
MSc Thesis in Geomatics
Faculty of Architecture and the Built Environment

Visibility Analysis in a Point Cloud based on the Medial Axis Transform

Teng Wu
October 2019

V I S I B I L I T Y A N A LY S I S I N A P O I N T C LO U D B A S E D O N T H E M E D I A L
A X I S T R A N S F O R M

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Teng Wu

October 2019

Teng Wu: Visibility analysis in a point cloud based on the medial axis transform (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Department of Urbanism
Faculty of the Built Environment & Architecture
Delft University of Technology

Supervisors: Dr. Ravi Peters
Dr. Hugo Ledoux

Co-reader: Dr. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

This thesis proposes a novel medial axis transform (MAT) based method to achieve
visibility analysis in a point cloud. There are several advantages of this MAT based
method. This method avoids surface reconstruction from a point cloud. It also
works for the situation when there is surface missing in the input point cloud. For
different point cloud datasets such as point cloud generated from meshes, AHN3

point cloud and point cloud generated from dense image matching, this method
successfully deliver decent visibility result for all of them.

The main challenge overcome in this thesis is the interior and exterior MAT sep-
aration. Two approaches, normal reorientation approach and bisector based ap-
proach are experimented in the thesis to separate MAT. The normal reorientation
approach only works for point cloud generated from meshes. The bisector based
approaches works for all the datasets testes. It successfully separates the interior
and exterior MAT when there is surfacing missing.

To speed up of the query process, spatial index is generated for interior MAT.
In this thesis, two spatial indices are implemented, KD-Tree and R-Tree. Due to
the limitation of my KD-Tree implementation, the KD-Tree does not improve the
running speed obvious. There is a room to improve the KD-Tree implementation.
The R-Tree achieves sharply improvement on running time of the queries. For 51567
points, the query based on R-Tree finished in 1880 ms.

In a word, this thesis proposed an efficient MAT based method of visibility anal-
ysis in a point cloud.

v

A C K N O W L E D G E M E N T S

First of all, special thanks to my supervisors Ravi Peters and Hugo Ledoux for their
guidance and help during my whole graduation. We had many discussions about
the topic where I learnt a lot. Especial gratitude to Ravi, who never hesitates to help
me whenever I met problems and always guides me into a correct direction. Thanks
Martijn Meijers for being my co-reader and provide me much valuable feedback.

I would like to thanks Jantien Stoter and Hugo Ledoux for providing me a part-
time job as a student assistant. During this assistant job, I learnt many skills about
programming and compiling, which is the technique support for my graduation.
Thanks Hugo for teaching me the rigorous attitude to my work and study.

Many thanks to all the teachers in Geomatics. They teach me how to find out
issues and solve them in multiple fields. Special thanks to the staffs in 3D geoinfor-
mation group. Thanks Liangliang Nan, Weixiao Gao for their generous help on the
technique part.

Thanks all my fellow classmates and friends in Geomatics. Thanks Erik, Pim,
Nikos, Vasileious and Davey for their support and accompany in the entire two-
year Master program of TU Delft.

I would like to show me gratitude to all my friends in TUD, thanks Qu Wang,
Shenglan Du, Xin Wang, Yixin Xu. Thanks Zhenheng Kong, Yijun Wang, Hongjie
Huang, Qianwen Tang, Meiqi Liu and Yu Zhang.

Thanks the all the guys in top level design group in Wuhan University. Thanks
to Weizhou Li.

Special thanks to Farah for her consistent support and making the cover for me.
And to Erik for correcting this thesis.

Finally, I would like to thanks my parents and friends, who always stand besides
me, support me and encourage me without hesitation. Thanks to all the challenges
I met during these two years.

vii

C O N T E N T S

1 introduction 1

1.1 Research questions . 2

1.2 Research scope and objectives . 2

1.3 Thesis outline . 3

2 theory 5

2.1 Medial axis transform (MAT) . 5

2.1.1 2D MAT . 5

2.1.2 3D MAT . 5

2.1.3 Interior MAT and exterior MAT 7

2.2 KD-Tree . 8

2.2.1 Process of finding the nearest node in the KD-Tree 9

2.2.2 KD-Tree with buckets . 11

2.3 R-Tree . 11

2.4 Normal estimation of point cloud by using Principal Component
Analysis (PCA) . 13

3 related work 15

3.1 Voxel-based method . 15

3.2 Mesh-based method . 16

3.3 Splatting-based methods . 17

3.4 Hidden point removal (HPR) . 18

3.5 Medial axis transform based method . 18

4 methodology 21

4.1 MAT Approximation . 22

4.2 Interior and exterior MAT separation 23

4.2.1 MAT separation based on normal reorientation 23

4.2.2 MAT separation based on bisectors 24

4.3 Brute force solution of visibility analysis 29

4.4 Visibility queries based on KD-Tree . 29

4.4.1 Spatial index generation of the interior medial balls by using
a KD-Tree . 29

4.5 Visibility queries based on R-Tree . 32

4.6 Visibility query based on two ray patterns 33

4.6.1 Visibility query based on radial rays 33

4.6.2 Visibility query based on parallel rays 33

4.7 Strategies for speeding up the visibility query 34

4.7.1 Medial ball simplification . 34

4.7.2 Speed up by using GPU for parallel computing 34

5 implementation and experiments 35

5.1 Datasets and tools . 35

5.1.1 Datasets . 35

5.1.2 Developing tools and environment 35

5.2 Implementation . 37

5.2.1 Framework and user interface 37

5.2.2 Nodes, operations and connections 37

5.2.3 MAT approximation . 38

5.2.4 MAT separation based on normal reorientation 39

5.2.5 MAT separation based on bisectors 39

5.2.6 Implementation of KD-Tree and R-Tree 40

5.2.7 Radial rays . 40

5.2.8 Parallel rays . 41

5.2.9 Parallel computing by GPU and multiple threads 42

ix

x contents

6 results and discussions 43

6.1 Visibility results of datasets . 43

6.1.1 Normal reorientation approach 43

6.1.2 Bisector based approach . 48

6.2 Validation . 53

6.2.1 Ray tracing vs brute force approach 53

6.2.2 Brute force approach vs open-source software 54

6.3 Efficiency performance . 55

6.3.1 Brute force approach vs ray tracing approach 55

6.3.2 With and without a KD-Tree . 56

6.3.3 With R-Tree and without R-Tree 58

6.3.4 KD-Tree VS R-Tree . 58

6.3.5 MAT simplification . 59

6.3.6 Initial Radius . 60

7 conclusion and future work 61

7.1 Conclusion . 61

7.1.1 Answers for the research questions 61

7.2 Future work . 65

7.2.1 Point cloud classification . 65

7.2.2 Normal repair of point cloud . 65

7.2.3 Radius determination of ball-pivoting algorithm 65

a appendix c++ source code 69

a.1 Appendix I . 69

L I S T O F F I G U R E S

Figure 2.1 2D MAT of a 2D shape . 5

Figure 2.2 3D MAT of a surface model of a hand 6

Figure 2.3 3D MAT of a point cloud . 7

Figure 2.4 Interior and exterior MAT of a point cloud 8

Figure 2.5 Interior and exterior MAT of a point cloud with a surface
missing . 8

Figure 2.6 A 2D example of a KD-Tree . 9

Figure 2.7 Planar graph representation of the 2D KD-Tree 9

Figure 2.8 A 2D points set and its KD-Tree 10

Figure 2.9 Nearest node query of the KD-Tree, step 2 10

Figure 2.10 Nearest node query of the KD-Tree, step 3 10

Figure 2.11 Planar graph representation of the a KD-Tree with buckets . . 11

Figure 2.12 Simple example of an R-tree for 2D rectangles 12

Figure 2.13 Visualization of an R-tree for 3D points 12

Figure 2.14 The workflow of PCA normal estimation 13

Figure 2.15 Different normal results of a small k values (left) and a large
k values (right) . 14

Figure 2.16 Wrong normal results of PCA method 14

Figure 3.1 Voxel-ray intersection for visibility check 15

Figure 3.2 Voxel size influence . 16

Figure 3.3 Meshes based method . 16

Figure 3.4 A splat is defined for each point as a normal-oriented disk
with a radius r. Usually r is chosen such that there are no holes 17

Figure 3.5 Spherical flipping (in red) of a 2D curve (in blue) using a
sphere (in green) centred at the view point (in magenta). . . . 18

Figure 3.6 Three steps of the MAT based method 19

Figure 4.1 An overview of the MAT based approach 21

Figure 4.2 The adapted shrinking ball algorithm 22

Figure 4.3 An example of the denoise parameter 23

Figure 4.4 MAT balls with different initial radii 23

Figure 4.5 MAT balls with different initial radii 24

Figure 4.6 The workflow of MAT sheet determination based on bisectors 24

Figure 4.7 No intersection of interior and exterior MAT medial balls . . 25

Figure 4.8 MAT medial balls overlap . 25

Figure 4.9 Point cloud with parts of MAT sheets, different sheets in dif-
ferent colours . 26

Figure 4.10 Bisectors of the interior and exterior MAT point to different
directions . 26

Figure 4.11 Special case of bisectors direction ambiguity 27

Figure 4.12 The z-direction MAT sheet value can be used to determine
interior and exterior MAT sheet 27

Figure 4.13 Different bisector directions of interior and exterior sheets . . 28

Figure 4.14 Successful determination of interior and exterior sheet by us-
ing sheet value . 28

Figure 4.15 An example of the brute force solution of visibility analysis . 29

Figure 4.16 An example of how the interior medial balls are saved in a
KD-Tree . 30

Figure 4.17 An example of how the interior medial balls are saved in a
KD-Tree . 31

Figure 4.18 An example of R-tree structure of medial balls 32

xi

xii list of figures

Figure 4.19 Graph representation of the RTree in Figure 4.18 32

Figure 4.20 Visibility query based on radial rays 33

Figure 4.21 Visibility query based on parallel rays 33

Figure 4.22 Visibility query based on parallel rays 34

Figure 5.1 An overview of the software . 37

Figure 5.2 Point cloud operations represented by nodes 38

Figure 5.3 MAT approximation node . 38

Figure 5.4 Steps of normal reorientation process 39

Figure 5.5 MAT balls with different initial radii (left before normal re-
orientation, right after the normal reorientation) 39

Figure 5.6 The nodes of MAT separation based on bisectors 40

Figure 5.7 The implementation of radial rays 41

Figure 5.8 The steps of parallel ray implementation 41

Figure 5.9 The node implementation of parallel rays 42

Figure 6.1 The visibility result of the artificial point cloud (radial rays) . 43

Figure 6.2 The visibility result of the artificial point cloud (parallel rays) 44

Figure 6.3 Building A shown in Google Maps 45

Figure 6.4 Normal orientation failed when dealing with an AHN3 build-
ing, interior MAT in blue, input point cloud in white, initial
radius of shrinking ball is 10 meters 46

Figure 6.5 Interior medial MAT balls, left original based on PCA nor-
mals, right after normal reorientation 46

Figure 6.6 Visibility result of normal reorientation approach (Brute force
ray checking, input PC in white, visible points in red, left
viewpoint in green, right viewpoint in brown) 47

Figure 6.7 Visibility result of radial rays based on bisector approach . . . 48

Figure 6.8 Visibility result of parallel rays based on bisector approach . . 49

Figure 6.9 Part of the interior MAT of the artificial point cloud 50

Figure 6.10 Interior MAT and medial balls results based on bisector ap-
proach . 50

Figure 6.11 Visibility result of the Building A based on bisector, radial
rays (left: input PC, right: result) 51

Figure 6.12 Visibility result of the Building A based on bisector, parallel
rays (left: input PC, right: result) 51

Figure 6.13 Visibility result of the Aula based on bisector, radial rays (left:
input PC, right: result) . 51

Figure 6.14 Visibility result of Museum Boijmans Van Beuningen based
on bisector, brute force approach (left: input PC, right: result) 52

Figure 6.15 Visibility result of buildings based on bisector, brute force
approach (left: input PC, right: result) 53

Figure 6.16 Original point cloud of Building A, viewing from three an-
gles, left angle α, medium angle β, right angle γ, viewpoint
in green, original point cloud in white 53

Figure 6.17 Radial ray visibility result of Building A, viewpoint in green,
visible points in red . 53

Figure 6.18 Parallel ray visibility result of Building A, start point in green,
end point in yellow, visible points in red 54

Figure 6.19 Brute force visibility result of building A, viewpoint in green,
visible points in red . 54

Figure 6.20 brute force approach vs hidden point cloud remover in Cloud-
Compare . 55

Figure 6.21 Interior balls of the point cloud of the Museum Boijmans Van
Beuningen . 55

Figure 6.22 A medial ball with a large radius in the KD-Tree intersects
with bounding boxes . 57

list of figures xiii

Figure 6.23 Running time comparison among KD-Tree, R-Tree and with-
out spatial index (including the tree generation time cost) . . 58

Figure 6.24 The visibility results with different simplification parame-
ters (up simplification threshold s= 0, medium simplification
threshold s= 0.05, down simplification threshold s= 0.1) . . . 59

Figure 6.25 Influence of initial radius . 60

Figure 7.1 Exterior MAT with initial radius 200 meters 61

Figure 7.2 Workflow of multiple viewpoints in the geoflow software . . 62

Figure 7.3 Visibility analysis by bisector based approach when dealing
with surface missing . 63

Figure 7.4 Visibility analysis of two inputs by bisector based approach . 64

Figure 7.5 The Ball Pivoting Algorithm in 2D 65

L I S T O F TA B L E S

Table 6.1 Running time of three approaches 56

Table 6.2 Running time of different inputs by using a KD-Tree and not
using a KD-Tree . 57

Table 6.3 Number of the medial balls before and after duplication . . . 57

Table 6.4 Running time of different inputs by using an R-Tree and not
using an R-Tree . 58

Table 6.5 Simplification results with different overlap ratio 59

xv

List of Algorithms
4.1 Normal propagation process . 23

4.2 Single ray process . 31

5.1 R-Tree implementation . 40

xvii

1 I N T R O D U C T I O N

Visibility analysis is to figure out which objects or parts of object can be clearly seen
from a specific viewpoint. It describes spatial relationships between the viewpoint
and targets. In other word, it describes if there are obstacles between the studied
objects. For instance, when one stands in front of a house and the target is the
house. The front facade of the house is visible. But if there is a tree or a car located
in between of the person and the house. Only part of the facade can be seen by the
person. For this scenario, the goal of visibility analysis is to analyse which parts of
the house are visible.

Visibility analysis plays an important role in multiple fields and application. For
example, it contributes to calculating the visibility of landmark features [Bartie et al.,
2010], providing performance characterization of multi-camera systems [Mittal and
Davis, 2004] and driver support systems [Brookhuis et al., 2008]. In 3D GIS fields,
visibility analysis is one of the prominent use cases [Peters et al., 2015]. For example,
it benefits to calculate the sky view factor [Watson and Johnson, 1987] of the city
and measure the view from a window.

Point clouds are one of the most common data type when it comes to 3D GIS
data, since its efficiency of providing geoinformation. For example, one can gen-
erate a point cloud of a house by laser scanning. A large-scale point cloud can
also be obtained by using airborne laser. The popularity of point cloud has been
increased in the last decade[Levoy, 2000]. With the advance of the point clouds ac-
quisition technology, point clouds has been widely obtained and used in different
applications.

Visibility analysis plays an important role in point cloud applications, such as
3D city modelling, trajectory planning for micro air vehicle and indoor navigation
[Peters et al., 2015; Ramon et al., 2014; Biswas, 2012]. However, it is not an easy task
due to that points are zero-dimension objects mathematically, which means points
do not have size. Therefore, a point will not block the view on the rest of point
cloud theoretically.

In order to achieve the visibility analysis, methods have been developed in the
past two decades. The first kind of method is voxel-based method. It first generates
3D voxels from a point cloud. Then ray-box intersection is used to separate visible
boxes and obstructing ones. Williams et al. [2005] proposed an efficient box-ray
intersection method to improve this process. The main limitation is that the result
are strongly related to the voxel size [Alsadik et al., 2014]. The second type of
method is mesh-based method. The idea is to generate 3D triangle meshes from
a point cloud first. Then ray-triangle intersection is used to check if one mesh is
blocked by the rest of meshes[Greene et al., 2005]. After this intersection query,
visible meshes can be extracted. In practise, it is difficult to create a perfect 3D
mesh generation from a point cloud due to noises and points missing of the input.
Besides, mesh generation often requires additional information, such as normals
and sufficient density of the input point cloud [Alsadik et al., 2014]. The third kind
of method is splatting-based methods. Instead of creating triangle mesh surfaces,
this method creates splatting surfaces. Then ray-splat intersection is used to detect
obstructing splats. The splats are depended on radius size which is often a user-
defined value for the whole dataset. It is difficult to handle surface missing of
the input. The fourth method is the hidden point removal method [Katz et al.,
2007]. The method first transforms input points by a spherical flipping. Then this
method generates a convex hull which contains the centre of the transform sphere

1

2 introduction

and transform points. At the end the visible points can be extracted from the convex
hull. The limitation of this method is that it is difficult to handle noises and the
performance is depended on the radius of flipping sphere.

The medial axis transform is first proposed by Blum [1967] to describe biological
shapes. It can generate the skeleton from the input. From a point cloud, the medial
axis transform is used to generate the skeleton which consists of faces theoretically.
In this thesis, the skeleton of point cloud is represented as groups of points due to
the generation algorithms. More details of MAT are explained in Section 2.1.

Peters et al. [2015] proposed a medial axis transform based approach to achieve
visibility analysis of a point cloud. However, in this approach, an apparent limi-
tation is that a depth map needs to be generated of each view point. Due to the
limitations of the methods mentioned above, it is significant to find a new solution.
This thesis presents a new approach based on the medial axis transform to achieve
visibility analysis. Instead of the depthmap, ray tracing is used for visibility query
in this thesis. To achieve efficient performance, KD-Tree and R-Tree spatial indices
are used.

1.1 research questions
This thesis explores a medial axis transform based approach, to achieve visibility
analysis on a point cloud. This is a new solution compared to these methods men-
tioned above. The main research question is the following:

How can the Medial Axis Transform (MAT) be used for visibility analysis in
a point cloud?

Efficiency of this method can be reflected in a program running speed and com-
putation cost of the whole process. This research is an experiment to check if this
method works well for visibility analysis. Besides, it is also significant to find out
the performance and properties of this method. More details and interesting points
will involve in the following sub-questions.
Visibility query

• What is an efficient spatial index for storing MAT ball?

• How to handle multiple viewpoints and different directions?

MAT properties

• How to separate interior and exterior MAT?

• What are the advantages and disadvantages of the MAT based method?

Validation

• How good are the results of this method compare to existing methods?

• Does this method work for different datasets (e.g. AHN3, EMC-Rotterdam
and Dense point cloud from image matching)?

• Does this method work for different objects types of point cloud?

1.2 research scope and objectives
This thesis focuses on the MAT based method itself. The properties and perfor-
mance of the MAT based method are discussed in detail. Other methods have less
importance in this thesis. The performance of the MAT based method is reflected on

1.3 thesis outline 3

two aspects, efficiency and accuracy. Efficiency of this method is reflected in the pro-
gram running speed and computation cost of the whole process. For the accuracy,
comparisons between the MAT methods and the hidden point remover method are
made. Advantages and limitations of the MAT method are deeply discussed in this
thesis.

MAT created from a point cloud can be classified into two classes, exterior and
interior MAT. The exterior MAT will not contribute to this thesis, since it will block
the view from viewpoint to the input. Rather, the exterior MAT has negative con-
tributions to visibility analysis. Therefore, how to separate the interior and exterior
part is a key task in this research. Different approaches of the MAT separation are
proposed in this thesis. Their performance and limitations are included.

For experimental dataset, multiple point cloud datasets are tested in this research.
Noises and surface missing exist in the input datasets. Whether the MAT method
is able to handle this situation is discussed. The influence of different quality input
data is covered. But the correction of the input point cloud is not involved in this
topic.

1.3 thesis outline
This thesis is structured as the following chapters:

• Chapter 2 introduces related theories of the point cloud visibility research. It
contains theory of the Medial Axis Transform, KD-Tree, R-Tree and the normal
of a point cloud. These theories give fundamental supports of occlusions
analysis and efficient visible points query of a point cloud.

• Chapter 3 gives an overview of current approaches of point cloud visibility
research. Limitations of these methods are discussed.

• Chapter 4 explains the methodology of this research. It illustrates the architec-
ture of this MAT based method. The challenge in this research and potential
solutions are discussed.

• Chapter 5 focuses on the implementation of the MAT based method. It trans-
fers ideas to codes. Tools and datasets are included in this chapter.

• Chapter 6 shows results, discussions and validations of the MAT based method.
Besides the visibility results of different datasets, it is discussed how to evalu-
ate the approach.

• Chapter 7 answers all the research questions. Conclusions and ideas for future
work are given.

2 T H E O R Y

2.1 medial axis transform (mat)

Blum [1967] proposed the Medial Axis Transform theory to describe shapes in bi-
ology. This method extracts skeleton of an input shape both inside and outside. It
divides the space of the input into partitions. By applying this method to point
cloud, it is able to extract 3D volume information from zero-dimension points. The
3D volume information contributes to visibility analysis, since occlusions caused by
3D volume can be used to determine which subdivision spaces are visible.

2.1.1 2D MAT

The 2D MAT of a 2D point set consists of groups of surfaces which have certain
distances to the boundary. Figure 2.1 illustrates what is the 2D MAT result of an
input 2D shape. The 2D MAT result is groups of surfaces which make up the yellow
lines in the Figure b. Medial circles are drawn in Figure b in black. The element
of MAT can be considered as the centres of the medial circles which tough the
boundary at one or more points. There are two kinds of MAT, interior MAT and
exterior MAT. As shown in figure 2.1, the difference is that whether they are located
inside the input shape or not.

Figure 2.1: 2D MAT of a 2D shape
[Peters et al., 2015]

2.1.2 3D MAT

Similar to 2D MAT, 3D MAT is groups of surfaces as well. For the points in the
surfaces, medial balls can be drawn with certain radius which equals the distance
from MAT point to the boundary. The centres of these medial balls can be con-
sidered as 3D MAT result of the input. These centres make up the MAT surfaces.

5

6 theory

Figure 2.2 illustrates the 3D MAT of a surface model of a hand. The 3D MAT can
be considered as the skeleton of the input model.

Figure 2.2: 3D MAT of a surface model of a hand
[Amenta and Kolluri, 2001]

An example of 3D MAT of a point cloud is given in Figure 2.3. The input point
cloud is an artificial point cloud which contains a house, a tree and a terrain (see
Figure 2.3 a). The 3D interior MAT is shown in Figure 2.3 c (in red). It is represented
by a number of points. And these points are the centres of the medial balls shown
in Figure 2.3 b. The 3D medial balls are shown in Figure 2.3 b (in blue). The balls
perform 3D volume information of the input point cloud. And they are able to
block the sight of view from a viewpoint, which contributes to visibility analysis.
The key information of visibility analysis is to determine if the target is visible or
blocked.

2.1 medial axis transform (mat) 7

Figure 2.3: 3D MAT of a point cloud

2.1.3 Interior MAT and exterior MAT

There are two kinds of MAT of a point cloud, interior MAT and exterior MAT. Their
difference is the relevant positions to the boundary of input. The interior MAT
is located inside the boundary and exterior MAT is outside. When the input is a
closed object (see Figure 2.1 b), it is obvious to distinct the interior MAT and the
exterior MAT. However, point cloud data is not closed, so there is not clear border of
inside and outside . But the interior MAT and exterior MAT can still be separated by
their position to the input point cloud. The interior MAT and exterior MAT always
located on the different sides of the input point cloud (see Figure2.4). In this thesis,
the MAT located on the side of lower elevation is defined as interior, and the MAT
on the side of higher elevation is defined as exterior. In short, the interior MAT
(Figure 2.4 in red) is under the input. The exterior MAT (Figure 2.4 in blue) is above
the input.

When there is a surface missing of the input point cloud, the interior MAT can
have connection with exterior parts (see Figure 2.5 in orange). The connected MAT

8 theory

Figure 2.4: Interior and exterior MAT of a point cloud

exists in the situation of holes or surface missing or low density point cloud. In
practice, the quality of the input point cloud is often not perfect, so the ambiguity
of interior MAT and exterior MAT exists. The exterior MAT can block the input
point cloud, which will result in wrong visibility results. Only interior MAT benefits
visibility analysis. It is a significant task to separate the interior MAT and exterior
MAT properly.

Figure 2.5: Interior and exterior MAT of a point cloud with a surface missing

2.2 kd-tree
KD-Tree, first proposed by Bentley in 1975, is a data structure aiming at associative
searching. It divides 3D space into subdivisions. The elements of KD-Tree consists
of nodes and leafs. Figure 2.6 is an example of the subdivisions process of a 2D
space. The process is described as following. First find a middle point along the
K0 axis (horizontal direction). Then divide the space into two halves perpendicu-
lar to K0 axis at point A. For each subdivision, find a middle point along the K1
axis (vertical direction). Divide the subdivision into halves at that middle point
perpendicular to K1 axis. Repeat the steps above, until no partition space can be
divided. Figure 2.7 gives a planar tree graph representation of the 2D KD-Tree. It

2.2 kd-tree 9

contains the connection relationship between nodes and leafs. Points which belongs
to different subdivisions are stored in the corresponding levels of the KD-tree.

Figure 2.6: A 2D example of a KD-Tree
Bentley [1975]

Figure 2.7: Planar graph representation of the 2D KD-Tree
Bentley [1975]

KD-Tree is a useful approach to find the nearest neighbour. Each node or leaf
has a nearest partition space. This information is stored in the KD-Tree structure.
Since the visible point is always the nearest one from the viewpoint along that view
direction, KD-Tree is suitable data structure to create spatial index for the point
cloud.

2.2.1 Process of finding the nearest node in the KD-Tree

The process of finding the nearest node of a KD-Tree is described in this Section.
Figure 2.8 shows a 2D point set, viewpoint and the KD-Tree of the point set. Now
the task is to find out which point in the point set is the nearest to the viewpoint,
(-2, 12). First, start with the root of the KD-Tree, (7, 2).

10 theory

Figure 2.8: A 2D points set and its KD-Tree

Now the nearest node should lie on either the right partition of the root or the
left. After comparing node (5, 4) and (9, 6), we know that the left node (5, 4) of the
root is the closer to the viewpoint. So right partition of the root can be eliminated
(see Figure 2.9). Then we continue doing the same comparison between node (2,

Figure 2.9: Nearest node query of the KD-Tree, step 2

3) and (3, 6). Another partition in the bottom can be eliminated (see Figure 2.10).
Finally the nearest node (3, 6) is found.

Figure 2.10: Nearest node query of the KD-Tree, step 3

2.3 r-tree 11

2.2.2 KD-Tree with buckets

In the past two decades, KD-Tree theory has been exploring deeply. Arya and
Mount [1993] proposed an adapted version of KD-Tree which makes the nearest
neighbour query even faster by involving the concept of bucket size (see Figure
2.11). In the adapted version, there are two kinds of KD-Tree nodes, leaf nodes and
intermediate nodes. Data is only stored in the leaf nodes. A rectangle associated
with leaf nodes are called buckets which defined subdivision of space into rectangle
[Arya and Mount, 1993]. Data located in the rectangle is stored in the corresponding
leaf nodes. There is no data stored in the intermediate nodes. Arya and Mount
[1993] stated that this version of KD-Tree achieved improvements in running time
compared to a KD-Tree without bucket, due to the total depth of the tree is reduced.

In this thesis the KD-Tree is implemented with a bucket size 16. (see Section 4.4)

Figure 2.11: Planar graph representation of the a KD-Tree with buckets

2.3 r-tree
Besides KD-Tree, R-Tree is another data structure for spatial queries. It was first
invented by Guttman [1984]. R-Tree is able to divide the space into several smaller
subdivisions. The items stored in R-Tree are represented by their minimum bound-
ing rectangles (boxes in 3D). These minimum bounding rectangle containing posi-
tion information benefits spatial queries. The number of items need to be checked
can be reduced during spatial queries, since the uninterested subspaces correspond-
ing to uninterested rectangles can be skipped. There are some specific requirements
for an R-Tree.

• ”Each leaf node contains m to M records unless it is the root.

• For each record (I, tuple-identifier) in a leaf node, I is the smallest rectangle that
spatially contains the n-dimensional data.

• Every non-leaf node has between m and M children unless it is the root.

• For each entry (I, child-pointer) in a non-leaf node, I is the smallest rectangle
that spatially contains the rectangles in the child node.

• The root node has at least two children unless it is a leaf.

• All leaves appear on the same level.” Guttman [1984]

12 theory

Figure 2.12 shows a 2D R-Tree example. The total level size of the R-Tree is 3.
Each leaf node contains 1 to 3 elements. The data (red rectangles in Figure 2.12)
are only stored in the leaf nodes. The process of finding the intersected data with
query rectangle (blue in Figure 2.12) is described as follows. First, check the nodes
in the top level. Only R1 is intersected with query rectangle. Second, check the
child nodes of R1. R3 is the only child node intersected. That means result is in the
child nodes of R3. Finally, check all the child nodes of R3. The result is R8.

Figure 2.12: Simple example of an R-tree for 2D rectangles
Skinkie [2010]

Figure 2.13 shows a 3D R-Tree of 3D points. Instead of 2D rectangles, the bound-
ing boxes are represented by 3D boxes. The bounding boxes divide the space into
smaller partitions.

Figure 2.13: Visualization of an R-tree for 3D points
Chire [2010]

2.4 normal estimation of point cloud by using principal component analysis (pca) 13

2.4 normal estimation of point cloud by using
principal component analysis (pca)

When it comes to normal estimation, Principal Component Analysis (PCA) [Jolliffe,
2002] is one of the most popular method. It is available for example in the PCL
library [PCL Developing Group, 2019]. The steps of normal estimation with PCA
method are described as follows. For each point p in a point cloud, select k nearest
neighbours and these points make up a point set S. Then compute the covariance
matrix of the set S. Next, calculate the eigenvector of the covariance matrix. The
normal n of point p is the smallest eigenvalue of the eigenvector (see Figure 2.14).

Figure 2.14: The workflow of PCA normal estimation

The limitation of the PCA method is that the result is highly influenced by the
k neighbours. Different k values result in different normal results (see Figure 2.15).
When the input point cloud is not sufficient dense or there are missing surfaces, the
parts of the result might point to the wrong direction. Figure 2.16 example why the
normal calculated by PCA can be wrong due to a surface missing. In Figure 2.16,
the k nearest neighbours parameter is set to 10. In the Figure 2.16 a, the normal of
point p is pointing upward. When there is a surface missing around point p (see
Figure 2.16 b), the nearest k neighbours of point p is changed. And the normal
calculated by PCA is pointing to the top-left direction which is wrong.

14 theory

Figure 2.15: Different normal results of a small k values (left) and a large k values (right)
PCL Developing Group [2019]

Figure 2.16: Wrong normal results of PCA method
[Peters, 2017]

3 R E L AT E D W O R K

The visibility analysis of a point cloud has been studied for two decades. There
are several ways to achieve that. In general there are two kinds of visibility meth-
ods. The first type is the indirect visibility method which is based on an auxiliary
geometry extracted from point cloud, such as voxel-based method (section 3.1),
mesh-based method (section 3.2), splatting method (section 3.3) and MAT based
method (section 3.5). The other type is the direct visibility method which avoids
creating intermediate geometry shapes. The direct visibility method is based on
mathematical operators or transformation, such as hidden point remover. And it
can directly analyse the visibility on the point cloud itself.

3.1 voxel-based method
The idea of voxel-based method is to use voxels as occlusion objects, then to check
which voxels are visible from a viewpoint. Assuming that voxels are already created
from input point cloud, rays are emitted from one viewpoint. Each ray represents
a direction of view from the viewpoint. Rays have intersections with voxels. The
first intersected voxel of that ray is considered as the visible voxel of that direction.
Figure 3.1 gives an overview of the visibility check based on voxels. In this figure a
voxel is checked from multiple viewpoints.

Figure 3.1: Voxel-ray intersection for visibility check
[Alsadik et al., 2014]

Except the voxel generation from a point cloud, ray-box intersection is the main
part for this method. Williams et al. [2005] developed an efficient Ray-Box intersec-
tion algorithm to acquire intersection result between lines and boxes. Later Mena-
Chalco [2010] improved this Ray-Box intersection algorithm by adding the distance
calculation from the origin to the hit point.

Although this method avoids surface reconstruction from a point cloud ([Alsadik
et al., 2014]), the limitations of voxelization are obvious. Alsadik et al. [2014] stated
that there were high memory requirements and computation cost when processing
massive dataset. Another significant limitation is that the voxel size may have influ-
ence on the performance, especially when the input point cloud is not sufficiently
dense. Figure 3.2 illustrates the situation that different voxel sizes result in different
visibility performances. In Figure 3.2 a, it is the performance of a smaller voxel size.
There is a hole in the front raw and the middle voxel of the back raw is visible. In

15

16 related work

Figure 3.2 b, there is no hole in the front row and only the voxels of the front row
are visible.

Figure 3.2: Voxel size influence
[Alsadik et al., 2014]

3.2 mesh-based method
The concept of the mesh-based method can be described as two steps, mesh gener-
ation and visibility check. Mesh generation has already been deeply researched in
the last two decades, such as Ball-Pivoting algorithm [Bernardini et al., 1999] and
Poisson Surface Reconstruction [Kazhdan et al., 2006]. Therefore, this section fo-
cuses on visibility check step. There are two kinds of ways of mesh visibility check,
ray-tracing method [Kaplan, 1987] and z-bufferring method [Greene et al., 2005].

The ray-tracing method is described as following. From one viewpoint rays emit-
ted to the meshes. One ray can hit one or more meshes along the ray direction.
The first mesh intersected is regarded as the visible mesh of that direction. After
checking all the rays from the viewpoint, all the visible meshes of the viewpoint
can be obtained. Möller and Trumbore developed a robust and efficient ray-triangle
intersection method to find out the intersection result between shooting ray and
triangle meshes. It reduces memory storage cost by avoiding storing triangle plane
equations [Möller and Trumbore, 2005].

Figure 3.3: Meshes based method
[Alsadik et al., 2014]

The idea of z-buffering [Greene et al., 2005] method is to project the input objects
into a 2D depth map along a certain angle. The unit pixel in the map can be
represented as (x, y, z-value). The z-value stored the distance information from a
target object to the viewpoint. The order of input object is corresponding to their

3.3 splatting-based methods 17

distance to the viewpoint. Therefore, in each pixel the object with the smallest
z-value is considered as the visible one. (see Figure 3.3)

The main limitation of this method is that there is no avoidance of mesh surface
generation. However, it is challenged to get perfect mesh surfaces from a point
cloud, due to noises and surface missing. Mesh generation is often requires ad-
ditional information such as correct normals and sufficiently density of the input
point cloud, which are not guaranteed in point cloud production [Alsadik et al.,
2014]. Another limitation is that every single mesh needs to be check during the
visibility check, which is low efficiency in term of computation cost.

3.3 splatting-based methods

Similar to mesh-based method, splatting-based method also can be described as
two steps, surface splatting and visibility check. Instead of generating mesh sur-
faces, this method creates splatting surface. The procedure of surface splatting is
described as following. First, select sample points from the input point cloud. Then
calculate the normal of each sample point. Perpendicular to the normal, an ellip-
tical or circular splat is drawn with a certain radius. Normally the radius is set to
avoid holes between splats (see Figure 3.4). After the splat surfaces are generated,
visible parts can be determined by geometrical intersections. The visibility check
part of splatting-based methods have similarity to mesh-based method. Instead of
ray-triangle intersection, ray-circle intersection is used in splatting-based method.

Figure 3.4: A splat is defined for each point as a normal-oriented disk with a radius r. Usu-
ally r is chosen such that there are no holes

[Peters, 2018b]

Wu and Kobbelt [2004] proposed an optimized sub-sampling method for sur-
face splatting. The advantage of surface splating is that it is able to represent a
point cloud without any connectivity or topological consistency conditions [Wu
and Kobbelt, 2004]. And it has better flexibility and lower approximation error
when using the same input point cloud, compared to mesh surface reconstruction
[Wu and Kobbelt, 2004].

There are several limitations of the splatting-based method. First, it is a parameter-
dependent method. The performance is influenced by the splatting radius. Second,
the surface splatting is highly dependent on the normal of the sample points. In
practise, it is difficult to get correct normal at every point in a point cloud. This
method has difficulty to handle insufficient density and surfacing missing of the
input.

18 related work

3.4 hidden point removal (hpr)
Hidden point removal is a direct visibility analysis method of point sets [Katz et al.,
2007]. It was first proposed by Katz et al. [2007]. It consists of two steps, inversion
and convex hull construction [Katz et al., 2007]. In the inversion, all the input points
are projected into a spherical coordinate system. This process is called as spherical
flipping [Katz et al., 2007]. Figure 3.5 gives an example of the spherical flipping
process. This process projects the 2D input point cloud (in blue in Figure 3.5) into
a spherical coordinate system and results in a spherical flipping point cloud (in red
in Figure 3.5). The next step is convex hull construction. It creates a convex hull
which consists of the transformed points and the centre of the sphere. The visible
points can be determined by the following rule. A point is visible from the centre
point, if its inverted point lies on the convex hull [Katz et al., 2007].

Figure 3.5: Spherical flipping (in red) of a 2D curve (in blue) using a sphere (in green) centred
at the view point (in magenta).

[Katz et al., 2007]

There are advantages and disadvantages of the method. This is a direct solution
for point cloud visibility analysis, which means it is able to determine the visibility
without surface reconstruction or voxelization. Besides, this method is able to han-
dle sparse point clouds [Alsadik et al., 2014]. The disadvantage is that it is necessary
to set a suitable radius parameter when noises exist in the input [Mehra et al., 2010].
Another limitation is that it can only determine the points which are part of the
input itself [Peters et al., 2015].

3.5 medial axis transform based method
Peters et al. [2015] proposed an approach to visibility analysis based on the medial
axis transform. This method contains three steps, MAT approximating from point
cloud, depthmap computation and point visibility querying (see Figure 3.6). For the
MAT approximating, Peters et al. [2015] used an adapted version of shrinking ball
algorithm [Ma et al., 2012]. This adapted shrinking ball algorithm is also involved
in this thesis and is described in Chapter 4. To compute the depthmap, first project
each the centre of medial ball into a 2D rasterized panel. In this plane, each pixel
stores a current depth and the depth is updated when a new ball is projected. The
visibility query process is similar to z-buffering [Greene et al., 2005] method. For
each pixel, the ball corresponded to the minimal depth value is regarded as visible.

The advantage of this method is that it is able to deal with surface missing and
noises of the input point cloud [Peters et al., 2015]. However, there are several

3.5 medial axis transform based method 19

Figure 3.6: Three steps of the MAT based method
[Peters et al., 2015]

limitations. First, the interior MAT and exterior MAT separation is based on perfect
normals which is difficult to obtain in practice. Second, each viewpoint requires a
corresponding depthmap, which means to each viewpoint an individual depthmap
needs to be created.

4 M E T H O D O LO GY

This chapter explains the methodology I developed of how to achieve visibility anal-
ysis for a point cloud based on a MAT approach. Figure 4.1 gives a summary of this
MAT based approach which consists of MAT approximation, interior and exterior
MAT separation, spatial index creation, ray generation and performing visibility
queries (see Figure 4.1). The first step is MAT approximation which generates both
interior and exterior MAT from an input point cloud (Section 4.1). As mentioned
in Section 2.1.3, only interior MAT benefits visibility analysis. Therefore, the next
step is to separate the interior and exterior MAT (Section 4.2). In order to achieve
efficient visibility queries, a spatial index of the interior MAT is created based on
the KD-Tree and R-Tree theory (Section 4.4.1). Ray generation is to model the views
from a viewpoint. Two kinds of rays, parallel rays and radial rays, are taken into
consideration (Section 4.6.1 and Section 4.6.2). The parallel rays from a viewpoint
can be used to model solar potential applications such as solar lighting simulation
and shadow analysis. The radial rays can be used to model the view sight from
an origin. The final step is the visibility query. Brute force query is described in
Section 4.3. The efficient KD-Tree and R-Tree based query are explained in Section
4.4.

Figure 4.1: An overview of the MAT based approach

21

22 methodology

4.1 mat approximation
As described in Chapter 2, theoretically the medial axis transform consists of groups
of surfaces which have a certain distance to the boundary. However, in this thesis
the MAT is represented by groups of points generated by a shrinking ball algo-
rithm. These points can be considered as the centres of medial balls which touch
the boundary on one or more points. The original shrinking ball algorithm is pro-
posed by Ma et al. [2012]. Peters et al. [2015] proposed an adapted version of the
shrinking ball algorithm which is able to determine interior and exterior MAT by
using the estimated normals. Figure 4.2 gives a 2D sketch about how the algorithm
works. As illustrated in Figure 4.2, point p is a point of the input point cloud. At the
beginning the MAT ball starts with a big radius and on one side it always touches
the boundary at point p. Then the ball starts shrinking along the normal direction
of point p. The other side of the ball may have an intersection with the point cloud
at another point q. The shrinking stops when the ball’s interior is empty and no
closer point q is found[Peters et al., 2015].

Figure 4.2: The adapted shrinking ball algorithm
[Peters et al., 2015]

Assuming that normals are correctly oriented, this version of the shrinking ball
algorithm is able to separate the interior and exterior MAT by using the normals.
For example, in Figure 4.2 point x is the exterior MAT result of point p. Point y
is the interior MAT result of point p. The direction of vector ~py is opposite to the
normal ~n. Instead, the direction of vector ~px is the same as the normal ~n. Therefore,
if the normal of the input point cloud is always correct, the interior and exterior
MAT can be determined by using the adapted shrinking ball algorithm. However,
in practice it is challenged to acquire one hundred percent correct normal of a point
cloud.

There are three parameters the shrinking ball algorithm: initial radius, denoise
parameter and planar detection parameter. The denoise parameter and planar de-
tection parameter aim to avoid generating noisy MAT. The idea of these parameters
is to use the separation angle θ. In the Figure 4.3, the medial ball with a smaller
separation angle θj will be skipped. And the medial ball with a larger separation
angle θi will be generated.

The initial radius influence the results where there is only one touch point be-
tween the medial ball and the point cloud such as ground (see Figure 4.4 and Figure
4.5). Notice that the initial radius does not influence the medial ball result where
the ball touches the point cloud at more than one points such as the building and
the tree in Figure 4.5. It does impact the medial ball shapes where there is only one
touching point between the ball and the point cloud such as the ground in Figure
4.5. More detail and discussions of the initial radius will be discussed in Chapter 7.

4.2 interior and exterior mat separation 23

Figure 4.3: An example of the denoise parameter
[Peters and Ledoux, 2016]

Figure 4.4: MAT balls with different initial radii

4.2 interior and exterior mat separation
There are two solutions to separate the interior and exterior MAT. The first one is
to fix the normal orientation solution before running the shrinking ball algorithm
(Section 4.2.1). If all the normals are correct, the interior and exterior MAT can be
separated properly after running the adapted shrinking ball algorithm. Another so-
lution based on the geometrical properties (bisectors) of the MAT, and it is proposed
in Section 4.2.2.

4.2.1 MAT separation based on normal reorientation

Nan [2018] explains a normal reorientation approach to deal with the ambiguity in
the normal direction. The concept of the method is described as following. First,
build a graph that connects neighbouring point. From this graph the minimum
spanning tree is computed. Then propagate the normal orientation through the
graph. The following pseudo code illustrates the process of normal propagation (see
Algorithm 4.1). The idea is to keep the consistency of normal directions between
neighbours.

Algorithm 4.1: Normal propagation process

1 for neighbors Pi,Pj in the graph do
2 if nT

i *nj <0 then
3 Flip nj

The advantage of the normal reorientation method is that it is able to flip the
normals by 180 degrees which originally point at the opposite direction. The normal

24 methodology

Figure 4.5: MAT balls with different initial radii

directions of a neighbour area are consistent. However, this method may fail at
sharp edges or corners [Nan, 2018]. Another limitation is that it is difficult to
determine which direction is the correct one. Either all the normals point at the
correct direction or they point in the reverse direction. Sometimes, even though the
normal has been flipped by 180 degrees, it may still point at an incorrect direction.

4.2.2 MAT separation based on bisectors

Due to the limitation of the normal reorientation solution, a new method based on
the MAT geometrical properties is proposed in this thesis. The idea of this method
is to use bisectors of MAT sheets to determine the interior MAT and exterior MAT.
This method contains three steps, MAT approximation, MAT clustering into MAT
sheets and interior and exterior MAT sheets determination (see the workflow in
Figure 4.6).

Figure 4.6: The workflow of MAT sheet determination based on bisectors

4.2 interior and exterior mat separation 25

MAT clustering into MAT sheets

The MAT can be divided into different clusters based on the geometry. For example,
Figure 4.7 illustrates that there is no intersection between interior and exterior MAT
medial balls. The interior and exterior medial balls are located in different sides
of the input point cloud. Therefore, it is feasible to divide the medial balls into
interior and exterior MAT based on their relative positions. For example, in Figure
4.7 interior and exterior MAT locates in the different sides of the input point cloud.

Peters [2018b] proposed an approach to segment the MAT into MAT sheets based
on the overlap between the medial balls (see Figure 4.8). The idea is to cluster the
interior and exterior MAT into different MAT clusters. Peters [2018b] named the
MAT clusters MAT sheets. Later in this thesis, the MAT clusters and MAT sheets
are the same objects. Figure 4.8 shows the rule of how to determine if two medial
balls belong to the same MAT sheets. d is the distance between the centres of the
medial balls. r1, r2 are the radii of two medial balls respectively. s is the overlap
ratio of two balls and it is a value from 0 to +∞. 0 means that distance between
the two balls is extremely large. +∞ represents that the centres of the two balls are
located in the same position. s can be set to different values to deal with different
density point cloud. When the point cloud is sparse, s can be set to a small value.
An example of MAT clustering is shown in Figure 4.9 where MAT is clustered into
different sheets.

Figure 4.7: No intersection of interior and exterior MAT medial balls

Figure 4.8: MAT medial balls overlap
[Peters, 2018b]

Interior and exterior MAT sheets determination based on the bisectors

Figure 4.10 illustrates what is the bisector of medial balls and its geometrical prop-
erties. o1 is an interior medial ball of the input which touches the input at point p1
and p2. b1 is unit length vector considered as the bisector of the medial ball o1 and
b1 bisects the separation angle ∠P1b1q1. The exterior medial ball o2 has the similar
structure where b2 is the bisector vector. Normally the directions of the interior and
exterior MAT are different. If only take the vertical direction into consideration, the

26 methodology

Figure 4.9: Point cloud with parts of MAT sheets, different sheets in different colours

interior bisectors point upward and the exterior bisectors point downward in most
cases (see Figure 4.10).

Figure 4.10: Bisectors of the interior and exterior MAT point to different directions

However, there are special situations when there is direction ambiguity of the
bisectors (see Figure 4.11). In this case, the rectangle in black is the input point
cloud of buildings (in black). The exterior medial balls and interior medial balls
are in blue and red colours respectively. The separation angle of ball o1 is 180
degrees. The bisector of medial ball o1 has ambiguity due to the parallel surfaces,
which means the bisector can either point upward or downward. The same bisector
direction ambiguity exists in the exterior medial balls such as the ball o2. Notice
that this kind of direction ambiguity does not happen everywhere of the MAT sheet.
It exists in the certain terrains of the point cloud such as buildings that consist of
many parallel planes.

The direction ambiguity of bisectors can be solved by MAT clustering based
method. This method contains three steps, 1©zero value assignment, 2©MAT sheet
clustering and 3©MAT sheet value assignment. The first step is to manually set the
ambiguity bisector to zero vector which has no value and no impact on the vertical
direction. The next step is the MAT sheet clustering which has been explained in
section 4.2.2. The third step is to compute the z-direction (vertical direction) value
of each MAT sheet. The idea is to calculate the average z-direction value of all the
bisector vectors of one MAT sheet. And assign this value as the MAT sheet value.
Since that the ambiguity bisectors have been set to zero vector, they do not influ-
ence the value of the corresponding MAT sheet. If the bisector points upward, its
z-direction value is defined as positive, and vice versa. The interior MAT sheet has

4.2 interior and exterior mat separation 27

positive MAT sheet value and the exterior sheet has negative MAT sheet value (see
Figure 4.12 and Figure 4.13).

Figure 4.11: Special case of bisectors direction ambiguity

Figure 4.12: The z-direction MAT sheet value can be used to determine interior and exterior
MAT sheet

28 methodology

Figure 4.13: Different bisector directions of interior and exterior sheets

Figure 4.14 shows a case when the sheet value successfully determines the interior
MAT and exterior MAT of a certain shape building. In the left figure of Figure 4.14,
one sheet (in red) with a positive sheet value is classified as interior. However, this
sheet is connect with an exterior sheet (in blue) and they are clustered into one
bigger sheet at the end. The sheet value of the bigger sheet is still negative and it
will be correctly classified as exterior MAT sheet.

Figure 4.14: Successful determination of interior and exterior sheet by using sheet value

4.3 brute force solution of visibility analysis 29

4.3 brute force solution of visibility analysis
After the interior MAT determination, a brute force solution of visibility analysis can
be proposed based on the 3D volume of the interior MAT. Because rays representing
line of sight can be directly obstructed by the 3D volume. Figure 4.15 gives an
example of how this approach works. In the Figure, A is the viewpoint, and B and
C are points of the input point cloud. The 3D volume (in blue) consists of all the
interior medial balls. Obviously, there is no occlusion between A and B, and the
line of sight from A to C is obstructed by the 3D volume. Therefore, B is visible and
C is not. By applying this method to all the points of the input, visibility analysis
can be achieved.

Figure 4.15: An example of the brute force solution of visibility analysis

The advantage of the brute force solution is that the accuracy of the result is
guaranteed, since all the points of the input are checked. However, the limitation
is the computation cost. All the points of the input have to be checked during
the process. And for each point all the interior medial balls need to be checked.
Apparently, the efficiency if this approach is not high. A new approach is proposed
in the next section. It is worth mentioning is that the result of the brute force
solution can be used in validation since it is always checking all the points and
balls.

4.4 visibility queries based on kd-tree
In this section, a KD-Tree based approach of visibility queries is explained. The
idea is to create spatial index for all the interior medial balls by using a KD-Tree
structure to speed up the visibility query. Instead of traversing all the points of the
input, two patterns of rays, radial and parallel rays, are emitted from the viewpoint.
Then, only the bounding boxes in the KD-Tree that intersect the rays need to be
checked.

4.4.1 Spatial index generation of the interior medial balls by using a KD-Tree

The spatial index generation of the interior medial balls contains two steps, 1© store
the centre points in a KD-Tree and 2© store the whole ball in the KD-Tree. The
first step is straightforward. The centre of an interior medial ball is a 3D point.
Therefore, a three-dimensional KD-Tree with bucket size 16 is created to save the
centres, which means in each node maximum 16 centres are stored. Then second
step takes the radius of the interior medial ball into consideration. Different nodes
of the KD-Tree correspond to certain bounding boxes. The concept of this step is to
save the interior medial ball to all the intersected bounding boxes of the KD-Tree.

30 methodology

Figure 4.16 gives an example of how the interior medial balls are saved in a
KD-Tree. First the KD-Tree is created based on the centres of the interior medial
balls. Then the balls intersected with multiple bounding boxes are copied to these
bounding boxes. Fox example, ball C is only intersected with the bounding box1, so
it is only saved in the bounding box1. Ball A is both intersected with the bounding
box2 and box3, so ball A is duplicated once and saved both in the bounding box2
and box3.

Figure 4.16: An example of how the interior medial balls are saved in a KD-Tree

A single ray query

Figure 4.16 also explains a single ray query process from a viewpoint. The goal of
a ray query is to find the first hitting ball which is considered as the visible ball
of that direction. A ray (dotted line) representing a line of sight is emitted from
the viewpoint (in red). The ray has intersections with the bounding boxes (Box1,
Box2, Box3) of the KD-Tree, which means only the medial balls in these bounding
boxes have opportunity to intersect with the ray. Therefore, instead of checking all
the medial balls of the KD-Tree, only the balls in the bounding boxes need to be
checked. After checking all the balls in the bounding boxes (Box1, Box2, Box3), the
nearest intersected ball (BallB) is marked as the only visible ball of the ray direction.

The Algorithm 4.2 describes the process of a single ray query. This algorithm first
finds out the bounding boxes which have intersections with the ray. Then check
all the medial balls in these bounding boxes and calculate the distance between the

4.4 visibility queries based on kd-tree 31

ball and the viewpoint. Finally, find out the nearest ball to the viewpoint and set it
as the visibility result of the ray.

Algorithm 4.2: Single ray process

1 Input: viewpoint A, the KD-Tree and a ray vector ~vi from the viewpoint
2 for each bounding box Boxi in the KD-Tree do
3 initial a intersection flag, bool i f inter
4 if Boxi intersects with the ray vector ~vi then
5 i f inter = 1;

6 else
7 i f inter = 0;

8 initial a nearest medial ball container Ballnearest
9 for All the balls stored in bounding boxes with ifineter = 1 do
10 check the distance between ball and viewpoint A
11 mark the ball with the shortest distance and updata the Ballnearest

12 Output: the Ballnearest considered as the visibility result of the single ray

Figure 4.17 illustrates why the medial balls need to be copied to all the intersected
bounding boxes. In the figure, the ray representing the line of sight has intersections
with the bounding boxes, Box1, Box2 and Box3. And it does not intersect Box4.
CircleD is a medial ball with a large radius and it is firstly saved in the bounding box
Box4, due to its centre’s position. CircleD is intersected with Box2, Box3 and Box4.
Since CircleD is not copied into Box2, Box3 and Box4, the ray have no intersection
with Box4. CircleD will be skipped in this ray query process. Therefore, the visible
ball of the ray is ballB (see Figure 4.16). Apparently, this result is wrong and CircleD
is the visible ball of the ray query. This error can be solved if CircleD is saved in
all the intersected bounding boxes. Then CircleD is saved in Box2, Box3 and Box4,
and it will be checked during the ray query.

Figure 4.17: An example of how the interior medial balls are saved in a KD-Tree

32 methodology

4.5 visibility queries based on r-tree

Figure 4.18: An example of R-tree structure of medial balls

Figure 4.18 shows how the medial balls are stored in an R-Tree. The input data
are medial balls (C1 to C11) and a viewpoint. Each ball associates with the smallest
bounding box. R1 to R9 are the non-leaf nodes in the R-Tree and they have a
corresponding bounding box.The corresponding graph representation of the R-Tree
is shown in Figure 4.19.

The single ray query based on R-Tree is similar to the one based on KD-Tree.
The first step to get all the intersected bounding boxes (box1, box2, box3). The next
step is to check the corresponding medial balls and find out all the medial balls
intersected with the ray. They are C2 and C3. It is worth mentioning that although
box1 is intersected with the ray, C1 has no intersection with the ray. The final step
is to select the nearest ball to the viewpoint from all the balls intersected with the
ray. Therefore, the result of this single ray query is C2.

Figure 4.19: Graph representation of the RTree in Figure 4.18

4.6 visibility query based on two ray patterns 33

4.6 visibility query based on two ray patterns

4.6.1 Visibility query based on radial rays

The visibility query based on radial rays consists of three steps: ray emission, ray
filtering and ray intersection. Figure 4.20 gives an example of visibility query based
on radial rays. First radial rays are emitted from the viewpoint (in red) to all di-
rections. In 3D space, these rays will form a sphere. The next step is ray filtering.
Notice the fact that some rays may not hit the point cloud and only parts of the
rays intersect with the input point cloud. The idea of this step is to figure out
which rays can have an intersection of the input point cloud. This step can be done
by checking if the ray intersects with the bounding boxes of the input point cloud.
This is a straightforward ray-box intersection process. As mentioned in section 3.1,
the ray-box intersection can be done efficiently by using Williams et al.’s algorithm.
The final is step is based on the single ray query mentioned in section 4.4.1. For
each single ray query, a visible ball will be found in the end. Each medial ball cor-
responds to a point of the input point cloud. Therefore, after gathering all visible
balls the visible points of the input point cloud can be acquired.

Figure 4.20: Visibility query based on radial rays

4.6.2 Visibility query based on parallel rays

Figure 4.21: Visibility query based on parallel rays

34 methodology

The visibility query based on radial rays consists of three steps, ray emission, ray
filtering and ray intersection. Figure 4.20 gives an example of a visibility query
based on parallel rays. The first step is to create parallel rays. The idea is to
generate a squared plane which is perpendicular to the line of sight. From that
plane rays are generated parallel to the line of sight. Comparing to the radial rays
visibility analysis, ray emission is the only different step. The ray filtering and ray
intersection steps are the same as the ones in radial rays visibility analysis.

4.7 strategies for speeding up the visibility query
In order to speed up the visibility query process, several strategies are considered in
this thesis. This section explains two strategies to improve the query efficiency. One
is based on the medial ball simplification. The idea of it is to reduce the number of
the medial balls without significantly sacrificing result quality. The second method
is to use the GPU for parallel computing. The whole visibility query process consists
of a number of single ray queries. These single ray queries are independent, which
makes the whole process suitable for parallel computing.

4.7.1 Medial ball simplification

Figure 4.22 illustrates the process of medial ball simplification. On the left there are
the medial balls and their corresponding points. The simplified result is shown on
the right. The simplification is based on the overlap level between medial balls (see
Figure 4.8). A threshold s can be set to determine if the balls should be simplified
or not. The threshold can be calculated by the formula, s = r1+r2

d , where s describes
how close these balls are. For example if one medial ball A is very close to medial
ball B and the overlap level is larger than the threshold, these balls will be simplified
into one ball. A medial ball is linked to a unique point of the input point cloud.
Therefore, the simplified ball corresponds to all the points linked to the balls before
simplification.

Figure 4.22: Visibility query based on parallel rays

4.7.2 Speed up by using GPU for parallel computing

Since every single ray query has the same type of query process, it is quite suit-
able to speed up the whole process by parallel computing. Recently GPU has been
widely used in parallel computing. There are developed libraries of GPU comput-
ing, for example CUDA, OpenGL and AMP. This thesis uses AMP library to imple-
ment parallel calculation. (see Section 5.2.9) Ideally, each single ray query process
is able to run on a computation unit of GPU. After that, all the visible results are
merged in the CPU to get the final result. For multiple viewpoints, the process of
each viewpoint can be considered one independent unit where parallel computing
can be applied.

5 I M P L E M E N TAT I O N A N D
E X P E R I M E N T S

This chapter explains the implementation of the MAT based approach and its exper-
iments. Section 5.1 describes the datasets tested and the developing tools. Section
5.2 explains how the implementation is done from a programming perspective.

5.1 datasets and tools

5.1.1 Datasets

In this thesis several point cloud datasets are used for experiments. They are AHN3

[AHN3, 2019], EMC point cloud of Rotterdam 2016, Dense point cloud of Bergamo
and an artificial point cloud. The artificial point cloud is generated from meshes by
software Meshlab. It has no normal errors. And it is used to develop all algorithms
needed. The AHN3 and EMC Rotterdam point clouds are used to test the robust-
ness and accuracy of the algorithms. The AHN3 point cloud is mainly used to test
the anti-noises ability of the algorithms, due to that there are noises and surfacing
missing. EMC Rotterdam 2016 is a dense point cloud and it is mainly used for
MAT separation test. Visibility analysis experiments are tested on all the datasets
mentioned to check the performance of the approaches.

Dataset
name

Source
Density
(pt/m2)

Acquition
technique

Usage

Artificial
Point cloud

Meshlab 80-100

Generate
from meshes

Algorithm
Test

AHN3 Delft Rijkswaterstaat 10-20

Laser
scanning

Visibility
query test

AHN3 Rotterdam Rijkswaterstaat 10-20

Laser
scanning

Visibility query
test

EMC Rotterdam 2016

Municipality
Rotterdam

30-100 Laser scanning
MAT separation
and result check

Dense point cloud of
Bergamo

Private company
AVT

80-150

Dense image
matching

Result check

5.1.2 Developing tools and environment

Hardware

All the algorithm in this thesis are developed in a laptop with a 64-bit Window10
operating system. The detail of the laptop is stated as following:

Name and brand Lenovo ThinkPad P1

Processor Intel(R) Xeon(R) E-2176m CPU @ 2.70 GHz
RAM 16 GB
GPU NVIDA Quadro P2000

35

36 implementation and experiments

Software

All the visibility analysis processes are done by a self-developed open source soft-
ware. This software is based on a software framework, geoflow [Peters, 2018a]. It
is developed by C++ programming language. It contains several C++ libraries and
packages. The detail of the libraries and packages is stated as following:

• ImGui1 is C++ developed library with bloat-free graphical user interface. It is
used to created the user interface of the software.

• LAStools2 is library which handle multiple point cloud processes, such as
loading and saving point cloud, segmentation, point cloud format conversion
and PCA normal approxmating.

• PCL3 is another powerful library to deal with point cloud processes.

• Easy3D[Nan, 2018]4 is C++ develped library to handle 3D shapes. In this
thesis, this library contributes to normal approximation and normal reorienta-
tions.

• KD-Tree library5 is used to generate the KD-Tree data structure of a point
cloud.

• Eigen6 is used for normal and covariance matrix calculation.

• Boost7 is used for geometry-related computing such as normal approximat-
ing and MAT approximating. The R-Tree library in Boost is used for R-Tree
implementation.

• CGAL8 provides multiple geometric algorithms for many fields, such as GIS
and computer vision.

• AMP 9 is used for parallel computing to accelerate the query speed.

1 https://github.com/ocornut/imgui
2 https://github.com/LAStools/LAStools
3 https://github.com/PointCloudLibrary/pcl
4 https://github.com/LiangliangNan/Easy3D
5 https://cgl.ethz.ch/pointshop3d//sourcedoc/html2.0/classKdTree.html
6 http://eigen.tuxfamily.org/index.php?title = MainPage
7 https://www.boost.org/
8 https://www.cgal.org/
9 https://docs.microsoft.com/en-us/cpp/parallel/amp/cpp-amp-cpp-accelerated-massive-

parallelism?view=vs-2019

5.2 implementation 37

5.2 implementation

5.2.1 Framework and user interface

The software developed consists of four main parts, main toolbar (Figure 5.1 1), op-
eration workspace (Figure 5.1 2), 3D viewer (Figure 5.1 2) and visualization settings
(Figure 5.1 4). The main toolbar is used to load, save and close flowcharts which
are JSON files and include the required information of each operation. Operation
workspace is where operation nodes are drawn. In the operation workspace, oper-
ation nodes representing certain processes can be added, removed, set and linked.
3D viewer is used to visualize the point cloud and processed results. Visualization
setting is used to change the visualization style.

Figure 5.1: An overview of the software

5.2.2 Nodes, operations and connections

The point cloud operations are represented by nodes (see Figure 5.2). One node
corresponds to one point cloud process. For example, the node LASLoader(1) rep-
resents the point cloud loading operation based on LAStools. Normally a node
contains name, input interfaces and output interfaces, such as the node ComputeNor-
malNode(3) in Figure 5.2. The input interface is on the left side and outputs locates
on the right side. The start and the end node only have a side of interfaces, such as
the node LASLoader(1) and the node Painter(4). The nodes can be connected by lines
through which data is transferred. When all the required input has been transferred
to a node, this node will run automatically. When the process is done, the node will
turn to green colour. Otherwise, the node will stay in yellow colour waiting for
more inputs. When right click a node, a dialogue where parameters can be set will
pop up (see Figure 5.2).

38 implementation and experiments

Figure 5.2: Point cloud operations represented by nodes

5.2.3 MAT approximation

As mentioned in section 4.1, the MAT approximation is done based on the adapted
version of the shrinking ball algorithm. The detail and source code of algorithm
is stated in Appendix I. This operation is done by a node ComputeMedialAxisNode
(Figure 5.3). The input is the points of point cloud and the normals of points.
MAT points can be calculated by this operation. Additional information such as
bisectors, medial ball radii and medial ball indices can be computed as well. There
are three parameters for this node which corresponds to the concept of denoise,
planar detection and initial radius explained in Section 4.1.

Figure 5.3: MAT approximation node

5.2 implementation 39

5.2.4 MAT separation based on normal reorientation

Figure 5.4 shows the steps of how to implement the normal reorientation approach.
Since the artificial point cloud has one hundred percentage correct normals, the
interior and exterior MAT can be separated perfectly based on the adapted shrink-
ing ball algorithm (see section 4.1). In order to simulate the situation in practise,
normals of the point cloud are manually set to wrong directions. After adding the
noise to the point cloud (randomly change the normal directions of 10, 000 points),
the adapted shrinking ball algorithm is not able to generate correct interior MAT.
Then the normal reorientation step will fix the wrong normals. This step is based
on the Easy3D library. The source code is stated in Appendix I.

Figure 5.4: Steps of normal reorientation process

Figure 5.5: MAT balls with different initial radii (left before normal reorientation, right after
the normal reorientation)

Figure 5.5 shows the difference of interior MAT between normal reorientation
results and without normal reorientation. In the left figure, due to the noises and
wrong normals added manually, interior sheets are wrongly classified. Several ex-
terior sheets are regarded as interior ones near the building and tree. After fixing
the direction of normals, the shrinking ball algorithm successfully separate interior
MAT sheets and exterior ones (see Figure 5.5 right).

However, the input point cloud of this experiment is an artificial one, which cause
restrictions. Although noises and wrong normals have been added into the point
cloud, there are difference between this point cloud and point cloud in practice such
as AHN3. More details and discussions of the performance and limitations of this
normal reorientation process will be involved in Chapter 7.

5.2.5 MAT separation based on bisectors

Figure 5.6 shows the nodes of MAT separation based on bisector. Node1 is the MAT
approximating operation (see section 5.2.3) and it calculates all the MAT points
both interior and exterior. Node2 is for sheet clustering. As mentioned in section

40 implementation and experiments

4.2.2, this process uses a ball overlap value to determine whether balls belong to
the same class. And this process generate a classification id to mark all the MAT
points(segmentids in Figure 5.6). In node3, classification id is used to merge MAT
point into different MAT sheets. Finally, the bisector value of each sheet is computed
in node4. The sheets with negative bisector value are classified into exterior MAT
sheets and the sheets with positive values are classified into interior MAT sheets.
The source code of this process is states in Appendix I.

Figure 5.6: The nodes of MAT separation based on bisectors

5.2.6 Implementation of KD-Tree and R-Tree

The KD-Tree is implemented by a C++ library developed by Keiser [1993]. It has
interfaces for basic KD-Tree queries such as finding the nearest node, finding n the
nearest neighbours, return the nearest node to a certain segment, etc. To construct
a KD-Tree, a constructed function KdTree() can be called.

The R-tree is implemented by the BOOST library. Algorithm 5.1 shows the pro-
cess of constructing an R-Tree and a query of a segment intersecting with the R-Tree.
This BOOST library also contains different queries based on R-tree, such as finding
the nearest node of an input, rectangle intersects with R-Tree, finding n the nearest
neighbours, etc.

Algorithm 5.1: R-Tree implementation

1 Input: all the medial balls
2 Define a R-Tree. boost::geometry::index::rtree
3 for each medial ball do
4 calculated it smallest bounding box and insect the box into the R-Tree.

5 Define a query object, such as a segment, bg::model::segment<point> seg
(point A, point B)

6 Call the query function already implemented in BOOST.
rtree.query(bgi::intersects(seg), std::backinserter(result));

7 Output: result which contains all the bounding boxes intersected with the
segment.

5.2.7 Radial rays

Figure 5.7 shows the implementation of radial rays. The input is a viewpoint (in
red). Radial vectors is created in the nodeRadialRaysGenerator and the start of the
vectors is the viewpoint. The idea is to generate a group of spherical points which
are the ends of the radial vectors. There are two parameters of the nodeRadialRaysGenerator,
radius and density which control the size of the sphere and the interval between
radial vectors. The source code of the nodeRadialRaysGenerator is in Appendix I.

5.2 implementation 41

Figure 5.7: The implementation of radial rays

5.2.8 Parallel rays

Following the principles of parallel rays generation (section 4.6.2), the implementa-
tion is straightforward. Figure 5.8 illustrates the steps of parallel rays implementa-
tion. The first step is to input a vector that consists of a start point and an end point.
The second step is to create a perpendicular plane at the start point. This can be
calculated by applying the following mathematical principles:

• Input viewpoint Pstart (a, b, c),

Input vector v1 (A, B, C) which is also the normal of the plane,

• Point Q(x, y, z) in the plane meets the condition of the following formula,

〈A, B, C〉 · 〈x− a, y− b, z− c〉 = 0

• In other word,

A(x− a) + B(y− b) + C(z− c) = 0

This step is done in the nodeParallelVector (see Figure 5.9). The output are two
vectors, Headvectors and Endvectors. The start points of the vectors are saved in
Headvectors, and the corresponding end points are stored in Endvectors.

Figure 5.8: The steps of parallel ray implementation

42 implementation and experiments

Figure 5.9: The node implementation of parallel rays

5.2.9 Parallel computing by GPU and multiple threads

In this thesis the parallel computing is implemented based on C++ Accelerated
Massive Parallelism (AMP) [Microsoft AMP Developing Group, 2014]. Since I use
a 4-core CPU, all the rays need to be check is equally divided into 4 groups. Then
I created 4 threads in the process. In each thread, rays are parallelly check in the
GPU. At the end, the result of each ray is merged into an entire c++ vector. The
source code of this process is described in Appendix A.1.

6 R E S U LT S A N D D I S C U S S I O N S

This chapter describes the visibility results and the validation analysis of this re-
search. The visibility results of the normal reorientation approach and bisector
based approach are discussed. Four different datasets are used to test these ap-
proaches. The validation part is done by making a comparison with the results of
an open-source software, CloudCompare. The efficiency results of approaches are
also discussed in this chapter.

6.1 visibility results of datasets

6.1.1 Normal reorientation approach

Artificial point cloud

Figure 6.1: The visibility result of the artificial point cloud (radial rays)

As mentioned in Section 5.2.4, wrong normals are manually added to the artificial
point cloud. For this point cloud, the normal reorientation approach is able to

43

44 results and discussions

acquire decent visibility results. Figure 6.1 shows the result based on radial rays.
The green dot is the viewpoint. And the white point cloud is the input point cloud
with 100, 052 points. There are 6395 visible points (in red). The top picture only
shows the viewpoint and input point cloud. The medium one shows the situation
when visible point cloud is added. The bottom one only illustrates the viewpoint
and visible points.

Figure 6.2: The visibility result of the artificial point cloud (parallel rays)

Figure 6.2 shows the visibility result of parallel rays. The ray direction is defined
by a vector which is made by a start point and an end point (in green). The top
picture only shows the viewpoint and input point cloud. The middle one shows
the situation when visible point cloud is added. The bottom one only illustrates the
viewpoint and visible points. 12581 points of the input is visible (in red).

AHN3 point cloud, a building in Rotterdam (Building A)

For the AHN3 point cloud, the normal reorientation approach is not able to deliver
the correct result, because it cannot determine which normal direction is correct and
it only can flip the normal by 180 degrees. Taking a building as an example, this
approach is able to make sure the normals within each single facade are consistent.
However, the normals of two facades can point to the opposite direction.

Figure 6.4 gives an example of the situation when the normal reorientation failed
to determine the interior MAT. The input is an AHN3 point cloud of a building in
Rotterdam (in Figure 6.3, name it BuildingA). The interior MAT is in blue colour.
The origin interior MAT results are on the left side (Figure 6.4 a and b) and the
normal reoriented results (Figure 6.4 c and d) are on the right side. The origin

6.1 visibility results of datasets 45

Figure 6.3: Building A shown in Google Maps
[Google, 2019]

interior MAT is calculated by the adapted shrinking ball algorithm with normals
computed by the PCA method. Due to the noises of the AHN3 point cloud and
PCA limitations at sharp edges, part of the exterior MAT is assigned as interior. For
example in a and b, on the left of the building a group of ”interior” MAT is located
outside the building.

Figure 6.4 c and d show the interior MAT after normal reorientation. However,
this interior MAT shown in Figure 6.4 c and d is originally classified as exterior MAT.
The normal reorientation approach is able to separate the MAT into two classes, but
it cannot determine which one is interior. Because this method makes normals
point at the same direction, but it does not know if the pointing direction is correct
or opposite. After one more step of manual determination, interior MAT result in
Figure 6.4 c and d is obtained. Even though after normal reorientation, the interior
MAT is still not all correct, especially at sharp edges shown in the red circle.

46 results and discussions

Figure 6.5 shows the interior medial balls of the original PCA normal and after
normal reorientation. Obviously, the original version contains a large number of
wrong classified medial ball. After normal reorientation, the number of wrong
medial ball reduces but they still exist. And there are more errors on the left side of
the building.

Figure 6.6 shows the visibility result of the normal reorientation approach. In
order to ensure the quality of the output, the brute force approach is used. a and b
are the result of the same viewpoint on the left of the building. c and d are the result
of the same viewpoint on the right of the building. As mentioned above, there are
more errors of the interior medial ball on the left part of the building. Therefore, the
performance of the left viewpoint is poorer than the right viewpoint’s. In general,
the visibility result of the normal reorientation approach is far from satisfied.

Figure 6.4: Normal orientation failed when dealing with an AHN3 building, interior MAT
in blue, input point cloud in white, initial radius of shrinking ball is 10 meters

Figure 6.5: Interior medial MAT balls, left original based on PCA normals, right after normal
reorientation

6.1 visibility results of datasets 47

Figure 6.6: Visibility result of normal reorientation approach (Brute force ray checking, input
PC in white, visible points in red, left viewpoint in green, right viewpoint in
brown)

48 results and discussions

6.1.2 Bisector based approach

Artificial point cloud

Figure 6.7: Visibility result of radial rays based on bisector approach

Figure 6.7 shows the visibility result of the radial ray query based on the bisector
approach. The viewpoint is shown in green in the figure. The input point cloud
is shown in white. Visible points from the viewpoint is stated in red. Closer to
the viewpoint, denser result is obtained, due to the properties of the spherical rays.
Notice that there is an obvious spherical texture pattern in the visible points.

6.1 visibility results of datasets 49

Figure 6.8: Visibility result of parallel rays based on bisector approach

Figure 6.8 shows the visibility result of the parallel ray query based on bisector
approach. The ray direction is defined by a start point (in green) and an end point
(in brown). The input point cloud is shown in white. Visible points from the
viewpoint is stated in red. There are blank stripes in the figure, because of the
interval of parallel rays.

Worth mentioning that both in Figure 6.7 and Figure 6.8 the point cloud of the
tree is ignored. It does not mean the bisector approach does work for the trees. The
reason is the spacial MAT geometry of the trees. The interior MAT of the tree has
been classified as unknown MAT class. Figure 6.9 gives the answer why the MAT of
the tree has been classified into unknown class. The principle of MAT separation is
based on the MAT sheet value. Positive value stands for interior MAT, and negative
value means exterior MAT. Zero value is classified as unknown MAT. In the Figure
6.9, the point cloud of the house is hollow, in other words there are no points at the
bottom of the house. The point cloud of the tree is totally closed. The sheet value of
MAT sheet a and MAT sheet c (both in green) is zero. The sheet value of sheet b is
positive. Sheet a and b will be merged into one sheet in the end. Therefore, sheet a
and b will be assigned a positive sheet value. And sheet a and b will be determined

50 results and discussions

as interior MAT. However, the sheet value of sheet c is always zero. Sheet c will be
classified as unknown MAT.

Figure 6.9: Part of the interior MAT of the artificial point cloud

AHN3 point cloud, a building in Rotterdam (Building A)

Figure 6.10: Interior MAT and medial balls results based on bisector approach

Figure 6.10 illustrates the interior MAT and medial ball result of BuildingA. The
input AHN3 point cloud of building A is shown in Figure 6.10 c in white. The
interior MAT points is shown in Figure 6.10 a and c in blue. Interior medial balls
are displayed in Figure 6.10 a and b in blue colour. Comparing to the medial ball
generated in Figure 6.5, the medial balls in Figure 6.10 are more accurate. There are
only a few errors of the interior MAT and medial balls which are displayed within
a red circle in Figure 6.10. The reason why the errors exist is that the input point

6.1 visibility results of datasets 51

cloud is too sparse at that area. As displayed in Figure 6.10 d, the object in the red
circle area is a facade made by glass. During laser scanning, the majority of the laser
beams go through the glass and only a few beams are reflected. There are almost
no points, which cause errors. Figures 6.12 6.13 6.14 and 6.15 show more visibility
results of different datasets based on the bisector approach and the brute force rays
query.

Figure 6.11: Visibility result of the Building A based on bisector, radial rays (left: input PC,
right: result)

Figure 6.12: Visibility result of the Building A based on bisector, parallel rays (left: input PC,
right: result)

AHN3 Point cloud Delft, Aula

Figure 6.13: Visibility result of the Aula based on bisector, radial rays (left: input PC, right:
result)

52 results and discussions

EMC Rotterdam 2016 Point cloud, Museum Boijmans Van Beuningen

Figure 6.14: Visibility result of Museum Boijmans Van Beuningen based on bisector, brute
force approach (left: input PC, right: result)

Dense point cloud Bergamo

6.2 validation 53

Figure 6.15: Visibility result of buildings based on bisector, brute force approach (left: input
PC, right: result)

6.2 validation
As described in section 6.1, the normal reorientation is not able to deliver satisfying
visibility results when processing the AHN3 dataset. Therefore, this section focuses
on the validation of the bisector based approach.

6.2.1 Ray tracing vs brute force approach

If the interior MAT generated by the bisector approach is correct, the brute force
approach will always give correct result, because it checks every medial ball. The
result of the brute force approach can be used to evaluate the results of radial rays
and parallel rays.

Figure 6.16: Original point cloud of Building A, viewing from three angles, left angle α,
medium angle β, right angle γ, viewpoint in green, original point cloud in
white

Figure 6.17: Radial ray visibility result of Building A, viewpoint in green, visible points in
red

54 results and discussions

Figure 6.18: Parallel ray visibility result of Building A, start point in green, end point in
yellow, visible points in red

Figure 6.19: Brute force visibility result of building A, viewpoint in green, visible points in
red

Figure 6.16 shows a viewpoint and an input point cloud viewing from three
angles α, β, γ. Figure 6.17 illustrates the corresponding radial ray result. Parallel
ray result is stated in Figure 6.18. The brute force approach result is displayed in
Figure 6.19. In the brute force approach all medial balls are traversed, so the densest
result is acquired. There is an obvious characteristic of ray tracing. Not all the rays
have an intersection with the input, which results in relatively sparser result. For
radial rays, the closer to the viewpoint, the denser the result. The result of parallel
ray approach have equal interval.

6.2.2 Brute force approach vs open-source software

In practice, error exists in the interior MAT separated by the bisector approach. And
it results in inaccuracy of the brute force approach. To evaluate the performance of
the brute force approach, comparisons are made between an open-source software
and the brute force approach. Figure 6.20 shows the results of the brute force
approach and the result of hidden point remover of CloudCompare. In general the
point the density of two results looks the same. There are points missing in the
result of the brute force approach.

However, we do not know if the result of the hidden point remover is correct. This
is an obvious limitation of the validation. To evaluate both of the brute force result
and hidden point remover result, ground truth is required. And the viewpoint need
to be put at exactly the same position.

The quality of the brute force result can be reflected on the quality of the inte-
rior medial balls. Figure 6.21 shows the inertial medial balls used in brute force
approach. The errors mainly locate nearby the trees. The reason can be that it is
challenge to extract perfect interior MAT at the points of the trees, due to the special
geometry of the tree points. At the top of the tower, the original point cloud is too
sparse to generate a sufficient interior MAT.

6.3 efficiency performance 55

Figure 6.20: brute force approach vs hidden point cloud remover in CloudCompare

Figure 6.21: Interior balls of the point cloud of the Museum Boijmans Van Beuningen

6.3 efficiency performance

6.3.1 Brute force approach vs ray tracing approach

Table 6.1 shows the time cost of each approach. The input is the point cloud of
BuilindA. The three different approaches share the same viewpoint. There is an
extra end point in parallel ray approach. The visibility results have been stated in
Figure 6.17, 6.18 and 6.19. According to the table, the brute force approach is faster
than the other two approaches. All these three approaches are based on single ray
query (see Section 4.4.1). If the input point cloud is the same, the interior medial
balls generated will be the same. Running time difference is decided by the number
of single ray query. Therefore, the reason of why the brute force approach is the
fastest can be that: the number of single ray query in the other two approaches is
large than the brute force approach.

For brute force approach, it is only influenced by the size of the input point cloud.
And every time the number of the single ray query equals the number (51567 in the
table) of the input point cloud. The maximum running time of the brute force
approach can be stated as following.

56 results and discussions

Tsum = Nball ∗ Nball ∗ Tunit

where Nball is the total number of all interior medial balls, Tsum is the total running
time of the process, and Tunit is time cost of checking if the input ray intersects with
the input ball.

In practice the running time is smaller than the running time stated above. In the
brute force query process, if a ray is already blocked by one of the medial balls, the
query of this ray will stop immediately and mark the input point as invisible. Then
the next ray query will start to check the next input point. Therefore, not always
all medial balls are checked in a single ray query. Only when the input point is a
visible point, all the medial ball is checked.

For the ray tracing approach, the sum of the checking times can be calculated by
the following formula.

Tsum = ∑i
1
(

Bj
)
∗ Tunit

where i is the number of intersected rays, Bj means the total number of medial balls
in all intersected bounding boxes, Tsum means the total time used in the process and
Tunit is the same as the Tunit in brute force process.

In term of time cost, brute force approach has an advantage when the input
point cloud is small. When handling a massive point cloud, the radial and parallel
approaches can be shorter.

Table 6.1: Running time of three approaches

Approach name
input
point size

number of the
ray generated

number of
intecsect rays

running
time (ms)

Radial ray 51567 80000 16109 22333
Parallel ray 51567 160801 35696 80591
Brute force 51567 - - 7842

The efficiency of the brute force approach can improve by using spatial index.
Original brute force approach needs to check every medial ball for each single ray
query. By using spatial index, it is unnecessary to all the medial balls for a single
query. Instead, only the balls located in interesting bounding boxes have the oppor-
tunity to be the visible ball and need to be checked. This characteristic is able to
reduce the number of balls checked sharply, which results in high improvement on
running speed. More discussion of efficiency improvement by using spatial index
is explained in the following sections.

6.3.2 With and without a KD-Tree

The efficiency contribution of a KD-Tree data structure is described in this section.
Table 6.2 states the records of the running time of the brute force approach process
with a KD-Tree and without.

The difference between using a KD-Tree and not using a KD-Tree is the way of
checking the medial ball. Without a KD-Tree, all the medial balls need to be check
for a single ray query. With a KD-Tree, only the medial balls located in bounding
boxes that intersect the ray will be checked.

Only taking the query process into consideration, visibility query with a KD-Tree
is faster than the one without a KD-Tree (see Table 6.2 column 3 and 5). The larger
the input point cloud is, the more processing time is saved. However, the KD-Tree
generation process also takes time. If including the KD-Tree generation cost, the
total processing time with a KD-Tree is longer than the one without a KD-Tree (see
Table 6.2 column 4 and 5). But worth mentioning that the KD-Tree can be reused
multiple times. For example, if there are 100 viewpoints, the KD-Tree only needs to
be generated once and can be reused 100 times. Each time using a KD-Tree, query

6.3 efficiency performance 57

Table 6.2: Running time of different inputs by using a KD-Tree and not using a KD-Tree

input point cloud
size

KD-Tree
generation
cost (ms)

Query
process
cost with
KD-Tree (ms)

Total Runing
time With a
KD-Tree (ms)

Total Runing
time Without
a KD-Tree (ms)

51567 9619 7842 17461 9461
128918 68680 40382 109062 51430
257835 269307 136270 405577 201024
463352 934075 320670 1254745 582918

time is saved. In total, the whole processing time can be lower than the one without
using KD-Tree as long as the time saved is longer that the KD-Tree generation cost.

Notice that in the Table 6.3.1 the running time of query process with a KD-Tree
is not fast. For 463352 points, the process takes 320 seconds. This is caused by the
way of KD-Tree construction. As explained in Section 4.4, the KD-Tree construction
contains two steps. First, create a KD-Tree based on the centres of the medial balls.
Second, duplicate the medial balls to all the intersected bounding ball. The second
step could steeply increase the number of the balls in the KD-Tree. Figure 6.22 gives
an example of a medial ball with a large radius that intersects will all the bounding
boxes. Since the medial intersects with all the bounding boxes, it will be duplicated
into all the bounding boxes. If there are a number of this kind of large medial balls,
the elements of the KD-Tree will increase severely.

Figure 6.22: A medial ball with a large radius in the KD-Tree intersects with bounding boxes

Table 6.3: Number of the medial balls before and after duplication

input point
cloud name

Total number of
medial balls
in the KD-Tree
before duplication
process

Total number of
medial balls in
the KD-Tree
after duplication
process

increase
percentage

A area of dense
point cloud Bergamo

41847 1861191 4448%

Arificial point cloud 100052 1118059 1117%
Building A (AHN3) 33439 3995752 11949%
Museum Bojimans
Van Beuningen (EMC)

63814 3684302 5773%

The Table 6.3 records the numbers of medial balls before and after duplication of
different datasets. These records show that the number of the medial balls in the
KD-Tree grows by 44 to 119 times, which results in low efficiency.

58 results and discussions

6.3.3 With R-Tree and without R-Tree

The efficiency contribution of an R-Tree data structure is described in this section.
Table 6.4 states the records of the running time of the brute force approach process
with an R-Tree and without an R-Tree. According to the table, the R-Tree achieve
a significant improvement of running time. For one dataset, the spatial index only
need to be generated once and it can be reused for multiple viewpoints.

Table 6.4: Running time of different inputs by using an R-Tree and not using an R-Tree

input point cloud
size

R-Tree
generation
cost (ms)

Query
process
cost with
R-Tree (ms)

Total Running
time With a
R-Tree (ms)

Total Running
time Without
a R-Tree (ms)

51567 116 1764 1880 9461
128918 136 10241 10377 51430
257835 265 29530 30092 201024
463352 986 33580 34566 582918

6.3.4 KD-Tree VS R-Tree

Since the queries based on KD-Tree and R-Tree use the same interior MAT, KD-Tree
and R-Tree spatial index have no influence on the geometrical quality of the result.
They only have impact on the performance of running time of the process.

Figure 6.23 shows the difference of the running time of the query based on KD-
Tree, R-Tree and without spatial index. The data is from Table 6.2 and Table 6.4. As
indicated in Figure 6.23, R-Tree spatial index is able to sharply improve the query
speed, comparing to the other two queries. As the size of the input point cloud
increases, the improvement on query speed of R-Tree index is more obvious. The
running cost based on the KD-Tree increases steeply. As mentioned in Section 6.22,
the reason is that the number of elements in the KD-Tree has been increased sharply.
However, in the R-Tree data structure, it takes the whole medial ball into considera-
tion. Every time when a medial ball is inserted into the R-Tree, the bounding box of
the medial ball is only inserted once. There is no medial ball duplication. Therefore,
the number of the elements in the R-Tree always equals the size of the input point
cloud.

Figure 6.23: Running time comparison among KD-Tree, R-Tree and without spatial index
(including the tree generation time cost)

6.3 efficiency performance 59

In general, the running speed based on R-Tree is way faster than the one based on
KD-Tree and the one without spatial index. It does not mean KD-Tree is unsuitable
data structure for medial balls. I believe the problem is the medial ball duplication
in the KD-Tree implementation. There is a limitation of the my KD-Tree implemen-
tation. I believe that if the ball duplication can be eliminated and store the entire
ball as a element in the KD-Tree, the KD-Tree could also improve the running speed.

6.3.5 MAT simplification

Figure 6.24 shows the visibility results with different simplification thresholds. And
their running time is stated in table 6.5. The simplification threshold is the overlap
percentage of the medial balls. When the simplification threshold s is set to zero,
there is no simplification. When the simplification threshold s is set to 0.05, the
running speed is improved sharply without sacrificing the quality of the result.

Figure 6.24: The visibility results with different simplification parameters (up simplification
threshold s= 0, medium simplification threshold s= 0.05, down simplification
threshold s= 0.1)

Table 6.5: Simplification results with different overlap ratio

Simplification threshold
Running time
(ms)

0 6794
0.05 2296
0.1 875

60 results and discussions

6.3.6 Initial Radius

Theoretically, the initial radius of the shrinking ball algorithm does not matter. How-
ever, in practice, the initial radius does have influence on the performance. Figure
6.25 gives an example of how the initial radius influence the performance. In Figure
6.25, the upper picture has a very small initial radius. Therefore, even though there
are errors at the top of the tower and tree, these wrong medial balls have less influ-
ence to block the view of sight. The lower has a larger initial radius. The wrong
medial balls are larger, which means that those error balls can block more area.

Figure 6.25: Influence of initial radius

7 C O N C L U S I O N A N D F U T U R E W O R K

In this chapter, research questions are answered. And future work of this topic is
described.

7.1 conclusion

7.1.1 Answers for the research questions

1. How can the Medial Axis Transform be used for visibility analysis in a point cloud?

To answer this question, the first need to answer which part of the Medial Axis
Transform can be used. In this research, the Medial Axis Transform result of a point
cloud is classified into two different types, interior and exterior MAT. Only the
interior MAT can be used for visibility analysis. The exterior MAT always locates
above the input point cloud (see Figure 7.1). And it obstructs the input point cloud,
which results in negative contribution for visibility analysis.

Figure 7.1: Exterior MAT with initial radius 200 meters

On the contrary, the interior MAT locates beneath the input point cloud. 3D
volume information can be generated from the interior MAT, such as interior medial

61

62 conclusion and future work

balls (see Figure 4.15 and 6.10). The 3D volume of interior MAT is beneath the input
point cloud in most cases. And the input point cloud is always lying on the 3D
volume. Therefore, the 3D volume information can be used to create occlusion. It
can block the points beneath it and has no influence on the points above it. This
kind of occlusion information contributes to the visibility analysis.

2. What is an efficient spatial index for storing MAT for visibility analysis?

In this research, the interior MAT medial balls are used for visibility analysis. There-
fore, this question can be asked more specificity as what is an efficient spatial index
for storing interior MAT balls. The visibility query in this research is based on the
single ray query (see Section 4.4.1). The target of the single ray query is the nearest
intersected medial ball to the viewpoint. KD-Tree and R-Tree are a suitable data
structure to create spatial index for medial ball theoretically, because KD-Tree and
R-Tree can reduce the number of the medial balls checked by finding out the inter-
sected bounding boxes. KD-Tree and R-Tree can divide the 3D space into partitions.
Each partition corresponds a bounding box in the KD-Tree or R-Tree. During the
ray query, only the medial balls in the intersected bounding boxes have possibility
to be the visible ball, which sharply improve the efficiency of the query. Because
the number of medial balls need to be checked reduces significantly.

However, in this thesis, there are limitations of the KD-Tree implementation. The
ball duplication step steeply increases the number of balls stored in the KD-Tree,
which results in relatively slow query. But I think, theoretically, KD-Tree is also able
to improve the running speed, if the implementation of KD-Tree is better.

In general, the R-Tree sharply improve the running efficiency of queries. As
shown in the Table 6.4, R-Tree severely decreases the running time of queries, com-
paring to the queries without R-Tree. Therefore, R-Tree is an efficient spatial index
for MAT.

3. How to handle multiple viewpoints and different directions?

One can add multiple viewpoints to the software which is described in the Chapter
5. In the software, individual workflow of each viewpoint can be created and runs
independently (see Figure 7.2). And results corresponding to each viewpoint will
be generated independently as well.

Figure 7.2: Workflow of multiple viewpoints in the geoflow software

7.1 conclusion 63

For different view directions, it can be solved by using multiple parallel ray query
nodes in the software. One group of parallel ray represents one direction. If visi-
bility results of more directions are required, several groups of parallel ray can be
used to obtain the results.

4. How to separate interior and exterior MAT?

In this research, two methods for MAT separation are proposed, the normal reorien-
tation approach and the bisector based approach. The idea of normal reorientation
is to flip the normals of point cloud and make them consistent. This normal reorien-
tation approach works for the artificial point cloud generated from meshes but fails
when experimenting AHN3 point cloud. The limitation of this approach is that it
cannot determine the correct normal direction. And it may fail at corners and sharp
edges.

The bisector based approach makes use of the MAT geometry property to sepa-
rate the interior and exterior MAT. This method groups the MAT points into differ-
ent sheets based on their distances. The sheet made up by the interior MAT points
has a positive sheet value. The sheet value of the sheet made up by exterior MAT
points is negative. Sheet value is the key information to determine interior MAT
and exterior MAT.

5. What are the advantages and disadvantages of MAT based methods?

Figure 7.3: Visibility analysis by bisector based approach when dealing with surface missing

There are several advantages of MAT based methods. First, it avoids surface
reconstruction. Second, it is able to handle surface missing of the input. In Figure
7.3, this point cloud of BuildingA is manually cut into two halves, left and right
(see Figure 7.3 a and b). The whole surface is missing at where the building has
been cut. However, the bisector based method can still generate proper medial balls
(see Figure 7.3 c and d) and deliver decent visibility results (see Figure 7.3 e and f).
Third, the MAT based method is able to deliver visibility result of multiple inputs.
Figure 7.4 illustrates the situation when there are two input point cloud. One input
is the artificial point cloud, and another input is a point cloud of a line. The idea is
to use the artificial point cloud as a barrier and to check which part of the line point
cloud is visible. The viewpoint is shown in green, the visible parts of the line point

64 conclusion and future work

Figure 7.4: Visibility analysis of two inputs by bisector based approach

cloud is in red and invisible parts is in white. Fourth, this method achieve highly
efficient performance on running speed by using the R-Tree spatial index (see Table
6.4 and Figure 6.23).

For the disadvantage, the performance of this kind of method is highly related
the MAT quality generated from the input. It has a high requirement of interior
and exterior MAT separation.

6. How good are the results of this method comparing to existing methods?

The MAT based method generates auxiliary geometry (medial balls) to achieve vis-
ibility analysis on a point cloud. I didn’t test all the method introduced in the
related work Chapter, but the hidden point remover. Accord to Figure 6.20, the re-
sult of the MAT based method looks similar comparing to the one of hidden point
remover. However, there are points missing due to the error of interior medial balls
(see Figure 6.20 and 6.21).

7. Does the methods work for all kinds of objects types of point cloud, such as trees,
buildings, roads and grounds?

This method delivers good results when dealing with regular shape point cloud,
such as building, roads and grounds. Even there is surfacing missing, it is still able
to give decent visible results (see 7.3). However, when comes to the point cloud of
tree, it is difficult to deliver good result, due to that there are errors at the interior
medial balls of tree points.

8. Does the methods work for different datasets, e.g. LIDAR data, dense image
matching

In this thesis, three different kinds of point cloud datasets are experimented. They
are LIDAR point cloud, point cloud from dense image matching and artificial point
cloud. The normal reorientation approach has difficulty to deal with AHN3 point
cloud. The bisector based approach works for all the three datasets.

7.2 future work 65

7.2 future work

7.2.1 Point cloud classification

The MAT of the point cloud can be group into different sheets. In this research the
bisector geometry information of the sheet is used to determine interior and exterior
MAT. There are more geometrical information of sheets, such as the average eleva-
tion, horizontal angles and vertical angles. These MAT geometrical information of
the point cloud can be used to classify different point cloud objects.

7.2.2 Normal repair of point cloud

Since the adapted shrinking ball algorithm is able to determine interior and exterior
MAT by using correct normal, there is a regular link between the normals and
interior and exterior MAT. As explained in Section 4.1, the vector made up of input
point and interior MAT, ~pq has the opposite direction to the correct normal ~n of the
input point. The interior and exterior MAT correctly separated may contribute to
the normal repair of the point cloud. Correct normals of point cloud benefits the
visibility analysis.

7.2.3 Radius determination of ball-pivoting algorithm

Figure 7.5: The Ball Pivoting Algorithm in 2D
[Bernardini et al., 1999]

Bernardini et al. [1999] proposed a ball-pivoting algorithm for surface construc-
tion of points (see Figure 7.5). The idea of the method is to roll a ball on the surface.
Normally the rolling ball has a fixed radius. And it may fail at narrow place (see
Figure 7.5 (c)). The MAT based method can benefit the ball-pivoting algorithm by
setting a dynamic radius of the rolling ball. The radius of the rolling ball at a certain
point can be calculated by using the radius of the interior medial ball. The surface
reconstructed can be used for visibility analysis, as described in Section 3.2 (mesh
based method).

B I B L I O G R A P H Y

AHN3 (2019). AHN3 POINT CLOUD.

Alsadik, B., Gerke, M., and Vosselman, G. (2014). Visibility analysis of point cloud
in close range photogrammetry. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2(5):9–16.

Amenta, N. and Kolluri, R. K. (2001). The medial axis of a union of balls. 20:25–37.

Arya, S. and Mount, D. M. (1993). Algorithms for fast vector quantization. Data
Compression Conference Proceedings, pages 381–390.

Bartie, P., Reitsma, F., Kingham, S., and Mills, S. (2010). Advancing visibility mod-
elling algorithms for urban environments. Computers, Environment and Urban
Systems, 34(6):518–531.

Bentley, J. L. (1975). bentley KDtree.pdf. Communications of the ACM.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. (1999). The
ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visual-
ization and Computer Graphics, 5(4):349–359.

Biswas, J. (2012). Depth Camera Based Indoor Mobile Robot Localization and Nav-
igation.

Blum, H. (1967). A transformation for extracting new descriptors. Models for the
perception of speech and visual form.

Brookhuis, K. A., Driel, C. J. G. V., Hof, T., Arem, B. V., and Hoedemaeker, M. (2008).
Driving with a congestion assistant ; mental workload and acceptance. Applied
Ergonomics, 40(6):1019–1025.

Chire (2010). Visualization of a 3D RTree.

Google (2019). Google Maps.

Greene, N., Kass, M., and Miller, G. (2005). Hierarchical Z-buffer visibility.

Guttman, A. (1984). R-Trees A DYNAMIC INDEX STRUCTURE FOR SPATIAL
SEARCHING.

Jolliffe, I. (2002). Principal component analysis. Springer Series in Statistics.

Kaplan, M. R. (1987). The Use of Spatial Coherence in Ray Tracing. Techniques for
Computer Graphics.

Katz, S., Tal, A., and Basri, R. (2007). Direct visibility of point sets. ACM Transactions
on Graphics, 26(3):24.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson Surface Reconstruction.
In Proceedings of Eurographics Symposium on Geometry Processing.

Keiser, R. (1993). KDTree Source code.

Levoy, M. (2000). QSplat : A Multiresolution Point Rendering System for Large
Meshes. pages 343–352.

Ma, J., Bae, S. W., and Choi, S. (2012). 3D medial axis point approximation using
nearest neighbors and the normal field. Visual Computer, 28(1):7–19.

67

68 BIBLIOGRAPHY

Mehra, R., Tripathi, P., Sheffer, A., and Mitra, N. J. (2010). Visibility of noisy point
cloud data. Computers and Graphics (Pergamon), 34(3):219–230.

Mena-Chalco (2010). Ray/box intersection.

Microsoft AMP Developing Group (2014). C++ AMP (Accelerated Massive Paral-
lelism).

Mittal, A. and Davis, L. S. (2004). Visibility Analysis and Sensor Planning in Dy-
namic Environments. pages 175–189.

Möller, T. and Trumbore, B. (2005). Fast, Minimum Storage Ray/Triangle Intersec-
tion. Acm Siggraph, (1):1–7.

Nan, L. (2018). Normal reorientation method.

PCL Developing Group (2019). Point Cloud Library.

Peters, R. (2017). Point cloud normal estimation based on the 3D medial axis trans-
form.

Peters, R. (2018a). Geoflow nodes.

Peters, R. (2018b). Geographical point cloud modelling with the 3D medial axis transform.
PhD thesis.

Peters, R. and Ledoux, H. (2016). Robust approximation of the Medial Axis Trans-
form of LiDAR point clouds as a tool for visualisation. Computers and Geo-
sciences, 90:123–133.

Peters, R., Ledoux, H., and Biljecki, F. (2015). Visibility analysis in a point cloud
based on the medial axis transform. Eurograph Workshop on Urban Data Mod-
elling and Visualisation, pages 7–12.

Ramon, G., Colunga, F., Zhuo, S., Lozano, R., Castillo, P., Ramon, G., Colunga, F.,
Zhuo, S., Lozano, R., and Vision, P. C. A. (2014). A Vision and GPS-Based
Real-Time Trajectory Planning for a MAV in Unknown and Low-Sunlight Envi-
ronments To cite this version : HAL Id : hal-00923131.

Skinkie (2010). Simple example of an R-tree for 2D rectangles.

Watson, I. D. and Johnson, G. T. (1987). Graphical estimation of sky view-factors in
urban environments. Journal of Climatology, 7(2):193–197.

Williams, A., Barrus, S., Morley, R. K., and Shirley, P. (2005). An efficient and robust
ray-box intersection algorithm. ACM SIGGRAPH 2005 Courses on - SIGGRAPH
’05, page 9.

Wu, J. and Kobbelt, L. (2004). Optimized sub-sampling of point sets for surface
splatting. Computer Graphics Forum, 23(3 SPEC. ISS.):643–652.

A A P P E N D I X C + + S O U R C E C O D E

a.1 appendix i

Here is the main C++ code, masbnodes.cpp file, which contains all the methods
stated in the Chapter 4. Other source code, such as the software UI and relevant
third party library, can be found in the GitHub website (all code of this thesis are
included).

Link: https://github.com/twut/geoflow-nodes.

Listing A.1: masbnodes.cpp

include ”masb nodes . hpp”
include ” iostream ”
include <fstream>

include <sstream>

include <algorithm>

include <thread>

include <time . h>
include<amp . h>
include ” region grower . hpp”
include ” r e g i o n g r o w e r t e s t e r s . hpp”

namespace geoflow : : nodes : : mat {

void ComputeMedialAxisNode : : process () {
std : : cout << ”computing MAT ” << std : : endl ;
auto p o i n t c o l l e c t i o n = input (” points ”) . get<P o i n t C o l l e c t i o n > () ;
auto normals vec3 f = input (”normals”) . get<vec3f > () ;

masb : : ma parameters params ;
params . i n i t i a l r a d i u s = param<f l o a t >(” i n i t i a l r a d i u s ”) ;
params . denoise preserve = param<f l o a t >(” denoise preserve ”) ;
params . denoise planar = param<f l o a t >(” denoise planar ”) ;
params . n a n f o r i n i t r = param<bool>(” n a n f o r i n i t r ”) ;

/ / s t d : : c o u t << ” where i s t h e e r r o r ” << s t d : : e n d l ;
/ / p r e p a r e d a t a s t r u c t u r e s and t r a n s f e r d a t a
masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;

masb : : P o i n t L i s t coords ;
coords . reserve (madata .m) ;
for (auto& p : p o i n t c o l l e c t i o n) {
coords . push back (masb : : Point (p . data ())) ;
}

69

70 appendix c++ source code

std : : cout << ”where i s the e r r o r ” << std : : endl ;

masb : : V e c t o r L i s t normals ;
normals . reserve (madata .m) ;
for (auto& n : normals vec3 f) {
normals . push back (masb : : Vector (n . data ())) ;
}
masb : : P o i n t L i s t ma coords (madata .m ∗ 2) ;
s td : : vector<int> ma qidx (madata .m ∗ 2) ;

madata . coords = &coords ;
madata . normals = &normals ;
madata . ma coords = &ma coords ;
madata . ma qidx = ma qidx . data () ;

/ / compute mat p o i n t s
masb : : compute masb points (params , madata) ;

/ / r e t r i e v e mat p o i n t s
vec1 i ma qidx ;
ma qidx . reserve (madata .m ∗ 2) ;
for (s i z e t i = 0 ; i < madata .m ∗ 2 ; ++ i) {
ma qidx . push back (madata . ma qidx [i]) ;
}

P o i n t C o l l e c t i o n ma coords ;
ma coords . reserve (madata .m ∗ 2) ;
for (auto& c : ma coords) {
ma coords . push back ({ c [0] , c [1] , c [2] }) ;
}

/ / Compute m e d i a l geometry
vec1 f ma radi i (madata .m ∗ 2) ;
vec1 f ma sepangle (madata .m ∗ 2) ;
vec3 f ma spoke f1 (madata .m ∗ 2) ;
vec3 f ma spoke f2 (madata .m ∗ 2) ;
vec3 f ma bisec tor (madata .m ∗ 2) ;
vec3 f ma spokecross (madata .m ∗ 2) ;
for (s i z e t i = 0 ; i < madata .m ∗ 2 ; ++ i) {
auto i = i % madata .m;
auto& c = ma coords [i] ;
/ / f e a t u r e p o i n t s
auto& f1 = coords [i] ;
auto& f2 = coords [ma qidx [i]] ;
/ / r a d i u s
ma radi i [i] = Vrui : : Geometry : : d i s t (f1 , c) ;
/ / s p o k e v e c t o r s
auto s1 = f1 − c ;
auto s2 = f2 − c ;
ma spoke f1 [i] = { s1 [0] , s1 [1] , s1 [2] } ;
ma spoke f2 [i] = { s2 [0] , s2 [1] , s2 [2] } ;
/ / b i s e c t o r
s1 . normalize () ;
s2 . normalize () ;
auto b = (s1 + s2) . normalize () ;

a.1 appendix i 71

ma bisec tor [i] = { b [0] , b [1] , b [2] } ;
/ / s e p a r a t i o n a n g l e
ma sepangle [i] = std : : acos (s1∗ s2) ;
/ / c r o s s p r o d u c t o f s p o k e v e c t o r s
auto s c r o s s = Vrui : : Geometry : : c r o s s (s1 , s2) . normalize () ;
ma spokecross [i] = { s c r o s s [0] , s c r o s s [1] , s c r o s s [2] } ;
}
vec1 i m a i s i n t e r i o r (madata .m ∗ 2 , 0) ;
s td : : f i l l n (m a i s i n t e r i o r . begin () , madata .m, 1) ;

output (”ma coords”) . s e t (ma coords) ;
output (”ma qidx”) . s e t (ma qidx) ;
output (” ma radi i ”) . s e t (ma radi i) ;
output (” m a i s i n t e r i o r ”) . s e t (m a i s i n t e r i o r) ;
output (” ma sepangle ”) . s e t (ma sepangle) ;
output (” ma bisec tor ”) . s e t (ma bisec tor) ;
output (” ma spoke f1 ”) . s e t (ma spoke f1) ;
output (” ma spoke f2 ”) . s e t (ma spoke f2) ;
output (” ma spokecross ”) . s e t (ma spokecross) ;

s td : : cout << ”computing MAT done” << std : : endl ;
}

void NegNormalDetector : : process ()
{
/ /−−−−−−−−−i n p u t −−−−−−−−−−−−−//
auto pc = input (” or iginalPC ”) . get<P o i n t C o l l e c t i o n > () ;
auto normals vec3 f = input (”normals”) . get<vec3f > () ;
auto o f f s e t = input (” o f f s e t ”) . get<f l o a t > () ;

/ /−−−−−−−−−output−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n neg pc ;
vec3 f normal f ixed ;

/ / −−−−−−−−−−−p r o c e s s −−−−−−−−−−−−−//
for (i n t i = 0 ; i < normals vec3 f . s i z e () ; i ++)
{
i f (normals vec3 f [i] [2] < o f f s e t)
{
neg pc . push back ({ pc [i] [0] , pc [i] [1] , pc [i] [2] }) ;
normal f ixed . push back ({ −normals vec3 f [i] [0] ,−normals vec3 f [i] [1] ,−normals vec3 f [i] [2] }) ;
}
e lse
{
normal f ixed . push back ({ normals vec3 f [i] [0] , normals vec3 f [i] [1] , normals vec3 f [i] [2] }) ;
}
}
output (”pc”) . s e t (neg pc) ;
output (” normals f ixed ”) . s e t (normal f ixed) ;
}

void MATfilter : : process () {
std : : cout << ” F i l t e r running ” << std : : endl ;
/ / au to pc = i n p u t (” o r i g i n a l P C ”) . ge t<P o i n t C o l l e c t i o n > () ;

72 appendix c++ source code

auto matpoints = input (”ma coords”) . get<P o i n t C o l l e c t i o n > () ;
auto i n t e r i o r i n d e x = input (” m a i s i n t e r i o r ”) . get<vec1 i > () ;
auto ma radi i = input (” ma radi i ”) . get<vec1f > () ;
/ / au to n o r m a l s v e c3 f = i n p u t (” normals ”) . ge t<v e c3 f > () ;

/ / f l o a t o f f s e t = i n p u t (” o f f s e t ”) . ge t< f l o a t > () ;
/ / f l o a t min z = i n p u t (” min z ”) . ge t< f l o a t > () ;

std : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\m a i s i n t e r i o r . t x t ” ;
s td : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;
for (auto a : i n t e r i o r i n d e x)
{
o u t f i l e << a << std : : endl ;
}
o u t f i l e . c l o s e () ;

/ /−−−−−output−−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n i n t e r i o r m a t ;
P o i n t C o l l e c t i o n e x t e r i o r m a t ;
vec1 f i n t e r i o r r a d i i ;
vec1 i i n t e r i o r i d x ;
vec1 f e x t e r i o r r a d i i ;
vec1 i e x t e r i o r i d x ;

/ /−−−−−−−−−−p r o c e s s−−−−−−−−−−−//

/∗ s t d : : s t r i n g f i l e p a t h 2 = ” c :\\ u s e r s \\ tengw \\ documents \\ g i t \\ R e s u l t s \\ e x i n d i c e s o u t . t x t ” ;
s t d : : o f s t r e a m o u t f i l e 2 (f i l e p a t h 2 , s t d : : f s t r e a m : : out | s t d : : f s t r e a m : : t r u n c) ;

s t d : : s t r i n g f i l e p a t h 1 = ” c :\\ u s e r s \\ tengw \\ documents \\ g i t \\ R e s u l t s \\ i n f i l t e r e d M A T . t x t ” ;
s t d : : o f s t r e a m o u t f i l e 1 (f i l e p a t h 1 , s t d : : f s t r e a m : : out | s t d : : f s t r e a m : : t r u n c) ; ∗ /

for (i n t i = 0 ; i < matpoints . s i z e () ; i ++)
{
i f (i n t e r i o r i n d e x [i] == 1)
{
i n t e r i o r m a t . push back (matpoints [i]) ;
i n t e r i o r r a d i i . push back (ma radi i [i]) ;
i n t e r i o r i d x . push back (i) ;
/ / o u t f i l e 1 << m a t p o i n t s [i] [0] << ” ,” << m a t p o i n t s [i] [1] << ” ,” << m a t p o i n t s [i] [2] << ” ,” << m a r a d i i [i] << ” ,” << i << s t d : : e n d l ;

}
e lse
{
e x t e r i o r m a t . push back (matpoints [i]) ;
e x t e r i o r r a d i i . push back (ma radi i [i]) ;
e x t e r i o r i d x . push back (i −0.5∗matpoints . s i z e ()) ;
/ / o u t f i l e 2 << i − 0 .5∗ m a t p o i n t s . s i z e () << s t d : : e n d l ;
}
}

for (i n t i = 0 ; i < i n t e r i o r m a t . s i z e () ; i ++)
{

a.1 appendix i 73

/ / Vector3D i n p t (i n t e r i o r m a t [i] [0] , i n t e r i o r m a t [i] [1] , i n t e r i o r m a t [i] [2]) ;
/ / Vector3D p c p o i n t (pc [i] [0] , pc [i] [1] , pc [i] [2]) ;

/ / normal p o i n t s upwards
/∗ f l o a t f l a g = i f i n t e r i o r M A T (i n p t , p c p o i n t) ;

i f (n o r m a l s v e c3 f [i] [2] < 0)
{
i f (f l a g < 0 | | f l a g == 0) c o n t i n u e ;
i f (f l a g > 0)
{
auto temp mat = i n t e r i o r m a t [i] ;
au to t e m p r a d i i = i n t e r i o r r a d i i [i] ;
au to t e m p i n d e x = i n t e r i o r i d x [i] ;

i n t e r i o r m a t [i] = e x t e r i o r m a t [i] ;
i n t e r i o r r a d i i [i] = e x t e r i o r r a d i i [i] ;
i n t e r i o r i d x [i] = e x t e r i o r i d x [i] ;

e x t e r i o r m a t [i] = temp mat ;
e x t e r i o r r a d i i [i] = t e m p r a d i i ;
e x t e r i o r i d x [i] = t e m p i n d e x ;
}
}
i f (n o r m a l s v e c3 f [i] [2] > 0)
{
i f (f l a g > 0 | | f l a g == 0) c o n t i n u e ;
i f (f l a g <0)
{
auto temp mat = i n t e r i o r m a t [i] ;
au to t e m p r a d i i = i n t e r i o r r a d i i [i] ;
au to t e m p i n d e x = i n t e r i o r i d x [i] ;

i n t e r i o r m a t [i] = e x t e r i o r m a t [i] ;
i n t e r i o r r a d i i [i] = e x t e r i o r r a d i i [i] ;
i n t e r i o r i d x [i] = e x t e r i o r i d x [i] ;

e x t e r i o r m a t [i] = temp mat ;
e x t e r i o r r a d i i [i] = t e m p r a d i i ;
e x t e r i o r i d x [i] = t e m p i n d e x ;
}

} ∗ /

}

/ / o u t f i l e 1 . c l o s e () ;
/ / o u t f i l e 2 . c l o s e () ;

std : : cout << ”Number of input points : ” << matpoints . s i z e () << std : : endl ;
s td : : cout << ”Number of i n t e r i o r MAT points : ” << i n t e r i o r m a t . s i z e () << std : : endl ;
s td : : cout << ”Number of e x t e r i o r MAT points : ” << e x t e r i o r m a t . s i z e () << std : : endl ;
output (” i n t e r i o r m a t ”) . s e t (i n t e r i o r m a t) ;
output (” i n t e r i o r r a d i i ”) . s e t (i n t e r i o r r a d i i) ;
output (” i n t e r i o r i d x ”) . s e t (i n t e r i o r i d x) ;

74 appendix c++ source code

output (” e x t e r i o r m a t ”) . s e t (e x t e r i o r m a t) ;
output (” e x t e r i o r r a d i i ”) . s e t (e x t e r i o r r a d i i) ;
output (” e x t e r i o r i d x ”) . s e t (e x t e r i o r i d x) ;
}
void RegionGrowMedialAxisNode : : process ()
{
auto ma coords = input (”ma coords”) . get<P o i n t C o l l e c t i o n > () ;
auto ma bisec tor = input (” ma bisec tor ”) . get<vec3f > () ;
auto ma sepangle = input (” ma sepangle ”) . get<vec1f > () ;
auto ma radi i = input (” ma radi i ”) . get<vec1f > () ;

regiongrower : : RegionGrower<MaData , Region> R ;
R . min segment count = param<int >(” min count ”) ;

MaData D(ma coords , ma bisector , ma sepangle , ma radii , param<int >(”k”)) ;

switch (param<int >(”method”))
{
case 0 : {
AngleOfVectorsTester T b i s e c t o r a n g l e (param<f l o a t >(” b i s e c t o r a n g l e ”)) ;
R . grow regions (D, T b i s e c t o r a n g l e) ; break ;
} case 1 : {
DiffOfAnglesTester T s e p a r a t i o n a n g l e (param<f l o a t >(” s e p a r a t i o n a n g l e ”)) ;
R . grow regions (D, T s e p a r a t i o n a n g l e) ; break ;
} case 2 : {
Bal lOver lapTes ter T b a l l o v e r l a p (param<f l o a t >(” b a l l o v e r l a p ”)) ;
R . grow regions (D, T b a l l o v e r l a p) ; break ;
} case 3 : {
CountTester T shape count (param<int >(” shape count ”)) ;
R . grow regions (D, T shape count) ; break ;
} default : break ;
} ;

s td : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\ segment id . t x t ” ;
s td : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;

vec1 i segment ids ;
for (auto& r e g i o n i d : R . r e g i o n i d s) {
segment ids . push back (i n t (r e g i o n i d)) ;
}

std : : se t<int> i d v a l u e s ;
for (i n t i = 0 ; i < ma coords . s i z e () ; i ++)
{
i d v a l u e s . i n s e r t (segment ids [i]) ;
o u t f i l e << ma coords [i] [0] << ” , ” << ma coords [i] [1] << ” , ” << ma coords [i] [2] << ” , ” << segment ids [i] << std : : endl ;
}
o u t f i l e . c l o s e () ;
output (” segment ids ”) . s e t (segment ids) ;
s td : : cout << ” t o t a l c l a s s e s : ” << i d v a l u e s . s i z e () << std : : endl ;
for (se t<int > : : i t e r a t o r i t = i d v a l u e s . begin () ; i t != i d v a l u e s . end () ; i t ++)
{
std : : cout << ∗ i t << ” occurs ” << std : : endl ;
}
}

a.1 appendix i 75

void ShowClusterMAT : : process ()
{
/ /−−−−−−−−−−input−−−−−−−−−−−−−−−−−//
i n t c l a s s i f i a c t i o n = param<int >(” c l a s s i f i c a t i o n ”) ;
auto segment ids = input (” segment ids ”) . get<vec1 i > () ;
auto MAT points = input (”ma coords”) . get<P o i n t C o l l e c t i o n > () ;
/ / −−−−−−−−−−−−output−−−−−−−−−−−−//
P o i n t C o l l e c t i o n se lec ted mat ;
/ / −−−−−−−−−−p r o c e s s −−−−−−−−−−−//
std : : se t<int> s ;
for (i n t i = 0 ; i < segment ids . s i z e () ; i ++)
{
s . i n s e r t (segment ids [i]) ;
}

for (i n t i = 0 ; i < segment ids . s i z e () ; i ++)
{
i f (segment ids [i] == c l a s s i f i a c t i o n)
{
se lec ted mat . push back ({ MAT points [i] [0] , MAT points [i] [1] , MAT points [i] [2] }) ;
}
}

output (”mat”) . s e t (se lec ted mat) ;
}
void GetClusterSheets : : process ()
{
std : : cout << ” Trying to get a l l the s h e e t s ” << std : : endl ;
/ /−−−−−−−−−−−−−input−−−−−−−−−−−−−−−//
auto segment ids = input (” segment ids ”) . get<vec1 i > () ;
auto MAT points = input (”ma coords”) . get<P o i n t C o l l e c t i o n > () ;
auto b i s e c t o r s = input (” ma bisec tor ”) . get<vec3f > () ;
auto r a d i i = input (” ma radi i ”) . get<vec1f > () ;
/ /−−−−−−−−−output−−−−−−−−−−−//
std : : vector<P o i n t C o l l e c t i o n> v e c s h e e t s ;
s td : : vector<f l o a t> v e c b i s e c t o r s ;
s td : : vector<vec1f> v e c r a d i i ;
s td : : vector<vec1 i> vec index ;
/ /−−−−−−−p r o c e s s−−−−−−//
std : : se t<int> i d v a l u e s ;

/ / s t d : : c o u t << ” s i z e o f ALL MAT p o i n t s : ” << MAT points . s i z e () << s t d : : e n d l ;
/ / s t d : : c o u t << ” s i z e o f s e g m e n t i d : ” << s e g m e n t i d s . s i z e () << s t d : : e n d l ;
/ / s e g m e n t i d i s t h e c l u s t e r i d o f a l l MAT, s i z e = s i z e o f ALL MAT

for (i n t i = 0 ; i < segment ids . s i z e () ; i ++)
{
i d v a l u e s . i n s e r t (segment ids [i]) ;
}

i n t num = i d v a l u e s . s i z e () ; / / how many d i f f e r e n t c l u s t e r s g e n e r a t e d

for (se t<int > : : i t e r a t o r i t = i d v a l u e s . begin () ; i t != i d v a l u e s . end () ; i t ++)
{
P o i n t C o l l e c t i o n one mat sheet ;
f l o a t o n e s h e e t b i s e c t o r =0 ;

76 appendix c++ source code

vec1 f o n e r a d i i ;
vec1 i one index ;

for (i n t i = 0 ; i < segment ids . s i z e () ; i ++)
{

i f (∗ i t == segment ids [i])
{

one mat sheet . push back ({ MAT points [i] [0] , MAT points [i] [1] , MAT points [i] [2] }) ;
o n e s h e e t b i s e c t o r += b i s e c t o r s [i] [2] ;
one index . push back (i) ;
o n e r a d i i . push back (r a d i i [i]) ;

}
/ / o n e s h e e t b i s e c t o r = o n e s h e e t b i s e c t o r / count ;
}
v e c s h e e t s . push back (one mat sheet) ;
vec index . push back (one index) ;
v e c r a d i i . push back (o n e r a d i i) ;
s td : : cout << ”one sheet b i s e c t o r value : ” << o n e s h e e t b i s e c t o r << std : : endl ;
v e c b i s e c t o r s . push back (o n e s h e e t b i s e c t o r) ;
}

output (” v e c s h e e t s ”) . s e t (v e c s h e e t s) ;
output (” v e c b i s e c t o r s ”) . s e t (v e c b i s e c t o r s) ;
output (” v e c r a d i i ”) . s e t (v e c r a d i i) ;
output (” vec index ”) . s e t (vec index) ;

s td : : cout << ” s h e e t s done” << std : : endl ;
s td : : cout << ” b i s e c t o r group s i z e : ” << v e c b i s e c t o r s . s i z e () << std : : endl ;
s td : : cout << ” in t o t a l : ” << v e c s h e e t s . s i z e () << ” obtained ” << std : : endl ;
}
void MATSeparation : : process ()
{
std : : cout << ”MAT separa t ion s t a r t s ” << std : : endl ;
/ / −−−−−−−−− i n p u t −−−−−−−−−−−−//
auto v e c s h e e t s = input (” v e c s h e e t s ”) . get<std : : vector<P o i n t C o l l e c t i o n >>();
auto v e c b i s e c t o r s = input (” v e c b i s e c t o r s ”) . get<std : : vector<f l o a t >>();
auto v e c r a d i i = input (” v e c r a d i i ”) . get<std : : vector<vec1f >>();
auto vec index = input (” vec index ”) . get<std : : vector<vec1 i >>();

/ / au to p o i n t s = i n p u t (” p o i n t s ”) . ge t<P o i n t C o l l e c t i o n > () ;
i n t o f f s e t = param<f l o a t >(” o f f s e t ”) ;

/ / −−−−−−−−−−−−output−−−−−−−−−−−//
P o i n t C o l l e c t i o n interior MAT ;
P o i n t C o l l e c t i o n exterior MAT ;
P o i n t C o l l e c t i o n unclassif ied MAT ;

vec1 f e x r a d i i ;
vec1 f i n r a d i i ;
vec1 i in index ;
vec1 i ex index ;

a.1 appendix i 77

/ /−−−−−−−−−−−p r o c e s s−−−−−−−−−−−−−//
i n t num = 0 ;
for (auto sheet : v e c s h e e t s)
{
for (auto pt : sheet)
num++;
}
std : : cout << ” input mat point s i z e : ” << num << std : : endl ;

for (i n t i =1 ; i<v e c b i s e c t o r s . s i z e () ; i ++)
{
i f (v e c b i s e c t o r s [i] < 0)
{
/ / s t d : : c o u t << ” ex s h e e t s i z e : ” << v e c s h e e t s [i] . s i z e () << s t d : : e n d l ;
for (auto pt : v e c s h e e t s [i])
{

exterior MAT . push back (pt) ;

}
for (auto r : v e c r a d i i [i])
{
e x r a d i i . push back (r) ;
}
for (auto id : vec index [i])
{
ex index . push back (id) ;
}

}
/ / i f (v e c b i s e c t o r s [i] >= 0)
e lse
{
/ / s t d : : c o u t << ” in s h e e t s i z e : ” << v e c s h e e t s [i] . s i z e () << s t d : : e n d l ;
for (auto pt : v e c s h e e t s [i])
{
interior MAT . push back (pt) ;
}
for (auto r : v e c r a d i i [i])
{
i n r a d i i . push back (r) ;
}
for (auto id : vec index [i])
{
in index . push back (id) ;
}
}
}

output (” i n t e r i o r m a t ”) . s e t (interior MAT) ;
output (” e x t e r i o r m a t ”) . s e t (exterior MAT) ;
output (” u n c l a s s i f i e d m a t ”) . s e t (unclassified MAT) ;

78 appendix c++ source code

output (” i n r a d i i ”) . s e t (i n r a d i i) ;
output (” e x r a d i i ”) . s e t (e x r a d i i) ;
output (” in index ”) . s e t (in index) ;
output (” ex index ”) . s e t (ex index) ;

}

void MATsimplif ication : : process () {
std : : cout << ” s i m p l i f i c a t i o n i s running ” << std : : endl ;
/ /−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−//
auto p o i n t c o l l e c t i o n = input (” i n t e r i o r m a t ”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” i n t e r i o r r a d i i ”) . get<vec1f > () ;
auto i n d i c e = input (” i n t e r i o r i d x ”) . get<vec1 i > () ;
f l o a t threshold = input (” threshold ”) . get<f l o a t > () ;
/ /−−−−−−−−−output−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n sim mat ;
vec1 f s i m r a d i i ;
s td : : vector<std : : vector<int>> sim idx ;

i f (threshold == 0)
{
sim mat = p o i n t c o l l e c t i o n ;
s i m r a d i i = r a d i i ;
for (auto idx : i n d i c e)
{
std : : vector<int> idx vec ;
idx vec . push back (idx) ;
s im idx . push back (idx vec) ;
}
}
e lse
{

std : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\Sim MAT out . t x t ” ;
s td : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;

s td : : vector<KdTree : : sphere> MAT sph ;
KdTree : : sphere sp1 ;
Vector3D p1 = { p o i n t c o l l e c t i o n [0] [0] , p o i n t c o l l e c t i o n [0] [1] , p o i n t c o l l e c t i o n [0] [2] } ;
sp1 . pos = p1 ;
sp1 . radius = r a d i i [0] ;
sp1 . index . push back (i n d i c e [0]) ;

MAT sph . push back (sp1) ;

for (i n t i = 0 ; i < p o i n t c o l l e c t i o n . s i z e () ; i ++)
{
Vector3D v1 = { p o i n t c o l l e c t i o n [i] [0] , p o i n t c o l l e c t i o n [i] [1] , p o i n t c o l l e c t i o n [i] [2] } ;
bool i f s i m = MATsimplif ication : : i f S i m p l i f y (v1 , r a d i i [i] , i n d i c e [i] , threshold , MAT sph) ;
}

a.1 appendix i 79

std : : cout << ”MAT to kd done” << std : : endl ;

for (i n t i = 0 ; i < MAT sph . s i z e () ; i ++)
{
a r r 3 f point = { MAT sph[i] . pos . x , MAT sph[i] . pos . y , MAT sph[i] . pos . z } ;
sim mat . push back (point) ;
s i m r a d i i . push back (MAT sph[i] . radius) ;
s im idx . push back (MAT sph[i] . index) ;
o u t f i l e << MAT sph[i] . pos . x << ” , ” << MAT sph[i] . pos . y << ” , ” << MAT sph[i] . pos . z << ” , ” << MAT sph[i] . radius << ” , ” << MAT sph[i] . index . s i z e () << std : : endl ;

}
o u t f i l e . c l o s e () ;
}

output (” i n t e r i o r m a t ”) . s e t (sim mat) ;
output (” i n t e r i o r r a d i i ”) . s e t (s i m r a d i i) ;
output (” i n t e r i o r i d x ”) . s e t (s im idx) ;
s td : : cout << ” S i m p l i f i e d MAT s i z e : ” << sim mat . s i z e () << std : : endl ;

}

void ComputeNormalsNode : : process () {
/ /−−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−//
auto p o i n t c o l l e c t i o n = input (” points ”) . get<P o i n t C o l l e c t i o n > () ;

masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;
masb : : P o i n t L i s t coords ;
coords . reserve (madata .m) ;
for (auto& p : p o i n t c o l l e c t i o n) {
coords . push back (masb : : Point (p . data ())) ;
}
masb : : V e c t o r L i s t normals (madata .m) ;
madata . coords = &coords ;
madata . normals = &normals ;

masb : : compute normals (params , madata) ;

/ / s t d : : s t r i n g f i l e p a t h = ” c :\\ u s e r s \\ tengw \\ documents \\ g i t \\ R e o r i e n \\ l a s n o r m a l . t x t ” ;
/ / s t d : : o f s t r e a m o u t f i l e (f i l e p a t h , s t d : : f s t r e a m : : out | s t d : : f s t r e a m : : t r u n c) ;

vec3 f normals vec3 f ;
normals vec3 f . reserve (madata .m) ;
for (auto& n : ∗madata . normals) {
normals vec3 f . push back ({ n [0] , n [1] , n [2] }) ;
/ / o u t f i l e << n [0] << ” ,” << n [1] << ” ,” << n [2] << s t d : : e n d l ;
}
/ / o u t f i l e . c l o s e () ;
output (”normals”) . s e t (normals vec3 f) ;
}

80 appendix c++ source code

void MultiKDtree : : process () {
/∗ auto p o i n t c o l l e c t i o n = i n p u t (” p o i n t s ”) . ge t<P o i n t C o l l e c t i o n > () ;
masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;
au to number = p o i n t c o l l e c t i o n . s i z e () ;
v e c 3 f p o i n t s 1 ;
v e c 3 f p o i n t s 2 ;
Vector3D∗ mp Points = new Vector3D [number] ;

KdTree∗ kd = NewBuildKdTree (mp Points , number) ;
Vector3D c e n t e r = (∗ kd) . c e n t e r o f B o u n d i n g B o x () ;
f o r (i n t i = 0 ; i < number ; i ++) {
i f (mp Points [i] [0] < c e n t e r . x) {
p o i n t s 1 . p u s h b a c k ({ mp Points [i] [0] , mp Points [i] [1] , mp Points [i] [2] }) ;
}
e l s e {
p o i n t s 2 . p u s h b a c k ({ mp Points [i] [0] , mp Points [i] [1] , mp Points [i] [2] }) ;
}
}
i n t count1 = p o i n t s 1 . s i z e () ;
i n t count2 = p o i n t s 2 . s i z e () ;
Vector3D∗ m Points1 = new Vector3D [count1] ;
Vector3D∗ m Points2 = new Vector3D [count2] ;
f o r (i n t i = 0 ; i < count1 ; i ++) {
m Points1 [i] . x = p o i n t s1 [i] [0] ;
m Points1 [i] . y = p o i n t s1 [i] [1] ;
m Points1 [i] . z = p o i n t s1 [i] [2] ;
}
KdTree∗ kd1 = NewBuildKdTree (m Points1 , count1) ;

f o r (i n t j = 0 ; j < count2 ; j ++) {
m Points2 [j] . x = p o i n t s2 [j] [0] ;
m Points2 [j] . y = p o i n t s2 [j] [1] ;
m Points2 [j] . z = p o i n t s2 [j] [2] ;
}
KdTree∗ kd2 = NewBuildKdTree (m Points2 , count2) ;

ou tp ut (” KDTree1 ”) . s e t (kd1) ;
ou tp ut (” KDTree2 ”) . s e t (kd2) ; ∗ /
}

void BuildKDtree : : process ()
{
c l o c k t s t a r t t i m e , endtime ;
s t a r t t i m e = c lock () ;

auto p o i n t c o l l e c t i o n = input (” points ”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;
/ /
/ / au to i n d i c e = i n p u t (” i n d i c e ”) . ge t<v e c1 i > () ;
auto i n d i c e = input (” i n d i c e ”) . get<std : : vector<vec1 i >>();
masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;
m nPoints = p o i n t c o l l e c t i o n . s i z e () ;
s td : : cout << ”MAT point s i z e : ” << madata .m << std : : endl ;

a.1 appendix i 81

KdTree : : sphere∗ mp Points = new KdTree : : sphere [m nPoints] ;
Vector3D∗ Points = new Vector3D [m nPoints] ;

Vector3D c e n t e r ;

vec3 f points ;
points . reserve (madata .m) ;
for (auto& p : p o i n t c o l l e c t i o n) {
points . push back ({ p [0] , p [1] , p [2] }) ;
}
std : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\MAT points out . t x t ” ;
s td : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;

s td : : vector<KdTree : : sphere> a l l P o i n t s V e c ;

for (i n t i = 0 ; i < m nPoints ; i ++) {

mp Points [i] . pos . x = points [i] [0] ;
mp Points [i] . pos . y = points [i] [1] ;
mp Points [i] . pos . z = points [i] [2] ;
mp Points [i] . radius = r a d i i [i] ;
mp Points [i] . index = i n d i c e [i] ;
/ / mp Points [i] . i n d e x . p u s h b a c k (i n d i c e [i]) ;

Points [i] . x = points [i] [0] ;
Points [i] . y = points [i] [1] ;
Points [i] . z = points [i] [2] ;

o u t f i l e << mp Points [i] . pos . x << ” , ” << mp Points [i] . pos . y << ” , ” << mp Points [i] . pos . z <<” , ”<< mp Points [i] . radius << std : : endl ;
a l l P o i n t s V e c . push back (mp Points [i]) ;
}
o u t f i l e . c l o s e () ;

KdTree∗ kd = BuildKDtree : : BuildKdTree (Points , m nPoints , 2 0) ;
c e n t e r = (∗kd) . centerofBoundingBox () ;
(∗kd) . m a l l b a l l s = a l l P o i n t s V e c ;

/ / s t d : : c o u t << ” c e n t e r p o i n t o f bounding box : ” << c e n t e r . x << ” ,” << c e n t e r . y << ” ,” << c e n t e r . z << s t d : : e n d l ;
std : : cout << ” Tota l number of points in kd−t r e e ”<< a l l P o i n t s V e c . s i z e () << std : : endl ;
s td : : cout<< ”number of bounding box : ” << (∗kd) . m maxpoint . s i z e () << std : : endl ;
/ / s t d : : c o u t << ” V e c t o r s i z e o f k d t r e e p o i n t s : ” << (∗ kd) . m boxKdTreePoint . s i z e () << s t d : : e n d l ;
std : : cout << ” s i z e of l e v e l : ” << (∗kd) . m current leve l . s i z e () << std : : endl ;

s td : : cout << ” Level points are saving ” << std : : endl ;

i n t new count = 0 ;

82 appendix c++ source code

for (i n t i =0 ; i <(∗kd) . m maxpoint . s i z e () ; i ++)
{

/ / s t d : : v e c t o r <KdTree : : s p h e r e> l e v e l p o i n t s = Bui ldKDtree : : NewGetLeve lPo int s ((∗ kd) . m maxpoint [i] , (∗ kd) . m minpoint [i] , &a l l P o i n t s V e c) ;
std : : vector<KdTree : : sphere> l e v e l p o i n t s = BuildKDtree : : GetLevelPoints ((∗ kd) . m maxpoint [i] , (∗kd) . m minpoint [i] , &a l l P o i n t s V e c) ;

new count += l e v e l p o i n t s . s i z e () ;
/ / s t d : : c o u t <<”Number o f p o i n t s in e a c h l e v e l :”<< l e v e l p o i n t s . s i z e () << s t d : : e n d l ;
(∗kd) . m leve lpoints . push back (l e v e l p o i n t s) ;
}
std : : cout << ” t o t a l l e v e l points : ” << new count << std : : endl ;
s td : : cout << ”KDTree output done” << std : : endl ;

/∗ s t d : : c o u t << ” T o t a l l e v e l p o i n t s : ” << new count << s t d : : e n d l ;
s t d : : c o u t << ”At t h e end t h e s i z e o f a l l P o i n t s V e c a r e : ” << a l l P o i n t s V e c . s i z e () << s t d : : e n d l ;
s t d : : c o u t << ”The s i z e o f m l e v e l p o i n t s : ” << (∗ kd) . m l e v e l p o i n t s . s i z e () << s t d : : e n d l ;
s t d : : c o u t << ”The s i z e o f boxs : ” << (∗ kd) . m maxpoint . s i z e () << s t d : : e n d l ;

s t d : : c o u t << ” c h e c k i n g p o i n t s in e a c h box ” << s t d : : e n d l ;
i n t f l a g = 0 ;
f o r (i n t i = 0 ; i < (∗ kd) . m maxpoint . s i z e () ; i ++) {
f o r (au to p o i n t : (∗ kd) . m l e v e l p o i n t s [(∗ kd) . m maxpoint . s i z e () − i −1]) {
i f (p o i n t . pos . x<= (∗ kd) . m maxpoint [i] . x && p o i n t . pos . x >= (∗ kd) . m minpoint [i] . x)
i f (p o i n t . pos . y <= (∗ kd) . m maxpoint [i] . y && p o i n t . pos . y >= (∗ kd) . m minpoint [i] . y)
i f (p o i n t . pos . z <= (∗ kd) . m maxpoint [i] . z && p o i n t . pos . z >= (∗ kd) . m minpoint [i] . z)
{
f l a g ++;
}

}
}
s t d : : c o u t << ” C o r r e c t p o i n t s : ” << f l a g <<s t d : : e n d l ;
s t d : : c o u t << ”Wrong p o i n t s : ” << new count − f l a g << s t d : : e n d l ; ∗ /

output (”KDTree”) . s e t (kd) ;
endtime = clock () ;
s td : : cout << ”KD−Tree running time : ” << endtime − s t a r t t i m e << std : : endl ;
}

void AMPGPUQueryTest : : process () {

c l o c k t s t a r t t i m e , endtime ;
s t a r t t i m e = c lock () ;

/ /−−−−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−−−−−−−−−//
std : : cout << ”GPU query s t a r t ” << std : : endl ;
auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto p o i n t c o l l e c t i o n = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;
/ / au to i n d i c e = i n p u t (” i n d i c e ”) . ge t<v e c1 i > () ;
/ / au to i n d i c e = i n p u t (” i n d i c e ”) . ge t<s t d : : v e c t o r <v e c1 i >>();

a.1 appendix i 83

auto i n t e r v a l = input (” i n t e r v a l ”) . get<f l o a t > () ;

/ / −−−−−−−−−−−−−output−−−−−−−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n v i s i b l e m a t ;
vec1 f v i s i b l e r a d i i ;
vec1 i v i s i b l e i n d i c e ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;
i n t number = p o i n t c o l l e c t i o n . s i z e () ;
s td : : cout << ”MAT point s i z e : ” << madata .m << std : : endl ;

Vector3D∗ mp Points = new Vector3D [number] ;

vec3 f points ;
points . reserve (madata .m) ;
for (auto& p : p o i n t c o l l e c t i o n) {
points . push back ({ p [0] , p [1] , p [2] }) ;
}
for (i n t i = 0 ; i < number ; i ++) {
mp Points [i] . x = points [i] [0] ;
mp Points [i] . y = points [i] [1] ;
mp Points [i] . z = points [i] [2] ;
}

std : : vector<KdTree : : sphere> v i s b l e s p h ;

Vector3D v1 = input (” Vector1 ”) . get<Vector3D > () ;
Vector3DNew v1 new (v1) ;

s td : : vector<Vector3D> v 2 l i s t = AMPGPUQueryTest : : SpherePoints (v1 , 500 , i n t e r v a l) ;
i n t l i n e s i z e = v 2 l i s t . s i z e () ;

s td : : vector<Vector3DNew> v2 new ;
for (auto a : v 2 l i s t)
{
Vector3DNew new a (a) ;
v2 new . push back (new a) ;
}
std : : vector<int> r e s u l t ;

/ / run t h e query f u n c t i o n h e r e c h e c k i f ray i n t e r s e c t s wi th bounding b o x e s .
std : : cout << ”Ray−boxes check s t a r t s ” << std : : endl ;

AMPGPUQueryTest : : GPUQuery(v2 new , v1 new , l i n e s i z e , kd , r e s u l t) ;

s td : : cout << ”Ray−boxes check done” << std : : endl ;

i n t GPU box check count = 0 ;

s td : : vector<Vector3D> v 2 i n t e r s e c t e d ;

84 appendix c++ source code

/ / p r o c e s s i n g b a r / /

/ / f l o a t p r o g r e s s = 0 . 0 ;
/ / w h i l e (p r o g r e s s < 1 . 0) {
/ / i n t barWidth = 70 ;

/ / s t d : : c o u t << ” [” ;
/ / i n t pos = barWidth ∗ p r o g r e s s ;
/ / f o r (i n t i = 0 ; i < barWidth ; ++ i) {
/ / i f (i < pos) s t d : : c o u t << ”=”;
/ / e l s e i f (i == pos) s t d : : c o u t << ”>”;
/ / e l s e s t d : : c o u t << ” ” ;
/ / }
/ / s t d : : c o u t << ”] ” << i n t (p r o g r e s s ∗ 100 .0) << ” %\r ” ;
/ / s t d : : c o u t . f l u s h () ;

/ / p r o g r e s s += 0 . 1 6 ; / / f o r d e m o n s t r a t i o n on ly
/ / }
/ / s t d : : c o u t << s t d : : e n d l ;

for (i n t i = 0 ; i < r e s u l t . s i z e () ; i ++) {
i f (r e s u l t [i] == 1)
{

/ / v 2 i n t e r s e c t e d . p u s h b a c k (v 2 l i s t [i]) ;

GPU box check count ++;

auto sph1 = AMPGPUQueryTest : : GetOneLineResult (v1 , v 2 l i s t [i] , kd) ;
v i s b l e s p h . push back (sph1) ;
}

}
std : : cout << ”Number of i n t e r s e c t e d d i r e c t i o n s : ” << GPU box check count << std : : endl ;
/ /−−−−−−−−−−−−−−−Mutip l e Threads−−−−−−−−−−−−−−−−−−−−−−−//
/∗ auto CutVecL i s t = MutiThreadsOneQuery : : CutVecL i s t (v 2 i n t e r s e c t e d , 4) ;

s t d : : t h r e a d t [4] ;

i n t Threads Count = 0 ;
f o r (s t d : : v e c t o r <Vector3D> v e c c u t : CutVecL i s t) {
t [Threads Count] = s t d : : t h r e a d (AMPGPUQueryTest : : GetQueryResul t , v e c c u t , v1 , kd , s t d : : r e f (v i s b l e s p h)) ;
t [Threads Count] . j o i n () ;
Threads Count ++;
} ∗ /

/ / s t d : : c o u t << ” V i s b l e MAT s i z e : ” << v i s b l e s p h . s i z e () << s t d : : e n d l ;

/∗ f o r (au to i t em : v i s b l e s p h) {

a.1 appendix i 85

v i s i b l e m a t . p u s h b a c k ({ i t em . pos . x , i t em . pos . y , i t em . pos . z }) ;
v i s i b l e r a d i i . p u s h b a c k (i t em . r a d i u s) ;
v i s i b l e i n d i c e . p u s h b a c k (i t em . i n d e x) ;
} ∗ /
/ / / / / / / / / / / / / / / / / / / /
for (auto item : v i s b l e s p h) {
v i s i b l e m a t . push back ({ item . pos . x , item . pos . y , item . pos . z }) ;
v i s i b l e r a d i i . push back (item . radius) ;
for (auto idx : item . index)
v i s i b l e i n d i c e . push back (idx) ;
}

endtime = clock () ;

output (”MAT points”) . s e t (v i s i b l e m a t) ;
output (” r a d i i ”) . s e t (v i s i b l e r a d i i) ;
output (” i n d i c e ”) . s e t (v i s i b l e i n d i c e) ;
s td : : cout << ”GPUNode running time : ” << endtime − s t a r t t i m e << std : : endl ;

}

void MutiThreadsOneQuery : : process () {
/ /−−−−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−−−−−−−−−//
std : : cout << ” Mutiple Threads Query s t a r t ” << std : : endl ;
auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto p o i n t c o l l e c t i o n = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;
/ / −−−−−−−−−−−−−output−−−−−−−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n v i s i b l e m a t ;
vec1 f v i s i b l e r a d i i ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;
i n t number = p o i n t c o l l e c t i o n . s i z e () ;
s td : : cout << ”MAT point s i z e : ” << madata .m << std : : endl ;

Vector3D∗ mp Points = new Vector3D [number] ;

vec3 f points ;
points . reserve (madata .m) ;
for (auto& p : p o i n t c o l l e c t i o n) {
points . push back ({ p [0] , p [1] , p [2] }) ;
}
for (i n t i = 0 ; i < number ; i ++) {
mp Points [i] . x = points [i] [0] ;
mp Points [i] . y = points [i] [1] ;
mp Points [i] . z = points [i] [2] ;
}

std : : vector<sphere> v i s b l e s p h ;

86 appendix c++ source code

Vector3D v1 = input (” Vector1 ”) . get<Vector3D > () ;

auto v 2 l i s t = OneQuery : : SpherePoints (v1 , 5 0 0) ;

c l o c k t s t a r t t i m e , endtime ;
s t a r t t i m e = c lock () ;
auto CutVecList = MutiThreadsOneQuery : : CutVecList (v 2 l i s t , 4) ;

s td : : thread t [4] ;

i n t Threads Count = 0 ;
for (s td : : vector<Vector3D> vec cut : CutVecList) {
t [Threads Count]= std : : thread (MutiThreadsOneQuery : : GetQueryResult , vec cut , v1 , kd , s td : : r e f (v i s b l e s p h)) ;
t [Threads Count] . j o i n () ;
Threads Count ++;
}

/ /
/∗ i n t v e t s i z e = v 2 l i s t . s i z e () ;
s t d : : v e c t o r <Vector3D> t h r e a d v e c 1 ;
s t d : : v e c t o r <Vector3D> t h r e a d v e c 2 ;
s t d : : v e c t o r <Vector3D> t h r e a d v e c 3 ;
s t d : : v e c t o r <Vector3D> t h r e a d v e c 4 ;

s t d : : f o r e a c h (b e g i n (v 2 l i s t) , b e g i n (v 2 l i s t) + 0 .25∗ v e t s i z e , [& t h r e a d v e c 1] (Vector3D x) {
t h r e a d v e c 1 . p u s h b a c k (x) ;
}) ;
s t d : : f o r e a c h (b e g i n (v 2 l i s t) + 0 .25∗ v e t s i z e , b e g i n (v 2 l i s t) + 0 .5∗ v e t s i z e , [& t h r e a d v e c 2] (Vector3D y) {
t h r e a d v e c 2 . p u s h b a c k (y) ;
}) ;
s t d : : f o r e a c h (b e g i n (v 2 l i s t) + 0 .5∗ v e t s i z e , b e g i n (v 2 l i s t) + 0 .75∗ v e t s i z e , [& t h r e a d v e c 3] (Vector3D z) {
t h r e a d v e c 3 . p u s h b a c k (z) ;
}) ;
s t d : : f o r e a c h (b e g i n (v 2 l i s t) + 0 .75∗ v e t s i z e , end (v 2 l i s t) , [& t h r e a d v e c 4] (Vector3D v) {
t h r e a d v e c 4 . p u s h b a c k (v) ;

}) ;

s t d : : c o u t << ” V e c t o r d i v i d e done ” << s t d : : e n d l ;

s t d : : t h r e a d t1 (MutiThreadsOneQuery : : GetQueryResul t , t h r e a d v e c1 , v1 , kd , s t d : : r e f (v i s b l e s p h)) ;
t1 . j o i n () ;
s t d : : t h r e a d t2 (MutiThreadsOneQuery : : GetQueryResul t , t h r e a d v e c2 , v1 , kd , s t d : : r e f (v i s b l e s p h)) ;
t2 . j o i n () ;
s t d : : t h r e a d t3 (MutiThreadsOneQuery : : GetQueryResul t , t h r e a d v e c3 , v1 , kd , s t d : : r e f (v i s b l e s p h)) ;

a.1 appendix i 87

t3 . j o i n () ;
s t d : : t h r e a d t4 (MutiThreadsOneQuery : : GetQueryResul t , t h r e a d v e c4 , v1 , kd , s t d : : r e f (v i s b l e s p h)) ;
t4 . j o i n () ;
∗ /

/ /
/ / 2739

std : : cout << ” Multi Threads query done” << std : : endl ;
s td : : cout << ” Visb le MAT s i z e : ” << v i s b l e s p h . s i z e () << std : : endl ;

for (auto item : v i s b l e s p h) {
v i s i b l e m a t . push back ({ item . pos . x , item . pos . y , item . pos . z }) ;
v i s i b l e r a d i i . push back (item . r) ;
}
endtime = clock () ;

output (”MAT points”) . s e t (v i s i b l e m a t) ;
output (” r a d i i ”) . s e t (v i s i b l e r a d i i) ;
s td : : cout << ” Mult iple threads running time : ” << endtime − s t a r t t i m e << std : : endl ;

}
void GetRadialRayResults : : process ()
{
std : : cout << ” get r a d i a l rays r e s u l t s t a r t s ” << std : : endl ;
c l o c k t s t a r t t i m e , endtime ;
s t a r t t i m e = c lock () ;
/ / −−−−−−−−−−−−−−−i n p u t −−−−−−−−−−−−−−−−−−−//
auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto p o i n t c o l l e c t i o n = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;
auto viewpoint = input (” viewpoint ”) . get<Vector3D > () ;
auto r a d i a l v e c t o r s = input (” r a d i a l r a y s ”) . get<std : : vector<Vector3D >>();
s td : : cout << ”number of rays : ” << r a d i a l v e c t o r s . s i z e ()<< std : : endl ;
/ / −−−−−−−−−−−−−−−−− ou tp ut −−−−−−−−−−−−−−−−−//
std : : vector<KdTree : : sphere> v i s b l e s p h ;

P o i n t C o l l e c t i o n v i s i b l e m a t ;
vec1 f v i s i b l e r a d i i ;
vec1 i v i s i b l e i n d i c e ;

/ /−−−−−−−−−−p r o c e s s−−−−−−−−−−−−//
std : : vector<bool> i f i n t e r ;

for (i n t j = 0 ; j < r a d i a l v e c t o r s . s i z e () ; j ++)
{
Vector3D h i t ;
bool i n t e r = GetRaysResult : : CheckLineBox ((∗ kd) . m min , (∗kd) . m max , viewpoint , r a d i a l v e c t o r s [j] , h i t) ;
i f i n t e r . push back (i n t e r) ;
}
i n t c o u n t i n t e r s e c t = 0 ;
for (i n t j = 0 ; j < r a d i a l v e c t o r s . s i z e () ; j ++)
{
i f (i f i n t e r [j] == 1)
{

88 appendix c++ source code

c o u n t i n t e r s e c t ++;
auto sph1 = AMPGPUQueryTest : : GetOneLineResult (viewpoint , r a d i a l v e c t o r s [j] , kd) ;
v i s b l e s p h . push back (sph1) ;
}
}
std : : cout << ” ! ! ! ! ! number of i n t e r s e c t i o n : ” << c o u n t i n t e r s e c t << std : : endl ;

for (auto item : v i s b l e s p h) {
v i s i b l e m a t . push back ({ item . pos . x , item . pos . y , item . pos . z }) ;
v i s i b l e r a d i i . push back (item . radius) ;
for (auto idx : item . index)
v i s i b l e i n d i c e . push back (idx) ;
}

std : : cout <<” v i s i d s i z e ”<< v i s i b l e i n d i c e . s i z e () << std : : endl ;

endtime = clock () ;

output (”MAT points”) . s e t (v i s i b l e m a t) ;
output (” r a d i i ”) . s e t (v i s i b l e r a d i i) ;
output (” i n d i c e ”) . s e t (v i s i b l e i n d i c e) ;
s td : : cout << ”Get rays r e s u l t running time : ” << endtime − s t a r t t i m e << std : : endl ;

}
void GetRaysResult : : process ()
{
std : : cout << ” get rays r e s u l t s t a r t s ” << std : : endl ;
c l o c k t s t a r t t i m e , endtime ;
s t a r t t i m e = c lock () ;
/ / −−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−−−−−−//
auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto p o i n t c o l l e c t i o n = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;
auto headvectors = input (” Headvectors ”) . get<std : : vector<Vector3D >>();
auto endvectors = input (” Endvectors ”) . get<std : : vector<Vector3D >>();
s td : : cout << ” the number of rays : ” << endvectors . s i z e () << std : : endl ;
/ /−−−−−−−output−−−−−−−−−−−−−−−−−−−//
std : : vector<KdTree : : sphere> v i s b l e s p h ;

P o i n t C o l l e c t i o n v i s i b l e m a t ;
vec1 f v i s i b l e r a d i i ;
vec1 i v i s i b l e i n d i c e ;

/ /−−−−−−−−−−p r o c e s s−−−−−−−−−−−−//
/ / c h e c k ray i n t e r s e c t wi th box f i r s t h e r e AMP query / /
std : : vector<bool> i f i n t e r ;

for (i n t j = 0 ; j < headvectors . s i z e () ; j ++)
{
Vector3D h i t ;
bool i n t e r = CheckLineBox ((∗ kd) . m min , (∗ kd) . m max , headvectors [j] , endvectors [j] , h i t) ;
i f i n t e r . push back (i n t e r) ;
}

i n t c o u n t i n t e r s e c t = 0 ;
for (i n t j = 0 ; j < headvectors . s i z e () ; j ++)

a.1 appendix i 89

{
i f (i f i n t e r [j] == 1)
{
c o u n t i n t e r s e c t ++;
auto sph1 = AMPGPUQueryTest : : GetOneLineResult (headvectors [j] , endvectors [j] , kd) ;
v i s b l e s p h . push back (sph1) ;
}
}
std : : cout << ” ! ! ! ! ! number of i n t e r s e c t i o n : ” << c o u n t i n t e r s e c t << std : : endl ;
for (auto item : v i s b l e s p h) {
v i s i b l e m a t . push back ({ item . pos . x , item . pos . y , item . pos . z }) ;
v i s i b l e r a d i i . push back (item . radius) ;
for (auto idx : item . index)
v i s i b l e i n d i c e . push back (idx) ;
}

endtime = clock () ;

output (”MAT points”) . s e t (v i s i b l e m a t) ;
output (” r a d i i ”) . s e t (v i s i b l e r a d i i) ;
output (” i n d i c e ”) . s e t (v i s i b l e i n d i c e) ;
s td : : cout << ”Get rays r e s u l t running time : ” << endtime − s t a r t t i m e << std : : endl ;
}

void OneQuery : : process () {
std : : cout << ”OneQuery s t a r t ” << std : : endl ;

/ /−−−−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−−−−−−−−−//

auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto p o i n t c o l l e c t i o n = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;

/ / −−−−−−−−−−−−−output−−−−−−−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n v i s i b l e m a t ;
vec1 f v i s i b l e r a d i i ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

masb : : ma data madata ;
madata .m = p o i n t c o l l e c t i o n . s i z e () ;
i n t number = p o i n t c o l l e c t i o n . s i z e () ;
s td : : cout << ”MAT point s i z e : ” << madata .m << std : : endl ;

Vector3D∗ mp Points = new Vector3D [number] ;

vec3 f points ;
points . reserve (madata .m) ;
for (auto& p : p o i n t c o l l e c t i o n) {

90 appendix c++ source code

points . push back ({ p [0] , p [1] , p [2] }) ;
}
for (i n t i = 0 ; i < number ; i ++) {
mp Points [i] . x = points [i] [0] ;
mp Points [i] . y = points [i] [1] ;
mp Points [i] . z = points [i] [2] ;
}

Vector3D v1 = input (” Vector1 ”) . get<Vector3D > () ;

auto v 2 l i s t = OneQuery : : SpherePoints (v1 , 5 0 0) ;
/ / Vector3D v2 = i n p u t (” V e c t o r2 ”) . ge t<Vector3D > () ;

for (Vector3D v2 : v 2 l i s t) {
std : : vector<Vector3D> p o i n t l i s t ;
s td : : vector<f l o a t> r a d i i l i s t ;
Vector3D h i t ;
i n t count = 0 ;
for (i n t i = 0 ; i < (∗kd) . m maxpoint . s i z e () ; i ++) {
bool a = OneQuery : : CheckLineBox ((∗ kd) . m minpoint [i] , (∗kd) . m maxpoint [i] , v1 , v2 , h i t) ;

i f (a == 1) {
/ / s t d : : c o u t << ” i n t e r s e c t bounding box l e v e l : ” << i << s t d : : e n d l ;
/ / s t d : : c o u t << ” p o i n t s i n s i d e ” << s t d : : e n d l ;
for (auto pt : (∗kd) . m leve lpoints [(∗ kd) . m maxpoint . s i z e () − i − 1]) {
count ++;
/ / s t d : : c o u t << p t i n d e x << s t d : : e n d l ;

/ / s t d : : c o u t << mp Points [p t i n d e x] . x << ” ,” << mp Points [p t i n d e x] . y << ” ,” << mp Points [p t i n d e x] . z << s t d : : e n d l ;
f l o a t dis = Vis ib i l tyQurey : : DistanceOfPointToLine (v1 , v2 , pt . pos) ;
/ / s t d : : c o u t << ” d i s t a n c e t o l i n e : ” << d i s << s t d : : e n d l ;

i f (d is <= pt . radius) {
/ / s t d : : c o u t << ” Radius : ” << pt . r a d i u s<<s t d : : e n d l ;
p o i n t l i s t . push back (pt . pos) ;
r a d i i l i s t . push back (pt . radius) ;
/ / v i s i b l e m a t . p u s h b a c k ({ mp Points [p t i n d e x] . x , mp Points [p t i n d e x] . y , mp Points [p t i n d e x] . z }) ;
/ / v i s i b l e r a d i i . p u s h b a c k (r a d i i [p t i n d e x]) ;
}
}
/ / s t d : : c o u t << ” t o t a l p o i n t s i n s i d e : ” << count << s t d : : e n d l ;
}
}

i f (p o i n t l i s t . s i z e () > 0) {
std : : cout << ”−−−−−−−−−−−−−−−−t h i s d i r e c t i o n has : ” << p o i n t l i s t . s i z e ()<<” i n t e r s e c t e d ”<< std : : endl ;
f l o a t minDis = OneQuery : : PointToPointDis (v1 , p o i n t l i s t [0]) ;
/ / f l o a t minDis = OneQuery : : P o i n t T o P o i n t D i s (v1 , p o i n t l i s t [0]) − r a d i i l i s t [0] ;

i n t f l a g = 0 ;
for (i n t i = 0 ; i < p o i n t l i s t . s i z e () ; i ++)
{
/ / f l o a t temp = OneQuery : : P o i n t T o P o i n t D i s (v1 , p o i n t l i s t [i]) − r a d i i l i s t [i] ;

a.1 appendix i 91

f l o a t temp = OneQuery : : PointToPointDis (v1 , p o i n t l i s t [i]) ;
i f (temp < minDis) {
minDis = temp ;
f l a g = i ;
}
}
v i s i b l e m a t . push back ({ p o i n t l i s t [f l a g] . x , p o i n t l i s t [f l a g] . y , p o i n t l i s t [f l a g] . z }) ;
v i s i b l e r a d i i . push back (r a d i i l i s t [f l a g]) ;
}
}

output (”MAT points”) . s e t (v i s i b l e m a t) ;
output (” r a d i i ”) . s e t (v i s i b l e r a d i i) ;

}

void KDTreeNearestQurey : : process () {
/ / au to v i e w p o i n t = i n p u t (” v i e w p o i n t ”) . ge t<P o i n t C o l l e c t i o n > () ;
std : : cout << ” Nearest points qurey s t a r t i n g ” << std : : endl ;
i n t number = i n t (input (”Number”) . get<f l o a t > ()) ;

P o i n t C o l l e c t i o n r e s u l t P o i n t s ;
r e s u l t P o i n t s . reserve (number) ;

s td : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\Query points output . t x t ” ;
s td : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;

i f (input (”KDTree”) . has data ())
{
auto kdtree = input (”KDTree”) . get<KdTree ∗> () ;
s td : : cout << ” kdtree output s u c c e s s f u l l y ” << std : : endl ;
auto MATpoints = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;

/ / Vector3D v1 = { −99 .0594 ,−90 .828 ,6 .59866 } ;

/ / Vector3D v2 = { 0 ,0 ,0 } ;
/ / (∗ k d t r e e) . q u e r y L i n e I n t e r s e c t i o n (v1 , v2 , 100 , 1 , 1) ;
/ / f o r (i n t i = 0 ; i < number ; i ++)
/ / {
/ / i n t i n d e x = (∗ k d t r e e) . g e t N e i g h b o u r P o s i t i o n I n d e x (i) ;
/ / s t d : : c o u t << ” i n d e x ” << i n d e x << s t d : : e n d l ;
/ / s t d : : c o u t << ”x ” << MATpoints [i n d e x] [0] << s t d : : e n d l ;
/ / s t d : : c o u t << ”y ” << MATpoints [i n d e x] [1] << s t d : : e n d l ;
/ / s t d : : c o u t << ” z ” << MATpoints [i n d e x] [2] << s t d : : e n d l ;
/ / r e s u l t P o i n t s . p u s h b a c k ({ MATpoints [i n d e x] [0] , MATpoints [i n d e x] [1] , MATpoints [i n d e x] [2] }) ;
/ / }
/ / ou tpu t (” P o i n t s ”) . s e t (r e s u l t P o i n t s) ;

/ / Vector3D v1 = { −99 .0594 ,−90 .828 ,6 .59866 } ;
Vector3D v1 = input (”ViewPoint”) . get<Vector3D > () ;
(∗ kdtree) . setNOfNeighbours (number) ;
(∗ kdtree) . queryPosi t ion (v1) ;
for (i n t i = 0 ; i < number ; i ++) {
i n t index = (∗ kdtree) . getNeighbourPosit ionIndex (i) ;
o u t f i l e << MATpoints [index] [0] << ” , ” << MATpoints [index] [1] << ” , ” << MATpoints [index] [2] << std : : endl ;

92 appendix c++ source code

r e s u l t P o i n t s . push back ({ MATpoints [index] [0] , MATpoints [index] [1] , MATpoints [index] [2] }) ;
}
output (” Points ”) . s e t (r e s u l t P o i n t s) ;

}
e lse std : : cout << ”KDTree i s empty ” << std : : endl ;
o u t f i l e . c l o s e () ;
s td : : cout << ”KDtree n e a r e s t query r e s u l t s done . ” << std : : endl ;
}
void KDTreeLineQurey : : process () {

std : : cout << ” Line qurey s t a r t i n g ” << std : : endl ;
/ /−−−−−−−−−−−−−−−Input Data−−−−−−−−−−−−−−
i n t number = i n t (input (”Number”) . get<f l o a t > ()) ;
f l o a t d i s t a n c e = input (” Distance ”) . get<f l o a t > () ;

Vector3D v1 = input (” Vector1 ”) . get<Vector3D > () ;
Vector3D v2 = input (” Vector2 ”) . get<Vector3D > () ;
auto kdtree = input (”KDTree”) . get<KdTree ∗> () ;
auto MATpoints = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
/ /−−−−−−−−−−−−−−−−−−−−−Output Data−−−−−−−−−−−
P o i n t C o l l e c t i o n r e s u l t P o i n t s ;
r e s u l t P o i n t s . reserve (number) ;
s td : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\LineQuery points output . t x t ” ;
s td : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;
(∗ kdtree) . q u e r y L i n e I n t e r s e c t i o n (v1 , v2 , d is tance , 1 , 1) ;
for (i n t i = 0 ; i < number ; i ++)
{
i n t index = (∗ kdtree) . getNeighbourPosit ionIndex (i) ;
s td : : cout << ” index ” << index << std : : endl ;
s td : : cout << ”x ” << MATpoints [index] [0] << std : : endl ;
s td : : cout << ”y ” << MATpoints [index] [1] << std : : endl ;
s td : : cout << ”z ” << MATpoints [index] [2] << std : : endl ;
r e s u l t P o i n t s . push back ({ MATpoints [index] [0] , MATpoints [index] [1] , MATpoints [index] [2] }) ;
o u t f i l e << MATpoints [index] [0] << ” , ” << MATpoints [index] [1] << ” , ” << MATpoints [index] [2] << std : : endl ;
}
output (” Points ”) . s e t (r e s u l t P o i n t s) ;
o u t f i l e . c l o s e () ;
}
void VisiblePCbyRTree : : process ()
{
std : : cout << ” V i s i b l e PC query by RTree s t a r t s ” << std : : endl ;
c l o c k t s t a r t t i m e , endtime , endtimeRTree ;
s t a r t t i m e = c lock () ;
/ / //−−−−−−−−−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
Vector3D viewpoint = input (” viewPoint ”) . get<Vector3D > () ;
auto interior MAT = input (” interior MAT ”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” i n t e r i o r r a d i i ”) . get<vec1f > () ;
auto pc = input (” o r i g i n a l p c ”) . get<P o i n t C o l l e c t i o n > () ;
auto i n i d x = input (” in index ”) . get<vec1 i > () ;
s td : : cout << ” s i z e of i n t e r i o r MAT” << interior MAT . s i z e () << std : : endl ;
s td : : cout << ” s i z e of i n i d x ” << i n i d x . s i z e () << std : : endl ;

s td : : cout << ” input pc s i z e : ” << pc . s i z e () << std : : endl ;
/ / //−−−−−−−−−−−−−ou tp ut −−−−−−−−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n v i s i b l e p c ;

a.1 appendix i 93

/ / s t d : : v e c t o r <i n t> v e c r e s u l t i d ;
std : : se t<int> v e c r e s u l t i d 2 ;

/ / //−−−−−−−−−−−−−−−−−p r o c e s s−−−−−−−−−−−−−−−−−−−//
namespace bg = boost : : geometry ;
namespace bgi = boost : : geometry : : index ;
typedef bg : : model : : point<f l o a t , 3 , bg : : cs : : c a r t e s i a n> point ;
typedef bg : : model : : box<point> box ;
typedef bg : : model : : segment<point> seg ;
typedef std : : pair<box , unsigned> value ;

/ / c r e a t e t h e r t r e e us ing d e f a u l t c o n s t r u c t o r
bgi : : r t r e e< value , bgi : : quadrat ic<16> > r t r e e ;

for (i n t i = 0 ; i < interior MAT . s i z e () ; i ++)
{
box b (point (interior MAT [i] [0] − r a d i i [i] , interior MAT [i] [1] − r a d i i [i] , interior MAT [i] [2] − r a d i i [i]) , point (interior MAT [i] [0] + r a d i i [i] , interior MAT [i] [1] + r a d i i [i] , interior MAT [i] [2] + r a d i i [i])) ;
r t r e e . i n s e r t (s td : : make pair (b , i)) ;
}
std : : cout << ”RTree node i n s e r t e d done ! ” << std : : endl ;
endtimeRTree = c lock () ;
s td : : cout << ”Running time of RTree c o n s t r u c t i o n : ” << endtimeRTree − s t a r t t i m e << std : : endl ;
for (i n t i = 0 ; i < interior MAT . s i z e () ; i ++)
{
std : : vector<value> r e s u l t s ;
seg query seg (point (viewpoint [0] , viewpoint [1] , viewpoint [2]) , point (interior MAT [i] [0] , interior MAT [i] [1] , interior MAT [i] [2])) ;
r t r e e . query (bgi : : i n t e r s e c t s (query seg) , s td : : b a c k i n s e r t e r (r e s u l t s)) ;

i f (r e s u l t s . s i z e () == 0)
s td : : cout << ”no box i n t e r s e c t i o n ! ” << ”ID” << i << std : : endl ;
i f (r e s u l t s . s i z e () == 1)
s td : : cout << ” only i n t e r s e c t with t a r g e t pt i t s e l f ! ” << i << std : : endl ;

/ / i n t r e s u l t i d = r e s u l t s [0] . s e c o n d ;
i n t r e s u l t i d = i ;
f l o a t min dis = PointToPointDis (viewpoint , Vector3D (interior MAT [i] [0] , interior MAT [i] [1] , interior MAT [i] [2])) − r a d i i [i] ;

for (auto item : r e s u l t s)
{
i n t id = item . second ;
i f (DistancePointToSegment (viewpoint , Vector3D (interior MAT [i] [0] , interior MAT [i] [1] , interior MAT [i] [2]) , Vector3D (interior MAT [id] [0] , interior MAT [id] [1] , interior MAT [id] [2])) < r a d i i [id])
{
f l o a t c u r r e n t d i s = PointToPointDis (viewpoint , Vector3D (interior MAT [id] [0] , interior MAT [id] [1] , interior MAT [id] [2])) −r a d i i [id] ;
i f (c u r r e n t d i s < min dis)
{
r e s u l t i d = id ;
min dis = c u r r e n t d i s ;
}
}
}
/ / v e c r e s u l t i d . p u s h b a c k (r e s u l t i d) ;
v e c r e s u l t i d 2 . i n s e r t (i n i d x [r e s u l t i d]) ;
}

/ / s t d : : c o u t << ” S i z e o f v e c t o r r e s u l t i d : ” << v e c r e s u l t i d . s i z e () << s t d : : e n d l ;

94 appendix c++ source code

for (auto id : v e c r e s u l t i d 2)
{
i f (id > pc . s i z e ())
{
id = id − pc . s i z e () ;
/ / s t d : : c o u t << ” i n d e x out o f range !” << s t d : : e n d l ;
}
v i s i b l e p c . push back (pc [id]) ;
}

/ / s t d : : c o u t << ” S i z e o f s e t : ” << v e c r e s u l t i d 2 . s i z e () << s t d : : e n d l ;
std : : cout << ” S ize of v i s i b l e pc : ” << v i s i b l e p c . s i z e () << std : : endl ;
endtime = clock () ;
s td : : cout << ” running time : ” << endtime − s t a r t t i m e <<”ms”<< std : : endl ;
output (” v i s i b l e p c ”) . s e t (v i s i b l e p c) ;

}
void VisiblePC : : process ()
{
std : : cout << ” V i s i b l e PC query s t a r t s ” << std : : endl ;
s td : : cout << ”Using KD−t r e e : ” << i f checkbox<<std : : endl ;

c l o c k t s t a r t t i m e , endtime ;
s t a r t t i m e = c lock () ;
/ /−−−−−−−−−−−−−input−−−−−−−−−−−−−−−//
Vector3D viewpoint = input (” viewPoint ”) . get<Vector3D > () ;
auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto interior MAT = input (” interior MAT ”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” i n t e r i o r r a d i i ”) . get<vec1f > () ;

auto pc = input (” o r i g i n a l p c ”) . get<P o i n t C o l l e c t i o n > () ;
s td : : cout << ” input pc s i z e : ” << pc . s i z e () << std : : endl ;
/ /−−−−−−−−−−−−output−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n v i s i b l e p c ;
/ / −−−−−−−−−p r o c e s s −−−−−−−−−−−−−−−−−−//

/∗ i n t v e t s i z e = pc . s i z e () ;
s t d : : v e c t o r <a r r3 f > t h r e a d v e c 1 ;
s t d : : v e c t o r <a r r3 f > t h r e a d v e c 2 ;
s t d : : v e c t o r <a r r3 f > t h r e a d v e c 3 ;
s t d : : v e c t o r <a r r3 f > t h r e a d v e c 4 ;

s t d : : f o r e a c h (b e g i n (pc) , b e g i n (pc) + 0 .25∗ v e t s i z e , [& t h r e a d v e c1] (a r r 3 f x) {
t h r e a d v e c 1 . p u s h b a c k (x) ;
}) ;
s t d : : f o r e a c h (b e g i n (pc) + 0 .25∗ v e t s i z e , b e g i n (pc) + 0 .5∗ v e t s i z e , [& t h r e a d v e c2] (a r r 3 f y) {
t h r e a d v e c 2 . p u s h b a c k (y) ;
}) ;
s t d : : f o r e a c h (b e g i n (pc) + 0 .5∗ v e t s i z e , b e g i n (pc) + 0 .75∗ v e t s i z e , [& t h r e a d v e c3] (a r r 3 f z) {
t h r e a d v e c 3 . p u s h b a c k (z) ;
}) ;

a.1 appendix i 95

s t d : : f o r e a c h (b e g i n (pc) + 0 .75∗ v e t s i z e , end (pc) , [& t h r e a d v e c 4] (a r r 3 f v) {
t h r e a d v e c 4 . p u s h b a c k (v) ;
}) ;

s t d : : t h r e a d th [4] ;

t h [0] = s t d : : t h r e a d (V i s i b l e P C : : GetVisb lePT , t h r e a d v e c1 , inter ior MAT , r a d i i , v i e w p o i n t , s t d : : r e f (v i s i b l e p c)) ;
th [0] . j o i n () ;
th [1] = s t d : : t h r e a d (V i s i b l e P C : : GetVisb lePT , t h r e a d v e c2 , inter ior MAT , r a d i i , v i e w p o i n t , s t d : : r e f (v i s i b l e p c)) ;
th [1] . j o i n () ;
th [2] = s t d : : t h r e a d (V i s i b l e P C : : GetVisb lePT , t h r e a d v e c3 , inter ior MAT , r a d i i , v i e w p o i n t , s t d : : r e f (v i s i b l e p c)) ;
th [2] . j o i n () ;
th [3] = s t d : : t h r e a d (V i s i b l e P C : : GetVisb lePT , t h r e a d v e c4 , inter ior MAT , r a d i i , v i e w p o i n t , s t d : : r e f (v i s i b l e p c)) ;
th [3] . j o i n () ;
∗ /

i f (i f checkbox == t rue)
{
GetVisblePT (pc , kd , viewpoint , v i s i b l e p c) ;
}
e lse
{
GetVisblePTWithoutKD (pc , viewpoint , interior MAT , r a d i i , v i s i b l e p c) ;
}
endtime = clock () ;

/ / o u t f i l e . c l o s e () ;
/ /−−−−−−−−−−−−−−−−s e t r e s u l t −−−−−−−−−−−−−−−−//
std : : cout << ” v i s i b l e pc done” << std : : endl ;
s td : : cout << ” v i s i b l e points s i z e : ” << v i s i b l e p c . s i z e () << std : : endl ;
s td : : cout << ” running time : ” << endtime − s t a r t t i m e << std : : endl ;

output (” v i s i b l e p c ”) . s e t (v i s i b l e p c) ;

}
void P a r a l l e l V e c t o r : : process ()
{
std : : cout << ” s i g h t v e c t o r s s t a r t s ” << std : : endl ;
/ /−−−−−−−−−−−i n p u t −−−−−−−−−−−−−−−−−−−−−//
Vector3D v1 = input (” vector1 ”) . get<Vector3D > () ;
Vector3D v2 = input (” vector2 ”) . get<Vector3D > () ;

f l o a t densi ty = param<f l o a t >(” Density ”) ;
f l o a t radius = param<f l o a t >(”Radius”) ;

/ /−−−−−−−−−−−−output−−−−−−−−−−−−−−−−−//
std : : vector<Vector3D> Headvectors ;
s td : : vector<Vector3D> Endvectors ;

/ /−−−−−−−−−−−−−p r o c e s s−−−−−−−−−−−−−−−−−//
Vector3D normal = (v2 − v1) ;
Vector3D perpen normal (0 , normal [2] , −normal [1]) ;
auto u = perpen normal . normalize () ;
s td : : cout << ” Normalization : ” << perpen normal [0] << ” , ” << perpen normal [1] << ” , ” << perpen normal [2] << std : : endl ;
Vector3D v = crossProduct (perpen normal , normal) ;

96 appendix c++ source code

auto length = v . normalize () ;
/ / s t d : : c o u t << ”v : ” << v [0] << ” ,” << v [1] << ” ,” << v [2] << s t d : : e n d l ;
/ / change r a d i u s and N t o dynamic l a t e r
/ / f l o a t r a d i u s = 200 ;
/ / f l o a t d e n s i t y = 100 ;

f l o a t d e l t a = radius / densi ty ;
f l o a t eps i lon = d e l t a ∗ 0 . 5 f ;
/ / s t d : : c o u t << ” T e s t ” << s t d : : e n d l ;

for (f l o a t y = −radius ; y < radius + eps i lon ; y += d e l t a)
{
for (f l o a t x = −radius ; x < radius + eps i lon ; x += d e l t a)
{
Headvectors . push back (v1 + x ∗ perpen normal + y ∗ v) ; / / v1 i s t h e p o i n t on t h e p l a n e
Endvectors . push back (v2 + x ∗ perpen normal + y ∗ v) ;
}
}
/ / s t d : : c o u t << ” T e s t done ” << s t d : : e n d l ;

std : : s t r i n g f i l e p a t h = ” c :\\ users \\ tengw\\documents\\ g i t \\Resul t s \\Vectors head end . t x t ” ;
s td : : ofstream o u t f i l e V e c (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;

for (i n t i = 0 ; i < Headvectors . s i z e () ; i ++)
{
o u t f i l e V e c << Headvectors [i] [0] << ” , ” << Headvectors [i] [1] << ” , ” << Headvectors [i] [2] << ” ; ” << Endvectors [i] [0] << ” , ” << Endvectors [i] [1] << ” , ” << Endvectors [i] [2] << std : : endl ;
}
o u t f i l e V e c . c l o s e () ;

output (” Headvectors ”) . s e t (Headvectors) ;
output (” Endvectors ”) . s e t (Endvectors) ;
s td : : cout << ”number of p a r a l l e l rays : ” << Headvectors . s i z e () << std : : endl ;
s td : : cout << ” s i g h t v e c t o r s done” << std : : endl ;
}
void V i s i b l e P a r t : : process ()
{
std : : cout << ” Trying to get the v i s i b l e part ” << std : : endl ;
/ /−−−−−−−−−−−−−i n p u t −−−−−−−−−−−−−−−− / /
Vector3D viewpoint = input (” viewpoint ”) . get<Vector3D > () ;
auto targetPC = input (” targetPC ”) . get<P o i n t C o l l e c t i o n > () ;
auto kd = input (”KDTree”) . get<KdTree ∗> () ;
auto i n t e r i o r m a t = input (”MATpoints”) . get<P o i n t C o l l e c t i o n > () ;
auto r a d i i = input (” r a d i i ”) . get<vec1f > () ;
/ / −−−−−−−−−−−− ou tp ut −−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n vis PC ;
/ / −−−−−−−−−−−−p r o c e s s −−−−−−−−−−−−−−−//
for (auto pc : targetPC)
{
Vector3D v2 (pc [0] , pc [1] , pc [2]) ;
Vector3D h i t ;

/ /−−−−−−−−−−−−Chech e a c h p o i n t v i s i b i l i t y −−−−−−−−−//
bool i n t e r = GetRaysResult : : CheckLineBox ((∗ kd) . m min , (∗kd) . m max , viewpoint , v2 , h i t) ;
i f (i n t e r ==0)
{
vis PC . push back ({v2 [0] , v2 [1] , v2 [2] }) ;

a.1 appendix i 97

continue ;
}
e lse
{
bool i f b l o c k = 0 ;
for (auto b a l l : (∗kd) . m a l l b a l l s) {

f l o a t dis = Vis ib i l tyQurey : : DistanceOfPointToLine (viewpoint , v2 , b a l l . pos) ;
i f (d is <= b a l l . radius) {
i f b l o c k = 1 ;
break ;
}
}
i f (i f b l o c k == 1)
{
continue ;
}
vis PC . push back ({ v2 [0] , v2 [1] , v2 [2] }) ;
}
}

output (” v i s i b l e p a r t s ”) . s e t (vis PC) ;
s td : : cout << ” V i s i b l e part i s done” << std : : endl ;
}

void Vis ib i l tyQurey : : process () {
std : : cout << ” V i s i b i l i t y Qurey s t a r t s ” << std : : endl ;
/ /−−−−−−−−−−−−−−−−input−−−−−−−−−−−−−−−−//
Vector3D viewpoint = input (”ViewPoint”) . get<Vector3D > () ;
auto kdtree = input (”KDTree”) . get<KdTree ∗> () ;
auto i n t e r i o r m a t = input (” interior MAT ”) . get<P o i n t C o l l e c t i o n > () ;
auto i n t e r i o r r a d i i = input (” i n t e r i o r r a d i i ”) . get<vec1f > () ;
auto o r i g i n a l p c = input (” o r i g i n a l p c ”) . get<P o i n t C o l l e c t i o n > () ;
/ /−−−−−−−−−−−output−−−−−−−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n v i s i b l e m a t ;

vec1 f v i s i b l e r a d i i ;
vec1 i v i s i b l e i n d e x ;
/ / −−−−−−−−−−−−p r o c e s s −−−−−−−−−−−−−//

/ / s t d : : s t r i n g f i l e p a t h = ” c :\\ u s e r s \\ tengw \\ documents \\ g i t \\ R e s u l t s \\Vis ib l e MAT out . t x t ” ;
/ / s t d : : o f s t r e a m o u t f i l e (f i l e p a t h , s t d : : f s t r e a m : : out | s t d : : f s t r e a m : : t r u n c) ;

for (i n t i = 0 ; i < i n t e r i o r m a t . s i z e () ; i ++) {
bool v i s i b i l i t y = t rue ;
Vector3D t a r g e t = { i n t e r i o r m a t [i] [0] , i n t e r i o r m a t [i] [1] , i n t e r i o r m a t [i] [2] } ;
(∗ kdtree) . q u e r y L i n e I n t e r s e c t i o n (viewpoint , t a r g e t , 10 , 1 , 1) ;
i n t number = (∗ kdtree) . getNOfFoundNeighbours () ;
for (i n t j = 0 ; j < number ; j ++)
{
i n t index = (∗ kdtree) . getNeighbourPosit ionIndex (j) ;

98 appendix c++ source code

Vector3D s = { i n t e r i o r m a t [index] [0] , i n t e r i o r m a t [index] [1] , i n t e r i o r m a t [index] [2] } ;
f l o a t dis = Vis ib i l tyQurey : : DistanceOfPointToLine (viewpoint , t a r g e t , s) ;
i f (d is <= i n t e r i o r r a d i i [index])
{
v i s i b i l i t y = f a l s e ;
break ;
}
}
i f (v i s i b i l i t y == f a l s e)
{
continue ;
}

v i s i b l e m a t . push back ({ i n t e r i o r m a t [i] [0] , i n t e r i o r m a t [i] [1] , i n t e r i o r m a t [i] [2] }) ;
v i s i b l e r a d i i . push back (i n t e r i o r r a d i i [i]) ;

/ / o u t f i l e << i n t e r i o r m a t [i] [0] << ” ,” << i n t e r i o r m a t [i] [1] << ” ,” << i n t e r i o r m a t [i] [2] << ” ,” << i n t e r i o r r a d i i [i] << s t d : : e n d l ;
}
/ / o u t f i l e . c l o s e () ;
output (”Visible MAT”) . s e t (v i s i b l e m a t) ;
output (”Radii of MAT”) . s e t (v i s i b l e r a d i i) ;
/ / ou tpu t (” i n d i c e s ”) . s e t (v i s i b l e i n d e x) ;
std : : cout << ” V i s i b l i t y Qurey Done” << std : : endl ;
}

void WritePC2File : : process ()
{
auto pc = input (” points ”) . get<P o i n t C o l l e c t i o n > () ;
auto f i l e p a t h = param<std : : s t r i n g >(” f i l e p a t h ”) ;
/ / s t d : : s t r i n g f i l e p a t h = ” c :\\ u s e r s \\ tengw \\ documents \\ g i t \\ R e o r i e n \\ P C p o i n t s . t x t ” ;
std : : ofstream o u t f i l e (f i l e p a t h , s td : : fs tream : : out | std : : fs tream : : trunc) ;
for (auto point : pc)
{
o u t f i l e << point [0] << ” , ” << point [1] << ” , ” << point [2] << std : : endl ;
}
o u t f i l e . c l o s e () ;
}
void ReadNormal : : process ()
{
/ /−−−−−−−−−−input−−−−−−−//
auto f i l e p a t h = param<std : : s t r i n g >(” f i l e p a t h ”) ;
/ /−−−−−−−−−−output−−−−−−−−−−−//
vec3 f normal ;
/ / −−−−−−−−−−−p r o c c e s s−−−−−−−−//
std : : i f s t r e a m i n f i l e (f i l e p a t h) ;
s td : : s t r i n g l i n e ;
i f (i n f i l e)
{
while (g e t l i n e (i n f i l e , l i n e))
{
std : : vector<std : : s t r i n g> r e s u l t ;
ReadNormal : : s p l i t (l i n e , ’ , ’ , r e s u l t) ;
f l o a t x = ReadNormal : : str2num (r e s u l t [0]) ;
f l o a t y = ReadNormal : : str2num (r e s u l t [1]) ;
f l o a t z = ReadNormal : : str2num (r e s u l t [2]) ;
normal . push back ({ x , y , z }) ;

a.1 appendix i 99

}
}
i n f i l e . c l o s e () ;
s td : : cout <<” read normal s i z e : ” <<normal . s i z e () << std : : endl ;
output (”normal”) . s e t (normal) ;

}

void TreeRemover : : process ()
{
std : : cout << ”Removing t r e e s . . . ” << std : : endl ;
/ /−−−−−−−−−−−−−−input−−−−−−−−−−−−−//
auto pc = input (” points ”) . get<P o i n t C o l l e c t i o n > () ;
auto c l a s s i f i c a t i o n = input (” c l a s s i f i c a t i o n ”) . get<std : : vector<int >>();
i n t id = param<int >(”number value”) ;

/ /−−−−−−−−−−−−−output−−−−−−−−−−−−−//
P o i n t C o l l e c t i o n outpc ;
/ /−−−−−−−−p r o c e s s−−−−−−−−−−−−−−−−−//

std : : se t<int> s ;
for (i n t i =0 ; i<pc . s i z e () ; i ++)
{
s . i n s e r t (c l a s s i f i c a t i o n [i]) ;
i f (c l a s s i f i c a t i o n [i] != id) outpc . push back (pc [i]) ;
}
for (se t<int > : : i t e r a t o r i t = s . begin () ; i t != s . end () ; i t ++)
{
std : : cout << ∗ i t << ” occurs ” << std : : endl ;
}

output (” points ”) . s e t (outpc) ;
s td : : cout << ” Tree removing done . ” << std : : endl ;
}
}

	1 Introduction
	1.1 Research questions
	1.2 Research scope and objectives
	1.3 Thesis outline

	2 Theory
	2.1 Medial axis transform (MAT)
	2.1.1 2D MAT
	2.1.2 3D MAT
	2.1.3 Interior MAT and exterior MAT

	2.2 KD-Tree
	2.2.1 Process of finding the nearest node in the KD-Tree
	2.2.2 KD-Tree with buckets

	2.3 R-Tree
	2.4 Normal estimation of point cloud by using Principal Component Analysis (PCA)

	3 Related work
	3.1 Voxel-based method
	3.2 Mesh-based method
	3.3 Splatting-based methods
	3.4 Hidden point removal (HPR)
	3.5 Medial axis transform based method

	4 Methodology
	4.1 MAT Approximation
	4.2 Interior and exterior MAT separation
	4.2.1 MAT separation based on normal reorientation
	4.2.2 MAT separation based on bisectors

	4.3 Brute force solution of visibility analysis
	4.4 Visibility queries based on KD-Tree
	4.4.1 Spatial index generation of the interior medial balls by using a KD-Tree

	4.5 Visibility queries based on R-Tree
	4.6 Visibility query based on two ray patterns
	4.6.1 Visibility query based on radial rays
	4.6.2 Visibility query based on parallel rays

	4.7 Strategies for speeding up the visibility query
	4.7.1 Medial ball simplification
	4.7.2 Speed up by using GPU for parallel computing

	5 Implementation and experiments
	5.1 Datasets and tools
	5.1.1 Datasets
	5.1.2 Developing tools and environment

	5.2 Implementation
	5.2.1 Framework and user interface
	5.2.2 Nodes, operations and connections
	5.2.3 MAT approximation
	5.2.4 MAT separation based on normal reorientation
	5.2.5 MAT separation based on bisectors
	5.2.6 Implementation of KD-Tree and R-Tree
	5.2.7 Radial rays
	5.2.8 Parallel rays
	5.2.9 Parallel computing by GPU and multiple threads

	6 Results and Discussions
	6.1 Visibility results of datasets
	6.1.1 Normal reorientation approach
	6.1.2 Bisector based approach

	6.2 Validation
	6.2.1 Ray tracing vs brute force approach
	6.2.2 Brute force approach vs open-source software

	6.3 Efficiency performance
	6.3.1 Brute force approach vs ray tracing approach
	6.3.2 With and without a KD-Tree
	6.3.3 With R-Tree and without R-Tree
	6.3.4 KD-Tree VS R-Tree
	6.3.5 MAT simplification
	6.3.6 Initial Radius

	7 Conclusion and future work
	7.1 Conclusion
	7.1.1 Answers for the research questions

	7.2 Future work
	7.2.1 Point cloud classification
	7.2.2 Normal repair of point cloud
	7.2.3 Radius determination of ball-pivoting algorithm

	A Appendix C++ Source code
	A.1 Appendix I

