Automated reconstruction of 3D buildings in historic city centers from LIDAR data and 2D building footprints

3D GeoInfo 2018

Jens Ingensand, Marion Nappez, Timothée Produit, Thibaud Chassin
Automated reconstruction of 3D buildings

- Several methods exist where different data sources are combined (e.g. LIDAR + aerial images)
- Studies often based on “simple” contexts (e.g. American cities)
The idea

Observation

Accurate data set

Roof surfaces – almost always oriented towards the corresponding walls.

Swiss cadaster (legal value) – high precision, possibility to obtain the cadastral footprints for the date of a LIDAR flight

- Use the azimuth angles of a wall to find matching triangles of a TIN extracted from a LIDAR point cloud
Process – step 1

Generation of a DEM

Extraction of minimum altitudes for each footprint
Process – step 2

Fragmentation of the cadaster according to breaklines calculated from LIDAR (high differences in altitudes)
Process – step 3

Identification of flat roofs
(threshold of angles)
Process – step 4

Matching of the TIN triangles according to the walls’ azimuth angles

Forming surfaces
Process – step 5

Identification of ridge lines through points where surfaces touch
Process – step 6

Draping of 2D footprint on ridge lines
Process – step 7

Extrusion of facades
Results

City of Nyon
Conclusions

- **Automated process** that works for historic city center (some parameters need to be adjusted manually)

- **1-2 weeks** calculation time for 10,000 buildings

- **Problems:**
 - no awnings (yet)
 - classification problems of the point cloud
 - underground buildings
 - special buildings (e.g. castles or churches)
Perspectives

- **Improvement** of the automated process:
 - Awnings
 - Test with more dense point clouds
 - Automated detection of certain parameters (that are entered manually at the moment)
 - Comparison with a “ground truth”

- Use of 3D buildings as an input for a public participatory decision making platform
To Take Away:

Automated reconstruction based on LIDAR and 2D building footprints:

1. DEM and minimum altitudes
2. Cutting of 2D footprints
3. Flat roofs
4. Assembly of surfaces from triangles
5. Creation of ridge lines
6. Draping (roof creation)
7. Wall extrusion

Thibaud Chassin
PhD Student
thibaud.chassin@heig-vd.ch

Thank you for your attention