the mapping.

Figure 3.1: SLAM framework (Li et al., 2019a)

The front end can be divided into a direct and an indirect method. The latter is also called the feature
point method and is currently most in use. Feature points are extracted from an image, that are matched
to obtain pairs of corresponding points. These are used to solve for the camera pose, using motion
estimation. The direct method on the other hand, does not extract features, but solves the pose of the
camera using (greyscale) pixel values. It solves the pose by minimizing the photometric error. It uses all
the information in an image and has a better robustness when features are missing.

3.1.1 SLAM of the Microsoft Hololens

Many SLAM variants exist. As the MH is owned by Microsoft, the exact algorithm could only be guessed.
However, localization patents of Microsoft indicate a use of Parallel Tracking and Mapping (PTAM), with
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use of key frames (Newcombe et al., 2014). A parallel algorithm divides the tracking and mapping over
two separately-scheduled threads. There are some reasons to use parallel system. A robust tracking
method can now be used, instead of tracking being a probabilistic output of the map-making procedure.
Next to that, many of the frames processed by a regular SLAM algorithm are needed for tracking, but
redundant for the mapping. With use of a smaller number of more useful key frames, instead of trying
to filter every data frame, time can be saved.

The MH SLAM has been tested on accuracy with varying results. In general, the HoloLens produces a
very accurate mesh if only one or a couple of small rooms are mapped. Khoshelham et al. (2019) find
most points within 5cm distance of a 3D model. Hübner et al. (2020) find a similar results, with an
average accuracy of 4 centimetres with a fixed scale. Landgraf (2018, in Hübner et al., 2019) has shown
that drift effects visibly occur in large-scale buildings. The latest research to date found a relative drift
error per second of around 1.3cm per second and a 1.5 rotation error per second. The total drift offset
found over a course of 287 meters was 2.39 meter (Hübner et al., 2020).

3.2 Spatial Matching

Registration algorithms are used to match a data shape X to another data shape Y. They do so, using
geometry features of both data shapes. Spatial matching techniques can be organized in broadly two
directions: deterministic and iterative.

Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) are two deterministic
algorithms that are based on the covariance matrices of the shapes. PCA aligns the centres of both shapes
to the origin. Afterwards, the orientation is corrected using the eigenvalues of the shape itself. Such
a method is very easy to implement, but partial registrations are not possible. SVD is very similar,
but instead of using the complete source and destination shape, the algorithm uses correspondences
between points. The eigenvalues are obtained through a least-squares problem, using all corresponding
point pairs (Bellekens et al., 2015).

Iterative spatial matching techniques try to improve on these deterministic algorithms. The most grounded
is the ICP algorithm. It retrieves corresponding points in the two data shape and uses a method similar
to SVD to minimize the error. This process is iterated until a certain threshold is met. As this method
was first explained in 1992 by Besl and McKay (1992), many variants and optimizations exist. Pottmann
et al. (2004) use an iterative method based on Local Quadratic Approximation and Instanteneous Kine-
matics (IK). Where the performance of ICP gets worse in the later iterations of the algorithm, IK does
not.

Others use domain properties to find similarities between point sets, such as the Fourier Transform or
the Hough Transform, described respectively by Makadia et al. (2006) and Ni et al. (2013). A method
that uses one of these transforms tries to find a global transformation and therefore do not need an
initial fit. While the implementation is different, both rely on finding the rotational component first
using the transform and computing the translational parameter with correlation. The method using
Fourier Transform uses ICP after finding the rotation and translation parameters, to come to a more
precise transformation. The method using Hough Transform is distinctive from all others, as it uses a
2D map to register a 3D shape to, while other implementations are 3D/3D, with a possibility to reduce
dimensions to 2D/2D.

There are other, more complex registration methods existing. Elbaz et al. (2017) constructed a neural
network to register a small point cloud to a larger. The method find geometrical structures in the data
sets, or ’super-points’, that are matched using by correlating descriptors of the super points. The final
fit is found by using ICP.

Three of these spatial matching algorithms will be selected as feasible options, to investigate further.
A balance should be made between complexity of implementation, algorithm computation speed and
the accuracy. A registration algorithm in this research is required to do partial registration, without
knowledge of point correspondence pairs. SVD needs point correspondence pairs to be able to register
data shapes. PCA is not capable of partial registration, as it takes the overall structure of the data shapes
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into account. Both PCA and SVD are not fit for registration in this research. The neural network method
of Elbaz et al. (2017) uses a point-to-point registration with similarities between groups of points. The
spatial matching in this research should be able to perform point-to-line registration and cannot rely on
super-point similarity. Therefore, also that method is not suitable. All the other methods do meet the
requirements. ICP is chosen, because of its wide-spread implementations. Therefore, it is a relatively
easy method to implement, as there are a lot of examples available. IK is chosen, because it is a method
that theoretically should work faster than ICP, however does not have many implementations yet. HT
is chosen over Fourier Transform. This has two reasons: firstly, the implementation of HT described
by Ni et al. (2013) implements a method using a 3D source model and a 2D reference map. This is
close to what is wanted to be achieved by this research. Secondly, because the implementation of the
Fourier transform is only a rough transformation. It uses ICP for a closer fit to the data. This confuses
the comparison of methods, where one of the methods uses the other. Lastly, implementing a neural
network is a too complicated task, with respect to the time frame of this thesis and therefore is deemed
unfit.

The selected algorithms ICP, IK and the Hough Transform (HT) are fully elaborated on in the next sec-
tions.

3.2.1 Iterative Closest Points

The following registration technique is the oldest and probably most used. It was first constructed by
Besl and McKay (1992). Some variant of ICP is also used in the SLAM used in Microsoft AR devices
(Newcombe et al., 2014). A rotation parameter R and a translation t are computed so that a data shape
X is best aligned with model shape Y. This is achieved in a least-squares manner.

Each iteration, the closest points between X and Y are computed. Afterwards, a registration is computed
that minimizes the distance between X and Y. The registration is applied to the model X and lastly, the
change in mean-square error between the old and the new iteration is computed. If this change is below
a threshold τ, the iteration is terminated.

If the distance between two data shapes can be described as d(X, Y) and the displacement of a data
shape can be described by a transformation q applied to a data model, the objective of each iteration can
be described as in eq. 3.1.

argmin
q

d(q(X), Y)2 (3.1)

First, for every point in data shape X, the closest point to model shape Y is computed. The distance of
the closest point in the model shape Y from a point x in point set X can be described as in eq. 3.2.

d(x, Y) = min
y∈Y
‖y− x‖ (3.2)

The vector y describes the closest point to x. The transformation vector q can be split into a rotational
component qR :

[
q0 q1 q2 q3

]
and a translational component qT :

[
q4, q5, q6

]
. A displaced point

x′ can be described as x′ = R(qR)x − qT . The squared distance between y and the displaced point x′

should be minimized. The least square function is described as such in eq. 3.3, solving for q.

argmin
q

1
NX

NX

∑
i=1
‖yi − R(qR)xi − qT‖2 (3.3)
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When the optimal parameters for q are found, the registration is applied to data shape X: q(X). The mean
square error between altered data shape q(X) and reference model Y is computed by dk = d(X, Y). If
the improvement of iteration k over iteration k-1 is below threshold τ, the iteration is terminated. This
can be seen in equation 3.4.

dk−1 − dk < τ (3.4)

Variations of the ICP algorithm

Since Besl and McKay (1992) published the ICP algorithm, many variants were constructed. Rusinkiewicz
and Levoy (2001) categorized these into five alteration typologies:

1. Methods to select a subset of points in the registration and/or reference shape

2. Alteration in the procedure selecting the corresponding points

3. The weighting of points

4. Methods to reject point pairs

5. Variations on the minimizing the error metric

A number of sampling methods can speed up the ICP computation. While the method of Besl and McKay
(1992) uses all points, also subsets can be used. Some variations exist, such as uniform subsampling,
random subsampling, but also more intelligent ways of creating a selection of points: choosing points
such that the distribution of normals among the selected points is as large as possible (Rusinkiewicz and
Levoy, 2001). Others use a multi-resolution, or pyramid system for a computation cost reduction. The
resolution is increased when the fit of the algorithm gets better. The underlying idea is that the precision
that can be reached with a full resolution is achieved in the last few iterations, while the iterations before
are used to attain a coarse fit (Jost and Hugli, 2003).

While the matching method is named iterative closest points, one could also choose for point pairs that
are selected on other variables. Some point clouds contain colour, which can be selected as an extra
constraint on the point matching. Matching can also be performed using the point normals, where the
closest ’compatible’ point is selected, with a normal within 45 degrees.

Points can be weighted with a constant weight, but some methods use different weights per point pair.
One could weight on the compatibility of normals, or on the distance between two points. If points are
close by, they should be weighted more than if the points are further away.

It is an option to reject pairs on certain properties. The rejection of point pairs can rely on a maximum
distance threshold, percentage or standard deviation. Also inconsistencies with neighbouring points
can be a ground to reject point pairs.

Besl and McKay (1992) uses a point-to-point error metric: the distance between the corresponding point
pairs is used as an input measure for the least squares equation. However, there are variants that use
a point-to-plane (or point-to-line) distance metric: instead of using the exact point pair, the distance to
the plane containing the reference point is used as a least-square measure (Bellekens et al., 2015). The
difference is shown in fig. 3.2. The minimization is be expressed in eq. 3.5.

argmin
q

1
NX

NX

∑
i=1
‖((R(qR)xi + qT)− yi)ni‖2 (3.5)
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(a) ICP alignment using point-to-point error metric (b) ICP alginment using point-to-plane error metric

Figure 3.2: A point-to-plane alignment metric could give a better fit than a point-to-point error metric.
Figures from Bellekens et al. (2015).

3.2.2 Local quadratic approximants and instantaneous kinematics

The Local Quadratic Approximant and Instantaneous Kinematics method, IK in short, is constructed by
Pottmann et al. (2004) because the ICP algorithm had problems. It is a variant on the previous algorithm,
in the sense that it also uses the closest points to the point cloud that needs to be registered and it is it-
erative method. However, it uses a different objective function to minimize. ICP is computed using least
squares and works well with points far away from the model that needs to be registered to. However, if
the points are close to this model, the performance decreases. They show that using IK, the convergence
is faster. The following paragraph paraphrases the method used by Pottmann et al. (2004).

Instantaneous Kinematics

Instantaneous Kinematics is the movement of an object at a particular moment in time. It is widely used
in research fields that deal with complex displacements, such as robotics. The idea to use kinematics in
point cloud registration, is to view the point cloud as a moving body towards a reference, or destination
object. The bodies movement is defined by a velocity vector, that is composed out of a velocity vector
at the beginning and an angular velocity. Generally speaking, the first defines a direction that the body
moves to and a speed. The vector of angular velocity, also called the Darboux vector is the rotational
component and therefore defines a rotational direction and power. The velocity vector v(x) can be
presented by the following equation, where c is the velocity vector of the origin and c the Darboux
vector, as can be seen in eq. 3.6.

v(xi) = c + c× xi (3.6)

The displacement of a point xi to a location x′i can be computed by simply adding the velocity vector to
the point: x′ = xi + v(xi). The objective of the registration is to find a position, where point set X is as
close to a reference model Y, by moving the point set by some velocity vector v(x). In other words, some
combination of a (c, c) should be found to solve following optimization function, where Fi is a function
that approximates the distance to a reference model Y. This is described in eq. 3.7.

argmin
v(x)

∑ Fi(xi + v(xi)) (3.7)
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Local quadratic approximation

The distance between a point xi and a surface or line φ can be approximated by a combination of nearest
point yi on the surface/line, a unit normal vector ni at the location of the nearest point and a distance
scalar di. It is described in following equation 3.8.

xi = yi + dini (3.8)

If a point is displaced by velocity vector v(x), the movement in the direction of the surface can be
extracted by taking the dot product of the velocity vector with normal ni. By adding the previous
distance di, the squared distance between x′i and yi is computed, as shown in eq. 3.9

F(x′i) = (di + ni · (c + c× xi))
2 (3.9)

Now the distance functions is defined, minimization function 3.7 can be combined with the distance
function. The total squared distance between displaced point set X’ and reference model Y is shown in
eq. 3.10.

F(C) := F(c, c) = ∑
i
(di + ni · (c + c× xi))

2 (3.10)

An optimal (c, c) needs to be found, that minimizes this function F(C). Where di is the distance between
xi and yi and ni is the normal vector from the tangent plane. Equation 3.11 shows the same function as
a matrix function, with some rewriting (see Pottmann et al. (2004) for full explanation).

F(C) = D + 2BTC + CT AC (3.11)

In this equation, D is just some scalar, B is a column vector with six entries, that is constructed by the
sum of all di · (xi × ni, ni). A is a six by six matrix, constructed by the sum of all (xi × ni, ni)

T(xi × ni, ni).
A structure as found in equation 3.11 is part of the group of quadratic functions ax2 + 2bx + c, where
the minimum can be computed using the derivative shown in 3.12.

AC + B = 0 (3.12)

This is a system of linear equations, that can be solved for c and c.

Using Plücker coördinates for a rigid motion

The motion v(x) is a not a Euclidean rigid body motion, but an affine one. In point cloud registration, it is
undesirable if the shape of the scanned object has changed. A rigidity constraint on the transformation
should solve this problem. C can be approximated by a rotation α about an axis G in space and a
translation or pitch ρ, that is parallel to this axis. The axis is constructed using Plücker coördinates g, g.
The rotation, axis and pitch can be retrieved by eq. 3.13

g =
c
‖c‖ , g =

c− pc
‖c‖ , p =

c · c
c2 , α = arctan ‖c‖ (3.13)
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This results in a helical motion, as shown in fig. 3.3. The motion gives a better (quadratic) convergence
behaviour than ICP for small residuals. Larger residuals give a convergence that is similar (linear) to ICP.
The algorithm should account for small changes each time, therefore the algorithm is expected to work
faster than ICP.

Figure 3.3: The transformation of the velocity vector v(x) to a helical motion of xi around axis G
(Pottmann et al., 2004).

Performance of IK

The IK method is tested on accuracy and convergence behaviour using an industrial product. It is tested
twice, once with and once without Gaussian noise. The object that is used in the research of Pottmann
et al. (2004) research to register a point cloud has a lot of curvature. This is different from the object in
the current study: the surfaces of buildings are usually planar. The tangent plane of planar surfaces is
the plane of the surface itself. Therefore, the first step in the algorithm is arguably not performing better
in the case of building point cloud registration and could possibly not yield the same results as found
in Pottmann et al. (2004). The IK algorithm converges in 12-20 iterations, with an accuracy that is better
than the accuracy of ICP after 100 iterations. This is mostly due to the fact that IK supports tangential
movement, which helps converging over very small distances.

3.2.3 Hough Transform

The third spatial matching algorithm could be portrayed as the odd-one-out. It does not register a
point cloud to another 3D model, but to a 2D map. That makes this algorithm suitable in this research.
Moreover, it is not an iterative but a direct method.

The algorithm that is constructed by Ni et al. (2013). It relies on property of hough space that the rotation
is invariant to the translation. The transformation is calculated in five steps:

1. Plane finding using Hough Space

2. Finding the up-vector (or correctly orienting the horizontal plane)

3. Finding the correct rotation

4. Finding the correct scale

5. Finding the correct translation
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Plane finding in hough space and finding the up-vector

In hough space, the characterizing variables are the offset from the origin, ρ and the angle calculated
from the origin, θ for lines and (θ, ω) for planes. The Hough Transform (HT) consequently, transforms
lines or planes from euclidean into hough space. Points can be transformed into hough space as well,
but as long as it is not known which line or plane they belong to, they will show up as sinusoids in
hough space (see fig. 3.4).

Figure 3.4: A rectangle becomes many sinusoids in Hough space. These sinusoids come together at four
points. The x-axis becomes the θ, or rotation and has points at 0, 1

2 π (or 90 degrees) and again at π (or
180 degrees). The r is different for every line. The dotted blue line corresponds to the point inside the
dotted blue circle.

There are a number of ways to find out which hough point a euclidean point belongs to. In point clouds,
often it is the case that the normals are available. Using the position of the point in euclidean space pt
and its unit normal vector n, the ρ and θ can be computed as in eq. 3.14.

θ = arctan
yn

xn
, ρ =| xpt cos θ + ypt sin θ | (3.14)

Plane finding can be done using a simple density kernel.

However, some point clouds do not have the normal vector available. Plane finding then relies on a
point to plane distance metric. The point cloud in this thesis stems from a mesh, where the normals
can be derived from the faces of the mesh. For further explanation on plane finding without the use of
normals, one could look at the research of Ni et al. (2013).

The up-vector can be directly extracted from the found planes using SVD and eigenvectors. The up-
vector will correspond to the eigenvector with the least amount of variance. While many walls exist in
a building that use a distinctive plane, there are usually a limited amount of floor planes.

Finding the optimal transformation using Hough Space

One of the main reasons to use Hough Transform, is that rotation (the x-axis in hough space) is translation-
and scale-invariant. Therefore, the rotation can be found separately from the scale and the translation.
The optimal rotation is an optimization problem. Let H(I) be the hough transform of a model. Then
H(r) is the hough transform of a reference model and H(q) the one of the model that should be rotated.
H(I)(θ, ρ) is the density of hough points at a certain θ and ρ. The optimization can be solved through
sweeping γ by shifting the Hough spectrum of the planes / lines of the point cloud H(q) and observing
when it aligns the Hough spectrum of planes of the reference floor plan (H(r). The γ where the result is
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highest, is the best alignment and therefore the rotation difference between the source and destination
model. The equation is shown in eq. 3.15.

argmax
γ

∑
i

∑
ρ1

H(r)(θi, ρ1)∑
ρ2

H(q)(θi + γ, ρ2) (3.15)

After computing the optimal rotation, the scale should be determined. This is deemed out-of-scope in
this thesis, so an exact explanation on this scale-matching can be found in Ni et al. (2013). Lastly, the
translation can be found by converting the rotation transformation back to euclidean space and using a
conventional method to find the translational parameters. Ni et al. (2013) do this by MATLAB’s xcorr,
that correlates two discrete time-series.

Performance of Hough Transform

The results of the Hough Transform were compared to the ICP algorithm. The ICP took between 0.23
minutes and 1.36 minutes. The HT took 3.25 minutes to 6.57, more than 10 times slower. Also the
accuracy is worse in the case of HT: the RMSE was between 1.4-3.9 meter, while the results of the ICP
were 1-1.8 meter. There are multiple reasons why the method is still chosen: the scale factor computed
a size that was 12% bigger than the optimal factor. As scale is not a weighing component in this thesis,
it could give better results. Next to that, ICP was given several initializations, making the results look
better than it actually might be.

3.3 Providing an initial transformation matrix

Most registration algorithms work best with a good initial value provided (Li et al., 2019b; Jost and
Hugli, 2003). If the starting point of a registration algorithm is not sufficient, a local optimum could be
reached that is not true to the real situation. On top of that, if there are large scale differences between
the scanned and reference models, it is hard to find a correct transformation. Buildings typically contain
many rooms of similar sizes and configurations. At the start of the process of scanning a building, when
only one room, or of a part of a room is mapped, it is very unlikely to impossible that a registration
algorithm could find this room without any initial value. This issue is already noted by Fonnet et al.
(2017). Therefore, it is necessary to give some initial transformation.

There are multiple ways to reach an initial value. Fonnet et al. (2017) propose to manually put the model
(a 3D BIM) by hand gestures. Microsoft provides some handles in the Mixed Reality Development Toolkit
to achieve this. It is a relatively simple way, but time consuming way of estimating the initial value.

There is an existing method to detect doors in (voxelized) point clouds. The core principle behind the
detection is the characteristic shape of a door and the trajectory of a SLAM device. There are three rules:
a door center is in empty space; above the door center there are points and the trajectory goes through
the empty space (Nikoohemat, 2016). The door can be identified on the floor plan beforehand, therefore
automating the initial registration.
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The goal of this thesis is to construct a method to position indoors using the SLAM of the Microsoft
Hololens and a floor plan. This chapter describes the methodology to reach this goal. The research
takes a comparative design. It will compare the suitability of three registration algorithms for indoor
positioning, ICP, IK and HT. Before the registration can take place, some preprocessing should be per-
formed on the floor plan and the MH. This will be described in section 4.1. Section 4.1.3 explains the
rough estimate of the transformation before the registration happens, to ensure a good initial fit. After
the initial transformation of the spatial mesh of the MH, it will be converted to a point cloud, in order to
be used for point-to-line registration, using the three registration algorithms described in the previous
chapter. These will be explained in sections 4.1.1 and 4.1.2. Lastly, the evaluation is elaborated on in
section 4.3. An illustration of the methodology can be seen in fig. 4.1.

Figure 4.1: Proposed methodology to position in an indoor environment and evaluate the method.

The positioning method is a dual system that is made up of the Hololens data and the SLAM algorithm
on the one side and the floor plan with the position on the floor plan on the other side (see fig. 4.2).
The initial transformation is already performed at the time of mapping, therefore is omitted here. The
walls are extracted from the mesh with use of surface normals (see also section 4.1.1). Afterwards, the
transform parameters of the mesh to align with the 2D floor plan are estimated through the spatial
matching algorithms. These transform parameters are not used to change the position the mesh or the
floor plan itself, but to map the position of the SLAM algorithm to the position on the floor plan. This
process repeats every fifteen seconds.
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Figure 4.2: Continuous process of indoor positioning using the Hololens.

4.1 Data preprocessing

This section elaborates on the data that needs to be processed. In section 4.1.1, the filtering of the MH
acquired mesh and the conversion to a point cloud will be explained. Section 4.1.2 concerns the pre-
processing of the floor plan and 4.1.3 describes the initial transformation that is performed before the
registration.

4.1.1 Hololens preprocessing

Figure 4.3: Quality of the Microsoft Hololens scanned mesh objects.

The Microsoft Hololens spatial mapping module provides an on-the-fly produced mesh of the environ-
ment (see fig. 4.3). All three registration algorithms need a 2D point cloud of only the walls as input.
Therefore, the spatial mesh needs to be (1) converted to a point cloud and (2) be filtered on vertical sur-
faces and (3) reduced with one dimension. Ceilings; floors and other horizontal areas should be filtered
as adequate as possible, to reduce noise in the registration. The conversion and filtering can be achieved
in one algorithm, based on random points on the mesh faces and the normals of the faces (see algorithm
4.1). The input of the algorithm is the MH spatial mesh and a point density d. All triangle faces of the
mesh are checked on their orientation. If the orientation is perpendicular to the ’up-vector’ (the orienta-
tion of the Z-axis), the triangle is vertical. The area of all vertical triangles is computed and a number of
points is calculated, using the point density. A random point inside the triangle is constructed, by (1) a
random interpolation between two vertices of the triangle and (2) a random interpolation between this
point on the edge and the third vertex. The dimension is reduced by simply omitting the Z-value.
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4.1 Data preprocessing

Algorithm 4.1: Mesh to point cloud(M, d)
Input: Hololens MeshM, Density d
Output: pointcloud X with normals N

1 τ: triangle ;
2 i : 0 ;
3 Vup : Vector(0, 0, 1) ;
4 for τ ←M do
5 V ← τ.vertices ;
6 Nτ ← (V[0]−V[1])× (V[1]−V[2]) ; // Nτ: triangle normal

7 if | N̂τ ·Vup |< 0.1 then
8 A← Nτ · 0.5 ; // A: triangle area

9 n points← A· d ;
10 for j← 0 to n points do
11 pointonedge← RandomInterpolation(V[0], V[1]) ;
12 Xi ← RandomInterpolation(pointonedge, V[2]) ; // random point in triangle

13 Ni ← N̂τ ;
14 i← i + 1 ;

15 return(X, N)

4.1.2 Floor plan preprocessing

Not only the spatial mesh needs preprocessing, also the floor plan needs to be in the correct format. The
floor plan is used to register the point cloud output to, described in the previous section. All algorithms
work with a closest-point-to-line mechanism. This mechanism finds the point that is closest to the set of
lines of the floor plan, for every point in the point cloud. It is theoretically possible to work with various
line types, such as arcs, splines, or other curved lines. However, most walls of buildings are straight,
or have a curvature that is so low that it can be transformed into multiple straight lines with different
orientations. As the focus point of this thesis is not to have as much support for various types of floor
plans, but rather the matching method itself, it is chosen to work with simple lines. All lines used have
no more than a start and an end point. There are no splines, arcs or other curves. Walls in a building
do have depth, so every wall is represented by a line at at both sides of the wall. Data consists of walls
and walls only, so preprocessing needs to be done to remove all other features, like doors; staircases; or
windows. These are manually removed by use of CAD-programs. Preprocessing also needs to be done
to change all complex lines to simple lines.

It could be argued that the manual processing of a floor plan contradicts the fact that ER needs to deal
with limited time. A manual process would make the whole method unsuitable for the use case. On the
other hand, it is only the closest-point-to-line algorithm that is affected by this choice. This particular
algorithm could be changed in isolation by a more intelligent algorithm, that can deal with other line
types as well.

4.1.3 Initial transformation

An initial transformation value should be provided before the registration process starts. Two methods
are elaborated on in section 3.3. One is a manual registration, where someone can rotate and translate
the floor plan to the correct place. This process can be very slow, thus is considered infeasible. A
second method is proposed, using a door detection for providing a more automatic initial value. A
considerable advantage is that someone does not need to be in the building for the manual part of this
initial registration. However, there are also a disadvantages to this method: the detection mechanism
could fail to detect a door as such, or could detect something else (such as columns in front of a building)
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as a door incorrectly. Therefore a new method is constructed, which is faster than the first, but more
robust than the second.

The proposed method is similar to the marker-based positioning method described in chapter 2. The
method relates an object in the real world with one on the floor plan. Instead of using markers in both
real and virtual world, a random position on a wall is used. A point on a wall is selected by a ray-
cast. This returns a point on the wall in the coordinate space of the MH and the normal of the wall face.
The wall is also selected on the floor plan. The rotation between the normal of the floor plan wall and
the wall in MH coordinate space is equal to the initial rotation. The initial translation is equal to the
difference between the (x,y) coordinates of the point in MH space and the point on the floor plan. This is
illustrated in fig. 4.4

(a) Selected point and point normal on the floor plan (b) Selected point and point normal on the scanned mesh

Figure 4.4: Using the position and orientation of a wall existing in the floor plan and the scanned object,
the position on the floor plan can be estimated

4.2 Registration

Shape registration is a technique to align one shape to another. Three variables play a role: translation,
rotation and scale. Scale is considered out-of-scope in this research, but the first two variables need to
be computed in order to register a shape to another. The goal of a registration algorithm in this case is to
find the best transformation matrix, consisting of a rotation matrix and a translation vector. The rotation
is a 3x3 matrix that is defined by a rotation around the X-axis (α), one around the Y-axis (β) and one
around the Z-axis (α). The translation is a three-dimensional vector. Both are shown in equation 4.1.

R =

cos α cos β cos α sin β sin γ− sin α cos γ cos α sin β cos γ + sin α sin γ
sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ− cos α sin γ
− sin β cos β sin γ cos β cos γ

 , T =

x
y
z

 (4.1)

However, both the translation and rotation are used in shape registration in 3D space. As a 2D regis-
tration is performed instead of a 3D, both components can be reduced. The registration in 2D space
only rotates around the Z-axis in 3D space. The translation does not have a z-component. The rotation
matrix and translation vector used can be found in eq. 4.2. While the registration is 2D, the environment
of the method will maintain a Z-component, as this will be convenient for visualization purposes and
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projections on the MH.

R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , T =

x
y
0

 (4.2)

The final product of registration is a transformation matrix. This is a 4x4 matrix with the rotation and
the translation component combined. The last row in the transformation matrix is reserved for non-
rigid transformations. An example of a non-rigid transformation is scale, but also shearing or changing
perspectives are non-rigid transformations. These do not have to be dealt with and therefore the last
row is a 4x1 matrix

[
0 0 0 1

]
. The transformation matrix is shown in eq. 4.3.

M =

[
R T
0 1

]
(4.3)

4.2.1 2D registration

Shape registration mostly concerns 3D space. The ICP and IK algorithms both use 3D space. HT first
correctly aligns the rotation in X/Y and subsequently uses a 2D technique to find the transformation
parameters. The choice of using 2D registration in this research does not rely on the performance of
2D or 3D algorithms, but it relies on the availability of floor plans, as opposed to limited access to BIM.
However, it has impact on the registration. A loss of dimension also means a loss of data.

I argue that the Z-component is not needed for a successful registration. First of all, the MH has the
capability to correctly align its orientation to the ground plane. While in other use cases, such as the
registration of mechanical parts in Pottmann et al. (2004), the point cloud needs to rotate around the X-
and/or Y-axis, this is not needed with the spatial mesh of the MH. Secondly, (most) walls in buildings
are perpendicular to the floor. Therefore, it is relatively easy to extract the walls from the 3D mesh.
Finally, a floor plan is a section of a building at 1 meter above the floor. It shows the navigable space for
a human being. A BIM shows more redundant information, especially considering the fact that the MH
does not have a reach of more that 3 meters, so the high ceilings that large buildings often have are not
mapped anyway.

There are some disadvantages to 2D registration. Most importantly, complex buildings with many non-
vertical walls will be difficult or even impossible to register correctly. However, the methods used in
this research all can be extended to 3D variants without changing the whole structure of the method. It
is not in the scope of the thesis to do so.

In chapter 2 it is argued that a 3D visualization could enhance a 2D visualization in the case of ER. 2D/3D
visualization is not possible if no BIM is present. However, it becomes possible with use of the scanned
3D model of the MH. This method makes a 2D/3D visualization possible without prior 3D knowledge
of a building. Using a 2D registration method does not lose the 3D component of the MH mesh.

4.2.2 ICP

The foundation of the ICP algorithm used in this thesis comes from Besl and McKay (1992). However,
in the last thirty years, many variants have been published that increase the speed or robustness of the
method. These have been explained in chapter 3. Six types of variants have been identified, based on
the stages it affects. These are: (1) selection of points, (2) matching of points, (3) weighting of points, (4)
rejecting points, (5) assigning an error metric and (6) minimizing the error metric.

The implementation of Birdal (2020) is used as reference. It combines geometrically stable sampling
(Gelfand et al., 2003), picky ICP (Zinsser et al., 2003), linearisation of the point-to-plane error metric
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Algorithm 4.2: Iterative Closest Points
Input: point cloud X, floor plan lines L, maximum iterations maxIter, motion threshold τ,

hierarchy levels hmax
Output: transformation matrix M

1 M : 4x4 identity matrix ;
2 X̂ ←normalize(X) ;
3 L̂←normalize(L) ;
4 N ← length X ;
5 for h← hmax to 0 do
6 Nh ← N

2h ;
7 maxIterh ← maxIter

2h ;
8 τh ← τ ∗ (h + 1)2 ;
9 Xmoved ← M× X̂ ;

// Set motion parameters

10 f valold ← ∞ ;
11 for i← 0 to maxIterh do
12 Xsubset ⊂ Xmoved ; // random subset of N points

13 Y, NY ← ClosestPoints(XN , L̂) ;
14 Xsubset, Ysubset, NYsubset ← reduceDuplicates(Y, NY, Xsubset) ;
15 foreach Xi, Yi, Ni in Xsubset, Ysubset, NYsubset do
16 B ⊃ Ni · (Yi − Xi) ;
17 A ⊃

[
Xi × Ni Ni

]
;

18
[
angles T

]
← solve(AC + B) ;

19 R← Quaternion(angles) ;
20 Mh ←Matrix(R, T) ;
21 Xmoved ← Mh × X̂ ;

// Compute motion change

22 f val ← ∑‖(Xmoved − X̂)‖2;
23 f val =

√
f val/Nh;

24 f valperc ← f val/ f valold ;
25 f valold ← f val ;
26 if ¬ ( f valperc < (1 + τh) ∧ f val > (1− τh)) then
27 break

28 M← Mh ×M

// correct for normalization scale

29 T ← M.Quaternion∗scale−1 + meanAvg−M.Quaternion∗meanAvg;
30 M.Translation← T;
31 returnM;
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(Low, 2004) and multi-resolution registration (Jost and Hugli, 2003). These are respectively in the stages
1 (selection), 4 (rejection), 5 (assigning error metric) and 6 (minimizing error metric).

The main objective of picky ICP is to improve robustness and speed. Corresponding point pairs are
computed between the point cloud and the floor plan. Using the standard deviation of the distances,
points can be rejected on a distance bigger than a multiple of this standard deviation. Points can also
be rejected, if the destination point (the point on the floor plan) is presented more than once. All source
(point cloud) points are rejected in this case, except for the point with the lowest distance. These two
additions try to improve the robustness of the algorithm. It is a valuable addition to the standard ICP,
because it tries to discriminate good pairs from outliers. A mapped building consists of a lot of noise,
compared to the floor plan that is completely void of furniture, plants, humans or other objects. Lastly,
to improve performance, the iterations are divided into hierarchy levels (h), where only the 2h-th data
point is used in the iteration. If a convergence is reached in one hierarchy level, it is continued to the
next (h-1). This will speed up the computation time, especially for large data sets. A standard threshold
of the registration error cannot be used as a metric to stop the registration. Instead, a change of motion
parameter should be used per hierarchy level.

Low (2004) uses linear instead of non-linear optimization to solve problems more efficiently. As a re-
quirement, the relative orientation or rotation between the input and reference object should be small.
In this use case the condition is met, because an initial transformation is already given (see section 4.1).
A linear optimization gives a faster convergence and therefore speeds up the process. It requires the
normal of the reference line. It solves the linear least squares equation: Ax + b = 0. A is a nx6 Matrix,
consisting of (1) the cross product of the source point and the normal vector of the line and (2) the nor-
mal vector of the line. b is a nx6 matrix of the dot product of the change vector between the source point
and destination line and the normal vector of the line. This is shown in eq. 4.4.

Ai =
[
xi × ni ni

]
, bi = ni · (xi − yi) (4.4)

4.2.3 IK

The Local Quadratic Approximation and Instanteneous Kinematics (LQAIK), or IK algorithm is in some
way very similar to ICP. However, instead of directly using the distance of a source point to the closest
point on a reference surface or line, it uses a local quadratic approximant Fi of the squared distance
function to a surface or space curve. This could be the squared distance function of the tangent plane or
line. This is relatively easy to compute for simple lines: it is the length of the unit normal vector of the
line times the distance to the source point.

The output of the algorithm as explained by Pottmann et al. (2004) is not a translation and a rotation
around the Z-axis, but a rotation around an axis somewhere in 3D space and a pitch (similar to a trans-
lation). Because the Z-value is omitted, this pitch will always be 0, so it can be excluded. The rotation
axis however, is the Z-axis in some (x,y) point. Eq. 4.5 shows how to translate this into a transformation
matrix.

M =

[
R −axisOrigin
0 1

]
∗
[

i axisOrigin
0 1

]
(4.5)

The algorithm that is used to compute the velocity vector is shown in alg 4.4. The point cloud, closest
points on the floor plan and normals of these closest points are the input of the algorithm. The equation
AC + B needs to solved, where A is a 6x6 matrix and B is a 1x6 vector in the method described by
Pottmann et al. (2004). C is also a 1x6 vector, with the first values being the Darboux vector and the
last three the velocity vector at origin. However, a 2D registration is performed. Therefore, the darboux
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Algorithm 4.3: Local Quadratic approximants and Instantaneous Kinematics
Input: point cloud X, floor plan lines L, maximum iterations maxIter, threshold τ
Output: transformation matrix M

1 M: 4x4 identity matrix ;
2 ε: Error between point cloud and floor plan

3 for i← 0 to maxIter do
4 Y, NY ← ClosestPoints(X, L) ;

// Compute the velocity vector

5 c, c← VelocityVector(X, Y, NY) ;

// Solve constraint with plücker coordinates

6 axis, ω ← Plücker(c, c)

// construct transformation matrix

7 rotation =Quaternion(ω);
8 Mi ← [rotation− axis]× [identityaxis] ;

9 if Betterfit(X×Mi, Y) then
10 M← Mi ×M;
11 X ← Mi × X;

12 if ε < τ then
13 Break;

14 return M;

vector is only 1 rotational value and the velocity vector of the origin are 2 (x and y). A can be a matrix
of 3x3 and B can be a vector of 1x3.

Algorithm 4.4: Find velocity vector

1 c, c← C ;
2 A← zeroMatrix(3x3);
3 B← zeroMatrix(1,3);
4 foreach Xi ← X do
5 Ai ← Xi × Nyi ;
6 A← A + AT

i Ai ;
7 B← B + Ai · ‖Xi −Yi‖;
8 C ←solve(AC + B = 0) ;
9 return X;

A velocity vector transforms a point cloud with a non-rigid motion. The shape of the point cloud should
stay the same, therefore the transformation should be a rigid one. The rigidity constraint is solved using
plücker coördinates g, g. In algorithm 4.5, it is shown how to get these coördinates. Using a cross
product, an axis G can be found. In the case of 3D point cloud registration, the axis can be in any
direction and the pitch p that is parallel to this axis can be a value other than zero. However, since we
are dealing with a 2D point cloud, the axis direction will always point in the direction orthogonal to the
horizontal plane and pitch p will be zero. The transformation matrix can be constructed using a rotation
of ω degrees around the axis G.
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Algorithm 4.5: Find plücker coordinates

1 ω ← ‖c‖ ;
2 p← c·c

‖c‖2 ;

3 g← c
ω ;

4 g← c−pc
ω ;

5 G ← g× g ;

4.2.4 Hough Transform

Hough Transform is the only one of the three algorithms that is in principle non-iterative. It is also
already accustomed to the registration of a 3D point cloud to a 2D reference map. It computes its correct
position in four steps: (1) finding the ’up-vector’; (2) rotation; (3) scale; (4) translation. Step one tries to
correctly align the ground plane of the point cloud to the horizontal (x,y)-plane. However, this step can
be omitted, since the MH already finds the correct orientation of the ground plane itself. Step three can
be omitted as well, as the difference in scale is considered out of scope in this project. Therefore, only a
rotation around the z-axis and a translation should be found.

The rotation is found by transforming the floor plan lines and the point cloud into hough space. Ni
et al. (2013) proposes a density kernel to achieve the hough transform. All points of the point cloud
can be converted to a sinus-line in Hough Space. Using a density kernel, basins of attraction could be
found. These basins of attraction are points in hough space, but relate to lines in euclidean space. The
point cloud that is used in this thesis comes from a mesh and therefore normals can be provided that are
orthogonal to the mesh triangle a point stems from. A point with a normal could be transformed to a
point in hough space directly, as it represents a plane (or line in 2D). This is achieved as following, where
θ is on the x-axis and represents the angle and ρ is on the y-axis and represents the distance between the
line and the origin. These are shown in eq. 4.6.

θ = tan−1 n.y
n.x

, ρ = Xi �
[

cos θ
sin θ

]
(4.6)

Further computation of the rotation is identical to the method described in section 3.2.3.

Ni et al. (2013) does not elaborate on the translational value, except for the use of MATLAB’s xcorr, that
makes use of similarity between a vector and a shifted copy of that vector. A similar idea that makes
use of histograms is used in this thesis and compared to a simple ICP algorithm that only accounts for
translation. The first method divides both the lines and the points into n bands in X and n bands in Y.
It tries to compute the best alignment separately for X and for Y, in a similar fashion that the optimal
rotation is found by aligning θ. The translation-only ICP finds the closest points on the floor plan for
the point cloud and simply computes the average x and y difference between source and destination
points. It iterates this for a number of times, or stops if an error threshold is met. An illustration of the
translational ICP can be found in algorithm 8. Both methods will be tried and compared.

4.3 Evaluation criteria

The question should be answered what a well-working indoor positioning method should do. To rely
on a position indoors, a few requirements should be met. The registrations should be:

• Accurate up to <1m

• Computation time ¡15 sec and scaleable

• Robust
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Algorithm 4.6: Hough Transform
Input: point cloud X, point cloud normals NX , floor plan lines L, floor plan normals NL

number of bands nb, max rotation ωmax, max iteration maxIter, threshold τ
Output: transformation matrix M

1 HL ← toHoughSpace(L);
2 HX ← toHoughSpace(X, N) ;
3 N ← length(X)

// Compute the rotation

4 bandwidth = 2π/nb;
5 for ω ← −ωmax to ωmax stepsize ωmax/nb do
6 alignment← 0;
7 for b← 0 to 2π stepsize bandwidth do
8 bω ← mod 2π(b + ω);
9 Hb ⊂ HX where b ≤ θpoint ≤ b+bandwidth;

10 Hre f erence ⊂ HX where b ≤ θline ≤ b+bandwidth;
11 Pb ← countHb;
12 Pre f erence ← ∑ line length Hre f erence;
13 alignment← alignment +Pb ∗ Pre f erence;

14 if alignment > alignmentmax then
15 ωmax ← ω;
16 alignmentmax ← alignment

17 R←Quaternion(ω);
18 X̂ ← X× R

// Compute translation by histograms or by simple ICP

19 T ← histograms(X, L, nBins) ;
20 T ← ICPTranslation(X, L) ;
21 M←

[
R T

]
;

Algorithm 4.7: Translational ICP

1 for it← 0 to maxIter do
2 Y ← ClosestPoints(X̂, L);
3 Tit ← ∑ Xi−Yi

N ;
4 X̂ ← X̂ + Tit;
5 T ← T + Tit;
6 if error(X̂, L)< τ then
7 Break;

8 return T
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The following sections will elaborate on why these requirements should be met and how they are eval-
uated. Next to that, the positioning method should give some measure of reliability. An estimation of
the positioning error, or uncertainty should be found.

4.3.1 Accuracy

Accuracy is one of the main bottlenecks in indoor positioning. Obstructions, such as walls and furniture,
give multipath errors and make it impossible to maintain Line-of-Sight. Systems using existing WLAN
infrastructure give results that have an accuracy of around 10-30 meters. Using more expensive variants,
with UWB or infrared beacons a positioning of up to 9cm can be achieved (Deak et al., 2012). The more
suitable system for ER, such as the combination of INS and inter-agent ranging can achieve an accuracy
of around 1.5-3 meter on a path of almost 200 meter (Rantakokko et al., 2011; Nilsson et al., 2014). In
this thesis it is tried to achieve a lasting accuracy of at least 1 meter, like proposed by Rantakokko et al.
(2010). An accuracy of < 1 meter gives a reliable estimate of where someone is, as the chance that
someone is positioned in the incorrect room is very low with such an accuracy.

The accuracy is tested on the basis of the ground truth markers explained in section 5.1. There are
three variables that influence this accuracy: the accuracy of the MH SLAM itself, the fit of the initial
transformation and the effectiveness of the spatial matching algorithm. All need to be tested separately.
For every experiment, the spatial matching algorithm needs to be compared to (1) the best possible fit of
the MH SLAM, computed after the experiment and (2) the fit of the MH SLAM when only doing the initial
transformation, without spatial matching.

Correct Trajectory Error due to drift Correct Trajectory Error due to initial transformation Correct Trajectory Error correction by registration

Figure 4.5: Three variables influencing indoor positioning accuracy that should be separated. (1) Errors
due to drift, (2) errors due to an incorrect orientation or position at start of the trajectory and (3) the
effectiveness of the registration to correct these errors. The errors in the illustrations are exaggerated.

4.3.2 Computation time

Time is a fuzzy concept and therefore the most difficult to evaluate. Time is critical in ER and therefore
a ’fast’ algorithm is needed. What exactly is fast? It depends on many variables. If the orientation and
position of the initial transformation are near to perfect and the SLAM of the MH is not drifting at all, one
might want to perform the correction four or five times during the whole operation. If, on the other
hand, the orientation is off by a few degrees and the SLAM drifts a meter on every walked ten meters, a
correction every five or six seconds is needed.

The other side of the equation is the time that the algorithms actually take. This is dependent on other
variables too. Not only the efficiency of the algorithm, but also the power of the processors and the
scaleability of the algorithm affect the speed. The MH 1 has less capabilities than the MH 2, which will
increase the computation times. The scaleability is about the density of points and the total area that is
used in the registration. The density of points will affect the closest point-to-line algorithms, but also the
time that it takes to transform an array. The area will only affect the closest point-to-line algorithms, as
there are more lines on the floor plan that should be checked. Some scalability tests will be performed to
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find out how well the algorithms scale. The algorithms will be tested on 500 points, 2.000 points, 10.000
points and 50.000 points, with varying area sizes of the mesh and floor plan. Using a larger area on the
floor plan and a higher point density will result in a computationally more difficult closest-point-to-line
algorithm.

Consequently, it is difficult to say something about an absolute time that the method takes. To make an
estimated guess, the algorithms should take no more than fifteen seconds. The algorithm is computed
once every fifteen seconds and therefore no parallel processes have to run. A better evaluation between
the algorithm can be achieved by using the relative time the algorithms take. If all other variables
(density of points, processor etc.) are identical, the scaleability and general efficiency of the algorithms
could be compared.

4.3.3 Robustness

The MH maps a building how it is in present time, not how it is designed. A floor plan shows a building
design, not the present situation. The spatial mesh of the MH contains noise, such as other people,
furniture, open doors and more. A positioning method should take all these variables into account
and even then give a good estimate of where someone is. There are also degenerate cases, where the
algorithms could fail or have difficulties. A list of degenerate cases to be researched is as follows:

• Doors

• Walls that do not exist in the floor plan

• Walls that exist in the floor plan, but not in the present situation

• Large spaces (>20x20 meter halls)

These cases are visually examined. While it is also interesting to research the behaviour on multiple
floors, this case is excluded due to time limitations.

4.3.4 On-the-fly reliability

A reliable system not only should be accurate and robust, but should also give a probability that it’s
position estimate is correct. The system becomes more reliable when it can inform the carrier that it
is not reliable. A Mean Square Error (MSE) of the point cloud to floor plan registration is proposed as
a metric to evaluate the accuracy in real-time. A high MSE means the position is probably not correct,
while a low MSE would mean it is probably correct. A high MSE could indicate a few situations:

• The registration did not happen successfully

• The spatial mesh of the MH contains a lot of noise

• The MH detects walls that are not present in the floor plan

In all situations the reliability of the positioning method will get worse. Therefore it is hypothesized
that MSE could be a could metric to measure reliability. It is important to find out what the relation is
between the MSE value and the probability to be in the right position. Half of the experiments could be
used to train the value of the MSE and to show its correlation to the accuracy. In section 4.3.1, an accuracy
of one meter or better is found appropriate. A logistic regression should determine the probability of
the accuracy being better than one meter, with the dependent variable being the MSE. The other half of
the experiments could be used to test if this works correctly.
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Route

Markers

Figure 5.1: The trajectory of the walked route and the position of the ground truth markers on the floor
plan of the Architecture building

The architecture building of Delft University of Technology, The Netherlands is used as a case study.
The building is chosen because of its dimensions: it is more than 230 meters long and around 100
meters wide. A large building is needed, as Hübner et al. (2020) found a total drift of only 2.5 meter on
a trajectory of 200 meters.

An AutoCAD file is provided by the technical information management team (see fig. 5.1). The file
contains a lot of (redundant) information, such as supporting walls and columns; lightning; electricity;
windows; doors. These are all separated in layers. As all walls were together in one layer, it was
relatively easy to extract that information. In QGIS, these lines were converted to simple lines with only
a start- and an endpoint and saved to a text-file. This was used as the input for the implementation.

Two buildings are selected as validation cases: the TU library building in Delft and the CGI office in
Rotterdam. These buildings are vastly different in their building styles. The hallways in the Architecture
building are wide and straight. The TU Delft library’s ground floor mainly consists of one big open
space, surrounded by glass walls. There is a long hallway on the east side (the lower part of fig. 5.2), that
is narrow compared to the hallways in the Architecture building. Lastly, the office building is smaller
in size than the former two buildings. There are no isolated hallways that function as circulation space,
as could be found in the Architecture building. The movement through the building is the office space
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itself. Therefore, when walking through the building one has to deal with more obstructions, such as
office desks, counters and cabinets. The floor plans of both buildings are processed in a similar fashion
to the Architecture building.

Route

Markers

Figure 5.2: The trajectory of the walked route and the position of the ground truth markers on the floor
plan of the library building

Figure 5.3: The trajectory of the walked route and the position of the ground truth markers on the floor
plan of the CGI office building. The route goes back and forth on different floors.

5.1 Experiment design

A route will be set up through one floor of the building. At roughly equal distances, ten markers are
placed on the floor. The positions of these markers are measured and placed on the floor plan.

The same route is walked five times, to ensure some generality in the research. At the start of mapping
the route, all holograms (including the spatial mesh information) are removed from the MH to ensure a
clean slate. An initial transformation is given in-situ, explained in section 4.1.3. At every marker, the
position of the device at that moment is saved. While the registration is meant to be real-time, it is chosen
to simulate the registration after acquiring the data. This is considering the validity of the research: if
all registration will be computed in-situ, differences in quality of the acquired data will occur. Saving
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all data and simulating the mapping later will make possible that all registration algorithms can be
compared on exactly the same data. All data is saved with a time stamp, to make the playback possible.
The spatial meshes are saved every time there is an update to these. The position of the MH is saved
every 0.3 seconds and the position of the MH when standing on a marker is saved separately.

In fig. 5.1 the trajectory is shown. Masking tape is used to make crosses, that function as the markers
(the blue circles) on the route. At every marker, the ground truth is measured by referencing the position
on the floor plan. The center of the crosses is measured using defining elements on the floor plan, such
as corners, or the edge of a door. Three experiments start at number 1 and ended at number 10, and two
experiments are in opposite direction. The total trajectory of the walked route is 294 meters, although in
reality the distance is longer. After the data acquisition, the markers are referenced using the AutoCAD
file. The trajectory of the validation buildings are shown in figs 5.2 and 5.3

Some degenerate cases can be identified within the floor plan:

• There are multiple walls on the floor plan that are not present in reality, mostly because these
walls are actually big doors used for fire protection. This is for example the case at marker 3 and
4. Between 8/9 the route also crosses some walls, that are not there.

• At marker 5, the main entrance, there is a round object or wall in the middle of the space. It is not
present in the floor plan.

• Marker 6 is in a big open space without walls of approximately 30x30 meter. The hall is not void
of any objects, it is filled with tables used for model making.

In order to make generalizations about the proposed method, a different building should be selected,
where the method could be tested. Unfortunately, due to Covid-19, most large buildings are closed or
only open for certain workers. Therefore, no other building could be used.
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This chapter describes the implementation of the method. An application is created with a main purpose
of real-time indoor positioning. It can perform an initial transformation of the MH mesh to align with
a floor plan, as described in section 4.1.3. This floor plan is visualized as a hologram somewhere in
the space, with the position of the device carrier on the floor plan (see fig. 6.1). It can perform the
registrations between the floor plan and the MH meshes, to compute a more accurate position. Next to
this real-time system, the application is also able to simulate previous scans on the computer. In that
case, the registrations are not computed in real-time during the scan, but afterwards in the simulation.

Figure 6.1: This is how the application looks like when run. The position (blue dot) is visible on a
hologram of the floor plan placed somewhere in the room.

Section 6.1 describes all software and hardware that has been used to complete this thesis. Section 6.3
explains the application that is constructed to (1) map the environment and acquire all needed data to
run the simulation and (2) have a real-time indoor positioning application. Section 6.4 elaborates on the
implementation of the simulations that are used for the results.

6.1 Tools

This section describes all tools used in the thesis. First, the hardware is described, which is followed by
the software, programming languages and modules used.

6.1.1 Hardware

The MH is the main device used for positioning. This device is already described in the theoretical
background, section 2.4. The MH 1 is used, even though the MH 2 is already on the market. The second
version however is in possession of neither the university or the company. The computer used to run
the simulations is a HP ZBook Studio G5 mobile Workstation X360 running on Windows 10. It has an
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Intel Core i7-8750H CPU, with a 64-bit Operating System. The hard disk is a SSD and the computer has
16GB RAM.

6.1.2 Software

Unity is the main software environment used, as it is has the ability to make applications for the MH.
Other programs are used as well. A list of software, programming languages and modules is provided
below.

Unity
Unity is a 3D software development program that its main use can be found in the development of
games. This specialisation in gaming has the result that the platform is also very suitable for geo-related
purposes. 3D games often make use of transformations, geometry operations. There are many ad-
vantages of using Unity instead of common GIS programs. The embedded 3D environment makes 3D
visualization simple. Time is a native feature in the program: in GIS programs, someone has some
dataset, that can be queried and transformed. In contrast, Unity has a built-in ’update’-method, that
checks if something needs to be updated at every frame. This is needed for games, as (among other
things) user input changes the state of the game, but also comes in handy when making applications on
the Microsoft Hololens, where content needs to be changed every time a user looks into another direc-
tion or walks to some other area. The programming language used with Unity is C#. The combination
of Unity and C# is used for developing the application on the MH and to run the simulations. The list of
C# and Unity modules/packages used for the research is as follows:

• The Mixed Reality ToolKit (MRTK) 2.3 of Microsoft is used for support with the MH. This is a
progressed version of the HoloToolkit.

• Accord is the mathematical library used. It can solve equations, such as least squares or systems
of linear equations.

• NuGet for Unity is used to import all packages

• FBX exporter is used to export the spatial mesh of the MH to use in other programs for better
visualization.

One disadvantage of using C# and Unity is the limited amount of geographical modules like Python’s
Shapely, that has more advanced and optimized tools for spatial data processing. While the Accord
module has some geometry sub-module, this works with different vector formats than Unity’s native
vector formats. Therefore it is chosen to implement all spatial operations that are not provided by Unity
by hand (closest points; intersections; bounding boxes etc.).

AutoCAD
As explained in chapter 5, AutoCAD is used for preprocessing of the floor plan data.

Python
Python is used to process the results and visualize the (non-spatial) data. Python is chosen over C#

mainly because of its ease of use, ability to construct a program in a short amount of time and its ex-
tended plotting libraries. Modules that were used in python are:

• NumPy, a module that supports working with N-dimensional data

• Pandas, a module that makes use of dataframes possible and helps structuring the data.

• Matplotlib, a plotting library used to make the graphs in this research

• Seaborn, an extension of matplotlib, used for data visualization
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QGIS
QGIS is a GIS program that is used for data preparation (see chapter 5) and for the visualization of
spatial data.

6.2 Overview implementation

The application has two modes: a real-time registration mode and a simulation mode. Both modes run
in the same application, but while the first uses the input of a real MH, the second imports all input from
a previous scan. The first mode has some more features than the second, as it is run in-situ. These are
explained in section 6.3. The registration will be elaborated on in section 6.4.

Figure 6.2: UML diagram of implemented application. The Application Manager manages both the
simulated as the real-time variant. All components are shown in their expanded version in appendix
C

.

Fig. 6.2 shows the structure of the application. It is managed by a program manager, a class that links
all separate building blocks. It is the place where all properties are set and that holds all the data. On
top of all properties, there are three main entities that included in this manager. It contains the floor
plan. This class implements the IFLoorplanIO interface, that is needed for importing and exporting the
floor plan data. The Application Manager also contains a Hololens, or a Hololens Simulator, depending
on the settings. Both inherit from the abstract Hololens class, that mainly holds the mesh geometries
and list of positions and implements the IMeshIO interface. This interface is used for importing or
exporting the meshes. Depending on the mode (real-time / simulation), the meshes should be im- or
exported. Lastly, the Application Manager also holds one item of the ISpatialMatcher Interface. All three
registration methods inherit four functions from this Interface, with four base functions: the parameters
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are set in the Initialize()-function. The Compute()-function starts the computation. The Computing()-
function determines if the computation is finished. This enables to work with coroutines, that make it
possible to visualize the position while the algorithm itself is busy computing. The last function is the
getTransformationMatrix, that returns the current transformation matrix computed by the registration
algorithm.

There are four static classes that provide utility functions that are needed for the program to operate.
A point cloud utility function is used for all operations performed on point cloud entities (such as
transformations, clipping on a buffer). A geometry utility function is used for all other geometrical
operations (point-to-line distances, bounding boxes, intersections). The Hololens utility contains all
operations that should be performed using the Hololens. The Baker is a utility function to visualize all
geometries, such as meshes, positions, the lines of the floor plan.

6.3 Hololens-specific implementation of the application

The goal of the application is to show the real-time position of the MH on a floor plan hologram. The
application needs to have a number of functionalities. It needs to:

• process the input of the Hololens, such as the mesh acquiring by the SLAM algorithm and user
input (tapping)

• have a user interface to let users perform actions

• show the floor plan somewhere in the space

• find the position of the device at start-up with an initial transformation

• adjust the position of the device on the floor plan every time the carrier moves

• correct for errors in the position using registration algorithms

The last item in this list is possible in the application. It is not performed in practice, because the reg-
istrations are performed in the simulations that are run afterwards, to ensure that all circumstances are
the same between the different algorithms.

6.3.1 Processing input

The Mixed Reality ToolKit is used to set up a project with Unity. The toolkit has a number of services that
interact with the MH. There are four systems active in the case of MH, excluding possible extensions:

• The camera system can be used with the regular RGB camera to capture screenshots / videos.

• The input system handles all possible actions, such as a raycast-hit or a hand gesture

• The spatial awareness system is responsible for all input coming from the SLAM of the MH.

• The diagnostics system is a tool to analyse if the device has any application issues.

The spatial awareness system communicates via a system handler. An observer can subscribe to certain
events and are notified whenever there is a change. In this case, the event is an addition, removal or
update of a mesh. Every mesh has its own coordinate system, that is defined by a position and orienta-
tion in the ’world space’, defined by a spatial anchor. To transform the meshes to the world space, they
need to be deconstructed into their vertices. These need to be multiplied by the transformation matrix
given with the spatial anchor and constructed again. All events have a unique event ID. Therefore, the
meshes can be saved on their ID, time of event (measured in seconds after the start of the application)
and the type of change (addition, update or removal). On top of that, the meshes can be loaded and
visualized in the application, which makes the meshes visible aligned of the real world as holograms
(see fig. 6.3).
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Figure 6.3: Hololens spatial mesh overlaid on the real world

The interaction with users comes from the input system. There are two features of the input system used:
the gaze provider and the interaction manager. The gaze provider can be queried to give a direction that
the carrier is currently looking into. It also provides a position and normal vector of the first object that
is hit when looking into that direction. The gaze provider useful when selecting holograms or objects
in the real world (such as walls). The interaction manager deals with the hand gestures. A script can
subscribe to an event, similar to the system handler. When a ’tap gesture’ (see fig. 6.4) is performed, this
event can trigger functions inside of a program. Tapping on the Hololens is equivalent to a mouse click
on the computer.

Figure 6.4: Tap gesture on the Microsoft Hololens (adapted from Tang et al. (2018))

6.3.2 GUI

The MRTK provides a standard 3x3 menu that can be personalized for a particular application. It floats
in space in the view sight of the person, and can be hidden by tapping the left upper arrow (see fig. 6.5).
When a button is triggered, it can push an event to a custom defined function. In this case, six of the
nine buttons are in use. The buttons are explained in the order left to right; top to bottom. When the first
button is triggered, a floor plan of a building could be chosen. Currently, this is set to architecture, but
also other buildings could be shown, depending on which resources are available. The second button
lets a person choose a point on a wall that can be referenced with the floor plan for an initial fit. The
third button lets the person place the floor plan somewhere in the room and select the wall on the floor
plan to reference the wall in the real world to. If both the wall in the real world and on the floor plan
is set, the initial transformation is automatically performed. In the second row, only two buttons are
active. If the initial transformation is correct, one could press the first button in that row. It will start
a registration automatically every fifteen seconds. It could also happen that the initial transformation
is rotated with 180 degrees. This can occur because the direction of the normal on the floor plan is not
known, since the start- and endpoint are arbitrary. Therefore, it could happen that the position of a
person is on the wrong side of the wall that is selected. The middle button in the second row fixes this
problem. The last button in the last row stops the program.
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Figure 6.5: Menu hologram that is used for real-time positioning mode.

6.3.3 Selecting a wall

The selection of walls is as follows. The spatial awareness system loads all spatial meshes in a separate
layer in Unity. The gaze provider of the input system provides a hit position and hit normal of the first
obstruction in this layer. A standard rotation of 90 degrees over the X-axis is performed, because the
Hololens (and Unity) have the Y-axis as vertical axis. The floor plan is in 2D, so it only has a X and a Y
component. Therefore, to map anything from the Hololens onto the floor plan, the Y and Z axis need
to be swapped. This rotation will be described as transformation matrix TY−axis

Z−axis . Both the hit point and
the hit normal need to be transformed by this matrix.

6.3.4 Selecting a wall on the floor plan

The floor plan is placed on a canvas that has a maximum of 1.6 by 1.6 meter. This is an arbitrary size,
but is found to be a good trade-off between having enough detail in the floor plan and not having a
floor plan that is too big. To place the floor plan onto the canvas, the floor plan needs to be translated
to the centre (0,0) and scaled. This transformation is encaptured by a 4x4 matrix. The transformation
of the floor plan to the canvas is described as TFloorplan

Canvas . A bounding box is constructed from the floor
plan lines and the centre of the box is placed at position (0,0). The scale is defined by dividing 1.6 by the
maximum of the width and length of the bounding box.

When the ’Add floor plan’-button is tapped, the floor plan is placed somewhere in the room. The gaze
provider is used to find the position and orientation of the MH carrier in the room. The canvas is placed
two meter in front of the person, by multiplying the orientation vector by two and adding the position
vector. If there is an obstruction found by gaze provider that is closer by than two meter, the floor plan
canvas is placed on that surface. Consequently, the transformation between the world-space and the
canvas is described by the 4x4 matrix TCanvas

WorldFrame.

The position that has been selected on the wall, can be selected on the floor plan hologram. A ray cast
finds the hit on the canvas where the floor plan is on. This point is transformed back into the coordinate
space of the floor plan, using equation 6.1. Using a closest line algorithm, the wall that is closest to the
hit point can be found. The closest point on the line and its corresponding normal is found.

x f loorplan = TFloorplan
Canvas × TCanvas

WorldFrame × xWorldFrame (6.1)

Position on floor plan

The next objective is to find a initial transformation TFloorplan
MH that projects the position of the Hololens

on the floor plan. This is achieved using the reference point and normal on the floor plan and the
measured point and normal found in the space of the Hololens. The rotation, decomposed in a rotation
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θ and an is computed using both normals. The translation is found by subtracting the rotated measured
position from the reference position, as is shown in eq. 6.2.

θ = arccos
nre f · nmeasure

‖nre f ‖ · ‖nmeasure‖
axis = nre f × nmeasure

R = angleAxis(θ, axis)
T = xre f − R× xmeasure

(6.2)

TFloorplan
MH is the combination of the rotation and translation found in the previous equation. After that,

the position is directly and in real-time updated every frame. This is achieved using the transformation
shown in eq 6.3, where xWorldFrame is the current position as mapped by the MH and x f loorplanHologram is
the current position as visualized on the canvas in world space:

x f loorplanHologram = TWorldFrame
Canvas × TCanvas

Floorplan × TY−axis
Z−axis × xWorldFrame (6.3)

After the transformation, the position is visible on the floor plan hologram (the result is shown in the
start of the chapter in fig. 6.1). What remains, is to correct the errors in the initial transformation and
correct drift errors by doing the registration. This will be elaborated on in the next section.

6.4 Registration

This section deals with the registration that can be computed either in a simulation run, or in the
Hololens app. Such a program needs to have certain functionalities, that are listed as follows:

• A GUI needs to be set for changing the parameters of the positioning method. This includes the
parameters specific for every registration algorithm (thresholds, maximum iterations etc.), but
also general parameters such as which building is going to be used for positioning, what should
be visualised, or how often a registration needs to be computed.

• The general data, such as the floor plan and the meshes need to be imported at start of the program.

• Each registration needs to be done as follows:

(1) The data needs to be configured

(2) The registration needs compute a transformation matrix

(3) A function should check if the new transformation matrix is better than the old

These functionalities are needed for real-time positioning, but also using a simulation. Next sections
will elaborate on these functionalities.

6.4.1 GUI program

An interface is made using the UnityEditor, a C# module for making a GUI inside the Unity environ-
ments. This interface is not only used to set the parameters for the simulation, but also for the real-time
positioning. The interface is made up of two tabs: the first tab (fig. 6.6a) is used to set all general param-
eters. In this tab one can decide which building floor plan should be loaded and which folder should be
used to import (in the case of simulation) or save (in the case of real-time positioning) all data. Also the
visualization of the mapping are set, a 3D/2D point cloud and/or the mesh itself. Lastly, the parameters
of the positioning are set on this page. These include (1) using real-time acquisition or a simulation; (2)
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use all meshes or only a part of the meshes (see sec 6.4.3); and (3) which size buffer should be used
(see sec 6.4.3 as well). On the second page, a registration method is selected and the parameters of that
technique is set (see fig. 6.6b).

(a) Menu general property settings (b) Menu registration settings

Figure 6.6: Menu used for property selection. The first page is used to set the general properties and the
second is used to set the properties of the algorithm that is used.

6.4.2 Importing data

At the program start-up, some data have to be loaded. In the case of real-time positioning, only the floor
plan of the building in question should be loaded. In the case of simulation, it also includes the meshes
that have been mapped before, the positions that the MH has moved to and the initial transformation
matrix that has been computed. The floor plan is saved in a text file, with the first row reserved for the
geometry count and the remaining rows for the x/y positions of the start/end points of all lines.

Each mesh is saved in a separate file. One file, the mesh manager, has kept track of all meshes stored,
the time they are added and the type of change (update/addition/destroyed). Using this manager, all
meshes are loaded into the program consecutively. The meshes themselves are saved in a text file that
is similar to a .PLY format. The first two lines are reserved for the amount of vertices and the amount
of triangle faces in the mesh respectively. After that, all vertex positions are stored. Lastly, each face is
stored by three vertex IDs. The name of the mesh is the same as its ID, therefore it is easy to import the
correct mesh and store them in a dictionary.

Roughly every 0.3 seconds, the positions of the MH are stored in another text file. Each row contains the
exact time that it is added and a x/y/z position. The initial transform matrix is also stored in a text file.
It contains four lines with four entries, where each entry corresponds to the same row/column value in
the 4x4 transformation matrix.

6.4.3 Running the program

When positioning in real-time with the MH, the registration starts right after the initial transformation
matrix is computed and will not stop until the program is quitted. In the simulation, the registration
starts when the button start matching (see fig. 6.6) is pressed. When that button is pressed, the parameters
set in the menu are fixed and used until the program has finished or is manually quit.

Every 15 seconds a new registration is started, if the previous registration is finished. If the registration
before did not finish computing yet, the new again starts 15 seconds later. All meshes that are new since
the last registration are loaded and converted into a point cloud. If the option ’use all meshes’ is selected,
all points that have been loaded before are added to this point cloud. The point cloud is rotated by the
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current transformation matrix (the initial transformation matrix in the case of the first registration). If
a buffer is selected as an option, the transformed point cloud is clipped on a buffer of the selected size
around the floor plan walls.

The Mean Square Error (MSE) is used as a metric used to evaluate if the registration succeeded or not.
This metric is computed on the unclipped point cloud. This is the ’old’ MSE that the new MSE after the
registration should be weighted against to see if it has a better fit. The spatial matching algorithm is
then initialized. When the initialization of the spatial matching is performed, not only the parameters
are set for the registration, but also the floor plan is clipped. The lines are clipped on the bounding box
of the point cloud plus two meter extra. This speeds up the computation. Next to that, the 3D point
cloud is transformed to a 2D, simply by removing the z-component. Moreover, a simple spatial index
is set up to find the closest points on the line faster. After the initialization is done, the new registration
matrix is computed.

A new MSE is computed by using the new transformation matrix and the point cloud before buffering,
after the registration is computed. If the new MSE is better than the old, the new transformation matrix
is multiplied with the old transformation matrix, making this the new best fit.
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The following chapter shows the results of applying the three registration methods. In section 7.1, the
performance of the MH without registration, but after the initial transformation is shown. This is as
reference to the performance of the algorithms. In section 7.2, the accuracy assessment of the MH is
described.

The following sections portray the results of the algorithms obtained with the experiments in the Archi-
tecture building. Section 7.3 shows the results of registrations with the ICP algorithm. This is followed
by the section on IK (section 7.4) and on HT (section 7.5).

Every algorithm is compared on two aspects: The use the meshes from the start up to the starting time
of the registration (global meshes / registration) and two use only the meshes that are new since last
registration (local meshes / registration). The other comparison is made between the use of a fifty cen-
timeter buffer around the walls of the floor plan in order to reduce the artefacts (such as furniture or
persons) in the 3D model. The positioning experiment has been carried out five times, with ten mea-
sured points each. Therefore, there are fifty data points per registration configurations (and therefore
a total of six hundred data points across all registrations). The overall effects of the configurations is
shown in section 7.6.

The best performing configuration of each algorithm is tested on the experiments in the TU Library and
CGI building, that are used as validation cases. The robustness of the method is described in section 7.7.
In this section, the degenerate cases are discussed. Section 7.9 identifies the correlation between Root
mean Square Error (RMSE) and the position accuracy and shows if the RMSE is able to be used an estimate
for accuracy.

All algorithms have been tested on their scaleability. They are tested using multiple point densities and
three different fragments of a scan of the Architecture building. The first benchmark will only contain a
small area (fig. 7.1a). The second is a significant part of the trajectory (fig. 7.1b) and the third is the full
trajectory (fig. 7.1c).

(a) Small mesh size (b) Medium mesh size (c) Full mesh size

Figure 7.1: The benchmarks are performed on the architecture building, using three mesh sizes and a
varying amount of points.

7.1 Initial transformation

The experiments start with an initial transformation, that is estimated by the position and orientation
given at the start of the scan. To evaluate the accuracy if the initial transformation, no registration has
been performed afterwards. If the positioning is highly accurate after this initial transformation, the
need for registration afterwards is low. If, however, the initial transformation is oriented slightly, the
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Table 7.1: Errors between measured and ground truth points without use of a registration algorithm,
after the initial transformation

Building Mean error (standard deviation) Max error

1 10.04m (5.77) 18.16m
2 2.26m (1.52) 5.27m
3 3.6m (2.06) 6.64m
4 1.93m (1.45) 5.0m
5 2.68m (1.37) 5.0m

all 4.11m (4.17) 7.93 (mean)

Ground Truth

Acquired position

Path

Figure 7.2: The trajectories of the five experiments after the initial transformation are shown in this
figure. Every colour corresponds to one ground truth point. The coloured circles with the black dot is
the ground truth, while the coloured dots are the measured points from one of the five experiments.
The black line is the estimated trajectory. A similar figure of the TU Library and the CGI building can
be found in B

small errors over time can accumulate towards large errors at the end of the trajectory. The results are
shown in figs 7.2 and 7.3. The length of the trajectory ranges from 315 to 343 in the longest run. The
initial error starts at between 0-2.5 meter and goes up to maximum 5-6 meters for the majority of the
experiments. There are two cases where the error becomes larger and goes up to more than 18 meter
(see table 7.1). This error has two reasons: First of all, the MH drift can take a role in the accumulating
error, but also an incorrect rotation at start can have an impact. To disassemble these, the points should
be fitted to their best position. The next section will deal with that.
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7.2 Hololens drift error

Figure 7.3: The accumulation of errors between measured points and ground truth from start to the end
of the routes. The errors start around 1 meter and accumulate up to 18 meter. Results are separated
between the three buildings.

7.2 Hololens drift error

The drift error of the Hololens is computed by translating the measured points so that the first measured
point is exactly on its ground truth. Afterwards, the points are rotated to their optimal fit between
the measured points and the ground truth using Single Value Decomposition. It is important to note
that this ’best fit’ of the measured points can only be computed after the mapping of the building and
measuring specific positions that are also referenced on the floor plan beforehand. Therefore, it is not a
possible method for positioning. However, it is a way to measure the drift of the MH. The result can be
found in fig. 7.4 and table 7.2. The MH appears to have an excellent accuracy, where all mean errors are
are around 70cm. This result is better Hübner et al. (2020) found. They found a drift error of around 2.4
meter in a trajectory of 287 meter. This is more than the drift found in this research, especially since all
registrations have a total distance of around 340 meter.

Table 7.2: Errors between measured and ground truth points after applying SVD. This is the equivalent
to the drift errors of the MH

Building Mean error (standard deviation) Max error

1 0.63m (0.34) 1.18m
2 0.68m (0.36) 1.78m
3 0.49m (0.34) 1.08m
4 0.71m (0.41) 1.38m
5 0.87m (0.4) 1.34m

All 0.79m (0.46) 1.78m

The achieved accuracy has a few implications. Firstly, the errors found after the initial transformation,
described in the previous section, are mostly caused by orientation errors. While the four experiments
that have up to 5 meters of error after the initial transformation have a rotational error of around two
degrees, the first experiment has a rotational error of more than 9 degrees. Therefore, the large error
found in experiment one (see table 7.1) is mostly due to this rotational error.

The low drift error leads to the computation time becoming less important than having an accurate
result in the registrations. If a good result is found in the first registration, it remains a good result until
the end of the experiment, since there is not much drift. Next to that, the use of meshes that are in
proximity is proposed, because the drift error might confuse the registration algorithms. If a scanned
object does not have the same shape as a reference object, it is hard to find an accurate registration.
However, the drift errors are very small compared to the length of the trajectory. Therefore, the use of
all meshes for the registration will likely be at least as accurate as the use of meshes in vicinity.
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Ground Truth

Acquired position

Path

Figure 7.4: The trajectories of the five experiments after the applying SVD are shown in this figure. Every
colour corresponds to one ground truth point. The coloured circles with the black dot is the ground
truth, while the coloured dots are the measured points from one of the five experiments. The black
line is the estimated trajectory. A similar figure of the TU Library and the CGI building can be found
in B

Figure 7.5: The accumulation of errors using SVD between the measured points and the ground truth.
note: the gray accumulating area is the error after initial transformation, while the blue line is the
transformation found using SVD.

7.3 ICP results

The ICP algorithm has some settings that need to be adjusted, described in section 6. In this case, the
standard settings provided by Birdal (2020) are used. A maximum amount of 200 iterations is chosen.

50



7.3 ICP results

The threshold is set to 0.001. This is not a mean error threshold, but percentage that the point cloud
changes in an iteration, compared to the previous iteration. The number of levels is set to eight.

Table 7.3: Errors between measured and ground truth points with use of ICP, after the initial transfor-
mation

Meshes Buffer mean error (sd) max error Registrations
Correct

registrations (%)
Computation

time (sd)

global 50cm buffer 1.67m (1.6) 6.95m 23.8 8.6 (36.1%) 18.31 (18.86)
global no buffer 2.59m (3.07) 10.69m 23 13.2 (57.4%) 26.31 (24.11)
local 50cm buffer 60.33m (48.02) 134.06m 18.8 9.8 (52.1%) 9.59 (28.14)
local no buffer 4.98m (5.47) 27.27m 24 18.4 (76.7%) 10.9 (18.23)

No algorithm 4.10m (4.17) 18.16m - -

The four configurations all give varying results (see table 7.3). The algorithms using local meshes is
clearly worse than the algorithms using all. While the most accurate algorithm has a 50cm buffer, the
least accurate does as well. The latter is extremely off: a maximum error of 134 meter. One algorithm
performs best and will be looked at in further detail. The configuration using all meshes, with a buffer
has a mean error of 1.67 meter and with a maximum drift of 7 meter, compared to 18 meter using no
algorithm.

The computation time of ICP is okay in the configuration that is accurate (mean computation time of
18.31 seconds. However, there with a standard deviation of 18.86 seconds, these algorithms varied a lot
in computation times. There are around twenty-four registrations per experiment, of which a 36% has a
better fit than the transformation before. While in other configurations the computation time is shorter
(local meshes configurations are ¿10 seconds), the algorithms are not accurate at all.

One of the trajectories of ICP can be found in figure 7.7. It uses the configuration that is giving the
best results in the case of ICP: all meshes are used for the registration, without a buffer. At start, a
registration comes to a local optimum that is not congruent with the real position at that time (see fig.
7.7a). The correct position is not found until around 1/3 of the trajectory, where the position is corrected
(see fig. 7.7b). This correct transformation is kept until the end of the experiment (see fig. 7.7c). If the
configuration would be different, e.g. using a 0.5m buffer, it would be harder to find the correct position
again. The position is off for a few meters and it is likely that a lot of the correct points would be filtered
away due to the buffer.

Benchmark

The ICP algorithm is tested on a varying amount of points and size of mesh (see fig. 7.1). The results
are found in table 7.4. The algorithm scales linearly in every case.

Table 7.4: Scaleability of the ICP algorithm, comparing number of points and size of mesh in seconds of
computing time

N Points Case 1: small area Case 2: part of trajectory Case 3: complete mesh

100 1.24 1.3 9.79
1,000 2.611 4.8 9.63
10,000 14.96 17.25 36.75
100,000 126.33 214.5 408.46
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7 Results

Figure 7.6: Accumulating errors in position using ICP

7.4 IK results

Also the IK algorithm has some parameters set. The maximum amount of iterations is set on 20, instead
of 200 for the ICP algorithm. Pottmann et al. (2004) came to the conclusion that IK converges much faster
than ICP, as they reach their optimum in about 12-17 iterations. Using less iterations makes the algorithm
a lot faster. The threshold has been set to a mean error of 0.01m. This threshold has not been used in
practice, since the mean error remains higher than the threshold at all times due to artefacts, even with
the best fits.

All configurations have an average accuracy below four meter. However, the configurations using all
meshes are again better than the configurations using only the meshes in proximity to the estimated
position. Using a buffer of 50 centimeter is beneficial as well, but only in the case of using all meshes.
Therefore, the configuration that uses all meshes and a 50 centimeter buffer has the best results: an
accuracy of 1.61 centimeter, with a maximum error (or lowest accuracy) of 7.34 meter. 75 percent of
the measured points was within 2.5 meter of the ground truth. The configurations can be compared in
detail in appendix E.
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7.4 IK results

Ground Truth

Acquired position

Path (ICP)

Path (Best fit)

(a) The start of trajectory

Ground Truth

Acquired position

Path (ICP)

Path (Best fit)

(b) The middle of the trajectory

Ground Truth

Acquired position

Path (ICP)

Path (Best fit)

(c) The end of the trajectory

Figure 7.7: Positioning ICP using all meshes and no buffer: registration at start is poor, but somewhere
in the middle the correction position is found and held until the end

Table 7.5: Errors between measured and ground truth points with use of IK, after the initial transforma-
tion

Meshes Buffer mean error (sd) max error Registrations
Correct

registrations (%)
Computation

time (sd)

global 50cm buffer 2.31m (1.73) 7.68m 4.4 2.4 (54.5%) 28.34 (12.12)
global no buffer 1.61m (1.8) 7.34m 3.4 1.2 (35.3%) 30.91 (12.56)
local 50cm buffer 3.83m (3.22) 11.39m 4.4 2.2 (50%) 25.38 (14.5)
local no buffer 2.66m (2.29) 8.85m 3.4 2.4 (70.6%) 19.17 (12.73)

No algorithm 4.10m (4.17) 18.16m - - -

The algorithm configurations took on average between 20-30 seconds, quite a bit longer than the pro-
posed 15 seconds. On average there were 12-15 registrations. Something interesting happens when
taking a look at the share of correct registrations among the total amount of registrations: the con-
figuration that behaves best (global/no buffer) only has 35% registrations correct of the total of 4 per
experiment. Therefore, each iteration, only once or twice the transformation parameter gets updated.
Yet, the accuracy of this configuration is very good compared to the other configurations. It is likely that
a good fit is found at start.

7.4.1 IK edge case concerning point-to-line distance

There is an edge case where IK is not able to find a solution to the registration problem. IK tries to
minimize the point-to-line distance between the floor plan and the scanned model. Lines in this case
are not vector geometries, with a start- and an endpoint, but infinite representations of lines. When all
closest points are on lines that have the same orientation, this becomes a problem. While the registration
distance orthogonally to these lines can be found correctly, the distances parallel to these lines cannot be
computed. This is illustrated in fig. 7.9. The first registration shown (figures 7.9a to 7.9c) tries to register
points to lines that are oriented mainly in two directions. The velocity vector gives a sensible output:
if the center of the scanned area would be translated by this vector, it would be displaced by 0.2 meter
in x and 0.3 in y. The second registration (figures 7.9d to 7.9f) is a section of a hallway that is mapped.
All points are registered to lines that have the same orientation. Consequently, the displacement of the
center by the velocity vector in x is -0.4 meter, a reasonable outcome. The displacement in y however,
is -135 meter. Therefore this registration would give a incorrect output. The consequences are that no
registration can occur before someone scans walls that are oriented in two directions. It is also likely
that the registrations using meshes in proximity behaved worse, because if this edge case.
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Figure 7.8: Positioning errors using Instantaneous Kinematics

Benchmark

The IK algorithm is tested on 100, 1,000, 10,000 and 100,000 points. The algorithm scales linearly with
more points. The computation time when using a larger part of the mesh is lower than the ICP algo-
rithm.

Table 7.6: Scaleability of the IK algorithm, comparing number of points and size of mesh in seconds of
computing time

N Points Case 1: small area Case 2: part of the trajectory Case 3: complete mesh

100 4.3 2.8 2.26
1,000 3.55 3.9 4.81
10,000 16.55 11.9 22.47
100,000 171.72 166.28 202.63
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7.5 HT results

(a) Scanned mesh on the floor
plan

(b) Closest points of mesh walls
to the floor plan

瘀⠀砀⤀ 㴀 ⠀　⸀㈀Ⰰ 　⸀㌀⤀

(c) Displacement of center by
the velocity vector v(x) of
(0.2, 0.3).

(d) Scanned mesh on the floor
plan

(e) Closest points of mesh walls
to the floor plan

瘀⠀砀⤀ 㴀 ⠀ⴀ　⸀㐀Ⰰ ⴀ㌀㔀⸀　⤀

(f) Displacement of center by the
velocity vector v(x) of (-0.4, -
135)

Figure 7.9: Figures a-c show the process of obtaining the velocity vector v(x), when there is more than
one direction of displacement. This results in a displacement of the center of the scanned mesh of
20cm in x and 30cm in y. Figures d-f shows the same process, but all displacements are in x-direction.
This results in an arbitrary displacement of the center of the scanned mesh in y, in this case -135 meter.

7.5 HT results

Two methods for the translational component are tried: using a similar method to Ni et al. (2013) that
correlates the histograms of source and destination models, or using an ICP variant that only computes
the translation. The result is discussed in the next section. After that, the general results of HT will be
described.

7.5.1 Using correlation with a histogram or ICP as translational component in HT

In the algorithm using Hough Transform, the rotational component is computed separately from the
translational. Ni et al. (2013) use MATLAB’s xcorr, which is similar to the method using a density
histogram for x/y in this research. This is compared to using an ICP algorithm, that only computes
a translation. The method that tries to correlate the floor plan and the meshes with a histogram in
x- and y-direction behaves poorly when doing partial registrations. If the input data of the Hololens
does not fully overlap with the reference data of the floor plan - something that will happen often, as
registrations are computed while scanning the building - it is impossible to find a correlation between
the two datasets. This is illustrated in fig. 7.10. The object on the right side inside the black square is
in reality a big staircase. This staircase is weighted in the histogram in the case of the floor plan, but
not in the case of the scanned mesh. It will likely give an incorrect translation. ICP picks the closest
points to the reference data, therefore has less problems while doing a partial registration. As a simple
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translational ICP did not give the same problems as the correlation method, this was chosen as the
translational component of the Hough Transform algorithm.

Figure 7.10: This figure shows a part of the scanned Architecture building (in blue) and its floor plan (in
orange) after rotational alignment with Hough Transform. The graphs show the density of points in
X- and Y-direction of the scanned object and the lines of the floor plan in the same colours. The graphs
are aligned in respectively the X- and the Y-direction with the image. A good alignment is difficult to
find, as there are many spikes found in the floor plan, that are not scanned by the MH.

There are a few parameters that need to be adjusted when using HT. The rotation of the point cloud is
found with use of hough lines of the points and the hough lines of the floor plan lines. These are aligned
using a histogram. Therefore, a number of bins needs to be set. This is set to 100 bins. As the initial
transformation already has an estimate for the rotation, a maximum rotation can be set, to speed up the
algorithm. This is set to 5 degrees. The translation is done with a simple translational ICP algorithm.
A maximum iterations and a threshold needs to be set for these. The threshold is set to 0.01, and the
maximum iterations to 100. Less iterations are needed than with the full ICP algorithm, since only the
translational component needs to be computed.

Compared to the other two algorithms, HT has a good accuracy overall. The mean error of all config-
urations is somewhere between 80 centimeter and 2.75 meter. The error at the last measured point is
somewhere between 2 and 14 meter. Using the meshes in proximity / a 0.5 meter buffer gives best re-
sults. This is remarkable, as this configuration is least accurate for both other algorithms. A maximum
error of only 2.13 meter is found, with an average error of only 0.79 meter.
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7.5 HT results

Table 7.7: Errors between measured and ground truth points with use of HT, after the initial transfor-
mation

Meshes Buffer mean error (sd) max error Registrations
Correct

registrations (%)
Computation

time (sd)

global 50cm buffer 1.52m (1.05) 5.69m 23.8 12.8 (53.8%) 17.94 (7.88)
global no buffer 1.2m (0.89) 5.5m 24.2 15.6 (64.5%) 22.06 (10.23)
local 50cm buffer 0.79m (0.51) 2.13m 23.6 15 (63.6%) 6.74 (3.81)
local no buffer 2.35m (2.62) 13.68m 23.2 21.2 (91.4%) 8.42 (5.37)

No algorithm 7.93m (5.76) 18.15m - - -

As expected, using only meshes around a device speeds up the computation, as it is around twice as
fast. All configurations have on average 23/24 registrations, but it varies how many are better than the
fit before. The most accurate result is also the fastest, with a computation time of only around 7 seconds,
which meets the requirements of an algorithm faster than 15 seconds.

Figure 7.11: Positioning using Hough Transform
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Benchmark

The HT algorithm scales linearly, similar to IK and ICP. The size of the mesh seems to have little impact
on the computation time, therefore making it more suitable to larger meshes.

Table 7.8: Scaleability of the HT algorithm, comparing number of points and size of mesh in seconds of
computing time

N Points Case 1: small area Case 2: part of the trajectory Case 3: complete mesh

100 0.51 1.3 3.37
1,000 3.17 4.6 5.54
10,000 20.80 26.15 29.33
100,000 244.1 264.0 281.7

7.6 Configurations

For ICP and IK it can be seen that using all meshes for the registration is better than using only the meshes
in proximity. For Hough Transform the configurations using local meshes with a 50cm buffer come to
the most accurate results, while the use of local meshes without a buffer is the least accurate. In section
7.2 it is described that the MH only drifts off for around 1.5 meter. Therefore the biggest disadvantage of
using all meshes is not present: if the MH would have a lot of drift, the registration would be performed
with two input datasets that do not conform to each other. On the other hand, using all meshes is more
robust than using the meshes in proximity. This can be seen in practice: if one of the registrations is not
correct, but finds a local optimum, it is hard to find the correct position back, only using a part of the
meshes. This could be illustrated with an example,shown in fig. 7.12: if two rooms have the same shape
and the position before the registration is somewhat off, it is hard to find the correct position using a
part of the meshes. However, when both rooms are mapped and the meshes of both rooms are used in
the registration, an algorithm can find its correct position easier.

The results of using a buffer are also varied. Using a buffer on a registration with an initial fit that is
already okay, can reduce noise and remove artefacts from the meshes. However, a problem occurs if
the initial fit is not so good and in some areas the point cloud are more off than the buffer zone. Using
a buffer can in that case remove good input data (see fig. 7.13). The ICP algorithm, that is sensitive to
outliers, shows varying results in use of a buffer zone. In combination with meshes in proximity, it is
worst with an average error of >60m, while it works best when using all meshes. IK works best without
a buffer, while HT works best with a 50cm buffer. For both algorithms, the difference between the two
configurations is not as big as for ICP.

7.7 Robustness

In section 7.2 it is shown that the SLAM algorithm of the MH gives an accurate position. Therefore, cases
where the indoor positioning method fails, are due to the registration algorithms. Some edge cases are
defined beforehand to be considered as possible causes of the registration to fail. These are:

1. Doors

2. Walls that do not exist in the floor plan

3. Walls that exist in the floor plan, but not in the present situation

4. Large spaces (>20x20 meter halls)
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7.7 Robustness

Figure 7.12: Suppose, before a registration, the scanned object(in blue) has a incorrect placement on the
floor plan. If two adjacent rooms have similar characteristics, using only the local area around the
current position for the registration (first row in the figure) will equally likely result in the correct
as in the incorrect transformation. However, using all meshes that are scanned up to that moment
(second row in the figure), it is more likely to compute the correct transformation.

Figure 7.13: If one of the registrations gives an incorrect transformation, it is difficult to correct this with
a 0.5 meter buffer. In this case, the y-value is off by approximately 5 meter. All walls (dark blue) inside
the red rectangle will be removed because of the buffer.

The circumstances that the ’global’ configuration is the most accurate overall give some complications
in researching if the algorithms behave well under these edge cases. The portion of the registration that
is determined by the edge case is very small and will have little effect on the transformation parameter.
That said, some could be determined by looking closer to certain cases. The configurations that are
researched are the most accurate results of each algorithm, found in the previous sections. For ICP and
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HT that means global meshes / no buffer. IK has the best results in global meshes / 0.5 meter buffer.
Figures 7.14 to 7.17 show the respective behaviours of each algorithm spatially. Due to Covid-19, it was
not possible to make reference photos on the exact locations of the degenerate cases. These have not
been not made on the day the experiments were performed and after that the Architecture building has
close for students due to national restrictions. Therefore, positions of the degenerate cases are shown on
a mini-map on the figures themselves.

The the first case, shown in fig. 7.14, the route goes through a door. In this experiment, the direction of
the route is from bottom to top of the figure. The HT algorithm is perfectly on line with the estimated

(a) ICP (b) IK (c) HT

Figure 7.14: Behaviour of algorithms on when walking through doors. The green line is the trajectory
of the best fit after SVD, while the black line is the algorithm trajectory. The red area is the location of
the door.

(a) ICP (b) IK (c) HT

Figure 7.15: Behaviour of algorithms on incongruence between the scanned mesh and the floor plan.
The green line is the trajectory of the best fit after SVD, while the black line is the algorithm trajectory.
The red area is the location of the door. The red circle is a large object that is scanned but not present
in the floor plan.

(a) ICP (b) IK (c) HT

Figure 7.16: Behaviour of algorithms on incongruence between the scanned mesh and the floor plan.
The green line is the trajectory of the best fit after SVD, while the black line is the algorithm trajectory.
The red area is a wall that is present on the floor plan, but not in reality.
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(a) ICP (b) IK (c) HT

Figure 7.17: Behaviour of algorithms when positioning inside large spaces (< 20x20 meter).The green
line is the trajectory of the best fit after SVD, while the black line is the algorithm trajectory.

trajectory after SVD. The other two algorithms do have an error, but the error before and after walking
through the door is similar, therefore it is not likely that it is of any influence.

Fig. 7.15 shows the behaviour of the algorithms, when there is an object present in the real-life situation
that is missing on the floor plan. The ICP algorithm has most error, but it is not likely that the cause has
to do anything with the object in the middle of the space. The scanned object, transformed with the ICP
parameters would still be in the middle of the entrance hall. If the object did influence the algorithm,
the object would likely be on the sides of the hall, because it would be interpreted as a wall. The other
two algorithms show a minimal positioning error, indicating that the algorithms have no problems with
the special case.

In fig. 7.16, the red area shows a wall in the floor plan that is not present in the current situation. Again,
the biggest error is found in the ICP algorithm. The figure suggests that the IK algorithm in this case is
better than the error after SVD, or the drift error of the MH. While there are some accuracy errors in the
other two algorithms, it does not seem to be caused by the wall present in the floor plan.

The behaviour of the algorithms in large spaces (<20x20 meter) is shown in fig 7.17. None of the algo-
rithms show any trouble at all to give a correct position. None of the algorithms have a large deviation
from the best fit trajectory. For the HT algorithm, it is likely that no registrations have been performed
during this part of the trajectory, since it only takes the meshes in proximity into account and uses a 0.5
meter buffer around the walls. There are no walls inside the space, hence there are no points to com-
pute a registration with. The other two algorithms use the meshes scanned since the start of the scan.
Therefore, any registration that is computed will likely be similar to the registration computed before.

There are a few observations that can be made:

• The algorithms do not have more trouble with these cases, than with standard positioning (for a
full view of the algorithms over the whole trajectory see appendices D to F)

• ICP is the least accurate in these cases. This is similar to the behaviour of the algorithms over the
whole trajectory.

7.8 Validation with TU Library and CGI buildings

The method has been developed with use of the Architecture building. To generalize the results, more
buildings need to be tested. Therefore, additional experiments have been performed in the TU library
and the building of CGI, Rotterdam. First, the results after initial transform and the results using SVD
are examined (see table 7.9). The initial transformation errors are expected to be lower than in the
Architecture building. Trajectories in both new buildings are in a circle: they end at a position close
to where they end. Next to that, while the travelled distance in the Architecture building exceeds 300
meter, the total distance in the library and the CGI office are respectively around 200 and 180 meter. Not
only the error after initial transformation, but also the Hololens drift, computed using SVD is lower in
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the case of the library. The CGI offices, however, relatively has a bigger error after initial transformation
and a bigger drift error. A maximum drift error of 2.38 meter is found in this case, which is more similar
to what Hübner et al. (2020) found.

Table 7.9: Errors between measured and ground truth points after initial transformation and after ap-
plying SVD for all buildings

Initial transformation After SVD

Building
Mean error

(standard deviation) Max error
Mean error

(standard deviation) Max error

Architecture 4.1m (4.17) 18.16m 0.79m (0.46) 1.78m
Library 2.24m (1.74) 6.8m 0.47m (0.34) 1.36m

CGI 2.8m (4.19) 17.51m 0.57m (0.51) 2.38m
All 3.04m (3.62) 18.16m 0.61m (0.46) 2.38m

Table 7.10 shows the accuracy and computation times of the algorithms in the new experiments. As
can be seen, while the results of the Architecture building look promising, the other two buildings
show less bright results. The TU Library has a mean error varying between 3.4-5.5 meter for different
configurations, with a maximum error of 13.4-19.3 meter. The CGI building has a mean error varying
between 13-16 meter, while the total travelled distance is only 200 meter. The maximum error is 45 meter
for the IK algorithm, and more than 100 for the ICP and HT algorithms.

Table 7.10: Comparison of tests in the Architecture, Library and CGI building of errors between mea-
sured and ground truth points for every algorithm and its best configuration.

Building Configuration
mean

error (sd) max error Registrations

Correct
registra-

tions (%)
Computation

time (sd)

Architecture IK global 0m 1.61m (1.8) 7.34m 3.4 1.2 (35.3%) 117.99 (37.77)
ICP global 0.5m 1.67m (1.6) 6.95m 23.8 8.6 (36.1%) 18.31 (18.86)
HT local 0.5m 0.79m (0.51) 2.13m 23.6 15 (63.6%) 6.74 (3.81)

Library IK global 0m 3.37m (3.99) 15.66m 1.6 1.4 (87.5%) 107.9 (51.56)
ICP global 0.5m 3.79m (4.65) 13.37m 14.8 5 (33.8%) 62.21 (49.58)
HT local 0.5m 5.43m (5.99) 19.31m 14.2 9.6 (67.6%) 9.94 (8.71)

CGI IK global 0m 12.98m (12.6) 45.84m 2 2 (100%) 105.87 (46.79)
ICP global 0.5m 12.08m (26.04) 102.31m 15 6 (40%) 22.24 (22.86)
HT local 0.5m 15.86m (33.11) 113.74m 9.8 4.8 (49%) 4.13 (3.63)

There are a few reasons why the algorithms perform worse on the other buildings. First of all, the
method is constructed with the Architecture building as testing data. That forms some bias in the de-
veloped program, as it will be adapted to the floor plan and mesh typology of that building. However,
this cannot explain the huge difference in performance between the buildings. Some other causes can
be identified:

• A large part of the walls in the scanned areas of both buildings are made of glass. The sensors of
the MH have difficulties scanning transparent materials. Therefore, the mesh output constructed
by the MH does not have the same quality as it has in the Architecture building. Only columns
and opaque areas on the glass (areas where posters or other papers are fixed on the wall) will be
scanned properly. Therefore the amount of useful data for the algorithms is greatly reduced.

• The scanned area in the CGI building is office space. It is full of furniture: desks with computer
screens, chairs, cupboards, scanners are all present in the scanned mesh. Moreover, the trajectory
in the CGI building traverses two floors. Also stairs contribute to the amount of false positives in
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(a) Performance of ICP (use of all meshes and a 0.5m buffer) in each building

(b) Performance of IK (use of all meshes and a 0m buffer) in each building

(c) Performance of HT (use of local meshes and a 0.5m buffer) in each building)

Figure 7.18: Best performing configuration of each algorithm, separated by buildings. Graphs show the
error in meter over the travelled distance.

the shape registration. While there is some basic outlier detection, in the form of using only vertical
elements and a 0.5m buffer around the walls, there is no proper method that filters furniture or
other artefacts. This is considered to be the main reason of the poor quality in the case of the CGI
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building.

• Lastly, it is important to note that these are the aggregated results of five experiments per building.
The outcome varies a lot per experiment. In fig. 7.18 it can be seen that the results after most
experiments actually have an accuracy comparable to the Architecture building.

These causes are educated guesses, that have not been tested. They seem like logical explanations for
the deviation in results, but to proof these, additional tests should be done.

7.9 RMSE as estimate for accuracy

The root mean square error is a measure that calculates the mean euclidean distance between the point
cloud constructed from the scanned object and the floor plan. A high RMSE indicates distant shapes,
while congruent shapes have a low RMSE. There is no one-on-one relation with the position accuracy
however. After registration an incorrect local fit could be found,: The point cloud could locally align
perfectly with the floor plan, but in reality be at another place on the map. In such case, the RMSE will
be low, while the position is incorrect. The opposite is also possible: a high RMSE, while the position is
very accurate could be possible if there are many artefacts in the point cloud. Artefacts in this case are
all points that are not a wall, but classified (e.g.furniture, humans passing).

A test is needed to identify the relationship between RMSE and the accuracy of the position. A linear
regression (see fig. 7.19) shows that the correlation is significant (p¡0.001), with R2 = 0.25. To ensure
outliers have little impact on this regression, all position errors >25m are removed. Approximately 12%
if the positioning error can be explained by the RMSE, which is not enough to estimate the accuracy.

Figure 7.19: Scatterplot of error in meters between ground truth and measured point (y) and the root
mean square error (RMSE) between the scanned mesh and the floor plan (x)
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8 Conclusions

This chapter reflects on the results found in chapter 7. Firstly, the research questions are answered
and general conclusions will are drawn in section 8.1. The strengths and limitations, implications and
recommendations for future research are discussed in section 8.2.

8.1 Research questions

Four research questions were introduced in section 1.3. These are answered in the following section.

8.1.1 Feasible the spatial matching techniques

The first research question reads: What spatial matching techniques are feasible to match a 3D mesh acquired
real-time with the Microsoft Hololens with an existing 2D floor plan? Seven techniques were discussed. Three
techniques were deemed to be fit, based on a few considerations. Considerations that were taken into
account were (1) the ability to perform partial registration; (2) the registrations should be able to find a
registration in unordered point sets / shapes; (3) the complexity of the techniques. The three favoured
registration techniques are:

1. Iterative Closest Points (ICP). As the algorithm has been constructed many years ago, it has been
optimized and many variants have been constructed to improve the method. As this method can
be seen as the foundation of spatial matching algorithms, it is chosen as a feasible technique in this
research.

2. IK is chosen because it comes to an optimum faster than ICP, according to Pottmann et al. (2004)
(and therefore should be computationally faster than ICP as well).

3. Hough Transform (HT) is chosen because the method that is constructed by Ni et al. (2013) is
similar to method that is used in this thesis: it tries to register a 3D shape to a 2D reference shape.
The ICP and IK algorithms on the other hand, are methods for 3D/3D or 2D/2D matching.

Not only three registration algorithms have been compared, but also two parameters that have effect on
the registration. Two conditions have been identified to have an impact on the results of the algorithms.
These have their (dis)advantages:

1. The use of all meshes (global) or the use of only the meshes that are mapped since the last regis-
tration. There are advantages to both methods:

• Using the ’local’ configuration, any drift that has happened before will not affect the registra-
tion, therefore possibly getting better (local) fits. On top of that, computation times will be
faster, since less points are used for registration.

• The ’global’ configuration could be more robust, as it computes the registration over a bigger
space.

2. The use of a buffer around the walls on the floor plan can affect the registration as well:

• Using a buffer around walls can filter the artefacts scanned by the MH, such as people or
furniture. This reduces noise in the registration and speeds the computation.
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• If the fit of the initial (or previous) registration is off, using a buffer around the floor plan
walls can remove many points that are actually on walls. That makes the case for computing
a registration without a buffer.

8.1.2 Performance of algorithms in terms of accuracy and speed

The next question goes more in depth on the matching techniques: What is the most promising spatial
matching technique in terms of accuracy and speed? A good trade-off between these two should be found:
an algorithm that is too slow, cannot be used in the case of real-time indoor positioning. However, if the
resulting position is inaccurate, this might even be worse if the MH carrier relies on that position.

No algorithm configuration resulted in an accuracy over the 15 experiments in all three buildings that is
lower than the goal of <1 meter. However, there is one configuration that has been able to maintain an
maximum error <5 meter and a mean accuracy of <1 meter over 12 out of 15 experiments. This result
is achieved using a Hough Transform (HT), with a 0.5m buffer and meshes in proximity. Also, over
all configurations, the Hough Transform (HT) algorithm has the least varying accuracy. However, the
remaining three experiments have maximum errors between 45-113 meter. ICP and IK both have worse
results in the Architecture building, but the results in the validation buildings are more similar.

A maximum duration of 15 seconds is defined as a feasible computation time. However, the only con-
figurations that meet this requirement are the ’local’ use of meshes configurations. It is not surprising
that this parameter influences the computation time: not only is the size of the point cloud smaller, the
floor plan area that is used in the registration is also smaller. On top of that, using a 0.5 meter buffer re-
duces the amount of points in the point cloud as well, also decreasing the computation times. Lastly, the
fastest algorithm is the Hough Transform (HT) algorithm, probably because, contrary to IK and ICP, the
HT algorithm is not iterative. Surprisingly, this implies that the most accurate configuration (HT / local
registration / 0.5m buffer) is also the fastest. This configuration meets the computation time require-
ments, with an average of only 5 seconds per algorithm. The computation times are measured using the
HP laptop, with much better processing power than the MH. Therefore, while it could be concluded that
the general requirement of 15 seconds is met, this does not necessarily indicate that the computation
time is below 15 seconds on the MH.

Concluding, the Hough Transform algorithm is able to meet the computation time requirements and is
most accurate. Therefore it is the most promising spatial matching technique in comparison to the other
two.

8.1.3 Suitability of the method for indoor positioning

The previous two questions concerned the specific spatial matching techniques. The following question
concerns the positioning method as a whole: How can the indoor positioning of the Microsoft Hololens be
improved by making use of the researched positioning method? We can compare the performance of the
positioning method with the found initial transformation, but also with the ’perfect’ transformation
that is computed after the experiments, that is in essence the drift error of the MH.

A rotational error of only two degrees can give mean errors of around 2 meter, with the error at the last
measured point up to 6.6 meter. A rotational error of nine degree gives errors of 10 meter, with at the
last measured point even 18 meter. Comparing the algorithms with this accuracy resolves into the fact
that even the ’worst’ performing algorithm, ICP has a better positioning estimate than the initial trans-
formation. Therefore, it could be said that the method is a suitable method for indoor positioning.

An accuracy below 1 meter was defined as a goal. None of the registration algorithms meets that goal.
Only one configuration of one registration algorithm has an average accuracy below 1 meter (HT / local
/ 50cm buffer) in the case study. In the validation sets, in only 7/10 experiments, the same result could
be achieved. The drift error of the MH is on average only 68 centimeter over a trajectory of more than
300 meter. This is less than we thought beforehand. Therefore, it should be possible to get a better result
using registration than is achieved now, with use of more robust techniques and outlier detection.
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8.1.4 Method failures

The last sub-question is: In which cases does the researched positioning method fail to estimated the position on a
2D floor plan? This seems to be more difficult to measure than we initially thought. The degenerate cases
that were defined in the methodology have little to no impact on the performance of the registration,
but other problems did occur. The limited impact of the degenerate cases on the performance of the
registration can be explained by a number of reasons, changing per case:

• Big spaces without walls, such as large halls, did not change the behaviour of any of the algo-
rithms. This has a simple reason: there was a threshold of 100 points that should be in the point
cloud, to even perform the registration. As there are no walls within 3 meter of the device carrier
in the middle of a big hall, there is no new registration. Therefore the positioning only relies on
registrations done beforehand and the SLAM of the Hololens. The latter also worked well in the
big spaces.

• There were some walls present in the floor plan, that were not present in real-life. However, this
is methodologically the same as the un-mapped geometry that is on the floor plan, but has no 3D
geometry yet. As the point cloud is registered to the floor plan and not the reversed, it did not
bring any issues in the registration.

Incorrect registrations are rather due to other reasons. An issue showed up when walking through
hallways in the case of IK. Despite having the best result, this method does not work when the reference
lines all have the same orientation. This occurs when walking in a hallway. This problem is related to
the maths of the registration algorithm: it makes use of the normals of the floor plan lines. If all these
normals are the same, too many zeros occur in a system of equations that need to be solved. Resulting
numbers can therefore be arbitrary, which leads to wrong registrations. As soon as normals that go in
different directions are added, this problem does not occur anymore and a good fit could be found.

Not surprising, the quality of the scan affected the accuracy most. This became clear in the validation
cases. Failures of the method are caused by general artefacts / noise in the point cloud, instead of the
previously listed degenerate cases. Registrations incorrectly use points in the scan that in reality is fur-
niture. This confused some of the registrations at start, especially with theICP algorithm. This algorithm
is most susceptible for outliers. In the case of the office building, some algorithms found a fit that was
rotated 90 degrees from reality and were not able to recover these errors in the remaining process. This
resulted in huge errors > 100 meter. See-through instead of solid walls also were suggested as one of the
main reasons why the registrations in the validation cases were worse than in the Architecture building.
These are not scanned adequately by the MH and therefore influence the quality of the scan. More testing
is needed to ground these conclusions.

8.1.5 General conclusions

The main research question to be answered is: How can the Microsoft Hololens improve indoor positioning,
using the on-the-fly produced mesh and an existing floor plan? The developed method is able to position
someone indoors, without any pre-installed infrastructure or communication from outside. The only
needed information beforehand is a floor plan. This is a major advancement over previously existing
methods in the case of emergency response, where the responders are not able to use existing techniques
with Bluetooth or Wi-Fi. It works stand-alone, without any communication with other agents inside
the building. An accuracy <1 meter is not achieved, but in 80% of the experiments and accuracy <5
meter is met, even in the case of multiple buildings. Other situations, such as the use of multiple floors
should be tested to give a overarching view on the indoor positioning method using the Microsoft
Hololens (MH).
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8.2 Discussion

We have seen that there is a lot of potential in the implemented method. However, there is too much
variation between the results in the configurations, to draw strong conclusions on the suitability of this
positioning method in real-life. In order to make such a system available in practice, many aspects
could be (and some need to be) improved. This discussion will elaborate on the limitations, but also the
implications of this research, followed by some recommendations for future work.

The Microsoft Hololens (MH) SLAM was found to be working surprisingly well, with an accuracy of
around 70cm during a 350 meter trajectory. This should be placed in context of other researches, that
found different results: Landgraf (2018, in Hübner et al., 2019) has shown that drift effects visibly occur
in large-scale buildings and Hübner et al. (2020) measured a total drift of 2.39 meter over a course of 287
meter. The positive results could be due to the building, that might be better suitable for the SLAM, a
better calibration of the particular MH, or just pure chance. However, such a result could make the case
for the use of manual, instead of automatic registration. If virtually no drift occurs, the position of the
carrier only has to be set once, to be accurate over the whole trajectory. Instead of using one wall for the
initial registration, one might use two, to come to a better initial fit. This takes more time, but might be
more reliable, taking into account the minimal drift. However, if someone is using some other device
than the MH with more drift, a spatial matching technique remains more desirable than a manual one.

Noisy point clouds are a well-known problem in the field of shape registration (Gelfand et al., 2003). In
this case, the noise is caused by objects present in the scanned mesh, that are absent in the floor plan.
Improving outlier detection and removal could have been a valuable addition. The Hough Transform
algorithm could benefit from image processing literature on outlier removal in Hough images (see Ni
et al., 2013). Also in the case of ICP, outlier detection methods are already developed as well. These
can also be used in the case of IK. For various outlier detection methods see Rusinkiewicz and Levoy
(2001).

Serious optimization needs to be done to really get the method working during a computation time of 15
seconds per registration. The illustrated computation times are the result of computing the registration
in the simulation program, on the computer. The computer has a better processor and more cores than
the MH. Moreover, the MH needs to compute its SLAM simultaneously, which also takes processing
power. This could be achieved, by optimizing the registration algorithms. While the ICP is implemented
with a number of features that optimize the algorithm, IK and HT do not. However, all optimizations that
are present in the ICP algorithm, are in theory also applicable to the IK algorithm. Therefore, there are
some ways to speed up the IK algorithm. In the case of HT it is somewhat more difficult. The translational
component of HT is similar to the ICP algorithm, so also that part could be optimized as well using the
same techniques. The rotational component is now found by iterating over both the reference data and
the measured data. Using calculus, there might be more efficient solutions than for-loops. For example,
converting the rotation to a Taylor expansion and finding the phase difference between the reference
and measured points.

The results described in sec 8.1.3 should be placed in context of other positioning methods that do not
make use of present infrastructure. Both IK and HT have similar to better results as the multi-agent
multi-sensor approach of (Rantakokko et al., 2011). One additional advantage over the AR approach, is
the lack of need for multiple agents, something that Rantakokko et al. (2011) and Nilsson et al. (2014)
require.

8.2.1 Strengths and limitations

A strength of this thesis is the generalizability of the method. It should function in circumstances that
meet the following two requirements: (1) There is some spatial reference data. (2) there is a SLAM algo-
rithm, or something similar that maps the environment, finds a position in it and could communicate
both in real-time. While floor plans are used in this case, the method is not limited to that. There is only
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limited adaptation needed for a 3D variant. The system will work on any AR device that meets require-
ment (2). This is valuable, since the MH is not able to work in harsh environments. It is not resistant to
the hot or humid places that a emergency responder is regularly working in.

One building has been selected as case study and two buildings have been used as validation cases.
The results of the latter were found to be considerably worse than for the main study. Consequently, it
is not possible to generalize the conclusions to multiple buildings. While suggestions have been made
why the positioning method fails to be accurate in some cases, there is no proof of these. It is suggested
that the presence of glass walls and a lot of furniture are detrimental for the method. Limited by time
restrictions and Covid-19 measures, additional research on this matter has not been carried out. To make
any further conclusions, more research is needed into the different typologies of buildings and how the
positioning method behaves in these circumstances.

8.2.2 Implications

This thesis shows that it is possible to do indoor positioning without any use of infrastructure or com-
munication between multiple agents, using SLAM. While this has been speculated by other researches
(Rantakokko et al., 2011; Nilsson et al., 2014; Fonnet et al., 2017; Alshawa, 2007), to our knowledge this
has not been implemented and proved. It opens the door for new research to improve on this position-
ing method. If the indoor positioning accuracy can be further improved, by for example better outlier
removal, it makes way for navigation apps as well. Not only is positioning with the MH useful in the
case of ER, but also other use cases have been found. Fonnet et al. (2017); Alshawa (2007) found their
use case in the renovation of heritage. Adjustments that should be made to a building can be measured
and annotated in 3D and immediately be related to a virtual 3D model (or floor plan).

This thesis takes Emergency Response (ER) as its starting position. Even taking aside the ER requirement
that the positioning accuracy needs to be below one meter at all times, there are limited implications for
the case of ER, by cause of a number of reasons:

• The MH is a fragile device. It cannot stand water, nor can it stand heat. It will fail in the case
of smoke development, as the SLAM is based on RGB-D cameras, that do not work in smoke.
Therefore, there is limited use of the device in ER. That is also the reason why this thesis is set up
to work dynamically with the data. But the limitation remains that the method cannot be used
directly, because of the MH.

• Currently, there is limited support of data formats for the reference floor plan. Manual work has
been done to filter an AutoCAD file on its walls. This is not possible in the limited time frame
that exists within ER. Best would be to have an integration with online datasets that are currently
in use by the emergency responders. This could for example be queried using WFS statements,
creating an automated pipeline and resolving this issue.

• The initial transformation requires manual work: selecting a wall on the floor plan / in real-life.
A suggestion will be done in section 8.2.3 that could resolve this limitation.

• A real-time positioning accuracy estimator has not been found. The RMSE did not estimate the
accuracy adequately.

8.2.3 Future work

This research proposed a method to position indoors with the use of only the MH and a floor plan. Some
future work could be identified:

• Now the positioning with the MH is possible, this gives possibilities for integrating it with naviga-
tion apps as well. It is interesting to research the added value of AR to navigation. New use cases
can be found here as well: visual impaired persons could use the MH and audio-based navigation
to navigate in indoor spaces. Such a system can be integrated with already existing research on
this subject, by i.e.Yamashita et al. (2017).
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• Due to the limited availability of 3D models in ER, it is chosen to work with floor plans. It would
be useful to compare the results in this thesis to the results using a BIM. Are there major differences
using a BIM instead of floor plan? Is the position estimate better when using 3D data?

• The use of more than one floor in a building has been declared out of scope in this thesis. A
recommendation for future work is to research the use of multiple floors and more complex forms.
What if buildings have an entresol? Or slopes? Is it even possible to use floor plans for complex
building types? Or should a 3D BIM be used? These questions remain to be answered.

• It has been mentioned a couple of times: a connection with country-wide system with indoor
floor plans for public buildings, where the area of impact can be imported as reference file would
greatly increase the usability of an indoor positioning system for ER. One recommendation for
future research is to explore if such a system is achievable.

• The initial transformations is now computed with some manual input. In the future, a better
method could be constructed. Automated door detection is a possibility. It is possible to detect
doors in (voxelized) point clouds (Nikoohemat, 2016). If the door that a rescue team enters is
known, one could select this door beforehand. When the team enters the building and the device
detects a door, the coordinates could be matched to the floor plan.

• Finally, recently there has been work done in the direction of situational awareness in Emergency
Response, using the Microsoft Hololens (Smit, 2020). This type of system can communicate the
position inside the mapped 3D model of the MH to officers and other responders outside of the
building, together with necessary information. Such a system can be enhanced by a position that is
relative to a position on a floor plan of that building, for even better understanding of the situation.
In this manner, it is not only known where the responders have been, but also how that relates to
the whole size of the building, how far responders are from each other et cetera.

8.3 Epilogue

This thesis created as part of the study programme of the master Geomatics of the Built Environment.
Therefore, I’d like to reflect on the project in the context of the master studies as a whole. As a result
of doing additional courses and a second degree, the master took me a total of four years, instead of
the intended duration of two years. The courses in the first year are a while ago, but I did not lose the
connection with the master. If anything, doing a social science degree ’in between’ could even give a
clearer view on the master. For me, the master of Geomatics not only forms an academic ethos, but
also educates some kind of spatial mindset. The study has a very practical programme: it tries to give
hands-on tools with clear applications. Courses teach you python, databases or GIS. But at the end of
the studies you are not just an expert in some spatial tool set, but someone that can solve real-world
problems in a spatial way. A specialist that is able to look into complex problems in innovative manners
and visualize these. I think this thesis is an example of this mindset. While the basis of the method,
shape registration, is very familiar for a Geomatics student, the tools used are completely different than
conventional: Unity’s core application is game design and therefore functions different than GIS or BIM
programs. The created application does have some affiliation with mini-maps that often are seen in
games.

Indoor positioning is a large discipline within Geomatics. Many of my fellow students already gradu-
ated on a similar topic and I am grateful to be the next to add new knowledge to this study field. My true
interests lie in the field of 3D analysis and modelling. Therefore I was delighted that I could combine
these two fields in one research. On top of that, it was exciting to work with the Microsoft Hololens. It
is not (yet) part of the most conventional devices used in the Geomatics field, as the courses focused on
data retrieved from drones, satellite imagery or stationary laser scanners. Nonetheless, AR is a perfect
example of how Geomatics is integrated into emerging technologies, together with other hot topics like
driverless cars. Spatial understanding is detrimental for many systems and I hope this research pushed
the knowledge boundaries on this matter a tiny bit further.
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A Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

1. input data 1

2. preprocessing 3

3. methods 3

4. computational environment 1

5. results 2

A.2 Self-reflection

• This thesis uses two types of input data: floor plans and the Hololens scans. The floor plans
are AutoCAD files, that are provided by the concerned parties. These might be requested by the
source, but I am not allowed to share the CAD files myself. The Hololens data is saved into a
format that is not easy to interpret. I also did not ask any of the parties permission to share the 3D
data of their buildings. However, one could make a similar system and do the same scan another
time.
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A Reproducibility self-assessment

• Preprocessing of the data has been described very clearly. The exact output of the floor plan after

• The methods are described using both pseudo-code and equations. That gives a lot of insight into
the methods and therefore they should be easily reproducible.

• I did not share the code of the project, mainly because the pseudo-code gives a lot more insights
into the method than the code itself, as it is long and full of unused functions and references.
However, the structure of the application is described well in the Implementation section, together
with how it looks like.

• All results are described with figures, graphs and tables. Additional figures are shown in the
appendices. A CSV with the results is sent along with the thesis.
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B Additional maps for results TU Library and
CGI

Measurements

Ground Truth

Trajectory Initial Transformation

Figure B.1: The trajectories of the five experiments in the Library building after the initial transformation
are shown in this figure. Every colour corresponds to one ground truth point. The coloured circles
with the black dot is the ground truth, while the coloured dots are the measured points from one of
the five experiments. The black line is the estimated trajectory.

Figure B.2: The trajectories of the five experiments in the Library building after the initial transformation
are shown in this figure. Every colour corresponds to one ground truth point. The coloured circles
with the black dot is the ground truth, while the coloured dots are the measured points from one of
the five experiments. The black line is the estimated trajectory.
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B Additional maps for results TU Library and CGI

Measurements

Ground Truth

Trajectory best fit

Figure B.3: The trajectories of the five experiments in the Library building after the applying SVD are
shown in this figure. Every colour corresponds to one ground truth point. The coloured circles with
the black dot is the ground truth, while the coloured dots are the measured points from one of the five
experiments. The black line is the estimated trajectory.

Figure B.4: The trajectories of the five experiments in the CGI building after the applying SVD are shown
in this figure. Every colour corresponds to one ground truth point. The coloured circles with the
black dot is the ground truth, while the coloured dots are the measured points from one of the five
experiments. The black line is the estimated trajectory.
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C UML Diagrams

Figure C.1: Application manager UML

Figure C.2: Floorplan UML
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C UML Diagrams

Figure C.3: Hololens UML

Figure C.4: Spatial matchers UML

Figure C.5: interfaces UML
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Figure C.6: Utility functions UML
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D Iterative Closest Points maps

Measurements

Ground Truth

Trajectory

Figure D.1: ICP, configuration: global meshes without buffer

Measurements

Ground Truth

Trajectory

Figure D.2: ICP, configuration: global meshes and 50cm buffer
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D Iterative Closest Points maps

Measurements

Ground Truth

Trajectory

Figure D.3: ICP, configuration: local meshes without buffer

Measurements

Ground Truth

Trajectory

Figure D.4: ICP, configuration: local meshes and 50cm buffer
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E Instantaneous Kinematics maps

Measurements

Ground Truth

Trajectory

Figure E.1: IK, configuration: global meshes without buffer

Measurements

Ground Truth

Trajectory

Figure E.2: IK, configuration: global meshes and 50cm buffer
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E Instantaneous Kinematics maps

Measurements

Ground Truth

Trajectory

Figure E.3: IK, configuration: local meshes without buffer

Measurements

Ground Truth

Trajectory

Figure E.4: IK, configuration: local meshes and 50cm buffer

86



F Hough Transform maps

Measurements

Ground Truth

Trajectory

Figure F.1: HT, configuration: global meshes without buffer

Measurements

Ground Truth

Trajectory

Figure F.2: HT, configuration: global meshes and 50cm buffer
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F Hough Transform maps

Measurements

Ground Truth

Trajectory

Figure F.3: HT, configuration: local meshes without buffer

Measurements

Ground Truth

Trajectory

Figure F.4: HT, configuration: local meshes and 50cm buffer
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