
Introduction to Docker
…and a bit of Vagrant

Balázs Dukai

2018-08-28

1 / 24

What is Docker exactly?
"Docker provides a way to run applications securely isolated in a container,
packaged with all its dependencies and libraries."[1]

2 / 24

What is Docker exactly?
"Docker provides a way to run applications securely isolated in a container,
packaged with all its dependencies and libraries."[1]

Container

Containerization = Operating-system-level virtualization

an isolated layer of file system (and software)

relies on the host OS's kernel -> host and guest kernel must be the same

shared hardware ressources between host and guest

2 / 24

Runs applications

install an application in a container and run it in there

communicate with the host via port-binding or SSH

[1] https://docs.docker.com/

[2] https://en.wikipedia.org/wiki/Operating-system-level_virtualization

3 / 24

https://docs.docker.com/
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Runs applications

install an application in a container and run it in there

communicate with the host via port-binding or SSH

Securely isolated

simply running an application in a container doesn't guarantee security
per se

root user in the container is root on the host -> can possibly access
ressources on the host

[1] https://docs.docker.com/

[2] https://en.wikipedia.org/wiki/Operating-system-level_virtualization

3 / 24

https://docs.docker.com/
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Docker and Virtual Machines

docker shares the ressources, a VM is isolated

preferably one application per container, a whole dev. env. in a VM

[1] https://docs.docker.com/get-started/#images-and-containers

4 / 24

https://docs.docker.com/get-started/#images-and-containers

virtualize the OS

shared ressources

a container management that
can consistently run software as
long as a containerization
system exists

preferably one application per
container

virtualize the hardware

dedicated ressources (eg. 2GB
RAM, 2 CPU from the host)

a consistent development
environment workflow across
multiple operation systems

So when use Docker and when a VM?
In general, both Docker (left) and VMs (right) provide modularity and
isolation. With Vagrant VMs are also easily reproducible, just like Docker
containers. Both of them guarantee that you can have the same setup running
on someone elses computer that you are running on your own.

5 / 24

https://www.vagrantup.com/

Docker on Mac, Windows, Linux
For Linux: no problemo

For Mac: read the docs

For Windows: read the docs

starting with Windows Server 2016 and Windows 10
no integration between containers and the Windows UI -> can't use
Docker to run a client app but can use it to build your apps

Windows Server: containers are run directly directly on the server, no layer
between host and guest

Windows 10: each container is run in a ligth VM (Hyper-V), running Windows
Server kernel

Windows is licensed on the host level, not the container level -> one licence
per host with arbitrary many containers

(while each VM needs its own licence...)

6 / 24

https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac
https://docs.docker.com/docker-for-windows/install/#install-docker-for-windows-desktop-app

Docker quickstart
Goal: build the 3dgeo notes locally

! the same container is used on GitLab to build the book

1. We need a GitBook image from Docker Hub

docker pull billryan/gitbook

7 / 24

https://balazsdukai.gitlab.io/3dgeo-notes/
https://toolchain.gitbook.com/
https://hub.docker.com/

Docker quickstart
Goal: build the 3dgeo notes locally

! the same container is used on GitLab to build the book

1. We need a GitBook image from Docker Hub

docker pull billryan/gitbook

2. Then "simply" build the book in the repository and serve it on port 4000

docker run \
 --rm \
 -v "$PWD:/gitbook" \
 -p 4000:4000 \
 billryan/gitbook \
 gitbook build

7 / 24

https://balazsdukai.gitlab.io/3dgeo-notes/
https://toolchain.gitbook.com/
https://hub.docker.com/

Docker quickstart explained
docker pull billryan/gitbook

Download the pre-built image from Docker Hub

docker run <image> <command>
docker run billryan/gitbook gitbook build

1. Create a container with the billryan/gitbook image

2. Start the container

3. Run the build process in the container with gitbook build

8 / 24

https://hub.docker.com/

Docker quickstart explained
docker pull billryan/gitbook

Download the pre-built image from Docker Hub

docker run <image> <command>
docker run billryan/gitbook gitbook build

1. Create a container with the billryan/gitbook image

2. Start the container

3. Run the build process in the container with gitbook build

--rm

Remove the container after the process has finished

8 / 24

https://hub.docker.com/

Docker quickstart explained
-p, --publish <host port>:<container port>

Map the port 4000 from the host into the container's port 4000

9 / 24

Docker quickstart explained
-p, --publish <host port>:<container port>

Map the port 4000 from the host into the container's port 4000

-v, --volume <host dir>:<container dir>

Mount the contents of the current working directory into the container's
/gitbook directory, so that the build process can use the files

9 / 24

Building an image — The Docker�le
Describes all the steps that are required to create an image

Usually in root directory of the project

Images are built from the Dockerfile. Give a name to the image with -t
<name>:<tag>.

docker build -t gitbook:latest <path to Dockerfile>

10 / 24

Building an image — The Docker�le
Describes all the steps that are required to create an image

Usually in root directory of the project

Images are built from the Dockerfile. Give a name to the image with -t
<name>:<tag>.

docker build -t gitbook:latest <path to Dockerfile>

FROM mdillon/postgis:10 # build on an exising image

EXPOSE 5432 # expose the port

ENV POSTGRES_USER postgres
ENV POSTGRES_DB postgres
ENV POSTGRES_PASSWORD=test_admin

RUN apt-get install -y p7zip # run any command

COPY ./docker_provision/init_db.sh /docker-entrypoint-initdb.d/
COPY ./example_data/batch3dfier_db.sql .

10 / 24

Building an image — The Docker�le
Layers of filesystem and chaching

only re-build what has changed (tip: --no-cache)

Every RUN command adds a new layer to the image and increases its size

11 / 24

Building an image — The Docker�le
Layers of filesystem and chaching

only re-build what has changed (tip: --no-cache)

Every RUN command adds a new layer to the image and increases its size

Container references the layered filesystem image + some metadata

creating a container takes minimal space

create them for running single commands (eg building a gitbook)

balazs@balazs-laptop:~$ docker ps -as
CONTAINER ID IMAGE COMMAND CRE
9fae10cb3c5c fzinfz/anaconda3 "/usr/bin/tini -- ju…" 2 d
fcec76004288 strhawk/graph_tool "/usr/bin/tini -- ju…" 2 d
7a83fd39c97f ucalgary/gitbook "node" 6 d

11 / 24

Use data from the host in a container
bind-mount: file or directory on the host is mounted into a container, so the
filesystem in the host must be compatible with the guest

docker run -v <host dir>:<container dir> my_image

volume: new directory is created within Docker’s storage directory on the host,
and Docker manages that directory’s contents

Volumes can be named and they exist independently of containers. For
example create a volume for a database data directory and connect any
containers to it.

docker create volume my_volume
docker run -v my_volume:<container dir> my_image

12 / 24

Networking basics
Drivers:

bridge: (default) application running in standalone mode and containers
need to communicate

host: no isolation between host and container and use the host's network
directly

13 / 24

Networking basics
There is a common network bridge that both the host and Docker connect to.
First create a user-defined bridge

$ docker network create docker-bridge

Then connect a container to the bridge on creation

$ docker create --name geoserver \
 --network docker-bridge \
 --publish 8080:8080 \
 kartoza/geoserver

The ip addr on the host will show on which IP is the host accessible from the
bridge. The same is true for the container

But don't forget to set up the aproppriate firewall rules (and allow the IP
addresses for Postgres for example)

14 / 24

Docker security 101
Don't forget that root user in the container is root on the host -> can possibly
access ressources on the host

Create a non-priviledged user and run processes in a container with it. Read
more about it here

The same networking security rules apply as normally

To run a container as a specific user (eg root):

docker run -u root <image> <command>

15 / 24

https://ralph.blog.imixs.com/2017/04/23/run-a-docker-container-with-non-privileged-user/

Use case #1 — Compute on Godzilla
I need to generate a graph with 100k nodes, using the Erdős-Rényi model. I
cannot do it on my laptop, because there is not enough memory.

#! /usr/bin/python2.7
import sys
import igraph
n = int(sys.argv[1])
g = igraph.Graph.Erdos_Renyi(n, 0.5, directed=True, loops=True)
g.write_graphml(sys.argv[2])

16 / 24

On Godzilla:

docker pull ntamas/python-igraph

docker run \
 --rm \
 -v "$(pwd):/tmp" \
 ntamas/python-igraph:latest \
 /tmp/generate_er-graph.py 10000 /tmp/er_n100k.graphml

It generates the graph in 1 minute and saves er_n100k.graphml into the
current directory.

17 / 24

Use case #2 — 3d�er in a container
Multi-stage build: Compile the dependencies in the first image, build 3dfier in
the second

On code change, rebuild only the 3dfier image

Still just one dockerfile, and a single final image

Multiple build configurations possible (per OS, per dependency)

See the complete Dockerfile

18 / 24

https://github.com/tudelft3d/3dfier/blob/feature/docker/Dockerfile

The multi-stage Docker�le
The FROM instruction marks a stage.

FROM ubuntu:xenial as builder
RUN ... # build dependencies

FROM builder as build3dfier
ENV LIBDIR "/opt"
COPY . $LIBDIR/3dfier/ # copy source code
 # from the host into the image
RUN ... # build 3dfier
 mv $LIBDIR/3dfier/build/3dfier /bin/

ENTRYPOINT /bin/3dfier

19 / 24

The multi-stage Docker�le
The FROM instruction marks a stage.

FROM ubuntu:xenial as builder
RUN ... # build dependencies

FROM builder as build3dfier
ENV LIBDIR "/opt"
COPY . $LIBDIR/3dfier/ # copy source code
 # from the host into the image
RUN ... # build 3dfier
 mv $LIBDIR/3dfier/build/3dfier /bin/

ENTRYPOINT /bin/3dfier

docker build -t 3dfier:app <Dockerfile>
docker run --rm 3dfier:app testarea_config.yml \
 --OBJ output/testarea.obj

19 / 24

The multi-stage Docker�le
The FROM instruction marks a stage.

FROM ubuntu:xenial as builder
RUN ... # build dependencies

FROM builder as build3dfier
ENV LIBDIR "/opt"
COPY . $LIBDIR/3dfier/ # copy source code
 # from the host into the image
RUN ... # build 3dfier
 mv $LIBDIR/3dfier/build/3dfier /bin/

ENTRYPOINT /bin/3dfier

docker build -t 3dfier:app <Dockerfile>
docker run --rm 3dfier:app testarea_config.yml \
 --OBJ output/testarea.obj

However, ubuntu + all dependencies yield an image >1GB

Its a monolithic image, not the "best practice". But otherwise statically linked
executables need to be copied from one image to the next. 19 / 24

Use case #3 — A pyCSW server
Web services are probably the most common use of Docker

docker run \
 --name pycsw \
 --detach \
 --volume "$(pwd)"/pycsw_pg.cfg:/etc/pycsw/pycsw.cfg \
 --network pycsw \
 --publish 8000:8000 \
 --add-host=godzilla:172.19.0.1 \
 geopython/pycsw

20 / 24

Use case #3 explained
The command docker run will download the image geopython/pycsw from
Docker Hub if necessary

21 / 24

Use case #3 explained
The command docker run will download the image geopython/pycsw from
Docker Hub if necessary

--name pycsw

Give a name to the container

21 / 24

Use case #3 explained
The command docker run will download the image geopython/pycsw from
Docker Hub if necessary

--name pycsw

Give a name to the container

--detach

Run as a background process

21 / 24

Use case #3 explained
The command docker run will download the image geopython/pycsw from
Docker Hub if necessary

--name pycsw

Give a name to the container

--detach

Run as a background process

--volume "$(pwd)"/pycsw_pg.cfg:/etc/pycsw/pycsw.cfg

Mount the pycsw config file into the container

21 / 24

Use case #3 explained
The command docker run will download the image geopython/pycsw from
Docker Hub if necessary

--name pycsw

Give a name to the container

--detach

Run as a background process

--volume "$(pwd)"/pycsw_pg.cfg:/etc/pycsw/pycsw.cfg

Mount the pycsw config file into the container

--add-host=<host name>:<host IP>

Map a host name to an IP. This is a portable way to define hosts in a container,
because the host is reachable as godzilla from the container, even if the IP
changes. 21 / 24

So what about Vagrant?
Create a reproducible / discardable development environment

Set up the whole dev. env. in minutes by just issuing vagrant up,
provided that

virtualization is enabled on your computer

there is VirtualBox / VMware / Parallels on your computer

Vagrant is installed :-)

Very useful when you need to migrate your setup onto anoter machine

22 / 24

So what about Vagrant?
Create a reproducible / discardable development environment

Set up the whole dev. env. in minutes by just issuing vagrant up,
provided that

virtualization is enabled on your computer

there is VirtualBox / VMware / Parallels on your computer

Vagrant is installed :-)

Very useful when you need to migrate your setup onto anoter machine

When you issue vagrant up the first time, the VM is provisioned. It reads
the config from a Vagrantfile (familiar?).

The Vagrantfile configures the VM itself (networking, ressource allocation
etc.) and references a provisioner. The provisioner takes care of the contents
of the VM (software etc.). It can be a shell script, but also Docker.

22 / 24

Vagrant use case
Web development in the REPAiR project

It needs Ubuntu, Python 3.6, SQLite, Node, Yarn and many many python and
JS libraries

Developers use Windows, Mac, Linux

The source code is on the host, and it is synced into the VM

-> edit the code with any editor on the host, execute it in the VM

See the project's Vagrant README for more

23 / 24

https://github.com/MaxBo/REPAiR-Web/blob/master/VAGRANT.md

References
https://docs.docker.com/

https://www.vagrantup.com/docs/index.html

Hashimoto, M. (2013). Vagrant: Up and Running: Create and Manage
Virtualized Development Environments. " O'Reilly Media, Inc.".

Matthias, K., & Kane, S. P. (2015). Docker: Up & Running: Shipping Reliable
Containers in Production. " O'Reilly Media, Inc.".

McKendrick, R., & Gallagher, S. (2017). Mastering Docker. Packt Publishing
Ltd.

Stoneman, E. (2017). Docker on Windows: From 101 to Production with
Docker on Windows. Packt Publishing Ltd.

24 / 24

https://docs.docker.com/
https://www.vagrantup.com/docs/index.html

