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modelling
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Slicing (conceptually)
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Slicing as two problems
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computing intersections: 
future work from 2018

projections to 2D/3D: 
this presentation6



Projections from 3D to 2D: 
orthographic
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Projections from 3D to 2D: 
perspective
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Projections from 3D to 2D: 
stereographic

9 Leys, 2008



The 4D house
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The 4D house
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The 4D house
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The 4D house
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4D to 3D projections

• ‘Long axis’: more formal recreation of typical 4D 
diagrams 

• Orthographic and perspective 

• R4 in/out to S3, then stereographically to R3
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‘Long axis’ projection

15

(a) (b)

(c) (d)

Figure 5. The 4D house model projected down to 3D using an orthographic projection. The different
views are obtained by applying different rotations in 4D. The less and more detailed 3D models can be
found by looking at where the door and window are collapsed.

in Arenas and Pérez-Aguila (2006), Figure 6 in Grasset-Simon et al. (2006), Figure 1 in Paul (2012) and207

Figure 16 in van Oosterom and Meijers (2014).208

Conceptually, describing this projection from n to n�1 dimensions, which we hereafter refer to as209

a ‘long axis’ projection, is very simple. Considering a set of points P in Rn, the projected set of points210

P0 in Rn�1 is given by taking the coordinates of P for the first n� 1 axes and adding to them the last211

coordinate of P which is spread over all coordinates according to weights specified in a customisable212

vector x̂n. For instance, Fig. 3 uses x̂n = [2 0 0 ], resulting in 3D models that are 2 units displaced for every213

unit in which they are apart along the n-th axis. In matrix form, this kind of projection can then be applied214

as P0 = P[ I x̂n ].215

Orthographic and perspective projections216

Another reasonably intuitive pair of projections are the orthographic and perspective projections from217

nD to (n�1)D. These treat all axes similarly and thus make it more difficult to see the different (n�1)-218

dimensional models along the n-th axis, but they result in models that are much less deformed. Also,219

as shown in the 4D example in Fig. 5, it is easy to rotate models in such a way that the corresponding220

features are easily seen.221

Based on the description of 4D-to-3D orthographic and perspective projection described from Hollasch222

(1991), we here extend the method in order to describe the n-dimensional to (n�1)-dimensional case,223

changing some aspects to give a clearer geometric meaning for each vector.224

Similarly, we start with a point f rom 2Rn where the viewer is located, a point to 2Rn that the viewer225

directly points towards (which can be easily set to the centre or centroid of the dataset), and a set of n�2226

initial vectors �!v 1, . . . ,
�!v n�2 in Rn that are not all necessarily orthogonal but nevertheless are linearly227

independent from each other and from the vector to� f rom. In this setup, the �!v i vectors serve as a228

base to define the orientation of the system, much like the traditional �!up vector that is used in 3D to 2D229
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4D projections 
based on unit 

vectors
Orthogonal projection

A Romance of Many Dimensions (Abbott, 1884) and A New Era of Thought (Hinton, 1888). Other books139

that treat the topic intuitively include Beyond the Third Dimension: Geometry, Computer Graphics, and140

Higher Dimensions (Banchoff, 1996) and The Visual Guide To Extra Dimensions: Visualizing The Fourth141

Dimension, Higher-Dimensional Polytopes, And Curved Hypersurfaces (McMullen, 2008).142

In a more concrete computer graphics context, already in the 1960s, Noll (1967) described a computer143

implementations of the 4D to 3D perspective projection and its application in art (Noll, 1968).144

Beshers and Feiner (1988) describe a system that displays animating (i.e. continuously transformed)145

4D objects that are rendered in real-time and use colour intensity to provide a visual cue for the 4D depth.146

It is extended to n dimensions by Feiner and Beshers (1990).147

Banks (1992) describes a system that manipulates surfaces in 4D space. It describes interaction148

techniques and methods to deal with intersections, transparency and the silhouettes of every surface.149

Hanson and Cross (1993) describes a high-speed method to render surfaces in 4D space with shading150

using a 4D light and occlusion, while Hanson (1994) describes much of the mathematics that are necessary151

for nD visualisation. A more practical implementation is described in Hanson et al. (1999).152

Chu et al. (2009) describe a system to visualise 2-manifolds and 3-manifolds embedded in 4D space153

and illuminated by 4D light sources. Notably, it uses a custom rendering pipeline that projects tetrahedra154

in 4D to volumetric images in 3D—analogous to how triangles in 3D that are usually projected to 2D155

images.156

A different possible approach lies in using meaningful 3D cross-sections of a 4D dataset. For instance,157

Kageyama (2016) describes how to visualise 4D objects as a set of hyperplane slices. Bhaniramka et al.158

(2000) describe how to compute isosurfaces in dimensions higher than three using an algorithm similar to159

marching cubes. D’Zmura et al. (2000) describe a system that displays 3D cross-sections of a 4D virtual160

world one at a time.161

Similar to the methods described above, Hollasch (1991) gives a simple formulation to describe the 4D162

to 3D projections, which is itself based on the 3D to 2D orthographic and perspective projection methods163

described by Foley and Nielson (1992). This is the method that we extend to define n-dimensional164

versions of these projections and is thus explained in greater detail below. The mathematical notation is165

however changed slightly so as to have a cleaner extension to higher dimensions.166

In order to apply the required transformations, Hollasch (1991) first defines a point f rom 2 R4 where167

the viewer (or camera) is located, a point to 2 R4 that the viewer directly points towards, and a set of168

two vectors �!up and ��!over. Based on these variables, he defines a set of four unit vectors â, b̂, ĉ and d̂ that169

define the axes of a 4D coordinate system centred at the f rom point. These are ensured to be orthogonal170

by using the 4D cross-product to compute them, such that:171

d̂ =
to� f rom��to� f rom

��

â =
up⇥over⇥ d̂��up⇥over⇥ d̂

��

b̂ =
over⇥ d̂ ⇥ â��over⇥ d̂ ⇥ â

��

ĉ = d̂ ⇥ â⇥ b̂

Note two aspects in the equations above: (i) that the input vectors �!up and ��!over are left unchanged (i.e.172

b̂ =�!up and ĉ =��!over) if they are already orthogonal to each other and orthogonal to the vector from f rom173

to to (i.e. to� f rom), and (ii) that the last vector ĉ does not need to be normalised since the cross-product174

already returns a unit vector. These new unit vectors can then be used to define a transformation matrix to175

transform the 4D coordinates into a new set of points E (as in eye coordinates) with a coordinate system176

with the viewer at its centre and oriented according to the unit vectors. The points are given by:177

E =
⇥
P� f rom

⇤⇥
â b̂ ĉ d̂

⇤

For an orthographic projection given E = [ e0 e1e2 e3 ], the first three columns e0, e1 and e2 can be178

used as-is, while the fourth column e3 defines the orthogonal distance to the viewer (i.e. the depth).179
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Orthographic and 
perspective projections
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Orthographic and 
perspective projections
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R4 to S3 to R3

19



To spherical coordinates

20

Figure 6. The geometry of an nD perspective projection for a point p. By analysing each axis x̂i
(80  i < n�1) independently together with the final axis x̂n�1, it is possible to see that the coordinates
of the point along that axis, given by ei, are scaled inwards based on the viewing angle J .

(a) (b)

Figure 7. A polyhedron and a polychoron in Jenn 3D: (a) a cube and (b) a 24-cell.

R4 by first projecting them inwards/outwards to the volume of a 3-sphere3 and then projecting them264

stereographically to R3, resulting in curved edges, faces and volumes.265

In a dimension-independent form, this type of projection can be easily done by considering the angles266

J0, . . . ,Jn�2 in an n-dimensional spherical coordinate system. Steeb (2011, §12.2) formulates such a267

system as:268

r =
q

x2
0 + · · ·+ x2

n�1

Ji = cos�1

0

@ xiq
r2
�Âi�1

j=0 x2
j

1

A , for 0  i < n�2

Jn�2 = tan�1
✓

xn�1

xn�2

◆

It is worth to note that the radius r of such a coordinate system is a measure of the depth with respect269

to the projection (n�1)-sphere Sn�1 and can be used similarly to the previous projection examples. The270

points can then be converted back into points on the surface of an (n�1)-sphere of radius 1 by making271

r = 1 and applying the inverse transformation. Steeb (2011, §12.2) formulates it as:272

3Intuitively, an unbounded volume that wraps around itself, much like a 2-sphere can be seen as an unbounded surface that wraps
around itself.
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Back to cartesian with r=1

21

Figure 8. The most common use of the stereographic projection is to map the surface of the Earth to the
plane. Here, every point p on the sphere is projected to the intersection of the plane with a line passing
through the North pole and p. Image credit: screen capture from Leys et al. (2008).

xi = r cosJi

i�1

’
j=0

sinJ j, for 0  i < n�2

xn�1 = r
n�2

’
j=0

sinJ j

The next step, a stereographic projection (Fig. 8), is also easy to apply in higher dimensions,273

mapping an (n+ 1)-dimensional point x = (x0, . . . ,xn) on an n-sphere Sn to an n-dimensional point274

x0 = (x0, . . . ,xn�1) in the n-dimensional Euclidean space Rn. Chisholm (2000) formulates this projection275

as:276

x0i =
xi

xn �1
, for 0  i < n

The stereographic projection from nD to (n�1)D is particularly intuitive because it results in the n-th277

axis being converted into an inwards-outwards axis. As shown in Fig. 9, when it is applied to scale, this278

results in models that decrease or increase in detail as one moves inwards or outwards. The case with279

time is similar: as one moves inwards/outwards, it is easy to see the state of a model at a time before/after.280

RESULTS281

We have implemented a small prototype for an interactive viewer of arbitrary 4D objects that performs the282

three projections previously described. It was used to generate Figures 3, 5 and 9, which were obtained by283

moving around the scene, zooming in/out and capturing screenshots using the software.284

The prototype was implemented using part of the codebase of azul4 and is written in a combination of285

Swift 3 and C++11 using Metal (a low-level and low-overhead graphics API) under macOS 10.125. Its286

source code is available under the GPLv3 licence at https://github.com/kenohori/azul4d.287

For this prototype, we only consider the vertices, edges and faces of the 4D objects, as the higher-288

dimensional 3D and 4D primitives—whose 0D, 1D and 2D boundaries are however shown—would289

readily obscure each other in any sort of 2D or 3D visualisation (Banks, 1992). Every face of an object290

is thus stored as a sequence of vertices with coordinates in R4 and is appended with an RGBA colour291

attribute with possible transparency. The alpha value of each face is used see all faces at once, as they292

would otherwise overlap with each other on the screen.293

4
https://github.com/tudelft3d/azul

5
https://developer.apple.com/metal/
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Stereographically to S3

22

Figure 8. The most common use of the stereographic projection is to map the surface of the Earth to the
plane. Here, every point p on the sphere is projected to the intersection of the plane with a line passing
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demo
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BIM-GIS 
integration: 

GeoBIM 
project
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Beautiful IFC models
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Beautiful IFC models
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Beautiful IFC models
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Our goal
• Develop an interface 

between CityGML and IFC to 
prepare for a fundamental 
solution to bridge the gap 
between Geo and BIM. 

• open-source API to represent 
IFC + CityGML with the same 
data structure 

• recommendations for future 
integration

29



GeoBIM project use cases
• Use case 1: The process of submitting an IFC model to a building 

permit-application portal by citizens and companies; checking the 
IFC design against the existing physical world (represented in a 3D 
city model) and against a 3D zoning plan; and finally updating the 
3D city model by integrating the 3D building model. 

• Use case 2: The process of supporting the life-cycle of objects with 
a continuous information chain: using information about complete 
urban areas in the design process (i.e. using geo-information in a 
BIM application) and, at a later stage, converting plan, design and 
construction data to maintenance data. The focus of this second 
use case is on large infrastructure projects. 

• Use case 3: Integration of sub-soil information in the BIM design 
process (Abdou).

30



Zoning plans (height)
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Shadow tests
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Methodology

IFC

.obj

CHAPTER 3. REPRESENTATION SCHEMES

edge−use

opposite edge−use

vertex

sphere map

svertex sed
ge

oriented edge

sphere map

vertex

edge−use

svertex

svertex

svertex

sedge

oriented facet

Figure 3.3: A selective Nef complex: We show one facet with two vertices, their
sphere maps, the connecting edges, and both oriented facets. Shells and volumes
are omitted.

Edge-uses: An edge can have many incident facets (non-manifold situation). We
introduce two oppositely oriented edge-uses for each incident facet; one for
each orientation of the facet. An edge-use points to its corresponding ori-
ented edge and to its oriented facet. We can uniquely identify each edge use
with an shalfedge, or, in the special case, also with an shalfloop.

Facets: We store oriented halffacets as boundary cycles of oriented edge-uses. We
have a distinguished outer boundary cycle and several (or maybe none) inner
boundary cycles representing holes in the facet. Boundary cycles are linked
in one direction. We can access the other traversal direction when we switch
to the oppositely oriented halffacet, i.e., by using the opposite edge-use.

Shells: The volume boundary decomposes into different connected components,
the shells. They consist of a connected set of facets, edges, and vertices
incident to this volume. Facets around an edge form a radial order that is
captured in the radial order of sedges around an svertex in the sphere map.
Using this information, we can traverse a shell completely starting at an ar-
bitrary entry element with a graph search.

Volumes: A volume is defined by a set of shells, one outer shell containing the

22
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Nef polyhedron per volumetric object 
Boolean set operations to solve use cases

Hachenberger, 2006



Prototype status
• Parsing ~60 geometric and all (~700) mostly semantic 

classes in Ifc2x3 and Ifc4 

• Generating CGAL Polyhedra_3 and Nef_polyhedra_3 
from every object 

• Output as .obj with correct materials 

• Output separately objects that fail necessary validation 
tests 

• Catch errors caused by bad data
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CUVO Ockenburghstraat 
KOW
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Witte_de_Withstraat 
(20150508)
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Rabarberstraat144
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To do
• Fix more geometric issues 

• Add more validation tests 

• CityGML output 

• Work on use cases using: zoning plans, shadows, 
noise and/or solar potential 

• Use CityGML in design software? 

• Test simplebim CityGML add-on?

38



(Unexpected) problems
• Many parametric shapes 

• Many types of transformations, some bugs remain 

• Very bad data 

• Need to discretise smooth curves and surfaces 

• Ifc schema pieces that are hard to implement in CGAL 

• Minimalist approach in GIS vs. maximalist approach in BIM (12 modules in 
CityGML 2 vs. 768 entities in Ifc4Add1). Not counting selects, functions, etc. 

• BIM concepts that differ or don’t exist in GIS software (topological faces, wires) 

• Georeferencing issues
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Transformations / 
placements

• IfcAxis1Placement 

• IfcAxis2Placement2D 

• IfcAxis2Placement3D 

• IfcCartesianTransformationOperator2D 

• IfcCartesianTransformationOperator2DnonUniform 

• IfcCartesianTransformationOperator3D 

• IfcCartesianTransformationOperator3DnonUniform 

• IfcLocalPlacement



some errors

42



thanks!
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