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Medial axis transform (MAT) = skeleton
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Main results in 2016



Milestones

1. First scientific article published in an ISI journal 

2. Developed methods and algorithms for building identification and 
reconstruction in a point cloud (→ Ravi will present those) 

3. Two MSc theses finished on topics directly related to the project 

4. Reached practitioners with two different use-cases: 
identification of watercourses and of buildings. 

5. Code for MAT simplification is open-source + one transformer in 
FME
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Journal article summarising most results
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MSc thesis #1
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MSc thesis #1: tiling a dataset
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MSc thesis #1: tiling a dataset
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Figure 3.3: The medial ball of point p1 was correct without the need of points in the
neighbouring subset. The p0 needs to further process the MAT with the
data from the neighbouring subset.

When analysing a small piece of a real world urban dataset (see figure 3.4)
it becomes apparent that many points around the border of a subset might
need points from the neighbouring subset to be sure that their MAT is final1.

Figure 3.4: Points with a successfully created medial axis are displayed in grayscale.
Points which are not finished processing because they need to know the
location of points outside the region are displayed in red or purple. They
represent the inner and outer MAT respectively

To test how many points will need more information around the border, a
few samples of the AHN2 are used.

1 A final MAT will not change when extra points from neighbouring subsets are added in the
process



MSc thesis #1: scalabilityScalability
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MSc thesis #2

16



Watercourses around Utrecht: manually extracted
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Figure 1: A typical landscape in the Netherlands, for a region around Utrecht. (a)
Watercourses identified in red over an aerial image. (b) Elevation obtained from aerial
laser scanning.

Typically, these areas have very little variation in elevation, see in Figure 1b
how the elevation varies only by around 1.4m over the area (0.5km2). Be-
cause engineered lands are sensitive to flooding (Parry et al., 2007), it is of
the utmost importance to have an up-to-date and accurate model of the wa-
tercourses (Cavalli et al., 2013). Such a model will consist of the planimetric
geometry of the watercourses (their centreline), their connectivity, but also
of other characteristics such as the width and the shape of the banks (which
is useful to calculate the storage capacity). This information can help us
design measures to avoid floods (Cazorzi et al., 2013), and can play an im-
portant role in designing drainage channels and pumping stations (Malano
and Hofwegen, 1999).

In this paper, we investigate how the network of watercourses in flat and
engineered landscapes can be automatically identified. Currently, such net-
works are typically identified with a semi-automatic methodology using Li-
DAR point clouds, aerial imagery and field surveys. This is labour-intensive,
and subjective (Gandolfi and Bischetti, 1997). The vast majority of methods
and algorithms developed in interdisciplinary studies have not been designed
for our case, but for natural landscapes. These usually assume that the slope
along a watercourse is always positive (Costa-Cabral and Burges, 1994; Lo-
hani and Mason, 2001), or that the curvature of the terrain is higher than
a certain threshold (Meisels et al., 1995; Brzank et al., 2005; Passalacqua
et al., 2010). Furthermore, when LiDAR datasets are used, usually a deriva-

2



Related work performs poorly
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Figure 2: Identification of watercourses by Passalacqua et al. (2012) (with GeoNet soft-
ware) for an area with peat soil near Utrecht in the Netherlands. The dataset is com-
pared to a reference dataset provided by the HDSR (background aerial photo courtesy of
www.pdok.nl).

insu�cient density of LiDAR points (while they have 10 points/m2), and to
vegetation coverage along the ditches. Their method only works if the bound-
aries of fields are given as input, and may not perform well for watercourses
which are largely filled with water.

Passalacqua et al. (2012) argue that watercourses can typically be char-
acterised by positive curvature, and by high values of flow accumulation.
Their method was designed specifically for flat and engineered landscapes.
They successfully extracted the network using a 3m DEM for the low-relief
human-impacted landscape of an area along a basin in the USA. However,
their study area has elevation di↵erences of up to 60m, and therefore seems to
be less flat than the area we use for our study (see Figure 1b and Section 4).
Since their method is freely available in the package GeoNet (Sangireddy
et al., 2016), we have tested it for our area. Figure 2 shows that it performs
poorly for our peat area (many errors of omission and commission), although
it performed slightly better for the clay area. It struggles in places with very
low relief since there is little surface curvature, and thus picks the slightest
change.

Cazorzi et al. (2013) extracts local low-relief features from a 1m DEM,
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2D MAT + 3D MAT = >95% identification
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1. Ground +
vegetation points
projected to the
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polygons from voids
between simplified
ground polygons.
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3. Voronoi diagram
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(a) Workflow to obtain watercourses from the 2D skeleton.

1. Ground points. 2. 3D skeleton of the
ground points.

3. Segmentation of 3D
skeleton in sheets.

4. Triangulate exterior
sheets and select lower
envelope to find the
centrelines.

exterior
sheet

centreline

(b) Workflow to obtain watercourses from the 3D skeleton.

Figure 3: Our workflows that summarise how we extract the watercourses using 2D and
3D skeletons on a LiDAR point cloud.
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2D MAT + 3D MAT = >95% identification
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Exterior skeleton
Interior skeleton
Ground Surface

(a) Cross section of a watercourse.
The 3D skeleton is obtained by re-
constructing medial balls that touch
the ground surface in two points.

(b) Perspective view of the 3D skele-
ton of simple watercourses.

Figure 8: Profile view of 3D skeleton of the terrain

When using the VD of a polygon boundary to compute the 2D skeleton, a
number of unwanted branches are generated next to the desired centrelines;
this is a normal property of the skeleton. These unwanted branches are
defined as any edge incident to a vertex of degree 3 and one of degree 1. We
automatically prune these unwanted branches by setting a threshold on the
branch length (Figure 6b).

3.2. Computing centrelines using the 3D skeleton

Whereas the 2D skeleton method is based on the absorption of the red
LiDAR signal by water surfaces, the 3D skeleton method is based on the
three-dimensional morphology of the landscape to identify watercourses and
allows us to identify watercourses that are dry or covered by canopy.

Our 3D skeleton approach is based on the Medial Axis Transform that was
originally introduced by Blum (1967); the MAT — called 3D skeleton in the
remainder of this text — models the space between surfaces as a collection
of medial balls. Each medial ball is tangent to the surface at two or more
points and the centres of the medial balls form a medial skeletal structure
of the object (see Figure 8a). Similar to the 2D skeleton there are branches
structured in a hierachy, but in the 3D skeleton these are surfaces that we
call medial sheets (see Figure 8b). The 3D skeleton of a typical watercourse
results in three medial sheets: one exterior (above ground), and two interior
(under ground). The exterior medial sheet of a watercourse thus forms a
‘centre plane’ that contains the centreline of the watercourse. We define the
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2D MAT + 3D MAT = >95% identification
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(a) Perspective view of skeleton and
ground points.

(b) Plan view of exterior skeleton
sheets.

Figure 10: Segmentation of 3D skeleton sheets. Each distinct sheet was assigned a random
colour. The surface points are coloured by elevation.

omitting the z-coordinates.

3.3. Combined approach

In Section 4 we show that the 2D and 3D skeleton methods have di↵erent
strength. We are able to combine the strengths of both methods using a few
common GIS operations. First we bu↵er the resulting centrelines from both
methods. If we then dissolve these bu↵ers, one polygon remains for every
watercourse. Finally, the centrelines of these polygons are generated using
the 2D skeleton again (see Figure 11).

4. Experiments & results

We have implemented the methods described in the previous section using
a combination of existing tools and our own programs. The 2D skeleton
method was implemented using primarily QGIS1 and LAStools2. For the 3D
skeleton method, we have used primarily our own software implementations3,
with the exception of the ball pivoting algorithm for which we used Meshlab4.

1QGIS: http://www.qgis.org.
2LAStools: https://rapidlasso.com/lastools/.
3partially open source at https://github.com/tudelft3d/masbcpp
4MeshLab: http://meshlab.sourceforge.net.
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Results with 4 diff soil types
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Journal paper submitted last month
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Simplification code open-source + FME transformer
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Planning
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Activities coming year: 
1. Algorithm to construct the hierarchical topological structure. That will 

allow us to explore how can features be identified in a point cloud (with 
the help of the MAT obviously). ✔ 

2. One journal article about this (in preparation) 
3. For the visibility analysis, we plan to extend the work we presented at 

the workshop into a journal paper (we focused on other use cases)  
4. Use-case of automatic identification of water courses (MSc thesis) ✔ 

slide from January 2016



Activities coming year (project ends March 1 2017 officially) 
1. Finish the development and testing of methods to compute and utilise 

the hierarchy of the MAT, e.g. for buildings and watercourses. 
2. Finish writing up the papers/methods: 

2.1. Use of the MAT hierarchy (to be submitted to a journal, not decided 
yet which one) 

2.2. maybe: orientation/estimation of normal based on MAT properties 
(with one “honour programme” MSc student) 

3.  Ravi must write up his PhD thesis
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