
Ken Arroyo Ohori 19.09.2024

3D Tea

CGAL (Multi)polygon
repair

￼1

Department of GIS Technology, OTB Research Institute for the Built Environment

MSc thesis in Geomatics

Validation and automatic repair
of planar partitions using a
constrained triangulation

Ken Arroyo Ohori

A
ug

us
t 2

01
0

Context and timeline

• My MSc thesis (2010) included a
method to repair polygons and an
implementation (prepair)

• Slowly added improvements since then,
including some parts that require a
(fragile) deeper integration with CGAL

• Chance to work on it during the Google
Summer of Code 2023

• Merged into CGAL 6.0 (out in beta now)
2

. I

(a) A choropleth map from the area surrounding Quebec City in
Canada, where every subdivision represents an area with a cer-
tain land cover type. Made from GeoBase data.

(b) A topographic map from Del. Polygons show land use, in-
frastructures and relief. From Top10NL.

(c) A soil map from central Mexico. Each polygon is a region
with approximately homogenous soil composition. Generated
from INEGI data.

Figure 1.2: Different examples of the use of planar partitions in GIS.

4

Why?

• Common: invalid polygons are
prevalent in large datasets

• Problematic: invalidity causes errors,
undefined behaviour and invalid output
in further processing

• Complex: checking validity of
(multi)polygons with holes isn’t
straightforward

3

Polygon

Validity

• Point set in ℝ2 bounded by a cycle of
linear edges (outer boundary).

• The outer boundary should be simple:
the interiors of its edges are pairwise
disjoint and all of its vertices have a
degree of two.

• Topologically equivalent to a disk.

4

Polygon with holes

Validity

• Point set in ℝ2 bounded by one outer boundary and
zero or more inner boundaries, where each inner
boundary represents a hole in the polygon.

• Considered independently, each boundary should be
simple.

• The different boundaries of a polygon are allowed to
intersect tangentially at common vertices (with no
common edges), forming vertices with degrees of a
multiple of two at the tangential points.

• The interior of a polygon with holes should form a
connected point set.

• Note: A valid polygon can also be represented as a
valid polygon with holes (with zero holes).

5

Multipolygon with holes

Validity

• Point set in ℝ2 represented by a set of
zero or more valid polygons with holes.

• The interiors of the polygons with holes
should be pairwise disjoint, but they are
allowed to intersect tangentially at their
common vertices.

• Note: A valid polygon with holes can
also be represented as a valid
multipolygon with holes (with only one
polygon).

6

(b)(a) (c)

(f) (g)

(d)

(e) (h)
7

Possibly invalid input (polygon, polygon
with holes or multipolygon with holes)

Valid output (multipolygon with
holes)

8

Ensuring that it is unique and deterministic

Valid output

• Adjacent collinear edges touching at vertices of degree two are merged

• The sequence of vertices representing a boundary starts from its lexicographically smallest
vertex

• Outer boundaries are oriented counter-clockwise and inner boundaries are oriented
clockwise

• The inner boundaries of a polygon with holes are stored in lexicographic order

• The polygons with holes of a multipolygon with holes are also stored in lexicographic order

9

Overview

Algorithm

• 1. Arrangement

• 2. Labelling of the faces

• 3. Reconstruction of a multipolygon

10

1. Arrangement

Algorithm

• The input line segments are added to the arrangement as edges.

• Internally, this is done using a constrained triangulation where
they are added as constraints.

• With the even-odd rule, only the edges that are present an odd
number of times in the input will be edges in the final arrangement.

• When these edges are only partially overlapping, only the parts
that overlap an odd number of times will be edges in the final
arrangement.

• This procedure is done in two steps:

• 1. preprocessing to eliminate identical edges that are present an
even number of times (optimisation), and

• 2. adding edges incrementally while applying an even-odd
counting mechanism, which erases existing (parts of) edges
when new overlapping ones are added.

11

2. Labelling

Algorithm

• First, the polygon exterior is labeled. For
this, all of the faces that can be
accessed from the exterior without
passing through an edge are labeled as
exterior faces.

• Then, all other faces are labeled. For
the even-odd rule, the label applied
alternates between polygon interior
and hole every time that a constrained
edge is passed.

12

3. Reconstruction

Algorithm

• The algorithm reconstructs the multipolygon
boundary by boundary, obtaining counter-
clockwise cycles for outer boundaries and
clockwise cycles for inner boundaries.

• Once all boundaries have been reconstructed,
the boundaries are assembled into multipolygons

• using the face labels to knowwhich polygon
with holes inner/outer boundaries belong to,
and

• using the orientation to distinguish between
the outer and inner boundaries of each
polygon with holes.

13

(a) (b)

(c) (d)

(e) (f)

(g) (h)
14

In practice, millions of vertices in a few seconds

Performance

Polygon Vertices Holes Time

101973 298 0.652 sec

43925 125 0.190 sec

15

…but potentially quadratic
intersections in pathological cases

16

#include <iostream>
#include <fstream>

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_repair/repair.h>
#include <CGAL/IO/WKT.h>

using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using Point_2 = Kernel::Point_2;
using Polygon_2 = CGAL::Polygon_2<Kernel>;
using Polygon_with_holes_2 = CGAL::Polygon_with_holes_2<Kernel>;
using Multipolygon_with_holes_2 = CGAL::Multipolygon_with_holes_2<Kernel>;

int main() {
 std::ifstream in("data/bridge-edge.wkt");
 Polygon_with_holes_2 pin;
 CGAL::IO::read_polygon_WKT(in, pin);

 Multipolygon_with_holes_2 mp = CGAL::Polygon_repair::repair(pin);
 if (mp.number_of_polygons_with_holes() > 1) {
 CGAL::IO::write_multi_polygon_WKT(std::cout, mp);
 } else {
 CGAL::IO::write_polygon_WKT(std::cout, mp.polygons_with_holes()[0]);
 }

 return 0;
} 17

https://doc.cgal.org/6.0-beta1/Kernel_23/namespaceKernel.html
https://doc.cgal.org/6.0-beta1/Kernel_23/classCGAL_1_1Exact__predicates__inexact__constructions__kernel.html
https://doc.cgal.org/6.0-beta1/Kernel_23/classKernel_1_1Point__2.html
https://doc.cgal.org/6.0-beta1/Kernel_23/classKernel_1_1Point__2.html
https://doc.cgal.org/6.0-beta1/Polygon/classCGAL_1_1Polygon__2.html
https://doc.cgal.org/6.0-beta1/Polygon/classCGAL_1_1Polygon__with__holes__2.html
https://doc.cgal.org/6.0-beta1/Polygon/classCGAL_1_1Multipolygon__with__holes__2.html
https://doc.cgal.org/6.0-beta1/Stream_support/group__PkgStreamSupportIoFuncsWKT.html#ga0bf10061c888cb9be8e2c6e12be48110
https://doc.cgal.org/6.0-beta1/Polygon_repair/group__PkgPolygonRepairFunctions.html#gac19cf27226df0fae15e4c1b3f9065a9a
https://doc.cgal.org/6.0-beta1/Stream_support/group__PkgStreamSupportIoFuncsWKT.html#ga56eb9fc151c6a52af723d65612f4d2ee
https://doc.cgal.org/6.0-beta1/Stream_support/group__PkgStreamSupportIoFuncsWKT.html#ga11a7d9adde86643a19b8635e83cc3956

Other useful bits

• Multipolygons in CGAL (I/O, CGAL basic viewer, etc.)

• Function to check if a (multi)polygon is_valid(), although undocumented for now

• Odd-even counting of triangulation constraints

• Architecture to easily implement other repair rules in the future

• Everything integrated into CGAL testing architecture (different platforms, kernels, etc.)

18

Questions?

19

