

An Applicative Approach for Spatial Relationships Determination of 3D Volumetric Parcels in 3D Cadastral Systems

> Ruba Jaljolie, Yerach Doytsher, Kirsikka Riekkinen, Sagi Dalyot

Environmental Crowdsourcing Lab (EC^sL)

Environmental Crowdsourcing Lab

Transferring and adapting 2D land management systems to 3D ones

- Population growth, urbanization complexity, and industrialization.
- World's population living in urban areas is expected to increase, reaching 66% by 2050.
- Effective urban planning and management.

3D land management systems

- Enabling search, selection and visualization of 3D volumetric parcels that fall inside a volumetric extent.
- Enforcing 3D geometric and cadastral constraints

 (e.g. minimal 3D volumetric parcel volume, minimal
 area of faces, parallelism or perpendicularity between
 faces of the 3D parcels, etc.).

3D land management systems

Functionalities:

3D land management systems

Functionalities:

Algorithm

	Vertices of A in Relation to B		Vertices of B in Relation to A			
	vertices inside B	vertices outside B	vertices touch B	vertices inside A	vertices outside A	vertices touch A
A inside B	¯	Ø	Ø	Ø	¯	ø
A contains B	ø	¯	Ø	¯	Ø	ø
A equal B	ø	Ø	¯	Ø	Ø	¯
A covers B	ø	¯	¬ø∕ø	¬ø∕ø	Ø	¬ø
A covered by B	¬ø∕ø	Ø	¯	Ø	¯	¬ø∕ø
A overlap B	∽ø/ø	¯	¬ø∕ø	¬ø∕ø	¯	¬ø∕ø
A meet B	ø	¯	¬ø∕ø	ø	¯	¬ø∕ø
A disjoint B	ø	¯	Ø	Ø	¯	ø

Ø	Empty		
Ø-	Not Empty		
ø/ø-	Empty/Not empty		

Hollowed parcel

Binary operations

Non parallel facades

Mathematical approximation

Unbounded parcel

Artificial roof/floor creation

Data hierarchy

GUI

74 Parcels Relationship			- D X	
	Inside	Touches	Outside	
A vertices relatively to B:	empty	empty	not empty	
B vertices relatively to A:	not empty	empty	empty	
Relationship :	A inside B			
3D Parcels link:				
	Parcel A Vertice	4	Parcel B Vertices:	
V1 = Point3D(40, 40 V2 = (60, 40, 0 V3 = (60, 60, 0 V4 = (0, 60, 0 V5 = (40, 40, - V6 = (60, 40, - V7 = (60, 60, - V8 = (40, 60, -	b, 0)))) -100) -100) -100) -100)	Vertices Relation Show Relation Quit Show Vertices Clear all Show Parcels	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Approximation vs. Safe distance

Stage1 - Safe Distance

Stage2 - Approximation

xCentre2=2130.246 xCentre1=2530.246 yCentre=2716.168 zCentre=-77.445 radius=20

P1 = Point3D(xCentre1, yCentre+radius*math.cos(math.radians(0)), zCentre+radius*math.sin(math.radians(0)), "1") P2 = Point3D(xCentre1, yCentre+radius*math.cos(math.radians(45)), zCentre+radius*math.sin(math.radians(45)), "2")

P11 = Point3D(xCentre2, yCentre+radius*math.cos(math.radians(0)), zCentre+radius*math.sin(math.radians(0)), "11") P12 = Point3D(xCentre2, yCentre+radius*math.cos(math.radians(45)), zCentre+radius*math.sin(math.radians(45)), "12")

Intersection points

	Х	Y	Z
1	2130.246	2685.834	-26.438
2	2130.246	2685.834	-126.438
3	2130.246	2766.168	-26.438
4	2130.246	2766.168	-126.438
5	2186.579	2686.071	-26.438
6	2186.579	2686.071	-126.438
7	2194.947	2760.822	-26.438
8	2194.947	2760.822	-126.438
9	2194.947	2766.168	-26.438
10	2194.947	2766.168	-126.438

- Accurate and reliable
- Automatic process
- Tailored data structure
- Practical cadastral analysis
- Suggested solutions for more special cases.
- Cadastral process based on separated operations

Thank You!

Environmental Crowdsourcing Lab (EC^sL)

Environmental Crowdsourcing Lab