CELL COMPLEXES TOPOLOGICAL LINKS FOR BUILDINGS IN CITYGML

Authors:
Syahiirah Salleh, Uznir Ujang, Suhaibah Azri & Tan Liat Choon

Department of Geoinformation,
Faculty of Built Environment and Surveying,
Universiti Teknologi Malaysia,
Johor, Malaysia.

3D Geoinfo Conference, October 1-2, Delft 2018
Introduction

Topological Information
- Describe connectivity information between buildings (Krämer & Huhnt, 2009)
- Comprehensive connectivity information is required to support 3D exploratory analyses (Isikdag et al., 2013; Moser et al., 2010; Ellul, 2007)

CityGML
- XML links or “XLink” mechanism relates explicitly stored objects (Kolbe, 2009)
- No maintenance of relationships between 0D, 1D, and 2D primitives (Ghawana & Zlatanova, 2012)
- Neighbouring buildings often modelled using separate (“invisible”) surfaces to facilitate efficient and consistent visualisation (Gröger et al., 2005)

Cell Complexes Topological Links
- Clear storage of topological information in a topological data structure is preferable for extraction of connectivity information (Boguslawski et al., 2011)
- Traverse via decomposed lower dimension primitives such as 0D points, 1D lines and 2D surfaces to make up a 3D object while preserving connectivity information
Methodology

Extraction of geometrical properties

Generate topological links based on the extracted properties
CityGML Datasets

Dataset A: Two connected buildings

Dataset B: Two disjointed buildings

The CityGML datasets used in this study were obtained freely from Nordrhein-Westfalen Open Data
Extraction of Geometric Properties

Dataset A:
• 2 Buildings
• 15 Surfaces
• 16 Nodes

Dataset B:
• 2 Buildings
• 18 Surfaces
• 20 Nodes
Generating Topological Links

Start

Input extracted geometrical properties text file

Check:
- α_0 link → Are nodes connected?
- α_1 link → Are lines connected?
- α_2 link → Are surfaces traversable?
- α_3 link → Are buildings connected?

Generate and store links:
- α_0 link → Link connected nodes to form lines
- α_1 link → Link connected lines to form surfaces
- α_2 link → Link surfaces to form buildings
- α_3 link → Link connected buildings

End
Results (1D α_0 links)

α_0 Links for Dataset A

- 16 nodes \rightarrow 57 α_0 links

α_0 Links for Dataset B

- 20 nodes \rightarrow 67 α_0 links
Results (2D α_1 links)

α_1 Links for Dataset A

57 α_0 links \rightarrow 15 α_1 links

α_1 Links for Dataset B

67 α_0 links \rightarrow 18 α_1 links
Results (3D α_2 links)

α_2 Links for Dataset A

15 α_1 links \rightarrow 2 α_2 links

α_2 Links for Dataset B

18 α_1 links \rightarrow 2 α_2 links
Results (α_3 links)

α_3 Links for Dataset A

2 α_2 links \rightarrow 2 α_3 links

α_3 Links for Dataset B

No connected buildings

The α_3 links describe the connection between the buildings of Dataset A which could not be referenced in CityGML due to being connected via an “invisible” face.
Conclusion

Dataset A: 2 connected buildings
Dataset B: 2 disjointed buildings

Cell Complexes
Topological Links

4 Topological Links

α_0 link: 0D nodes to 1D lines
α_1 link: 1D lines to 2D surfaces
α_2 link: 2D surfaces to 3D volumes
α_3 link: connections between 3D volumes

Decrease in number of links

Dataset A: 57 α_0 links to 2 α_2 links
Dataset B: 67 α_0 links to 2 α_2 links

Preserve topological properties

Simple and compact
One α_2 link per building
Describe how surfaces are connected (via an “invisible” face)
Allows navigation through topological links
Future Research

– n-dimensional case study
– 3D Smart Cities
– BIM
– Urban Pollutions (multi-dimensional)
– Visual Positioning System (VPS) Integration (local positioning)
Acknowledgements

• The CityGML datasets used in this study were obtained freely from Nordrhein-Westfalen Open Data.

• The CityGML viewer used in this study is the FZK Viewer developed by Karlsruhe Institute of Technology.

• This work is supported by the UTM Research University Grant, Vot Q.J.130000.2527.15H49 and Vot Q.J.130000.2527.11H78.
Thank you

Syahiirah Salleh: syahiirahsalleh78@gmail.com
Dr. Uznir Ujang: mduznir@utm.my