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Context and timeline

• My MSc thesis (2010) included a 
method to repair polygons and an 
implementation (prepair) 

• Slowly added improvements since then, 
including some parts that require a 
(fragile) deeper integration with CGAL 

• Chance to work on it during the Google 
Summer of Code 2023 

• Merged into CGAL 6.0 (out in beta now)
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. I

(a) A choropleth map from the area surrounding Quebec City in
Canada, where every subdivision represents an area with a cer-
tain land cover type. Made from GeoBase data.

(b) A topographic map from Del. Polygons show land use, in-
frastructures and relief. From Top10NL.

(c) A soil map from central Mexico. Each polygon is a region
with approximately homogenous soil composition. Generated
from INEGI data.

Figure 1.2: Different examples of the use of planar partitions in GIS.

4

Why?

• Common: invalid polygons are 
prevalent in large datasets 

• Problematic: invalidity causes errors, 
undefined behaviour and invalid output 
in further processing 

• Complex: checking validity of 
(multi)polygons with holes isn’t 
straightforward
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Polygon

Validity

• Point set in ℝ2 bounded by a cycle of 
linear edges (outer boundary). 

• The outer boundary should be simple: 
the interiors of its edges are pairwise 
disjoint and all of its vertices have a 
degree of two. 

• Topologically equivalent to a disk.
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Polygon with holes

Validity

• Point set in ℝ2 bounded by one outer boundary and 
zero or more inner boundaries, where each inner 
boundary represents a hole in the polygon. 

• Considered independently, each boundary should be 
simple. 

• The different boundaries of a polygon are allowed to 
intersect tangentially at common vertices (with no 
common edges), forming vertices with degrees of a 
multiple of two at the tangential points.  

• The interior of a polygon with holes should form a 
connected point set.  

• Note: A valid polygon can also be represented as a 
valid polygon with holes (with zero holes).
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Multipolygon with holes

Validity

• Point set in ℝ2 represented by a set of 
zero or more valid polygons with holes.  

• The interiors of the polygons with holes 
should be pairwise disjoint, but they are 
allowed to intersect tangentially at their 
common vertices. 

• Note: A valid polygon with holes can 
also be represented as a valid 
multipolygon with holes (with only one 
polygon).
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Possibly invalid input (polygon, polygon 
with holes or multipolygon with holes)

Valid output (multipolygon with 
holes)
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Ensuring that it is unique and deterministic

Valid output

• Adjacent collinear edges touching at vertices of degree two are merged 

• The sequence of vertices representing a boundary starts from its lexicographically smallest 
vertex 

• Outer boundaries are oriented counter-clockwise and inner boundaries are oriented 
clockwise 

• The inner boundaries of a polygon with holes are stored in lexicographic order 

• The polygons with holes of a multipolygon with holes are also stored in lexicographic order
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Overview

Algorithm

• 1. Arrangement 

• 2. Labelling of the faces 

• 3. Reconstruction of a multipolygon
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1. Arrangement

Algorithm

• The input line segments are added to the arrangement as edges. 

• Internally, this is done using a constrained triangulation where 
they are added as constraints. 

• With the even-odd rule, only the edges that are present an odd 
number of times in the input will be edges in the final arrangement. 

• When these edges are only partially overlapping, only the parts 
that overlap an odd number of times will be edges in the final 
arrangement. 

• This procedure is done in two steps:  

• 1. preprocessing to eliminate identical edges that are present an 
even number of times (optimisation), and  

• 2. adding edges incrementally while applying an even-odd 
counting mechanism, which erases existing (parts of) edges 
when new overlapping ones are added.
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2. Labelling

Algorithm

• First, the polygon exterior is labeled. For 
this, all of the faces that can be 
accessed from the exterior without 
passing through an edge are labeled as 
exterior faces. 

• Then, all other faces are labeled. For 
the even-odd rule, the label applied 
alternates between polygon interior 
and hole every time that a constrained 
edge is passed.
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3. Reconstruction 

Algorithm

• The algorithm reconstructs the multipolygon 
boundary by boundary, obtaining counter-
clockwise cycles for outer boundaries and 
clockwise cycles for inner boundaries. 

• Once all boundaries have been reconstructed, 
the boundaries are assembled into multipolygons 

• using the face labels to knowwhich polygon 
with holes inner/outer boundaries belong to, 
and  

• using the orientation to distinguish between 
the outer and inner boundaries of each 
polygon with holes.
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In practice, millions of vertices in a few seconds

Performance

Polygon Vertices Holes Time

101973 298 0.652 sec

43925 125 0.190 sec
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…but potentially quadratic 
intersections in pathological cases
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#include <iostream>
#include <fstream>
 
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_repair/repair.h>
#include <CGAL/IO/WKT.h>
 
using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using Point_2 = Kernel::Point_2;
using Polygon_2 = CGAL::Polygon_2<Kernel>;
using Polygon_with_holes_2 = CGAL::Polygon_with_holes_2<Kernel>;
using Multipolygon_with_holes_2 = CGAL::Multipolygon_with_holes_2<Kernel>;
 
int main() {
  std::ifstream in("data/bridge-edge.wkt");
  Polygon_with_holes_2 pin;
  CGAL::IO::read_polygon_WKT(in, pin);
 
  Multipolygon_with_holes_2 mp = CGAL::Polygon_repair::repair(pin);
  if (mp.number_of_polygons_with_holes() > 1) {
    CGAL::IO::write_multi_polygon_WKT(std::cout, mp);
  } else {
    CGAL::IO::write_polygon_WKT(std::cout, mp.polygons_with_holes()[0]);
  }
 
  return 0;
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https://doc.cgal.org/6.0-beta1/Kernel_23/namespaceKernel.html
https://doc.cgal.org/6.0-beta1/Kernel_23/classCGAL_1_1Exact__predicates__inexact__constructions__kernel.html
https://doc.cgal.org/6.0-beta1/Kernel_23/classKernel_1_1Point__2.html
https://doc.cgal.org/6.0-beta1/Kernel_23/classKernel_1_1Point__2.html
https://doc.cgal.org/6.0-beta1/Polygon/classCGAL_1_1Polygon__2.html
https://doc.cgal.org/6.0-beta1/Polygon/classCGAL_1_1Polygon__with__holes__2.html
https://doc.cgal.org/6.0-beta1/Polygon/classCGAL_1_1Multipolygon__with__holes__2.html
https://doc.cgal.org/6.0-beta1/Stream_support/group__PkgStreamSupportIoFuncsWKT.html#ga0bf10061c888cb9be8e2c6e12be48110
https://doc.cgal.org/6.0-beta1/Polygon_repair/group__PkgPolygonRepairFunctions.html#gac19cf27226df0fae15e4c1b3f9065a9a
https://doc.cgal.org/6.0-beta1/Stream_support/group__PkgStreamSupportIoFuncsWKT.html#ga56eb9fc151c6a52af723d65612f4d2ee
https://doc.cgal.org/6.0-beta1/Stream_support/group__PkgStreamSupportIoFuncsWKT.html#ga11a7d9adde86643a19b8635e83cc3956


Other useful bits

• Multipolygons in CGAL (I/O, CGAL basic viewer, etc.) 

• Function to check if a (multi)polygon is_valid(), although undocumented for now 

• Odd-even counting of triangulation constraints 

• Architecture to easily implement other repair rules in the future 

• Everything integrated into CGAL testing architecture (different platforms, kernels, etc.)
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Questions?
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