INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA

S. C. Liew¹, X. Huang¹, E. S. Lin², C. Shi¹, A. T. K. Yee², A. Tandon²

¹ Centre for Remote Imaging, Sensing & Processing, National University of Singapore, ² National Parks Board, Singapore

Oct 2018

This material is based on research/work supported by the National Research Foundation under Virtual Singapore Award No. NRF2015VSG-AA3DCM001-034.

NParks, SLA, IHPC, CRISP, GovTech, RoaData

Outline

- Background
- Methodology
- Result
- Conclusion

3D Tree Database

- 3D tree database provides essential information
 - tree species abundance
 - spatial distribution
 - tree height, crown size, diameter at breast height (DBH)
- 3D tree database can be used in
 - forest mapping
 - sustainable urban planning
 - 3D city modelling
- 3D tree database can be integrated from multiple data sources
 - field surveys
 - aerial imagery
 - passive and active remotely sensed data
 - Satellite Imagery
 - LIDAR point cloud data

Purpose

To propose an approach for integrating 3D tree information extracted from passive and active data into existing tree database

- Tree crowns identification and delineation from Lidar Point Cloud data
- Tree crowns identification and delineation from Satellite Imagery
- Integration with 3D tree database

Methodology

- 1. Tree crowns identification and delineation from LIDAR point cloud data
 - Canopy Height Model (CHM) generation
 - Tree crowns identification and delineation
- 2. Tree crowns identification and delineation from Worldview-2 Satellite Image
 - Image bands
 - 8 multispectral bands 2m/pixel
 - Coastal blue, blue, green, yellow, red, red edge, nir, nir2
 - Panchromatic band 0.5m/pixel
 - Conversion (reflectance)
 - converted to the top-of-atmosphere band-average spectral radiance
 - Correction of effective bandwidth difference
 - converted to the top-of-atmosphere band-average spectral reflectance
 - Geometric correction: Earth-sun distance, solar zenith angle
 - Atmospheric correction
 - Orthorectification
 - Geometric transformation camera model
 - Fine DEM

CRISP National University of Singapore

Method 2

Method 1

Methodology – 2. Tree crown extraction from WV2

– Pansharpen

- Preserves both spectral fidelity of the multispectral bands
- Preserves spatial resolution of the panchromatic band (0.5 m/pixel)
- Easier for crown separation
- Easier for species identification
- Multi-resolution segmentation
 - divide image layers to relatively homogenous objects
 - spectral and spatial/contextual properties
- Classification
 - Generate Indices
 - Ndvi, brightness, green index, etc
 - Separate classes according to the indices and image layers
 - Trees
 - Non-trees (grass/buildings/roads/water/bare soil, etc.)

Method 2

Methodology – 2. Tree crown extraction from WV2

- Watershed transformation

- Watershed refers to a ridge that divides areas drained by different river systems
- Watershed transformation treats the image like a topographic map, with the brightness of each point representing its height, and finds the lines that run along the tops of ridges
- Local intensity minima (maxima) are used as seed objects, and the objects grow with rising intensity levels into the neighbourhood until they touch objects growing from neighbouring seeds.
- separate objects from the background, as well as from each other

Morphology filter

- Opening/closing, dilution/erosion
- Smooth the shape

- Region growing

- Remove holes
- Fill gaps between trees
- Shape optimization
 - Generate circles as tree crown
 - radius from area
 - Center of mass/gravity

Opening operation of the morphology algorithm

Tree crowns identification and delineation from CHM

<u>back</u>

Tree crowns (cyan) detected from CHM (grey)

Tree crowns from CHM + Tree Database (NParks, red dots)

- 866 trees from CHM, 182 in database (174 detected, 8 undetected)
- Match well for locations
- More trees from CHM

N 2 trom detected S Φ Ċ 0 Classificati

objects) **H**O 0 ď eat (transparent outline ď S ď ď a dividu Ć

Tree crowns (red) detected from WV (R/G/Y)

- Tree tops are marked
- The higher the tree, the further the base

Accuracy assessment for trees extraction from WV2 satellite imagery

Actual trees	815
Detected trees	844
Falsely detected trees	51
Undetected trees	22
Omission error	3 %
Commission error	6%
Producer's accuracy	97 %
User's accuracy	94 %

Omission error = number of undetected trees / actual trees Commission error = number of falsely detected trees / total detected trees

Integration of tree database

Tree crowns from CHM (cyan) + WV (red) : not match well

• Base for CHM, top for WV (sat_el ~ 64°)

Methodology – 3. Integration of Tree Database

- 3. Integration of tree crowns from CHM and WV
 - Camera model of Worldview-2
 - Crowns of CHM are transformed from base positions to their respective crown top positions on the orthorectified image
 - Finding the height of trees of WV
 - Crowns of WV are transformed from top positions to their respective base positions on the orthorectified image

Transformation of tree crown from top to base position

- Camera Model (Rational Polynomial Coefficients) of WV-2

- P = (Latitude LAT_OFF) / LAT_SCALE
- L = (Longitude LONG_OFF) / LONG_SCALE
- H = (Height HEIGHT_OFF) / HEIGHT_SCALE
- r_n = (ROW LINE_OFF) / LINE_SCALE
- c_n = (Column SAMP_OFF) / SAMP_SCALE

$$r_{n} = \frac{\sum_{i=1}^{20} LINE _NUM _COEF_{i} \bullet p_{i}(P, L, H)}{\sum_{i=1}^{20} LINE _DEN _COEF_{i} \bullet p_{i}(P, L, H)} \quad and \quad c_{n} = \frac{\sum_{i=1}^{20} SAMP _NUM _COEF_{i} \bullet p_{i}(P, L, H)}{\sum_{i=1}^{20} SAMP _DEN _COEF_{i} \bullet p_{i}(P, L, H)}$$

$$\begin{split} f(P, L, H) &= C_1 + C_2 L + C_3 P + C_4 H + C_5 LP + C_6 LH + C_7 PH + C_8 L^2 + C_9 P^2 + C_{10} H^2 + \\ C_{11} PLH + C_{12} L^3 + C_{13} LP^2 + C_{14} LH^2 + C_{15} L^2 P + C_{16} P^3 + C_{17} PH^2 + C_{18} L^2 H + C_{19} P^2 H + \\ C_{20} H^3 \end{split}$$

Map (L, P, H) \rightarrow Image (c, r)

Camera Model (RPC) of WV-2

• Map coordinates to image coordinates for top and base points

Top:
$$(lat, lon, h + hb) \xrightarrow{RPC} (l, s)$$

Base: $(lat, lon, hb) \xrightarrow{RPC} (lb, sb)$
 $(lat, lon) \xrightarrow{DEM} (h_b)$

- Any point in the ray of light shares the same pixel in the image
 - For crown top of WV, the base can't be derived as height is unknown.
 - For crown of CHM, the pixel position for tree top in the satellite image can be derived using RPC.

Tree crowns from CHM shifted to WV geometry (yellow) + WV (red) : match well

- Since height of trees from WV is not known, trees can't be shifted from top to base
- Since height of trees from CHM is known, trees can be shifted from base to top to match geometry of WV.
- Height of trees from WV can be estimated using weighted average (area) of CHM

Height of trees from WV - derived by weighted average of CHM

 $H_{wv} = H_{chm}$ $H_{wv} = (H_{1chm}^* A_1 + H_{2chm}^* A_2) / (A_1 + A_2)$ $H_{wv} = H_{chm}$ $H_{wv} = 0$

Height is derived by weighted average

Tree crowns from CHM (yellow) + WV shifted to base location (magenta) : match well

Tree crowns from CHM (yellow) + WV shifted to base location (magenta) : match well

- Camera model is applied
- Height is derived from weighted average of CHM

- National University of Singapore
- Some trees can't be shifted to base due to lack of common area (marked separately)

Conclusion

- Both the automated methodologies of individual tree crown detection and delineation from CHM and WV2 are presented;
- Tree crowns from WV2 are geometric corrected from the top to base location;
 - Tree crowns from CHM are geometric transformed to the satellite image to match the crowns extracted from the WV2 using the satellite camera model;
 - The height of tree crowns from WV2 can be derived from the height of CHM.
- The result shows that tree crowns from CHM and WV2 match very well;
- Accuracy assessment for tree crowns is performed with ground truth data and visual examination. An overall accuracy around 96% is achieved.
- Tree crowns from both CHM and satellite data with attributes of position, crown size can be integrated into the existing tree database.

Thank You!

