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Abstract
Image-to-point cloud (I2P) registration is a funda-
mental task in computer vision, which aims to align
pixels in 2D images with corresponding points in
3D point clouds. While deep learning based meth-
ods dominate this field, they often fail to gener-
alize to the open domain. In this paper, we ad-
dress open-domain I2P registration from the topol-
ogy relationship perspective. Firstly, we find that
topology relationship reflect sparse connections be-
tween pixels and points, which shows the signifi-
cant potential in enhancing cross-modality feature
interaction in the open domain. Building on this
insight, we develop an I2P registration framework
using topology relationship. After that, to construct
and leverage the topology relationship between the
heterogeneous 2D and 3D spaces, we design a reg-
istration network, Top-I2P, with correction-based
topology reasoning and fast topology feature in-
teraction modules. Extensive experiments on 7-
Scenes, RGBD-V2, ScanNet, and self-collected
I2P datasets demonstrate that Top-I2P achieves
superior registration performance in open-domain
scenarios.

1 Introduction
Image-to-point cloud (I2P) registration is a fundamental task
in computer vision [An et al., 2024a]. Given an image and a
point cloud, it establishes the pixel-to-point correspondences
to estimate the six degrees of freedom (6-DoF) camera poses
[Wang et al., 2021]. I2P registration is critical for applica-
tions, such as visual localization, visual navigation, multi-
sensor calibration, augmented reality (AR), object retrieval,
and object pose estimation [Cheng et al., 2023b].

Deep learning is a crucial technique for I2P registration,
as it effectively bridges the modality gap between 2D images
and 3D point clouds. To improve the capability of neural net-
works for I2P registration, researchers tend to revise the neu-
ral networks in image registration (i.e., SuperGlue [Sarlin et
al., 2020]) and point clouds registration (i.e., Geotrans [Qin
et al., 2022]) for I2P registration [Pham et al., 2020].

Although current I2P registration approaches [Wang et al.,

Figure 1: Open-domain I2P registration problem. The I2P registra-
tion model is tested on the unseen scenes (open domain). Compared
with the state-of-the-art method, Top-I2P achieves a high-quality re-
sult, which is safe to the downstream tasks of I2P registration. IR is
the acronym for inlier ratio.

2021; Li et al., 2023] have made progress, domain generaliza-
tion on unseen scenes remains a major challenge for existing
learning based I2P methods, especially in the open-domain
I2P registration scenario. For a better illustration, we con-
ducted a case study of 2D3D-MATR [Li et al., 2023] on the
7-Scenes [Glocker et al., 2013], as shown in Fig. 1. We found
that the quality of correspondences of 2D3D-MATR is not ac-
curate in unseen scenarios, making it unsafe for downstream
applications (i.e., 6 DoF visual localization [Kim et al., 2023]
and visual navigation [van Dijk et al., 2024]). This under-
scores the need to explore open-domain I2P registration.

In 2024, Wang et al. were the first to discuss open-domain
I2P registration with presenting a neural network named as
FreeReg [Wang et al., 2024]. Their method is computation-
ally expensive (9 seconds per pair, ≥20 GB GPU memory)
and lacks precision due to its use of a loose RMSE thresh-
old (0.3m). These limitations make it unsuitable for real-time
or high-accuracy applications. Thus, it is essential to explore
a more effective and accurate I2P registration method in the
open domain.

This paper addresses open-domain I2P registration from
the perspective of topology relationship [Egenhofer, 1993].
We first explore the connection between topology relation-
ship and I2P registration, and find that topology relation-



ship reflect the sparse connection between pixels and points.
It shows the salient potential in enhancing cross-modality fea-
ture interaction in the open domain. Based on this insight, we
address the problem of learning and leveraging topology
relationship between the heterogeneous 2D and 3D spaces,
and present a registration framework that incorporates topol-
ogy relationship reasoning and topology feature interaction.

Furthermore, to effectively build and leverage topology re-
lationship, we propose a dedicated neural network Top-I2P
that incorporates correction-based topology reasoning (CTR)
and fast topology feature interaction (FTI) modules to bal-
ance feature capability and inference speed. Extensive exper-
iments are conducted on the 7-Scenes [Glocker et al., 2013],
RGBD-V2 [Lai et al., 2014], ScanNet [Dai et al., 2017], and
self-collected datasets. Results demonstrate that the proposed
Top-I2P achieves a superior inlier ratio (IR) and registration
recall (RR) than state-of-the-art methods in open domain test-
ing.

Our core contribution is rethinking pixel-to-point match-
ing mechanism from a topology relationship viewpoint.
To achieve this goal, we design an I2P registration network
based on topology relationship, and it has better performance
in the open domain.

2 Related Works
We briefly overview the mainstream literature related to I2P
registration and topology relationship.

2.1 Learning based I2P registration
I2P registration aims to build pixel-to-point correspondences
⟨q, p⟩ from image and point cloud where ⟨q, p⟩ is defined as:

q = π(T ◦ p) (1)

where q ∈ R2 represents a 2D pixel in image I, and p ∈ R3

represents a 3D point in point cloud P . T is a transformation
from the world coordinate system to the camera coordinate
system. π(·) is a projection operator. As T is unknown in
I2P registration task setting, ⟨q, p⟩ is determined in a feature-
matching manner:

d(f 2D
q , f 3D

p ) ≤ δ ⇒ ⟨q, p⟩ is a correspondence (2)

FI,FP = φ(I,P) (3)

where d(·, ·) is a normalized L2 distance and δ is a threshold.
f 2D
q and f 3D

p are features of q and p. φ(·, ·) is the network of
I2P registration. I ∈ RH×W×3 is an image, P ∈ RN×C is a
point cloud with C-dimensional features. f 2D

q , f 3D
p are queried

from FI,FP at q, p. Current works focus on designing φ(·, ·).
In 2019, Feng et al. [Feng et al., 2019] was the first to de-

velop a network to learn the descriptors of image patches and
point cloud patches. Triplet loss [Schroff et al., 2015] is used
to eliminate the adverse effects of a limited number of inliers.
Li et al. presented Deep-I2P to interact with the global fea-
tures from images and point clouds [Li and Lee, 2021]. Their
approach predicts the overlap region in 3D space, which im-
proves the stability of I2P registration. Wang et al. polished
the image registration neural network [Dusmanu et al., 2019]

as P2-Net for I2P registration [Wang et al., 2021]. Building
on work [Li and Lee, 2021], Ren et al. refined feature in-
teraction scheme with transformers and established a neural
network Corr-I2P [Ren et al., 2023], which improves visual
localization accuracy in the outdoor scenes. Kim et al. estab-
lished a neural network EP2P-Loc to deal with visual local-
ization in the pre-built map [Kim et al., 2023]. Li et al. found
that P2-Net [Wang et al., 2021] suffers from a few inliers,
and they attempted to solve it by designing 2D3D-MATR [Li
et al., 2023]. It takes 2D-3D patch matching as guidance for
the accurate registration. Taking Corr-I2P [Ren et al., 2023]
as baseline, Zhou et al. exploited a refined circle loss [Sun
et al., 2020] and a differential perspective-n-point (PnP) loss
to improve the geometric consistency of I2P correspondences
[Zhou et al., 2023]. Wu et al. leveraged diffusion model in
de-nosing pixel-to-point correspondences [Wu et al., 2024b].

Despite the advancements in I2P registration, there is lim-
ited research targeting open-domain scenarios. To address
this gap, we propose Top-I2P to leverage topology relation-
ship for robust I2P registration in a challenging environment.

2.2 Learning with topology relationship
Topology relationship are the fundamental relationships1 of
the space [Egenhofer, 1993]. As these relationships are in-
variant to topology transformation, many researchers exploit
the topology relationship in computer vision and robotics.

Wang et al. developed a topology reasoning benchmark
for high definition (HD) mapping task [Wang et al., 2023].
They developed an entity-specific similarity measure to eval-
uate the similarity of two topology graphs. Chen et al. stud-
ied semantic topology reasoning for the domain generaliza-
tion task [Chen et al., 2022]. Domain invariance features
are learnt by reasoning semantic topology graphs from cross-
domain data. Cheng et al. used topology relationship for
pedestrian re-identification [Cheng et al., 2023a]. A multi-
camera logical topology graph is built according to the cam-
eras’ localizations and image features. This topology graph is
used in a graph neural network (GNN) to predict pedestrian
detection results. In the autonomous driving scenario, Wu
et al. used multilayer perceptron (MLP) to construct topol-
ogy reasoning networks to predict lane-lane and lane-traffic
topology relationship [Wu et al., 2024a]. Li et al. designed
a graph contrastive learning scheme. Its highlight is to learn
both graph-level and subgraph-level topology isomorphism
knowledge [Li et al., 2024]. Towards 3D indoor scene under-
standing, Zhang et al. designed a graph to record the relation
of place-place and place-object. This graph benefits various
downstream tasks, such as place recognition and 3D recon-
struction [Zhang et al., 2024].

In summary, topology relationship provide a lightweight,
fundamental, and stable representation of the 3D space. This
concept has garnered attention across various fields, not lim-
ited to computer vision, robotics, and autonomous driving. In
this paper, we study topology relationship for open-domain
I2P registration.

1This term is used to describe the disjoint, meet, overlaps, covers,
contains, equal, converBy, and inside relationships of two sets.



Figure 2: Bottleneck analysis of I2P registration. (a) Overview of the mainstream architecture. (b) Feature interaction is integrated to reduce
modality differences and mitigate overfitting. (c) Pixel-level cross-attention forms the central component of feature interaction. (d) Bottleneck
analysis of the bottleneck in cross-attention, highlighting challenges in computation and feature alignment.

Figure 3: Proposed I2P open-domain registration framework leveraging topology relationship. (a) Observations reveal a strong correlation
between patches segmented using the 2D and 3D SAM (Segment Anything Model). This is because existing 3D SAM models are often
trained using labels generated by 2D SAM. As a result, 3D SAM models predict segments with structures highly similar to 2D SAM. (b)
Building on this insight, we aim to predict the topology relationship and leverage it to enhance feature interaction for robust I2P registration.

2.3 Discussions
The use of topology relationship in I2P registration remains
an open question of interest. Li et al were the first to apply
topology relationship by predicting the intersection relation
of 2D and 3D patches [Li et al., 2023]. However, their ap-
proach employs a simplistic patch partitioning scheme, which
relies on 2D square patches and 3D spherical patches. This
limitation results in suboptimal performance, particularly in
unseen scenes, as shown in Fig. 1. To address these short-
comings, we consider a patch with the general shape and use
a visual fundamental model for patch partition, enabling a
broader applicability and improved performance compared to
the prior method [Li et al., 2023].

3 Open-Domain I2P Registration
We first analyze the bottleneck in open-domain I2P registra-
tion. Then, we illustrate why topology relationship can solve
this bottleneck and provide a complete framework. After that,
we implement this framework by designing Top-I2P.

3.1 Bottleneck analysis and topology relationship
Why is the current I2P registration method unstable (as seen
in Fig. 1(b))? The instability arises primarily from the lack
of pixel-level feature interaction. We illustrate this issue in
depth. Without feature interaction, image or point cloud fea-
ture extractors operate independently (as shown in Fig. 2(a)),
making the 2D and 3D features prone to overfitting on train-
ing data. To overcome the overfitting, one scheme is to in-
corporate a feature interaction module as shown in Fig. 2(b).

It facilitates message exchange between the cross-modality
data, and minimizes the feature disparity between correspon-
dences, aiding in domain-invariant features learning [Wu et
al., 2021].

Pixel-level feature interaction is the ideal scheme to model
the relationships of each pixel to each point. Pixel-level cross-
attention is its core component, and it constructs a matrix A ∈
RN×HW that records the weights between each pixel in I and
each point in P (as shown in Fig. 2(c), (d)).

However, A becomes prohibitively large. For a 640× 480
image and a point cloud with 105 points, A contains 1010

elements, which is impractical to store and compute. Hence,
pixel-level feature interaction represents a major bottleneck
for open-domain I2P registration.

To address this bottleneck, we find that topology relation-
ship between 2D and 3D spaces reflect the sparsity of A.
For one pixel q and one point p, if their neighboring regions
have no interaction (i.e.,N2D(q)∩π(T◦N3D(p)) = ∅), there
is no need to interact features between q and p. From Eq. (5)
in Sec. 3.2, we construct A only with nearly 104 elements,
106 times smaller than the original scheme. Hence, topology
relationship significantly reduce the computational burden of
pixel-level feature interaction.

3.2 A framework with topology relationship
As topology relationship show significant potential in fea-
ture interaction, we attempt to leverage topology relationship
and derive a lightweight and efficient framework for open-
domain I2P registration, where an overview of the framework
is shown in Fig. 3. Its sub-modules are discussed as follows.



Topology graphs construction. Using the segmentation any-
thing model (SAM) in image and point cloud [Kirillov et al.,
2023; Zhou et al., 2024], I and P are decomposed as arbi-
trary shapes without overlaps:

P =

A⋃
i

Pi, I =

B⋃
j

Ij (4)

where A and B are the patch numbers. Pi and Ij are visual-
ized with different colors in Fig. 3. Complete graphs GP , GI
are constructed from {Pi}Ai=1 and {Ij}Bj=1 where Pi and Ij
are graph nodes. GI and GP are named as 2D and 3D graphs.

Besides, we discuss the reason why 2D and 3D patches
are obtained by SAM instead of the regular shapes (i.e., 2D
square and 3D sphere) or 3D superpoint and 2D superpixel.
First, unlike regular shapes, patches segmented by SAM have
a semantic correlation, helpful to topology relationship rea-
soning. Second, SAM is faster than the superpoint and super-
pixel algorithms. Third, as pixel distance is not aligned with
metric distance, regular shapes suffer from the scale selection
[Li et al., 2023], while patches segmented by SAM do not.

Topology relationship reasoning. This step is to learn a
sparse A by topology relationship reasoning on GI and GP .
As GI and GP are heterogeneous graphs on 2D and 3D spaces,
learning A is a challenging task. We simplify this task in
such an approximate way. For p ∈ Pi and q ∈ Ij , if
π(Pi) ∩ Ij = ∅, f 2D

q has no contribution to f 3D
p . Thus, we

can approximately construct a sparse A as:

A =

A11 · · · A1B

...
. . .

...
AA1 · · · AAB

 ,Aij =

{
1, π(Pi) ∩ Ij ̸= ∅
0, π(Pi) ∩ Ij = ∅

(5)
where 1 and 0 are matrices with full of ones or zeros. A can
be further collapsed into a small-sized boolean matrix Atop ∈
BA×B , Atop,ij = I(π(Pi) ∩ Ij) where I(·) is an indicator
function. After figuring out the aim of topology relationship
reasoning, this procedure can be represented as:

Âtop = ϕtop(GI ,GP ) (6)
where ϕtop(·, ·) is a self-defined topology relationship reason-
ing network. Âtop ∈ [0, 1]A×B describes confidence score of
whether π(Pi) ∩ Ij .

Topology feature interaction. For the open-domain I2P reg-
istration, topology feature interaction is a crucial step to elim-
inate cross modality difference from f 2D

q and f 3D
p with the

guidance of GI , GP , and Âtop. This step contains (i) 3D-to-2D
message passing and (ii) 2D-to-3D message passing.

At first, 3D-to-2D message passing is defined in a moving
average manner (suppose q ∈ Ij):

f 2D
q ← αf 2D

q + (1− α)

∑A
i Âtop,ij · f̄ 3D

i∑A
i Âtop,ij

(7)

f̄ 3D
i =

∑N
k=1 I(pk ∈ Pi) · f 3D

k∑N
k=1 I(pk ∈ Pi)

(8)

where α is a smooth coefficient. f̄ 3D
i is the average feature in

region Pi. Thus, 3D-to-2D message passing is to update f 2D
q

with average 3D features in regions that π(Pi) ∩ Ij ̸= ∅.
Similar to Eqs. (7) and (8), 2D-to-3D message passing is

defined as:

f 3D
p ← αf 3D

p + (1− α)

∑B
j Âtop,ij · f̄ 2D

j∑B
j Âtop,ij

(9)

f̄ 2D
j =

∑HW
k=1 I(qk ∈ Ij) · f 2D

k∑HW
k=1 I(qk ∈ Ij)

(10)

Finally, with the updated f 2D
q and f 3D

p , whether ⟨q, p⟩ is a
pixel-to-point correspondence can be determined via Eq. (2).

More discussions. We further discuss two issues of the pro-
posed method. First, we only utilize a single topology rela-
tionship (i.e., intersection) in this paper. Actually, the general
topology relationship has multiple relationships. 4 intersec-
tion model (4IM) [Egenhofer, 1993] is a traditional model to
represent the multiple topology relations of two 2D sets A
and B:

R4IM(A,B) =
(
A◦ ∩ B◦ A◦ ∩ ∂B
∂A ∩ B◦ ∂A ∩ ∂B

)
(11)

where A◦ and ∂A are interior and boundary sets of A. How-
ever, boundary-to-boundary and boundary-to-interior relation
is difficult to predict from π(Pi) and Ij . An et al. once used
boundary-to-interior relationship for I2P registration [An et
al., 2024b], but they needed 3D object detector to understand
3D scene. Their method cannot be utilized in the general open
scene. So, we simplify the 4IM model and only consider the
intersection of two sets. It increases the prediction accuracy
of topology reasoning in Eq. (6).

Then, we analyze why the proposed framework is robust to
the open domain. Actually, topology relationship is a scene-
independent feature, because it is only variant to the shapes
relationships and robust to the unseen scenes. Thus, the topol-
ogy relationship can be used as an important cue to the open-
domain I2P registration.

3.3 Framework implementation
Sec. 3.2 provides an abstracted framework to leverage the
topology relationship. To implement this framework in an
actual scene, we propose a neural network Top-I2P with de-
tailed computation procedures. Pipeline is provided in Fig.
4.

Topology graphs. We begin by discussing the construction
of graphs GP and GI . 2D and 3D backbones are used to ex-
tract features from I and P . Following 2D3D-MATR [Li et
al., 2023], ResNet [He et al., 2016] and KPConv [Thomas et
al., 2019] are used to construct 2D and 3D backbones. Back-
bone features of I and P are extracted as FB

I and FB
P , re-

spectively. In the meanwhile, using 2D and 3D SAM, I and
P are segmented into non-overlapping regions, as shown in
Eq. (4). For each point cloud patch Pi, we compute the aver-
age coordinate p̄i and the average feature f̄ 3D

i ; For each image
patch Ij , we compute the average coordinate q̄j and average



Figure 4: Top-I2P includes CTR and FTI modules, designed to leverage topology relationship for effective and efficient feature interaction.

feature f̄ 2D
j . f̄ 3D

i (i = 1,...,A) are vertices in GP , its adjacent
matrix A3D is constructed by exp(−∥p̄i− p̄j∥22). In the same
way, f̄ 2D

j (j = 1,...,B) are vertices in GI , its adjacent matrix
A2D is constructed by exp(−∥q̄i − q̄j∥22). Due to the setting
of SAM, the patch number is no more than 128, so that the
graph construction step can be done in real-time.

Correction-based topology reasoning (CTR). In the next,
we illustrate the structure of ϕtop(GI ,GP ). Due to the modal-
ity difference of I and P , GI and GP are heterogeneous
graphs, which brings the challenge of Âtop prediction. To
deal with this issue, we design a simple yet effective CTR
module in Fig. 4. Graph convolution network (GCN) layers
[Kipf and Welling, 2017] are used to extract topology features
x = GCN2d(GI) ∈ RB×c and y = GCN3d(GP ) ∈ RA×c. To
eliminate the modality difference, we attempt to correct fea-
tures by estimating feature shift ∆x and ∆y:

∆x = mlp2d

(
xTy√

c
y

)
, ∆y = mlp3d

(
yTx√

c
x

)
(12)

where mlp2d and mlp3d are two MLP layers. Then, topol-
ogy features are updated as x′ = x+∆x and y′ = y +∆y,
respectively. Âtop is computed using a normalized cosine dis-
tance from x′ to y′. We find that most elements in the boolean
matrix Atop are zero. So, we exploit a differentiable Sinkhorn
layer [Sinkhorn, 1967] to regularize Âtop. And loss in CTR
module is designed as [Sarlin et al., 2020]:

LTopo =
1

Nmask
∥Atop[mask]− Âtop[mask]∥22 (13)

where mask is the indices in Atop with ones, Nmask is the num-
ber of elements in Atop that is one.

Fast topology feature interaction (FTI). The topology fea-
ture interaction in Eqs. (7) and (9) cannot meet the fast I2P
registration demand, although it greatly reduced the compu-
tation burden. The reason why Eqs. (7) and (9) are inefficient
lies in pixel-wise and point-wise computation. To speed up
this procedure, we design the FTI module. The core idea be-
hind FTI is to replace f 2D

q and f 3D
p as f̄ 2D

j and f̄ 3D
i in Eqs. (7)

and (9). Then, feature interaction is rewritten in a matrix op-
eration manner with MLP layers:

 f̄ 2D
1,new

...
f̄ 2D
B,new

 = mlpa

α

f̄ 2D
1
...

f̄ 2D
B

+ (1− α)ÂT
top,row

f̄ 3D
1
...

f̄ 3D
A




(14)

 f̄ 3D
1,new

...
f̄ 3D
A,new

 = mlpb

α

f̄ 3D
1
...

f̄ 3D
A

+ (1− α)Âtop,col

f̄ 2D
1
...

f̄ 2D
B




(15)
where Âtop,col and Âtop,row are the column and row normal-
ized matrices from Âtop. It means that FTI focuses on in-
teraction with average features. To improve the efficiency
of feature interaction, FTR can be stacked in Top-I2P where
the stack number is 3. After feature interaction, we update
f 2D
q by adding shift (f̄ 2D

j,new − f̄ 2D
j ), update f 3D

p by adding shift
(f̄ 3D

i,new − f̄ 3D
i ).

Training scheme. Single-stage training is unstable primar-
ily due to the inaccurate predictions of topological relation-
ships. To address this issue, we utilize a two-stage training
scheme. First, we train backbone networks without CTR and
FTI modules. The loss function is based on the I2P registra-
tion loss as defined in 2D3D-MATR [Li et al., 2023]. Sec-
ond, based on the pre-trained backbone networks, we begin
to learn the topological relationship prediction task and train
both the CTR and FTI modules. It is achieved by training the
whole Top-I2P architecture by adding LTopo loss defined in
Eq. (13).

4 Experiments and Discussions
4.1 Configurations
Since limited research exists on open-domain I2P registra-
tion, we configure this task setting independently. First, we
evaluate model generalization ability on the 7-Scenes dataset
[Glocker et al., 2013]. One scene is chosen for training, while
the remaining six scenes are used for testing. Image and point
cloud pairs are created from the RGB-D data. Then, we eval-
uate the generalization ability on the RGBD v2 [Lai et al.,
2014], ScanNet [Dai et al., 2017], and self-collected datasets.



Figure 5: Examples scenes from the 7-Scenes, RGBD-V2, ScanNet, and self-collected (referred to as RGBD, Scan, Self) datasets.

Figure 6: Qualitative comparison of Top-I2P and 2D3D-MATR on unseen scenes. Top-I2P estimates inliers more than 2D3D-MATR.

Metric-IR Chess→Chess Chess→Fire Chess→Heads Chess→Office Chess→Pumpkin Chess→Kitchen Chess→Stairs Average†
P2-Net 0.516 0.436 0.330 0.414 0.421 0.405 0.251 0.376

2D3D-MATR 0.761 0.455 0.359 0.420 0.411 0.390 0.288 0.387
Top-I2P 0.767 0.491 0.427 0.455 0.461 0.437 0.327 0.433

Metric-RR Chess→Chess Chess→Fire Chess→Heads Chess→Office Chess→Pumpkin Chess→Kitchen Chess→Stairs Average†
P2-Net 0.875 0.536 0.162 0.672 0.561 0.563 0.293 0.464

2D3D-MATR 1.000 0.537 0.167 0.759 0.581 0.612 0.214 0.478
Top-I2P 1.000 0.611 0.583 0.843 0.558 0.678 0.500 0.628

Metric-IR Office→Office Office→Chess Office→Fire Office→Heads Office→Pumpkin Office→Kitchen Office→Stairs Average†
P2-Net 0.506 0.416 0.413 0.403 0.434 0.386 0.308 0.393

2D3D-MATR 0.645 0.498 0.491 0.521 0.442 0.448 0.338 0.456
Top-I2P 0.667 0.512 0.494 0.532 0.466 0.462 0.353 0.469

Metric-RR Office→Office Office→Chess Office→Fire Office→Heads Office→Pumpkin Office→Kitchen Office→Stairs Average†
P2-Net 0.769 0.566 0.661 0.232 0.577 0.532 0.234 0.510

2D3D-MATR 0.940 0.660 0.556 0.417 0.395 0.636 0.286 0.491
Top-I2P 0.880 0.702 0.759 0.423 0.605 0.645 0.293 0.571

Metric-IR Kitchen→Kitchen Kitchen→Chess Kitchen→Fire Kitchen→Office Kitchen→Heads Kitchen→Pumpkin Kitchen→Stairs Average†
P2-Net 0.678 0.516 0.512 0.504 0.506 0.555 0.358 0.491

2D3D-MATR 0.717 0.571 0.594 0.537 0.538 0.612 0.370 0.537
Top-I2P 0.697 0.626 0.619 0.627 0.631 0.643 0.433 0.596

Metric-RR Kitchen→Kitchen Kitchen→Chess Kitchen→Fire Kitchen→Office Kitchen→Heads Kitchen→Pumpkin Kitchen→Stairs Average†
P2-Net 0.851 0.857 0.583 0.250 0.769 0.611 0.429 0.621

2D3D-MATR 0.901 0.872 0.778 0.667 0.723 0.698 0.500 0.706
Top-I2P 0.926 0.936 0.792 0.722 0.831 0.860 0.571 0.785

Table 1: Open-domain I2P registration performance on the 7-Scenes datasets. Here † represents the average metrics on the unseen scenes.

The self-collected dataset was collected using an Intel Re-
alSense D351 depth camera. We obtained the GT pose be-
tween images and point clouds based on an RGB-D-based
3D reconstruction toolbox2. In this case, all compared meth-
ods are trained on the 7-Scenes dataset [Glocker et al., 2013].
From Figs. 1 and 5, scenes in the different datasets are largely
distinct, making them suitable for open-domain evaluation.
Point clouds include RGB features.

To evaluate I2P registration performance, IR and RR are
used as the main metrics. The root mean square error (RMSE)
threshold is set to 0.025m and 0.1m for the strict I2P reg-
istration performance testing, while other metric thresholds
follow the defaults in the literature [Li et al., 2023]. Sub-
sequently, we discuss the details of Top-I2P. α is set to 0.86.

2www.open3d.org

The stack number of the message passing submodule in FTI is
2. The first training stage consists of 5 epochs, while the sec-
ond stage consists of 20 epochs. To generate the ground truth
(GT) Atop, we set an intersection-over-union (IoU) threshold
γIoU = 0.1. Atop,ij is set as 1 only if IoU(π(Pi) ∩ Ij) ≥
γIoU , and this procedure filters out several unimportant topol-
ogy relations. The learning rate and optimizer of Top-I2P are
the same in the literature [Li et al., 2023].

4.2 Comparison results
Current I2P registration methods, P2-Net [Wang et al., 2021]
and 2D3D-MATR [Li et al., 2023], are used for comparison
with Top-I2P. The notation A → B indicates that the model
is trained on scene A but tested on scene B. Results on the
7-Scenes dataset [Glocker et al., 2013] are provided in Table
1, and results on RGBD-V2 [Lai et al., 2014], ScanNet [Dai



Metric-IR Kitchen→Rgbd-S1 Kitchen→Rgbd-S2 Kitchen→Rgbd-S3 Kitchen→Rgbd-S4 Kitchen→Rgbd-S5 Kitchen→Rgbd-S6 Kitchen→Rgbd-S7 Average
P2-Net 0.090 0.259 0.268 0.263 0.098 0.106 0.094 0.168

2D3D-MATR 0.351 0.353 0.336 0.316 0.250 0.209 0.222 0.291
Top-I2P 0.397 0.413 0.389 0.398 0.252 0.247 0.253 0.335

Metric-RR@0.1 Kitchen→Rgbd-S1 Kitchen→Rgbd-S2 Kitchen→Rgbd-S3 Kitchen→Rgbd-S4 Kitchen→Rgbd-S5 Kitchen→Rgbd-S6 Kitchen→Rgbd-S7 Average
P2-Net 0.234 0.861 0.845 0.921 0.280 0.232 0.167 0.505

2D3D-MATR 0.970 0.880 0.871 0.741 0.480 0.449 0.458 0.692
Top-I2P 0.974 0.840 0.986 0.963 0.600 0.710 0.479 0.793

Metric-IR Kitchen→Scan-S1 Kitchen→Scan-S2 Kitchen→Scan-S3 Kitchen→Scan-S4 Kitchen→Scan-S5 Kitchen→Scan-S6 Kitchen→Scan-S7 Average
P2-Net 0.359 0.413 0.286 0.190 0.370 0.312 0.195 0.303

2D3D-MATR 0.495 0.550 0.424 0.337 0.507 0.434 0.414 0.451
Top-I2P 0.550 0.587 0.472 0.340 0.547 0.485 0.475 0.493

Metric-RR@0.05 Kitchen→Scan-S1 Kitchen→Scan-S2 Kitchen→Scan-S3 Kitchen→Scan-S4 Kitchen→Scan-S5 Kitchen→Scan-S6 Kitchen→Scan-S7 Average
P2-Net 0.778 0.750 0.846 0.273 0.893 0.929 0.510 0.711

2D3D-MATR 0.956 0.954 0.974 0.433 0.923 0.909 0.750 0.842
Top-I2P 0.889 0.902 0.976 0.620 0.962 0.981 0.976 0.901

Metric-IR Kitchen→Self-S1 Kitchen→Self-S2 Kitchen→Self-S3 Kitchen→Self-S4 Kitchen→Self-S5 Kitchen→Self-S6 Kitchen→Self-S7 Average
P2-Net 0.336 0.299 0.270 0.429 0.304 0.443 0.235 0.331

2D3D-MATR 0.497 0.462 0.426 0.618 0.507 0.619 0.412 0.506
Top-I2P 0.506 0.499 0.476 0.617 0.473 0.615 0.459 0.521

Metric-RR@0.05 Kitchen→Self-S1 Kitchen→Self-S2 Kitchen→Self-S3 Kitchen→Self-S4 Kitchen→Self-S5 Kitchen→Self-S6 Kitchen→Self-S7 Average
P2-Net 0.333 0.224 0.056 0.833 0.222 0.942 0.052 0.380

2D3D-MATR 0.556 0.389 0.333 0.976 0.532 0.964 0.278 0.575
Top-I2P 0.722 0.444 0.452 0.944 0.611 0.952 0.333 0.636

Table 2: Open-domain I2P registration performance across multiple datasets, including RGBD-V2, ScanNet, and self-collected datasets.

et al., 2017], and self-collected datasets are provided in Table
2.

First, P2-Net suffers from significant overfitting to the
training scene due to the absence of feature interaction mod-
ules. This limitation causes its backbone networks to gener-
alize poorly to unseen scenes. Second, while 2D3D-MATR
incorporates a feature interaction module, it operates only on
patch-level features, limiting its ability to learn fine-grained
pixel-level cross-modality interactions. This results in 2D3D-
MATR being superior to P2-Net while weaker than Top-
I2P. Third, Top-I2P achieves a more accurate feature inter-
action through its topology-based approach, which results in
a higher number of inliers than 2D3D-MATR across different
datasets (Fig. 6). The RR of Top-I2P is consistently and sig-
nificantly better than that of 2D3D-MATR on all datasets. It
suggests that topology relationship are helpful in improving
the localization quality of pixel-to-point correspondences.

Furthermore, we compare the proposed Top-I2P with LCD
[Pham et al., 2020], SuperGlue (Glue) [Sarlin et al., 2020],
and FreeReg [Wang et al., 2024] on ScanNet [Dai et al.,
2017]. The results of these methods are obtained from
FreeReg [Wang et al., 2024], where the RMSE threshold is
0.3m. The results are provided in Table 3. Even with a stricter
RMSE threshold, Top-I2P achieves an RR 12.1% higher than
FreeReg [Wang et al., 2024]. It means that the generalization
ability of Top-I2P is higher than that of FreeReg. Addition-
ally, we compare Top-I2P with FCGF [Choy et al., 2019],
FreeReg [Wang et al., 2024], and Diff-Reg [Wu et al., 2024b]
on the RGBD-V2 dataset [Lai et al., 2014], where all models
are trained using the train and test splits in literature [Li et al.,
2023]. The results are provided in Table 4, and they show that
Top-I2P outperforms state-of-the-art methods. Therefore, the
above experiments suggest that Top-I2P achieves the best per-
formance in the open-domain I2P registration task.

4.3 Ablation studies
In this section, we study the effect of the CTR and FTI mod-
ules in Top-I2P. First, the ablation study of the CTR module is

Methods P2-Net† 2D3D-MATR† LCD Glue FreeReg Top-I2P†

IR 0.303 0.451 0.307 0.184 0.568 0.493
RR@0.3 0.711 0.842 N/A 0.065 0.780 0.901

Table 3: Comparison results on the ScanNet dataset (RMSE thresh-
old is 0.3m). † indicates that the model was trained on the Kitchen
scene with the RMSE threshold of 0.05m, stricter than 0.3m.

Methods P2-Net 2D3D-MATR FCGF FreeReg Diff-Reg Top-I2P
IR 0.122 0.324 0.081 0.309 N/A 0.427

RR@0.1 0.384 0.564 0.304 0.573 0.874 0.892

Table 4: Comparison results of current methods on the RGBD-v2
dataset, evaluated with an RMSE threshold of 0.1m.

provided in Table 5. [m,n] denotes two MLP neural network
layers with m and n channels. Empty indicates that the model
is the baseline [Li et al., 2023] if true. Sinkhorn refers to the
usage of the Sinkhorn layer [Sinkhorn, 1967]. From Table 5,
the Sinkhorn layer plays a dominant role in the CTR module,
because it determines the accuracy of topology relationship
prediction. This accuracy directly impacts the overall effec-
tiveness of the CTR module. Thus, the performance of CTR
depends on the prediction accuracy of π(Pi) ∩ Ij .

Second, the ablation study of the FTI module is shown in
Table 6. NS is the stack number of the message passing sub-
module in FTI, as shown in Fig. 4. We fix NS and search for
the optimal α in the range [0.80, 0.88]. The performance is
relatively insensitive to α, as the FTI module primarily inter-
acts with average features. We keep the optimal α and search
for the best NS . When the stack number NS is excessively
large, the average features in different patches tend to be simi-
lar, which reduces the discriminative ability of cross-modality
features. The best α and NS are 0.86 and 2, respectively.

Third, we investigate the performance of the combination
of the CTR and FTI modules. Results are provided in Table
7. Removing CTR (and replacing it with MLPs) causes a
significant drop in topology prediction accuracy (Pred. Acc.),
leading to degraded IR and RR. Similarly, without FTI, the



Empty GCN MLPs Sinkhorn IR RR Pred. Acc.
Yes × × × 0.376 0.464 N/A
× [128, 128] × × 0.382 0.522 0.354
× [128, 256] [256, 128] × 0.388 0.535 0.375
× [128, 256] [256, 128] Yes 0.433 0.628 0.773

Table 5: Ablation study of the proposed CTR module in Top-I2P on
the 7-Scene dataset, where the Chess scene was used for training.
Pred. Acc is the accuracy of the predicted topology relationship.

α 0.80 0.82 0.84 0.86 0.88 NS 1 2 3
IR 0.454 0.455 0.458 0.469 0.462 IR 0.467 0.469 0.465
RR 0.552 0.561 0.566 0.571 0.570 RR 0.558 0.571 0.566

Table 6: Ablation study of hyper-parameters α and Ns of the FTI
module on the 7-Scene dataset, where the Office is the training
scene.

Methods Top-I2P (w/o CTR) Top-I2P (w/o FTI) Top-I2P
IR 0.392 0.402 0.433
RR 0.487 0.558 0.628

Pred. Acc. 0.513 0.752 0.773

Table 7: Ablation study of the combination of CTR and FTI on the
7-Scene dataset. Pred. Acc. denotes the accuracy of predicted topol-
ogy relationship.

model struggles to exploit topological cues for cross-modality
learning. These results validate the necessity of both CTR and
FTI.

Fourth, we evaluate the inference time and GPU mem-
ory usage performance of Top-I2P. Actually, there are two
schemes to accelerate Top-I2P. First, we can skip 3D SAM
during model inference, because 3D point cloud segmenta-
tion can be pre-computed in some downstream tasks related
to I2P registration (i.e., visual localization). Second, we can
use a lightweight 2D SAM during model inference. It can
further reduce the runtime and memory usage. The results of
the accelerated Top-I2P are shown in Table 8. It is found that
the frame per second (FPS) of MATR [Feng et al., 2019] and
the proposed Top-I2P are nearly the same.

Besides, we also analyze the failure case of the proposed
I2P registration method. Although Top-I2P achieves the best
I2P registration performance in the open-domain scenarios,
Top-I2P still faces difficulties when input images lack texture
or the point clouds have low resolution, as shown in Fig. 7. In
such cases, even though the IR is higher than 2D3D-MATR,
the 2D-3D correspondences become sparse. Thus, in future
work, we attempt to refine the architecture to achieve accurate
and real-time I2P registration performance.

5 Conclusions
In this paper, we addressed the challenge of open-domain
I2P registration. At first, inspired by the potential connec-
tion between topology relationship and cross-modality fea-
ture interaction, we developed an I2P registration framework
using topology relationship. After that, to efficiently con-
struct and leverage topology relationship from heterogeneous
2D and 3D spaces, we designed Top-I2P with CTR and FTI
modules. Extensive experiments on multiple datasets have

Methods Inference time/ms FPS Memory usage/MB
MATR 127 7.8 3114
Top-I2P 45(SAM)+132=177 5.6 2432(SAM)+3520=5952

Table 8: Inference time and memory usage of the accelerated Top-
I2P.

Figure 7: Failure case of Top-I2P in the self-collected dataset.

demonstrated the superior performance of Top-I2P.

Limitation and future work. Top-I2P does not fully utilize
other topology relationship, such as A◦ ∩ ∂B and ∂A ∩ ∂B
in Eq. (11). We plan to refine this framework in the future.
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