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Abstract
Image-to-point-cloud (I2P) registration is a fundamental yet challenging problem in computer vision. Despite significant
advances in deep learning, I2P registration struggles with correspondence accuracy when training samples are limited. To
address this challenge, we propose a Beltrami flow based I2P registration method termed Flow-I2P. From the perspective of
information geometry, I2P registration can be reframed as a manifold alignment problem. Our in-depth analysis shows that
Beltrami flow enhances I2P registration by improving manifold alignment quality. Building on this analysis, we introduce a
Beltrami flow based cross-modality feature interaction layer, B-flow, to progressively refine manifold alignment. To reduce
memory and computation demands, B-flow is then optimized into C-flow through the incorporation of feature covariance-
based attention.We further enhance I2P registration performance by developing Flow-I2P,which incorporates normal features,
stacked C-flow layers, and a two-stage training strategy. To evaluate the registration performance of Flow-I2P, we conduct
extensive experiments on five indoor and outdoor datasets, including RGB-D V2, 7-Scenes, ScanNet, KITTI, and a self-
collected dataset. Our results indicate that Flow-I2P achieves higher inlier ratio (IR) and registration recall (RR) compared to
state-of-the-art methods. We conclude that Flow-I2P significantly enhances I2P registration with superior capabilities. The
source code of Flow-I2P is available
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1 Introduction

Image-to-point-cloud (I2P) registration is a fundamental task
in computer vision. It aims to establish 2D-3D correspon-
dences between images and point clouds (David et al., 2004).
These correspondences are essential for estimating the 6
degree-of-freedom (DoF) camera pose using perspective-n-
point (PnP) (Lepetit et al., 2009). I2P registration has broad
applications, including multi-sensor calibration (An et al.,
2024b), 6DoF object pose estimation (Xu et al., 2024), visual
localization (Kim et al., 2023; Miao et al., 2023), robot state
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estimation (Ye et al., 2020), point cloud colorization (Vech-
ersky et al., 2018), and visual navigation (Liu et al., 2024).
As a result, I2P registration has garnered significant attention
in recent years.

Unlike related tasks such as image registration and point
cloud registration, I2P registration remains under-explored,
due to the inherent challenge of cross-modality between
images and point clouds. These two data types differ signif-
icantly in structure, dimension, and features (An et al., 2022).
This makes the design of handcrafted 2D-3D descriptors par-
ticularly difficult. As a result, progress in I2P registration
has lagged behind that of its sister tasks (Yang et al., 2021).
Early approaches to I2P registration framed it as an opti-
mization problem, focusing on simultaneously estimating
pose and correspondences (Moreno-Noguer et al., 2008) or
on outlier-robust estimation (Yang & Carlone, 2023). How-
ever, these methods face significant computational burdens,
making it difficult to achieve 1 real-time performance and
robustness (An et al., 2024b). Recently, deep learning has
emerged as a promising approach to I2P registration (Wang
et al., 2021). With sufficient data, learning based approaches

1 https://github.com/anpei96/Flow-I2P-demo
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Fig. 1 Illustration of the core idea behind our approach in the ideal
case of I2P registration. (a) I2P registration can be reframed as a mani-
fold alignment problem in a latent feature space, where image features
and point cloud features lie on manifolds MI and MP , respectively.
The intersection,MI ∩MP not only reflects the manifold alignment
quality, but also determines the upper bound of the predicted inlier

ratio. More details are given in Appendix A. (b) This insight reveals
that the key challenge in enhancing I2P registration lies in progressively
improving manifold alignment. (c) Our proposed method, Flow-I2P,
leverages Beltrami flow to enhance manifold alignment quality, thereby
significantly increasing the inlier ratio. The manifolds generated from
pixel and point features are visualized in 2D space using t-SNE

can overcome cross-modality differences and achieve strong
performance on the public datasets (Wang et al., 2024). How-
ever, these methods often struggle with generalization when
training data is limited, which is a common issue in appli-
cations such as mobile robot visual localization (Kim et al.,
2023) . To improve generalization in I2P registration, it is
crucial to overcome the cross-modality challengewith lim-
ited training data.

As deep learning based I2P registration is still in its early
stages, few researchers emphasize enhancing generalization.
For instance,Wang et al. designed a zero-shot I2P registration
architecture, FreeReg (Wang et al., 2024), but it suffers from
limited accuracy and relies on a large languagemodel (LLM)
based diffusion network, which is impractical for robots with
limited computing resources. Therefore, improving gener-
alization in I2P registration under limited data conditions
remains an open challenge.

In this paper, we explore I2P registration generalization
from the information geometry perspective. We conceptual-
ize I2P registration as a manifold alignment problem, where
learning-based methods aim to align the manifolds gener-
ated from image and point cloud features. As shown in Fig.
1, accurate manifold alignment directly correlates with accu-
rate registration results. However, existing approaches lack
an effective mechanism to adaptively align cross-modal
manifolds. This explains the weak generalization perfor-
mance when training samples are scarce. To address this,
we present a Beltrami flow based I2P registration network.

Our in-depth analysis reveals that Beltrami flow (Cham-
berlain et al., 2021a) is well-suited for correcting manifold

misalignment. By treating manifold alignment as a single
manifold smoothing problem with the manifold alignment
prior condition, Beltrami flow, a well-known technique
for manifold smoothing, has the potential to significantly
enhance I2P registration generalization.

Building on this analysis, we propose a Beltrami flow
based feature interaction layer, B-flow, designed to pro-
gressively correct manifold alignment. In the Beltrami flow
model, self- and cross-attention are used to represent the
flow process. To reduce memory and computation demands
of B-flow, we introduce C-flow, which leverages feature
covariance-based attention. To further improve registration
performance, we design an I2P registration network, Flow-
I2P, with stacked C-flow layers, where its input features are
enriched with surface normals and their gradients. A two-
stage training scheme ensures the efficient supervision of
Flow-I2P.

Finally, we evaluate the I2P registration performance of
current approaches through extensive experiments on the
RGB-DV2 (Lai et al., 2014), 7-Scenes (Glocker et al., 2013),
ScanNet V2 (Dai et al., 2017), self-collected, and KITTI
(Geiger et al., 2012) datasets. The results indicate that Flow-
I2P achieves superior inlier ratio (IR) and registration recall
(RR) compared to state-of-the-art methods. Thanks to the
lightweight nature of C-flow, Flow-I2P achieves a favorable
trade-off between I2P registration performance and runtime
efficiency, as shown in Fig. 2. Thus, we believe that Flow-I2P
significantly improves I2P registration accuracy. In summary,
our main contributions are as follows:

123



International Journal of Computer Vision

Fig. 2 Comparison of I2P registration performance among state-of-
the-art methods. Results are evaluated on the RGBD-V2 dataset (Lai
et al., 2014) in terms of inlier ratio and runtime. The proposed Flow-
I2P achieves a superior trade-off between registration accuracy and
efficiency, owing to its lightweight and effective Beltrami flow based
feature interaction layers

• We recast I2P registration as a manifold alignment prob-
lem from the perspective of information geometry and
establish the link between Beltrami flow and manifold
alignment, demonstrating its utility in I2P registration.

• We propose Beltrami flow-based feature interaction lay-
ers, B-flow and C-flow, to progressively correct manifold
misalignment. C-flow refines B-flow by incorporating
feature covariance-based attention, reducing memory
and computational requirements.

• We introduce Flow-I2P, an I2P registration network that
leverages surface normals and their gradients, along with
a two-stage training scheme. Flow-I2P outperforms state-
of-the-art methods across five public indoor and outdoor
datasets.

2 RelatedWork

As the proposed method focuses on I2P registration, we
briefly review the background and representative approaches
below.

2.1 Background of I2P Registration

We begin by explaining why I2P registration is important, as
many existing works often fail to explore this issue in depth
despite advancing the field.

In mainstream robotic applications, I2P registration
often occupies a marginal role. The core application of I2P
registration is localization. However, for general robot local-
ization tasks, point cloud registration is typically preferred.
This is because point clouds generated by LiDAR or depth

camera share the same modality as the pre-built 3D map,
thus enhancing the localization accuracy (Yin et al., 2024).
Even for specialized localization tasks (visual localization),
researchers tend to exploit image registration (i.e., matching
image queries to an image database) instead of I2P regis-
tration, as single modality registration is more stable. Some
researchers have used I2P registration in a simplified case
(Yu et al., 2020) where each point in the 3D point cloud has
a visual descriptor (i.e., SIFT (Lowe, 2004)). However, this
does not represent the general I2P registration problem. Oth-
ers designed end-to-end networks to predict poses directly
(Chang et al., 2021), or even without 3D pre-built maps
(Brachmann et al., 2023). Based on the above discussion,
I2P registration appears to be at a disadvantage, with other
methods potentially offering better performance.

Is I2P registration a redundant technique?The answer
is no.We address this question fromboth application and the-
oretical perspectives. First, from the application viewpoint,
the demand for visual localization in a given pre-built 3D
map is rapidly growing (Kim et al., 2023), because of three
reasons: (i) large-scale high-precision 3Dmaps are now easy
to obtain, thanks to the development of multi-sensor based
simultaneous localization and mapping (SLAM) (Lv et al.,
2023); (ii) most robotic applications are conducted in a fixed
scene (Thomas et al., 2023). In this context, pre-built 3D
maps can be stored in the robot systems before usage; (iii)
to reduce costs, monocular camera-based localization and
navigation is a promising technique for robots (Matsumoto
et al., 2024; Kim et al., 2023). In this context, I2P regis-
tration is crucial for robot perception because it can map
images captured by a robot to a pre-built 3D map. Second,
from the theoretical viewpoint, I2P registration holds aca-
demic value in two aspects: (i) unlikemany end-to-end visual
localization methods, I2P registration is not a black box.
Instead, it is grounded in projective geometry, making it ben-
eficial for researchers seeking to design safe, certifiable, and
accurate localization algorithms; (ii) establishing accurate
2D-3D correspondences between images and point clouds
remains a challenge in computer vision. Moreover, studying
I2P registration helps uncover the mechanism behind gen-
eral cross-modality feature learning. Thus, I2P registration
is a crucial technique in robotics.

2.2 Representative Methods of I2P Registration

After analyzing the significance of I2P registration, we illus-
trate the mainstream approaches to this task. In general,
feature interaction denotes a kind of operation to strengthen
source and target data representation via feature fusion. Fea-
ture interaction is a key module in general registration tasks
(Wu et al., 2021). Based on the usage of feature inter-
action, existing methods can be broadly categorized into
non-interaction and interaction-based approaches.
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Non-interaction-based approaches. This kind of approach
estimates 2D-3D correspondences without interacting with
cross-modality features. It typically employs two indepen-
dent backbone networks to extract 2D pixel and 3D point
features, respectively. After that, 2D-3D correspondences are
determined by comparing feature distances. Feng et al. were
the pioneers in this task (Feng et al., 2019). They designed
two independent extractors to learn descriptors from image
andpoint cloudpatches. In the training stage, as false-positive
correspondences are far greater than true-positives, the triplet
loss (Schroff et al., 2015) is used for supervision. Following
the thought of previous work (Feng et al., 2019), Wang et al.
designed a registration network P2-Net (Wang et al., 2021).
Instead of splitting images or point clouds into patches, they
directly extracted pixel and point features using established
2D and 3D backbone networks, more convenient than previ-
ous work (Feng et al., 2019). Extended from image matching
work D2-Net (Dusmanu et al., 2019), they extracted 2D and
3D keypoints from 2D, 3D feature maps via channel-wise
and spatial-wise non-maximum suppression (NMS). To face
I2P registration with a low inlier ratio, they leveraged circle
loss (Sun et al., 2020) to enhance the supervision efficiency.
Kim et al. designed a cross-modality large-scale visual local-
ization method EP2P-Loc (Kim et al., 2023). They focused
on the registration of images and a large-scale point cloud
map. In this task, they split the point cloud map into cubic
submaps and then learnt global cross-modality descriptors to
align the image with the corresponding submaps. The task is
then converted into a regular I2P registration between images
and submaps. They designed a network similar to P2-Net
(Wang et al., 2021). In the training stage, a differentiable PnP
solver (Chen et al., 2022) is used to supervise the registration
quality. Recently, Wang et al. leveraged two pretrained dif-
fusion models to map cross-modality features into the same
latent space (Wang et al., 2024). Although it achieves cer-
tain accuracy in unseen scenes, it requires a diffusion model
based on a large language model (LLM) and cannot be used
on memory-limited devices.

From2019 to2024, backbonenetworks in non-interaction-
based I2P registration have involved a transition from clas-
sical networks designed for images and point clouds to
diffusion models, while the whole registration architecture
remains nearly the same. As backbone networks are inde-
pendent of each other, it is tough to ensure that they can map
cross-modality features into the same latent space. However,
the architectures and loss functions used in these approaches
have inspired the development of interaction-based I2P reg-
istration.

Interaction-based approaches. This kind of approach aims
to learn 2D-3D correspondences with cross-modality feature
interaction. In practice, cross-modality feature interaction
schemes are highly flexible and varied.

In the early stage, Li and Lee were the first to consider
cross-modality interaction in I2P registration (Li & Lee,
2021). Their interaction method is named global feature
interaction (GFI). They first abstracted 1D global features
from 2D images and point clouds. Then, cross-attention is
utilized to interact with these global features. After interac-
tion, the global features are replicatedwith the same shapes of
the 2D image and the 3D point cloud. Finally, the replicated
global features are concatenated with the original image and
point cloud features, respectively. The advantage of GFI is
easy to implement. However, the drawbacks are evident: (i)
1D global features cannot represent local structures, which
are very crucial for 2D-3D correspondence learning; (ii) fea-
ture concatenationwith replicated global features reduces the
discriminative ability of cross-modality features.

Several researchers have attempted to refine this work (Li
& Lee, 2021). Ren et al. designed a complex GFI that can
not only predict 2D-3D overlap regions but also estimate 2D-
3D correspondences (Ren et al., 2023). Zhou et al. leveraged
GFI only in the 2D-3D overlap region prediction (Zhou et al.,
2023). The core of their network is similar to P2-Net (Wang et
al., 2021). Although the performance of these works (Ren et
al., 2023; Zhou et al., 2023) is higher than previous work (Li
& Lee, 2021), the network or loss revision cannot overcome
the disadvantage of GFI.

In the meantime, other researchers attempted to explore
cross-modality feature interaction in a different way. We
roughly categorize these approaches under the term local
feature interaction (LFI). A common geometrical feature
is a cue of LFI. Some researchers modeled the projection of
object edges from 3D space to 2D image by nearest search-
ing (Yuan et al., 2021; An et al., 2020, 2024b). Although
these approaches are not learning-based, they provide valu-
able insights for designing registration networks. Common
semantic feature is also a critical cue of LFI. Liu et al.
established 2D-3Dcorrespondences via the nearest searching
pixel andpointwith the same semantic label (Liu et al., 2021).
However, these nearest searching based methods require a
reliable initial pose. Recently, An et al. conducted a survey
and summarized the geometrical and semantic LFI methods
in the background of LiDAR-camera extrinsic calibration (a
special case of I2P registration) (An et al., 2024a).

Recently, some researchers used cross-attention to con-
struct LFI. Inspired by SuperGlue (Sarlin et al., 2020), Zhou
et al. first leveraged graph neural network (GNN) based self-
and cross-attention to interact 2D and 3D keypoints features
(Zhou et al., 2022). However, strictly speaking, their method
involves 2D-3D keypoints matching rather than I2P regis-
tration, as it assumes the 2D and 3D keypoints are provided
beforehand. Building on previous works (Sarlin et al., 2020),
they employed a differentiable Sinkhorn layer (Campbell et
al., 2020) for correspondence learning. Inspired by the 3D
point cloud registration work GeoTransformer (Qin et al.,

123



International Journal of Computer Vision

2022), Li et al. proposed an I2P registration network called
2D3D-MATR (Li et al., 2023). In their work, LFI is con-
structed by a series of transformer-based stacked attention
layers. However, due to the large computational complexity
of standard transformer layers, LFI in 2D3D-MATR is only
used to extract the fine-grained 2D and 3D patch features.
It increases the accuracy of 2D-3D patches matching, and
indirectly improves the accuracy of 2D-3D correspondences.
Recently, some researchers have improved the transformer-
based LFI by leveraging the denoising diffusion probabilistic
model (DDPM) (Wu et al., 2024) and uncertainty estimation
module (Cheng et al., 2025).

From the above discussion, LFI-based methods have
attractedmore andmore attention in I2P registration, because
they improve the granularity of cross-modality feature inter-
action and are more effective than non-interaction-based or
GFI-based methods.

2.3 Summary

Based on the preceding discussion, the key aspects of I2P
registration can be summarized in three main points:

• Significance. With advancements in 3D scene recon-
struction, effectively reusing pre-built point cloud maps
is essential for enhancing visual localization. As a result,
there has been increasing interest in learning based I2P
registration.

• Tendency. In line with trends in learning-based image
and point cloud registration, designing feature interaction
modules has becomeakey focus in I2P registration.Com-
pared to GFI, LFI offers greater advantages by enhancing
the discriminative ability of cross-modality features.

• Open problem. Although current transformer-based LFI
schemes (Li et al., 2023; Wu et al., 2024; Cheng et al.,
2025) have made progress in I2P registration, they suf-
fer from the large computation burden and fail to learn
the fine-grained pixel-level features. This issue limits the
I2P registration performance and generalization ability.
Thus, the construction of a lightweight and effective LFI
scheme to learn the representative pixel-level features is
still an open problem.

3 ProposedMethod

To address the open problem mentioned in Sec. 2.3, we aim
to rethink transformer-based LFI and learn the fine-grained
pixel-level features from the perspective of information
geometry. To achieve this goal, we establish a connection
between Beltrami flow and LFI, and propose I2P registration
based on Beltrami flow.

3.1 Problem Statement

The goal of I2P registration is to identify 2D-3D correspon-
dences between an image I ∈ R

H×W×3 and a point cloud
P ∈ R

N×3. Here, H and W represent the image height and
width, respectively, while N is the number of points. The 2D-
3D correspondence 〈Ii , Pj 〉 must satisfy the pinhole camera
projection constraint (Zhang, 2000):

di Ii = K(RPj + t) (1)

where Ii ∈ R
3, Pj ∈ R

3 represent a pixel in I and a point
in P , respectively. K ∈ R

3×3 is the intrinsic matrix of the
camera (Zhang, 2000). R and t are the rotation matrix and
translation vector from the world coordinate system to the
camera coordinate system. di is depth of Ii . Since K, R, t,
and di are unknown in I2P registration, predicting the cor-
respondence 〈Ii , Pj 〉 from I and P becomes a challenging
task. Current approaches (Feng et al., 2019; Wang et al.,
2021; Li et al., 2023) tend to determine 〈Ii , Pj 〉 via the fea-
ture distance. In I2P registration, an ideal criterion of 2D-3D
correspondence is:

Definition 1 (Ideal correspondence). 2D-3Dcorrespondence
〈Ii , Pj 〉 is established if and only if the features of Ii and Pj

are equal. According to this definition, 〈Ii , Pj 〉 forms a 2D-
3D correspondence if and only if (see Fig. 1(a))

xi = y j ⇔ 〈Ii , Pj 〉 is a 2D-3D correspondence. (2)

xi = F(Ii |I), y j = G(Pj |P) (3)

where xi ∈ R
c and y j ∈ R

c are the feature vectors learned
from Ii and Pj , respectively. F(·) and G(·) are the learnable
feature extractors. In the practical I2P registration, 〈Ii , Pj 〉
is a correspondence if ‖xi − y j‖ ≤ δ f where δ f is a fea-
ture distance threshold (Wang et al., 2021). In Sec. 3.2, we
consider the ideal I2P registration mainly for simplicity of
discussion.

3.2 Relation Between Beltrami Flow and I2P
Registration

Let MI and MP represent a manifold in c-dimensional
Euclidean space, which contains {xi }Mi=1 and {y j }Nj=1, where
M = HW . As illustrated in Fig. 1, the key to improving
I2P registration capacity is to correct manifold alignment
onMI andMP . We analyze how the Beltrami flow can help
refine this alignment. The analysis is summarized in Fig. 3.

First, we examine the alignment of feature manifolds
under ideal correspondence conditions. For a given corre-
spondence 〈Ii , Pj 〉, according to Eq. (2), we have xi = y j ∈
MI ∩ MP . This condition is satisfied for every valid cor-
respondence. This implies that MI ∩ MP contains all the
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Fig. 3 Overview of the motivation. To improve the generalization
ability of I2P registration, we establish a connection between I2P reg-
istration and Beltrami flow by reformulating the problem as a manifold
smoothing task. Specifically, we introduce a manifold alignment

prior condition, which allows the manifold alignment objective to be
transformed into a manifold smoothing process. This condition is gen-
erally easy to satisfy in practice, making the reformulated approach
broadly applicable

Fig. 4 Overview of our prototype registration architecture. To achieve
I2P registration with high generalization ability, we develop a proto-
type registration architecture that integrates the proposed B-flow layers.

These layers enhance feature interaction and alignment across modali-
ties, contributing to improved registration performance

information about 2D-3D correspondences. An in-depth dis-
cussion ofMI ∩MP is provided in Appendix A. In the ideal
case, MI and MP are perfectly aligned.

Next, we discussmanifold alignment in the actual I2P reg-
istration case. Actually, xi = y j does not necessarily indicate
that 〈Ii , Pj 〉 is a correct 2D-3D correspondence. This implies
thatMI ∩MP contains incorrect correspondences, indicating
that MI and MP are misaligned, as shown in Fig. 1. Thus,
it is essential to correct the structure ofMI ∩MP . However,
sinceMI andMP are complex surfaces in the latent space, it
is difficult to directly correct the alignment ofMI and MP .

To address this problem, we propose a solution that aligns
the manifolds progressively. We aim to construct a learnable
mechanism F(·) such that (MI [t],MP [t]) = F(MI [t −
1],MP [t−1]). As t increases, the alignment quality between
MI [t] andMP [t] is progressively improved. To exploreF(·),
we introduce themanifold alignment prior condition, that
MI [0] and MP [0] should be coarsely aligned. This implies
that the upper bound of feature distance (i.e., ‖xi −y j‖ for the
correspondence 〈Ii , Pj 〉) of the whole correct 2D-3D corre-
spondences inMI [0] ∩MP [0] is δ[0]. Under this condition,
the function ofF(·) is to ensure that the distance upper bound
is decreasing in the next iteration, i.e., δ[t] < δ[t−1], mean-
ing the stitched manifold MH = MI ∪ MP is smoothing at
the regions with the correct correspondences. Based on this,
the manifold alignment onMI andMP can be reformulated

asmanifold smoothing onMH , whereF(·) acts as amanifold
smoothing operator.

Then, we explore a scheme to construct F(·). In practical
I2P registration, MI and MP are discretized as graphs in a
latent space. To approximate MH , we construct a graph GH

from {xi }Mi=1 and {y j }Nj=1. Thus, smoothing themanifoldMH

can be reformulated as a graph smoothing problem on GH .
Beltrami flow is a well-known technique for graph smooth-
ing (Chamberlain et al., 2021a). Hence, based on the above
analysis, we conclude that Beltrami flow can significantly
enhance the capacity of I2P registration.

3.3 Beltrami Flow based Feature Interaction Layer

From Sec. 3.2, we have discussed that Beltrami flow is
helpful for I2P registration. To leverage Beltrami flow for
progressively repairing manifold alignment, we propose B-
flow layers (i.e., a Beltrami flow based LFI module), and
develop a prototype network for I2P registration, as shown
in Fig. 4. According to the literature (Chamberlain et al.,
2021b), a Beltrami flow on GH is:

∂z[t]
∂t

= (A(z[t]) − I)z[t] (4)

z[t] = (xT1 [t], ..., xTM [t], yT1 [t], ..., yTN [t])T (5)

A(z[t])i j = a(z[t]i , z[t] j ) (6)
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Fig. 5 Motivation and architecture of the proposed B-flow and C-flow
layers. To reduce memory overhead associated with Beltrami flow, we
decompose the matrixA using self- and cross-attention, resulting in the

B-flow layer. To further reduce memory and parameter costs, we pro-
pose a covariance-based attention mechanism to replace the standard
attention, leading to the more efficient C-flow layer

whereA(z[t]) is an (M+N )×(M+N ) attention symmetric
matrix, which reflects the edge connections of vertices. a(·, ·)
is a learnable function. I is an identity matrix. By forward
Euler method, z[t] is solved as (Chamberlain et al., 2021b):

z[t] = (I + τ(A(z[t − 1]) − I)) · z[t − 1]
= (1 − τ) · z[t − 1] + τ · A(z[t − 1])z[t − 1] (7)

z[0] = (xT1 , ..., xTM , yT1 , ..., yTN )T (8)

where τ is the time step (i.e., the discretisation parameter).
Literature (Chamberlain et al., 2021b) shows that Eq. (7 is
stable only if τ ∈ (0, 1). Thus, the manifold smoothing oper-
ator F(·) can be regarded as Eq. (7).

AlthoughEq. (7) provides an iterative solution tomanifold
smoothing, it has a huge computation burden in calculating
A(z[t])z[t]. I has the large number of pixels such that M ≈
106. A(z[t]) contains nearly 1012 elements (≈ 100 GB for
storage). To reduce the memory demand, we propose a B-
flow layer to decomposeA(z[t])z[t] using self-attention (SA)
and cross-attention (CA):

A(z[t])z[t] =
(
Axx (z[t]) Axy(z[t])
AT
xy(z[t]) Ayy(z[t])

) (
x[t]
y[t]

)

≈
(
Axx (x[t]) 0

0 Ayy(y[t])
) (

x[t]
y[t]

)
+

(
0 Axy(z[t])

AT
xy(z[t]) 0

) (
x[t]
y[t]

)

≈
(
SAI (x[t])
SAP (y[t])

)
+

(
CAI (x[t], y[t])
CAP (y[t], x[t])

)
(9)

SAI (x[t]) = Softmax

(
(x[t]wx )(x[t]wx )

T

√
c

)
· x[t]

SAP (y[t]) = Softmax

(
(y[t]wy)(y[t]wy)

T

√
c

)
· y[t]

(10)

CAI (x[t], y[t]) = Softmax

(
(x[t]wx )(y[t]wy)

T

√
c

)
· y[t]

CAP (y[t], x[t]) = Softmax

(
(y[t]wy)(x[t]wx )

T

√
c

)
· x[t]
(11)

where A(z[t]) is decomposed into four parts. In Eq. (9), we
simplifyAxx (z[t])x[t] asAxx (x[t])x[t] andAyy(z[t])y[t] as
Ayy(y[t])y[t] by assuming that y[t] is independent with x[t].
As Axx (x[t])x[t] and Ayy(y[t])y[t] are feature computation
with the inter-feature relations, we use SA layers to com-
pute them via Eq. (10). As Axy(z[t])y[t] and AT

xy(z[t])x[t]
are feature computation with the intra-feature relations, we
use CA layers to compute them via Eq. (11). wx ∈ R

c×c

and wy ∈ R
c×c in Eq. (10) are learnable matrices. The com-

putation detail of the B-flow layer is summarized in Fig. 5.
As the assumption that x[t] and y[t] are independent is just
an approximation, Eq. (9) is an approximation to Eq. (7). In
practical applications, to make sure the effect of Eq. (9) is
close to Eq. (7), feature computation in Eq. (9) should run
iteratively.

We further discuss computation advantage of Eq. (9). In
fact, from Eq. (7) to Eq. (9), the attention matrix size is con-
verted from (M + N )2 to M2 + N 2 in Eq. (10) and 2MN
in Eq. (11). Although the attention matrix is not reduced,
Eq. (9) reformulates Beltrami flow as a parallel and interac-
tive attention layers by approximatingAxx (z[t]) asAxx (x[t])
andAyy(z[t]) asAyy(y[t]). It brings new possibilities for the
further refinement of the Beltrami flow.

With the proposed B-flow layer, we establish a prototype
Beltrami flow based I2P registration architecture, as shown
in Fig. 4. It contains an image feature extractor F(·), a point
cloud feature extractor G(·), a series of B-flow layers, and a
non-learnable matching layer. The matching layer is used to
establish 2D-3D correspondences with the normalized fea-
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ture distances (Li et al., 2023). The detail of F(·) andG(·) is
provided in Sec. 4.1.

3.4 Covariance-based Feature Interaction Layer

Although the B-flow layer presented in Fig. 5 seems like an
ideal solution for I2P registration, it still needs much GPU
memory, because the matrices, such as (x[t]wx )(x[t]wx )

T ∈
R

M×M and (x[t]wx )(y[t]wy)
T ∈ R

M×N in Eqs. (10) and
(11), still have a large number of elements (i.e.,M ≈ 106 and
N ≈ 105). As most applications of I2P registration are based
on robots or platforms with limited computational resources,
it is necessary to design a lightweight LFImodule from theB-
flow layer. To address this issue, we introduce a covariance-
based feature attention mechanism, resulting in the design of
the C-flow layer, as the refinement of B-flow.

We explore an alternative to the attention matrices in Eqs.
(10) and (11). As (x[t]wx )(x[t]wx )

T , (y[t]wy)(y[t]wy)
T ,

and (x[t]wx )(y[t]wy)
T are the low-rank matrices (i.e. ranks

are not greater than c), we may find another learnable matri-
ces vx and vy so that Eq. (10) is equivalent to the following
equation (detailed discussion is provided in Appendix. B):

Softmax

(
(x[t]wx )(x[t]wx )

T

√
c

)
· x[t]

= x[t] · Softmax

(
(x[t]vx )T (x[t]vx )√

c

)

where attention type shifts from spatial-wise to dimensional-
wise. Its advantage is to significantly reduce the attention
size from N × N to c× c (N is 104 times greater than c). To
avoid the negative impact of feature basis, we revise x[t]vx
with zero-mean normalization, so that (x[t]vx )T (x[t]vx ) is
converted asCov(x[t]vx )whereCov(·) is an operator to com-
pute the covariance matrix. Based on the above thought, we
propose the computation procedure of C-flow that consists
of covariance-based SA (CSA) and CA (CCA) (for the best
readability, we still use wx and wy instead of vx and vy):

CSAI (x[t]) = x[t] · Softmax

(
Cov(x[t]wx )√

c

)

CSAP (y[t]) = y[t] · Softmax

(
Cov(y[t]wy)√

c

) (12)

CCAI (x[t], y[t]) =

y[t] · Softmax

(
Cov(x[t]wx ) · (Cov(y[t]wy))

†

√
c

)

CCAP (y[t], x[t]) =

x[t] · Softmax

(
Cov(y[t]wy) · (Cov(x[t]wx ))

†

√
c

)
(13)

Fig. 6 Architecture of the proposed Flow-I2P. SN denotes surface nor-
mals. With the pretrained SN estimator, we can predict SN from a 2D
image

where † denotes the general matrix inverse. The covariance
matrix reflects feature dimensional correlation in the different
dimensions. If x[t] and y[t] coincide in the same manifold
with large overlap, Cov(x[t]) and Cov(y[t]) have the high
similarity. This implies that the difference of Cov(x[t]) and
Cov(y[t]) is a cue formanifold stitching ofMI andMP . That
is the reason why the CSA layer is designed according to Eq.
(13).

By comparing Eqs. (12) and (13) to Eqs. (10) and (11),
we observe a substantial reduction in memory usage from
O(MN ) to O(c2). As c is nearly 102, c2 ≈ MN · 10−7 (i.e.,
c2 � MN ). CCA saves 107 times memory than the standard
CA layer. It makes the proposed Beltrami flow based I2P
model feasible for practical applications.

3.5 Practical Beltrami Flow based I2P registration

To achieve optimal registration performancewithC-flow lay-
ers, we have developed the Flow-I2P network, shown in Fig.
6. It consists of the pre-processing layer,F(·),G(·), T stacked
C-flow layers, and the matching layer. Compared with the
prototype architecture in Fig. 4, the major differences of
Flow-I2P lie in (i) feature pre-processing and (ii) training
scheme.

We first illustrate the pre-processing step. It is recalled in
Sec. 3.2 that the manifold alignment prior condition is a
crucial support to convert manifold alignment into manifold
smoothing. To satisfy this condition, we attempt to enrich the
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input features from (I,P) to (Iaug,Paug) via adding surface
normals:

Iaug = I ⊕ SN2d , Paug = P ⊕ SN3d (14)

SN2d = SN_Pred(I) (15)

where ⊕ is the feature concatenation operation. SN2d ∈
R

H×W×3 is surface normals predicted from I with a pre-
trained model SN_Pred(·). SN3d ∈ R

N×3 denotes the
surface normals of the point cloud. Surface normals of
image and point cloud can constrain 2D-3D correspondences
(reason is provided in Appendix D), so that we leverage
surface normals as the extra features in 2D pixels and 3D
points. Using (Iaug,Paug), the discriminative ability of F(·)
and G(·) is significantly increased (see ablation studies in
Sec. 4.3), ensuring a high-quality manifold alignment of
MI [0]∩MP [0]. Eqs. (14) and (15) denote the pre-processing
layer illustrated in Fig. 6.

Next, we illustrate the training scheme of Flow-I2P. It is
recalled that δ[0] is the upper bound of feature distance of
correct correspondences in MI [0] ∩ MP [0]. A smaller δ[0]
significantly enhances the effectiveness of manifold smooth-
ing. In this thought, pre-training F(·) and G(·) to minimize
δ[0] is another way to satisfy themanifold alignment prior
condition. Thus, we design a two-stage training scheme for
Flow-I2P. In the first stage, only F(·) andG(·) are pretrained
by minimizing the following function:

min
�F,�G

E(I,P)∼DL I2P(x[0], y[0]|CGT) (16)

where L I2P is a standard loss for I2P registration (Li et al.,
2023). (I,P) ∼ D denotes a pair of image and point cloud
randomly sampled from the training dataset Dt . E is the
expectation operator. �F and �G are learnable parameters
of F(·) and G(·). As MI and MP are generated from x[0]
and y[0], Eq. (16) ensures thatMI andMP are aligned with
a certain degree of accuracy. In the second stage, Flow-I2P
is fine-tuned by minimizing the following function:

min
�

E(I,P)∼DL I2P(x[T ], y[T ]|CGT) (17)

where � denotes the whole parameters in Flow-I2P. This
coarse-to-fine training scheme helps stabilize the learning of
2D-3D correspondences.

4 Experiments

This section provides implementation details and evaluation
metrics of the proposed Flow-I2P method. We then conduct
ablation studies to evaluate the effectiveness of Flow-I2P
modules, followed by comprehensive comparisons on five

Fig. 7 An example of the images and point clouds in the datasets used
in our experiments. All datasets are collected from real-world environ-
ments and inherently exhibit challenges such as occlusions, noise, and
missing depth values

indoor and outdoor datasets. Finally, the performance of
Flow-I2P is analyzed.

4.1 Implementation Details

Due to the limited number of publishedworks on I2P registra-
tion, we implement Flow-I2Pmainly based on 2D3D-MATR
(Li et al., 2023)2.

Network architecture. The proposed Flow-I2P requires a
surface normal estimation model, for which we use the pre-
trained DSINE model (Bae & Davison, 2024) to estimate
surface normals from a monocular RGB image. Flow-I2P
also requires F(·) and G(·) to extract features from images
and point clouds, respectively. Following 2D3D-MATR (Li
et al., 2023), F(·) is a 4-stage feature pyramid network (FPN)
based on ResNet (He et al., 2016), while G(·) is a 4-stage
FPN based on KPConv (Thomas et al., 2019). The training
loss L I2P employs circle loss (Sun et al., 2020), which has
proven effective in I2P registration (Wang et al., 2021; Li et
al., 2023). The hyperparameters for circle loss are consistent
with those in P2-Net (Wang et al., 2021). In Flow-I2P, we do
not refine F(·), G(·), or the circle loss, as they have already
been optimized for I2P registration in previous work (Li et
al., 2023). However, despite their optimization, there is still
significant room for improvement in I2P registration perfor-
mance. So, we focus on cross-modality feature interaction. In
Flow-I2P, the channel number c is set to 256. The key hyper-
parameters τ and the number of stacked layers are examined
in the ablation studies. The training and testing configura-
tions follow those of 2D3D-MATR (Li et al., 2023). The
batch size is set to 1, and the model is trained with adaptive
moments estimation (Adam) optimizer. Flow-I2P exploits
the two-stage training strategy. The first stage has 20 epochs
with a learning rate of 10−4, and the second stage has 10
epochs with a learning rate of 0.5 × 10−4. All experiments
were performed on a single NVIDIA GeForce RTX 3080
GPU. In all datasets, the input point clouds are down-sampled

2 https://github.com/minhaolee/2d3dmatr
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Table 1 Results of
learning-based I2P registration
models on the RGB-D Scenes
V2 testing dataset. ↑ denotes
that a higher value indicates
better performance. † † denotes
that the I2P registration method
requires depth information from
RGB-D camera. The Bolditalic
highlight indicates the best
average of the I2P registration
method without requiring
physical scale depth

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean

Inlier Ratio ↑
FCGF (Choy et al., 2019) 6.8% 8.5% 11.8% 5.4% 8.1%

Predator (Huang et al., 2021) 17.7% 19.4% 17.2% 8.4% 15.7%

P2-Net (Wang et al., 2021) 9.7% 12.8% 17.0% 9.3% 12.2%

2D3D-MATR (Li et al., 2023) 32.8% 34.4% 39.2% 23.3% 32.4%

FreeReg (Wang et al., 2024) 36.6% 34.5% 34.2% 18.2% 30.9%

Diff-Reg† (Wu et al., 2024) 47.2% 48.7% 32.9% 22.4% 37.8%

Bridge (Cheng et al., 2025) 36.4% 32.7% 43.8% 27.4% 35.1%

Flow-I2P (Ours) 49.6% 44.0% 36.5% 30.4% 40.1%

Feature Matching Recall ↑
FCGF (Choy et al., 2019) 11.1% 30.4% 51.5% 15.5% 27.1%

Predator (Huang et al., 2021) 86.1% 89.2% 63.9% 24.3% 65.9%

P2-Net (Wang et al., 2021) 48.6% 65.7% 82.5% 41.6% 59.6%

2D3D-MATR (Li et al., 2023) 98.6% 98.0% 88.7% 77.9% 90.8%

FreeReg (Wang et al., 2024) 91.9% 93.4% 93.1% 49.6% 82.0%

Diff-Reg† (Wu et al., 2024) 100.0% 100.0% 88.7% 77.0% 91.4%

Bridge (Cheng et al., 2025) 100.0% 99.0% 92.8% 85.8% 94.4%

Flow-I2P (Ours) 100.0% 100.0% 94.5% 78.7% 93.3%

Registration Recall ↑
FCGF (Choy et al., 2019) 26.4% 41.2% 37.1% 16.8% 30.4%

Predator (Huang et al., 2021) 44.4% 41.2% 21.6% 13.7% 30.2%

P2-Net (Wang et al., 2021) 40.3% 40.2% 41.2% 31.9% 38.4%

2D3D-MATR (Li et al., 2023) 63.9% 53.9% 58.8% 49.1% 56.4%

FreeReg (Wang et al., 2024) 74.2% 72.5% 54.5% 27.9% 57.3%

Diff-Reg† (Wu et al., 2024) 98.6% 96.1% 83.5% 63.7% 85.5%

Bridge (Cheng et al., 2025) 58.3% 60.8% 74.2% 60.2% 63.4%

Flow-I2P (Ours) 90.0% 65.9% 54.8% 63.0% 68.4%

with a voxel size of 1.5 cm, where the maximum number of
points is 3 × 105.

Evaluation metrics. We used three primary metrics to
evaluate the overall performance of I2P registration. (i) IR
measures the proportion of 2D-3D correspondences with a
3D distance of less than 5 cm; (ii) feature matching recall
(FMR) calculates the ratio of image-point-cloudpairswith IR
values greater than 10%; (iii) RR assesses the ratio of image-
point-cloud pairs with root mean square errors (RMSE) are
below 10 cm. Additionally, we compute relative translational
error (RTE, in cm) and relative rotational error (RRE, in deg).
With the 2D-3D correspondences predicted by the I2P reg-
istration model, RR, RTE, and RRE are computed using a
RANSAC-based PnP algorithm (Lepetit et al., 2009).

Datasets. Given the close relationship between I2P reg-
istration and indoor visual localization, we evaluate I2P
registration performances on three indoor datasets: RGB-D
V2 (Lai et al., 2014), 7-Scenes (Glocker et al., 2013), and
ScanNet V2 (Dai et al., 2017). These datasets feature contin-
uous RGB-D frames with accurate 6-DoF pose annotations.

We adopt the same data split as in previous work (Li et al.,
2023) for theRGB-DV2 and 7-Scenes datasets.On theRGB-
DV2 dataset, scenes 1-8 are used for training, scenes 9-10 for
validation, and scenes 11-14 for testing. Pairs of images and
point clouds with an overlap ratio of at least 30% are used as
samples in the RGB-D V2 dataset. On the 7-Scenes dataset,
18,228 training pairs, 478 validation pairs, and 9,554 testing
pairs are selected, with an overlap ratio threshold of 50%. On
the ScanNet V2 dataset, only 10% of the data is used for fine-
tuning, while 90% of the data is used for testing. Besides, we
record the real-world RGB-D data as a self-collected dataset
using an Intel RealSense camera. It is used to evaluate per-
formance in real-world environments. Similar to the ScanNet
V2 dataset, 10%of the data is used for fine-tuning,while 90%
is used for testing. Overall, all datasets are collected in the
real world (seen in Fig. 7). Point cloud inevitably has sensor
noise, occlusion, sparsity, and missing depths, which pose
challenges to all I2P registration methods.
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Fig. 8 Qualitative comparison between the proposed Flow-I2P and
2D3D-MATR (Li et al., 2023) on Scene-14 of the RGB-D V2 dataset.
Scene-14 represents the greatest challenge due to low image texture

and sparse point clouds. Flow-I2P demonstrates greater robustness and
reliability under these difficult conditions

4.2 Comparisons

We compare the proposed Flow-I2P with state-of-the-art I2P
registration methods across five different indoor and outdoor
datasets. After that, we assess the generalization ability of
these methods in cross-dataset scenarios.

RGB-D V2 dataset. This experiment evaluates the perfor-
mance of Flow-I2P and state-of-the-art I2P methods on the
RGB-D V2 test dataset (Lai et al., 2014). The methods com-
pared to include P2-Net (Wang et al., 2021), 2D3D-MATR
(Li et al., 2023), FreeReg (Wang et al., 2024), Diff-Reg
(Wu et al., 2024), and Bridge (Cheng et al., 2025). We also
compare Flow-I2P with point cloud registration methods,
FCGF (Choy et al., 2019) and Predator (Huang et al., 2021),
both of which can be extended to the I2P registration task.
Table 1 presents the experimental results showing that Flow-
I2P outperforms all other methods in this dataset. Flow-I2P
achieves a 7.7% higher IR than 2D3D-MATR and an 11.1%
higher RR than FreeReg. It also achieves a 5.0% higher IR
and 5.0% higher RR than recently published work Bridge
(Cheng et al., 2025). Compared to 2D3D-MATR, Flow-I2P

utilizes LFImodules to correct themanifold structures ofMI

and MP , thus enhancing the generalization ability of cross-
modality featurematching.UnlikeFreeReg,Flow-I2P relies
solely on surface normals to eliminate cross-modality fea-
ture differences, instead of a large-scale diffusion pretrained
model. It achieves a more accurate result than FreeReg.
Unlike othermethods,Diff-Reg (Wuet al., 2024) requires the
physical-scale depth fromRGB-D data to filter incorrect 2D-
3D correspondences in the diffusion procedure. In fact, the
standard I2P registration task generally does not use physical-
scale depth as input. In this context, Diff-Reg achieves a
significantly higher RR than Flow-I2P. Compared to Diff-
Reg, the proposed Flow-I2P offers three advantages: (i) it
works without physical-scale depth; (ii) it achieves higher
IR than Diff-Reg; (iii) its runtime is nearly 3× faster than
Diff-Reg (seen in Fig. 2). Compared to Bridge (Cheng et
al., 2025), the proposed C-flow layers outperform the uncer-
tainty estimation layers in Bridge, as Flow-I2P significantly
improves IR and RR than Bridge.

As shown in Table 1, Scene-14 is the most challeng-
ing; therefore, we visualize the correspondence quality of
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Table 2 Results of learning-based I2P registration models trained with
the complete training data on the 7-Scenes testing dataset. ↑ denotes
that a higher value indicates better performance. † denotes that the I2P

registration method requires depth information from RGB-D camera.
TheBolditalic highlight indicates the best average of the I2P registration
method without requiring physical scale depth

Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Inlier Ratio ↑
FCGF (Choy et al., 2019) 34.2% 32.8% 14.8% 26.0% 23.3% 22.5% 6.0% 22.8%

Predator (Huang et al., 2021) 34.7% 33.8% 16.6% 25.9% 23.1% 22.2% 7.5% 23.4%

P2-Net (Wang et al., 2021) 55.2% 46.7% 13.0% 36.2% 32.0% 32.8% 5.8% 31.7%

2D3D-MATR (Li et al., 2023) 72.1% 66.0% 31.3% 60.7% 50.2% 52.5% 18.1% 50.1%

Diff-Reg† (Wu et al., 2024) 73.3% 60.8% 45.5% 63.1% 47.8% 53.3% 20.4% 52.0%

Bridge (Cheng et al., 2025) 73.8% 66.7% 33.1% 61.7% 50.8% 52.3% 18.1% 50.9%

Flow-I2P (Ours) 76.7% 64.7% 37.1% 62.0% 52.3% 52.8% 18.5% 52.0%

Feature Matching Recall ↑
FCGF (Choy et al., 2019) 99.7% 98.2% 69.9% 97.1% 83.0% 87.7% 16.2% 78.8%

Predator (Huang et al., 2021) 91.3% 95.1% 76.7% 88.6% 79.2% 80.6% 31.1% 77.5%

P2-Net (Wang et al., 2021) 100.0% 99.3% 58.9% 99.1% 87.2% 92.2% 16.2% 79.0%

2D3D-MATR (Li et al., 2023) 100.0% 99.6% 98.6% 100.0% 92.4% 95.9% 58.1% 92.1%

Diff-Reg† (Wu et al., 2024) 100.0% 98.5% 97.3% 100.0% 87.8% 96.8% 60.8% 91.6%

Bridge (Cheng et al., 2025) 100.0% 100.0% 98.6% 100.0% 92.7% 95.6% 64.9% 93.1%

Flow-I2P (Ours) 100.0% 99.7% 95.1% 99.9% 93.1% 96.8% 56.7% 91.6%

Registration Recall ↑
FCGF (Choy et al., 2019) 89.5% 79.7% 19.2% 85.9% 69.4% 79.0% 6.8% 61.4%

Predator (Huang et al., 2021) 69.6% 60.7% 17.8% 62.9% 56.2% 62.6% 9.5% 48.5%

P2-Net (Wang et al., 2021) 96.9% 86.5% 20.5% 91.7% 75.3% 85.2% 4.1% 65.7%

2D3D-MATR (Li et al., 2023) 98.8% 87.1% 46.7% 93.2% 77.1% 87.2% 38.2% 75.5%

Diff-Reg† (Wu et al., 2024) 99.3% 94.3% 91.8% 99.1% 79.9% 91.8% 25.7% 83.1%

Bridge (Cheng et al., 2025) 98.3% 90.5% 56.2% 96.4% 84.0% 86.1% 32.4% 77.7%

Flow-I2P (Ours) 98.8% 90.0% 58.4% 93.9% 82.1% 88.6% 37.6% 78.4%

Flow-I2P and its baseline method in Fig. 8. We observe that
Flow-I2P demonstrates greater robustness under the extreme
input condition, which is attributed to its effective feature
interaction module. Thus, Flow-I2P demonstrates a signifi-
cant improvement over existing methods on the RGB-D V2
test dataset.

7-Scenes dataset. This experiment examines the perfor-
mance of Flow-I2P and state-of-the-art I2P methods on the
7-Scenes test dataset (Glocker et al., 2013). The comparison
results are provided in Table 2. The proposed Flow-I2P still
achieves the best registration performance, because it lever-
ages Beltrami flow and thus effectively reduces the modality
gap between images and point clouds. In the degraded scene
Stairs, Flow-I2P achieves an RR that is 5.2% higher than
Bridge (Cheng et al., 2025).

In practical I2P registration applications, most inference
scenes are either unseen or significantly different from the
training dataset. To assess the generalization ability of these
methods, we conduct comparisons using only 5% of the
training samples. The results are presented in Table 3. 2D3D-
MATR+SN represents the original method using surface

normals as input.We find that Flow-I2P significantly outper-
forms 2D3D-MATR. With limited training samples, MI [0]
and MP [0] align with large errors, and the proposed C-flow
layer effectively corrects these errors.When training samples
are sufficient and closely match the testing samples, MI [0]
and MP [0] align with small errors, resulting in limited per-
formance gains from the C-flow layer. This explains why
Flow-I2P shows significant improvement in Table 3 but only
minor gains in Table 2. From Fig. 9, the proposed Flow-I2P
generates more inliers than other methods, even in challeng-
ing scenes.

ScanNet dataset. This experiment evaluates the perfor-
mance of Flow-I2P on the ScanNet dataset (Dai et al., 2017).
In this dataset, 10% of the data is used for training, and 90%
for testing. All approaches are pretrained on the 7-Scenes
dataset and fine-tuned on ScanNet. The comparison results
are presented in Table 4. State-of-the-art methods, such as
FreeReg+PnP (Wang et al., 2024), LCD+PnP (Pham et
al., 2020), and SuperGlue+PnP (Sarlin et al., 2020), are
included for comparison. The performance of these meth-
ods is taken from the literature (Wang et al., 2024) and it
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Table 3 Results of learning-based I2P registration models trained with only 5% of the training data on the 7-Scenes testing dataset. The Bolditalic
highlight indicates the best average. ↑ denotes that a higher value indicates better performance, while ↓ indicates that a smaller value is better

Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Inlier Ratio ↑
2D3D-MATR (Li et al., 2023) 42.1% 23.9% 9.0% 24.4% 22.2% 22.3% 5.1% 21.3%

2D3D-MATR+SN 47.5% 32.0% 10.2% 33.9% 22.6% 24.3% 8.5% 25.6%

Flow-I2P (Ours) 52.8% 37.6% 12.4% 31.4% 26.2% 29.1% 7.9% 28.2% (↑6.9%)

Feature Matching Recall ↑
2D3D-MATR (Li et al., 2023) 99.5% 82.6% 34.5% 88.0% 78.7% 82.3% 14.5% 68.6%

2D3D-MATR+SN 99.6% 90.2% 44.4% 94.7% 84.0% 89.9% 36.4% 77.0%

Flow-I2P (Ours) 99.7% 93.4% 42.7% 94.4% 91.2% 91.8% 35.2% 78.4% (↑9.8%)

Registration Recall ↑
2D3D-MATR (Li et al., 2023) 71.9% 35.8% 2.2% 60.1% 46.4% 54.3% 10.9% 40.2%

2D3D-MATR+SN 87.9% 43.9% 2.7% 63.1% 46.8% 71.9% 10.4% 46.6%

Flow-I2P (Ours) 89.0% 41.3% 0.7% 64.5% 51.4% 70.5% 7.2% 47.3% (↑7.1%)

Mean RRE ↓
2D3D-MATR (Li et al., 2023) 2.791 4.027 9.717 2.910 3.194 3.124 3.019 4.112

2D3D-MATR+SN 2.232 3.767 6.680 2.529 2.893 2.961 3.154 3.459

Flow-I2P (Ours) 2.616 3.979 4.735 3.067 2.884 2.873 3.183 3.334 (↓18.9%)

Mean RTE ↓
2D3D-MATR (Li et al., 2023) 0.074 0.112 0.138 0.101 0.120 0.103 0.100 0.107

2D3D-MATR+SN 0.058 0.103 0.105 0.084 0.106 0.091 0.122 0.096

Flow-I2P (Ours) 0.070 0.117 0.052 0.106 0.100 0.088 0.095 0.090 (↓15.9%)

is included in Table 4. It should be noted that the IR val-
ues from the literature (Wang et al., 2024) use a different
threshold (i.e., 0.3m instead of the standard 0.05m), and
these results are marked with a †. With the proposed C-flow
layer,Flow-I2P outperforms existing approaches. Visualiza-
tion of I2P registration is presented in Fig. 10. In most indoor
scenarios, Flow-I2P achieves 2D-3D correspondences with
more inliers than 2D3D-MATR. This indicates that Flow-
I2P delivers the best performance on the ScanNet dataset
with only 10% training samples for fine-tuning.

Self-collecteddataset. This experiment evaluates the perfor-
mance of Flow-I2P on a self-collected dataset. Point clouds
and RGB images were collected in 8 indoor office scenarios
using the Intel RealSense D435i sensor, as shown in Fig. 11.
Due tomeasurement errors, the 3Dpoint clouds contain some
noise and incomplete regions but have a higher density than
other datasets.On this dataset, 10%of the samples are utilized
for training, and 90% for testing. All methods are pretrained
on the 7-Scenes dataset and fine-tuned on this dataset. The
visualization of I2P registration is provided in Fig. 12. We
observe that the 2D-3D correspondence distribution is sparse
in scenes with nearby objects but becomes denser in scenes
with distant objects. This phenomenon is likely influenced
by the pretrained dataset 7-Scenes, which consists mainly of
scenes with greater distances between objects. This suggests
significant room for improving I2P registration. The com-

parison results are presented in Table 5. Flow-I2P achieves
the highest IR and RR. To verify the robustness of I2P reg-
istration, we compare these methods with varying overlap
ratios between images and point clouds. This is achieved by
randomly masking a portion of the region in images. The
results are provided in Fig. 13. Flow-I2P outperforms other
methods with different overlap ratios. These results indicate
that Flow-I2P has a higher generalization ability than 2D3D-
MATR (Li et al., 2023).

KITTI dataset. This experiment evaluates the registration
performance of Flow-I2P and current I2P registration meth-
ods on the outdoor KITTI dataset (Geiger et al., 2012).
DeepI2P (Li & Lee, 2021), CorrI2P (Ren et al., 2023),
VP2P-Match (Zhou et al., 2023), CoFiI2P (Kang et al.,
2024), CMR-Agent (Yao et al., 2024), and OL-Reg (An
et al., 2024b) are used for comparison. Unlike the indoor
datasets, KITTI has two challenges: (i) the sparsity andmiss-
ing values of LiDAR point cloud, and (ii) the less overlap
region between LiDAR point clouds and RGB images. These
challenges make it difficult to directly train both the original
2D3D-MATR (Li et al., 2023) and Flow-I2P on this dataset.
To address this problem, we utilize the pretrained CorrI2P to
preprocess the LiDAR point clouds to gather the overlapped
LiDAR point clouds. Then, the images and processed point
clouds are used as input in 2D3D-MATR and Flow-I2P. The
average relative translational error (RTE) and average rela-
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Table 4 Results of learning-based I2P registration models on the Scan-
Net testing dataset. The Bolditalic highlight indicates the best average.
↑ means that a higher value indicates better performance, while ↓

indicates that a smaller value is better. † denotes that the 3D distance
threshold for 2D-3D correspondence is set to 0.3m instead of the default
0.05m used in the experiments

Model Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 Scene-8 Mean

Inlier Ratio ↑
FreeReg+PnP (Wang et al., 2024) N/A N/A N/A N/A N/A N/A N/A N/A 56.8%†

LCD+PnP (Pham et al., 2020) N/A N/A N/A N/A N/A N/A N/A N/A 30.7%†

SuperGlue+PnP (Sarlin et al., 2020) N/A N/A N/A N/A N/A N/A N/A N/A 13.4%†

2D3D-MATR (Li et al., 2023) 33.4% 26.2% 24.9% 13.2% 32.8% 24.5% 39.0% 32.9% 28.4%

2D3D-MATR+SN 42.2% 32.0% 33.9% 19.3% 40.7% 29.8% 49.7% 40.3% 35.9%

Flow-I2P (Ours) 43.9% 31.9% 35.6% 20.4% 42.0% 30.7% 51.0% 42.0% 37.2%

Flow-I2P (Ours) 94.5% 92.7% 88.6% 85.2% 93.5% 88.2% 96.2% 92.1% 91.4%†

Feature Matching Recall ↑
FreeReg+PnP (Wang et al., 2024) N/A N/A N/A N/A N/A N/A N/A N/A 98.5%

LCD+PnP (Pham et al., 2020) N/A N/A N/A N/A N/A N/A N/A N/A 55.1%

SuperGlue+PnP (Sarlin et al., 2020) N/A N/A N/A N/A N/A N/A N/A N/A 53.2%

2D3D-MATR (Li et al., 2023) 100.0% 100.0% 100.0% 40.0% 95.8% 90.9% 100.0% 100.0% 90.8%

2D3D-MATR+SN 100.0% 100.0% 100.0% 70.0% 95.8% 100.0% 100.0% 100.0% 95.7%

Flow-I2P (Ours) 100.0% 100.0% 100.0% 80.0% 96.8% 100.0% 100.0% 100.0% 97.1%

Registration Recall ↑
FreeReg+PnP (Wang et al., 2024) N/A N/A N/A N/A N/A N/A N/A N/A 78.0%

LCD+PnP (Pham et al., 2020) N/A N/A N/A N/A N/A N/A N/A N/A 0.0%

SuperGlue+PnP (Sarlin et al., 2020) N/A N/A N/A N/A N/A N/A N/A N/A 1.2%

2D3D-MATR (Li et al., 2023) 88.9% 83.3% 80.0% 30.0% 87.5% 72.7% 100.0% 86.7% 78.6%

2D3D-MATR+SN 89.0% 84.2% 80.0% 40.0% 86.4% 90.9% 100.0% 94.3% 83.1%

Flow-I2P (Ours) 100.0% 88.9% 90.0% 40.0% 87.5% 72.7% 100.0% 96.7% 84.5%

Table 5 Results of learning-based I2P registration models on the self-collected testing dataset. The Bolditalic highlight indicates the best average.
↑ means that a higher value indicates better performance

Model Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Scene-7 Scene-8 Mean

Inlier Ratio ↑
2D3D-MATR (Li et al., 2023) 50.9% 52.1% 66.2% 31.8% 52.4% 33.0% 59.0% 48.6% 49.3%

2D3D-MATR+SN 55.0% 58.2% 66.9% 33.1% 53.3% 35.9% 58.0% 53.5% 51.8%

Flow-I2P (Ours) 57.9% 56.7% 68.6% 34.6% 54.4% 37.1% 60.3% 54.8% 53.0%

Registration Recall ↑
2D3D-MATR (Li et al., 2023) 77.8% 83.3% 94.4% 94.4% 100.0% 95.2% 94.4% 90.9% 91.3%

2D3D-MATR+SN 81.2% 90.8% 98.2% 95.4% 100.0% 95.2% 96.4% 90.9% 93.5%

Flow-I2P (Ours) 88.9% 94.4% 100.0% 94.4% 100.0% 95.2% 100.0% 90.9% 95.5%

Table 6 I2P registration
performance on the KITTI
dataset. The Bolditalic highlight
indicates the best RTE and RRE

Methods Publish information RTE/m RRE/deg

DeepI2P (Li & Lee, 2021) CVPR 2021 1.460 4.270

CorrI2P (Ren et al., 2023) IEEE T-CSVT 2022 0.740 2.070

VP2P-match (Zhou et al., 2023) NeurIPS 2023 0.750 3.290

2D-3D MATR (Li et al., 2023) ICCV 2023 0.020 0.275

CoFiI2P (Kang et al., 2024) IEEE RAL 2024 0.290 1.140

CMR-Agent (Yao et al., 2024) IROS 2024 0.195 0.589

Flow-I2P (Ours) 0.012 0.251
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Fig. 9 Visualization of the proposed Flow-I2P, 2D3D-MATR (Li et al., 2023), and its refinement, 2D3D-MATR+SN in challenging scenes. All
methods are trained using only 5% of the training samples. Flow-I2P generates more 2D-3D correct correspondences than the other methods

tive rotation error (RRE) are used asmetrics. Results in Table
6 demonstrate that the proposed Flow-I2P achieves the best
performance on the KITTI dataset, showing strong gener-
alization by effectively bridging the modality gap between
image and sparse LiDAR features via Beltrami flow.

Noise robustness test. In real-world applications, noise in
point clouds can negatively affect I2P registration and its
downstream tasks. Such noise often arises from depth sens-
ing inaccuracies or errors in 3D reconstruction. Although
existing datasets (e.g., 7-Scenes, RGBD-v2, ScanNet, and

our self-collected dataset) already contain some measure-
ment noise,we conduct a dedicated robustness test to evaluate
model performance under extreme noise conditions. Specif-
ically, uniformly distributed noise in the range [−δp, δp] is
added to the 3D point coordinates. The results, shown in
Table 7, indicate that stacking C-flow layers significantly
enhances manifold alignment quality, even in the presence
of severe noise. This demonstrates that the proposed Flow-
I2P is robust to point cloud noise in the I2P registration task.
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Fig. 10 Qualitative results of Flow-I2P on the ScanNet dataset. Across most scenes, Flow-I2P produces significantly higher-quality 2D-3D
correspondences compared to 2D3D-MATR (Li et al., 2023)

Fig. 11 Visualization of our self-collected dataset across 8 indoor office
scenes. RGB images and point clouds were captured using the Intel
RealSense D435i. The collected point clouds exhibit typical sensor

imperfections, including measurement noise and incomplete geometry
due to occlusions and limited depth sensing range

Domain generalization. To further examine the generaliza-
tion ability of current I2P registrationmethods, we conducted
an additional domain generalization experiment. The pre-
vious experiments reveal that 2D3D-MATR+SN (Li et al.,
2023) performs closest to Flow-I2P because (i) surface nor-
mals help bridge the feature gap between images and point
clouds, and (ii) the pretrained surface normal estimator (Bae
& Davison, 2024) is robust in open scenes (see Fig. 14).
Without surface normals, the original 2D3D-MATR fails

in most unseen scenarios. Therefore, we compared 2D3D-
MATR+SN and Flow-I2P in this experiment. The results
are reported in Table 8. A→B indicates that the model is
trained on dataset A and tested on unseen dataset B. We can
see that Flow-I2P outperforms 2D3D-MATR+SN, which is
attributed to the adaptive noise reduction of the proposed
Beltrami flow layer during cross-modality feature interac-
tion. In the self-collected dataset, most scenes involve short
distances (i.e., below 1.0m), and the data distribution differs
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Fig. 12 Qualitative comparison of 2D–3D correspondences on the self-
collected dataset. In scenes with closer objects, all methods yield sparse
2D-3D correspondences. In contrast, the distribution of 2D-3D corre-

spondences is much denser in scenes with greater object distances. The
proposed Flow-I2P consistently achieves the highest IR, although it has
some incorrect correspondences under challenging conditions

Table 7 Noise robustness test on the self-collected dataset. The
Bolditalic highlight indicates the best IR and RR

Noise δp 0.0cm 1.0cm 2.0cm 3.0cm 4.0cm

Inlier Ratio ↑
2D3D-MATR 49.3% 48.1% 42.8% 33.7% 25.0%

2D3D-MATR+SN 51.8% 48.7% 43.2% 36.3% 28.2%

Flow-I2P 53.0% 49.2% 44.1% 36.8% 28.4%

Registration Recall ↑
2D3D-MATR 91.3% 90.8% 90.2% 75.7% 64.8%

2D3D-MATR+SN 93.5% 93.0% 92.2% 76.4% 66.2%

Flow-I2P 95.5% 95.2% 94.1% 79.2% 66.5%

from other datasets like 7-scenes and ScanNet, leading to
suboptimal performance by the proposed method. Despite
this, Flow-I2P still achieves higher IR and RR than 2D3D-
MATR+SN.

We further conduct a cross-domain generalization exper-
iment on the 7-scenes dataset (Glocker et al., 2013). In this
experiment, the inputs to the I2P registration model are fully
overlapped images and point cloud pairs, where the point

Table 8 Average results of learning-based I2P registration models in
the context of domain generalization. The Bolditalic highlight indicates
the best average for IR. ↑ means that a higher value indicates better
performance

Model PIR ↑ IR ↑ FMR ↑ RR ↑
7-Scenes → RGB-D Scenes V2

2D3D-MATR+SN 49.1% 17.5% 66.2% 19.8%

Flow-I2P 54.6% 18.3% 69.0% 23.3%

(Gain) +5.5% +0.8% +2.8% +3.5%

7-Scenes → ScanNet

2D3D-MATR+SN 47.8% 14.3% 70.2% 24.5%

Flow-I2P 54.9% 16.1% 70.9% 29.0%

(Gain) +7.1% +1.8% +0.7% +4.5%

7-Scenes → Self-collected Dataset

2D3D-MATR+SN 25.2% 9.0% 33.2% 5.4%

Flow-I2P 27.4% 10.8% 54.9% 7.1%

(Gain) +2.2% +1.8% +21.7% +1.7%

clouds are generated by back-projecting the depth maps into
3D space. In the Chess→Other unseen six scenes set-
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Table 9 Cross-domain generalization performance on 7-scenes dataset
where the fully overlapped images and colored point clouds are used as
the input of the I2P registrationmodel. TheBolditalic highlight indicates
the best average for IR. ↑ means that a higher value indicates better
performance

Model Average IR ↑ Average RR ↑
Chess → Other six unseen scenes

2D3D-MATR+SN 38.7% 47.8%

Flow-I2P 41.2% 58.8%

(Gain) +2.5% +11.0%

Office → Other six unseen scenes

2D3D-MATR+SN 45.6% 49.1%

Flow-I2P 46.0% 56.3%

(Gain) +0.4% +7.2%

Kitchen → Other six unseen scenes

2D3D-MATR+SN 53.7% 70.5%

Flow-I2P 57.2% 77.4%

(Gain) +3.5% +6.9%

ting, the model is trained on scene Chess and evaluated on
the remaining six unseen scenes (i.e., Fire, Heads, Office,
Office, Pumpkin, Kitchen, and Stairs). The results, shown
in Table 9, indicate that Flow-I2P significantly outperforms
2D3D-MATR+SN on the RR metric. This demonstrates the
superior generalization capability of the proposedC-flow lay-
ers in aligning cross-modality manifolds.

Comparisons with other manifold smoothing methods.
Since Beltrami flow is used to smooth the manifoldMH , we
compare C-flow with other manifold smoothing methods,
including Laplacian eigenmaps (LE) (Bastico et al., 2024)
and diffusion maps (DM) (Pillaud-Vivien & Bach, 2023).
However, these methods involve high computational over-
head and are not directly applicable to aligning pixel and
point features across modalities. As a compromise, we apply
them to smooth the extracted features from local 2D and 3D
patches. Following the same experiment setup as in ablation
studies, we present the comparative results in Table 10. The
results demonstrate that the C-flow layers outperform these
classical methods, as they can adaptively model correlations
between cross-modality features. This confirms that C-flow
is not only effective but also a learnable manifold smoothing
approach for I2P registration.

These experimental results suggest that the proposed I2P
registrationmethodholds potential for domain generalization
tasks.

4.3 Ablation Studies

Before comparing the proposed approach to state-of-the-art
methods, we perform ablation studies to investigate the con-
tribution of each module in Flow-I2P.

Fig. 13 Performance comparison on the self-collected dataset with
varying overlap ratios. Flow-I2P demonstrates consistently superior
performance

Fig. 14 Visualization of surface normal estimation results on the Scan-
Net (top) and self-collected (down)datasets.Despitemeasurement noise
and structural variations, the major geometric structures in each scene
are clearly preserved and identifiable

Feature inputs. As explained in Sec. 3.5, the inputs of Flow-
I2P involve surface normals. This experiment examines the
impact of surface normals on I2P registration. The Baseline
configuration follows the previous work (Li et al., 2023),
but it differs from the original setup, using RGB vectors
for images and XYZ positions for point clouds instead of
grayscale and full-one vectors. Baseline+SN refers to the
addition of 2D and 3D surface normals to the original inputs.
Baseline+∇SN incorporates surface normal gradients, while
Baseline+SN+∇SN combines both surface normals and gra-
dients with the original inputs. All approaches are trained
under the same configuration (e.g., epoch, optimizer, learn-
ing rate, augmentation), with the epoch set to 20. To evaluate
the performance under limited supervision, only 5% of the
7-Scene training data is used. The results are provided in
Table 11. The ablation results reveal two key findings. First,
as surface normals in image and point cloud have strong
correlation (see Appendix D), models incorporating surface
normals and their gradients (Baseline+SN, Baseline+∇SN,
Baseline+SN+∇SN) demonstrate substantial improvements
over the baseline. This confirms that both surface normals
and their gradients contribute positively to learning 2D-3D
correspondences. Second,while gradients of surface normals
can enhance performance, they may also introduce sensitiv-
ity to estimation errors in SN2d and SN3d . This is evident
in the observation that Baseline+SN+∇SN achieves a lower
RRmetric compared toBaseline+SN. Thus, surface normals
are useful in improving the performance of I2P registration
(See Fig. 15).
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Table 10 I2P registration
performance on the baseline
using different feature
interaction schemes on the
7-Scene validation dataset. PIR
and PMR denote patch inlier
ratio and patch matching recall,
respectively

Methods PIR PMR IR RR

SCA (Li et al., 2023) 53.8% 62.9% 24.2% 42.8%

LE (Bastico et al., 2024) 55.2% 64.2% 25.1% 43.2%

DM (Pillaud-Vivien & Bach, 2023) 56.0% 64.7% 25.4% 43.5%

C-flow (Ours) 59.7% 69.6% 28.2% 46.3%

Table 11 I2P registration results of the baseline network using different feature inputs on the 7-Scene validation dataset. ↑ denotes that a higher
value indicates better performance. SN denotes surface normals, and ∇SN represents their gradients

Feature Input Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Inlier Ratio ↑
Baseline 39.7% 27.5% 3.0% 20.3% 17.0% 21.2% 5.4% 19.1%

Baseline+SN 42.0% 27.4% 9.0% 23.2% 17.5% 21.2% 5.9% 20.9%

Baseline+∇SN 41.5% 25.9% 10.1% 22.4% 17.1% 20.5% 6.2% 20.5%

Baseline+SN+∇SN 41.9% 29.9% 7.1% 24.1% 18.4% 23.2% 3.6% 21.2% (↑2.1%)

Feature Matching Recall ↑
Baseline 96.9% 93.2% 0.0% 89.9% 76.6% 86.3% 21.4% 66.3%

Baseline+SN 96.9% 89.0% 33.3% 86.0% 80.9% 88.1% 14.3% 69.9%

Baseline+∇SN 98.5% 87.7% 50.0% 84.8% 78.7% 88.1% 21.4% 72.7% (↑6.4%)

Baseline+SN+∇SN 100.0% 90.4% 33.3% 89.9% 80.9% 89.3% 21.4% 72.2%

Registration Recall ↑
Baseline 67.7% 27.4% 0.0% 52.5% 25.5% 54.8% 13.3% 34.6%

Baseline+SN 70.8% 43.8% 8.3% 52.5% 34.0% 51.8% 14.3% 39.4% (↑4.8%)

Baseline+∇SN 72.3% 37.0% 8.3% 40.4% 38.3% 51.8% 0.0% 35.4%

Baseline+SN+∇SN 66.2% 43.8% 0.0% 55.6% 34.0% 64.9% 7.1% 38.8%

Fig. 15 Visualization of the ablation study on different feature inter-
action schemes. (a) Stacked histogram attention. (b) Stacked C-flow
without the CSA layer. (c) Stacked C-flow with CSA. The proposed C-
flow, particularly with CSA, significantly improves the quality of inlier
correspondences under challenging registration conditions

Feature interaction schemes. As illustrated in Sec. 2.2,
feature interaction plays a crucial role in I2P registration.
This experiment examines the effectiveness of the proposed
feature interaction schemes. B-flow demands significant
memory and cannot be trained on a single GPU. Given these
GPU limitations, we evaluate feature interaction accuracy
using I2P patch registration for a fair comparison with the
previous work (Li et al., 2023). SCA (Li et al., 2023) refers
to the use of a series of standard transformer-based self- and
cross-attention for LFI. B-flow and C-flow are the proposed
LFI methods, as detailed in Sec. 3.3 and 3.4. Deep-I2P is
a representative GFI method (Li & Lee, 2021), discussed in

Sec. 2.2. None serves as a reference, and does not use any
feature interaction modules. All methods are implemented
based on Baseline+SN. The results are reported in Table 12.
Patch inlier ratio (PIR) and patch matching ratio (PMR) are
used as metrics, with a PMR threshold of 0.5. First, results in
Table 12 verify that (i) feature interaction improves perfor-
mance (i.e., all approaches are superior to None); (ii) LFI is
better thanGFI (SCA,B-flow, andC-flow outperformDeep-
I2P), thanks to its support for fine-grained pixel-level feature
interaction. Second, B-flow is more accurate than SCA (Li
et al., 2023), because B-flow is derived from Beltrami flow
and enabled to adaptively represent the correlation between
the features of 2D pixels and 3D points. So, it enhances the
alignment ofmanifoldsMI andMP , and leads to the superior
results compared to SCA. Third, C-flow performs nearly as
well as B-flow, indicating that dimension-wise attention can
achieve a similar result to spatial-wise attention in the con-
text of I2P registration. The major advantage of C-flow is its
reduced memory consumption compared to B-flow, making
it more feasible for pixel-level cross-modality feature repre-
sentation in I2P registration architecture.

The above experiments were conducted on I2P patch reg-
istration, a specific case of I2P registration. To further explore
the effect of C-flow in general I2P registration, we included
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Table 12 I2P registration results of the baseline using different feature interaction schemes on the 7-Scene validation dataset. ↑ denotes that a
higher value indicates better performance

Feature Interaction Scheme Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Patch Inlier Ratio ↑
None 63.9% 59.1% 26.0% 51.5% 53.2% 57.3% 11.6% 46.1%

Deep-I2P (Li & Lee, 2021) 67.3% 63.9% 29.2% 56.1% 57.3% 59.6% 11.9% 49.3%

SCA (Li et al., 2023) 74.8% 65.4% 34.5% 60.6% 59.0% 65.3% 17.1% 53.8%

B-flow (Ours) 81.3% 71.8% 33.9% 69.2% 68.7% 73.8% 21.0% 59.9% (↑13.8%)

C-flow (Ours) 80.3% 71.7% 34.2% 69.2% 68.2% 73.5% 20.5% 59.7%

Patch Matching Ratio ↑
None 89.2% 75.3% 16.7% 64.6% 66.0% 78.0% 0.0% 55.7%

Deep-I2P (Li & Lee, 2021) 93.8% 82.2% 0.0% 72.7% 72.3% 75.0% 0.0% 56.6%

SCA (Li et al., 2023) 95.4% 87.7% 16.7% 81.8% 72.3% 86.3% 0.0% 62.9%

B-flow (Ours) 98.5% 89.0% 16.7% 89.9% 91.5% 92.3% 0.0% 68.3%

C-flow (Ours) 98.5% 90.4% 25.0% 90.9% 89.4% 92.9% 0.0% 69.6% (↑13.9%)

an additional comparison. Stacked GFI refers to using GFI
modules (Li & Lee, 2021) for feature interaction. Stacked
kernel distribution estimation (KDE) attention replaces
the covariancematrix withKDE-based attention.More detail
is shown in Appendix C. Stacked Linformer (Wang et al.,
2020), as a lightweight variant of the standard transformer
layers, is also compared in this experiment. Stacked C-flow
employs a series of proposed C-flow layers. w/o CSA indi-
cates the C-flow configuration without the CSA layer in
Eq. (12). The stack number for all methods was set to 3.
The results are shown in Table 13. First, according to the
FMR definition (Li et al., 2023), it is not a strict metric
for assessing the quality of 2D-3D correspondence. Thus,
the methods show similar FMR values. Then, both stacked
KDE attention and stacked C-flow, being LFI-based meth-
ods, outperformGFI-basedmethods. This result is consistent
with the findings in Table 12. stacked C-flow outperforms
stackedKDEattention in both IRandRRmetrics, asKDE is
only an approximation of feature distribution. The resolution
ofKDE limits the performance of stackedKDEattention. If
set too high, it demands excessivememory for training. Thus,
KDE-based attention is less efficient than covariance-based
attention in Eqs. (12) and (13). While stacked C-flow and
stacked C-flow (w/o CSA) exhibit similar IR, stacked C-
flow achieves the superior performance in RR. Compared to
IR, RR ismore closely tied to RANSAC-based PnP accuracy,
which depends on the alignment quality of 2D-3D corre-
spondences. This result reveals that the CSA layer enhances
correspondence learning quality. Furthermore, we observe
that stacked C-flow layers perform better when τ is set to a
fixed value. Learning τ dynamically introduces instability in
training, as it interferes with the optimization of latent fea-
ture z[t] and the attention functionA(·). When τ approaches
zero, the gradient ∂L I2P/∂A tends to vanish, which weakens

the impact of C-flow on I2P registration. Conversely, if τ

approaches one, the contribution of z[t − 1] becomes neg-
ligible, causing the model to forget historical features and
impairing correspondence learning. Thus, a properly selected
fixed τ is recommended in practice. We also include stacked
Linformer as a transformer-based baseline that learns a
low-rank attention matrix. While computationally efficient
for pixel-level interactions, Linformer does not incorporate
cross-model correlation priors, leading to inferior perfor-
mance in I2P registration compared to the proposed stacked
C-flow.

In summary, results fromTables 12 and 13 confirm that the
proposed C-flow outperforms current GFI and LFI modules.
Rooted in Beltrami-flow theory, C-flow effectively captures
the correlations between different modality feature mani-
folds. As a result, C-flow provides more semantically mean-
ingful interactions than traditional attention layers, especially
in multi-modal scenarios. Also, C-flow only has the com-
plexity much less than standard transformer-based attention
schemes, which enables an effective and lightweight cross-
modality feature interaction on I2P registration.

Hyper-parameters in C-flow. The above experiments have
validated the effectiveness of the proposed C-flow layer. To
optimize performance, we examined the hyperparameters in
C-flow. We leveraged a two-stage training scheme, where
the first and the second stages require 20 and 10 epochs for
training, respectively.

First, the time step τ in Eq. (7) is a crucial parameter, as it
determines the weighting of the feature interaction result. To
determine the optimal τ , we uniformly sampled the interval
[0, 0.5] with a step size of 0.1 and recorded the performance
inTable 14,where the stack numberwas set to 3.Weobserved
that the training procedure fails due to vanishing gradient
when τ exceeds 0.5. A large τ causes the neural network to
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Table 13 I2P registration results of the baseline network using different
stacked feature interaction schemes on the 7-Scene validation dataset.
↑ denotes that a higher value indicates better performance. w/o CSA is

C-flow layer without CSA module. w/ τ learning is C-flow layer where
τ in each layer is learnable

Stacked Feature Interaction Scheme Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Inlier Ratio ↑
Stacked GFI 52.7% 37.5% 9.2% 31.6% 24.8% 29.9% 7.0% 27.5%

Stacked KDE Attention 53.8% 38.1% 10.9% 31.6% 23.1% 29.4% 7.0% 27.7%

Stacked Linformer 52.4% 37.5% 11.5% 28.7% 26.2% 30.1% 6.8% 27.6%

Stacked C-flow (Ours, w/o CSA) 52.1% 38.0% 12.3% 31.3% 25.9% 29.3% 7.9% 28.1%

Stacked C-flow (Ours, w/ τ learning) 52.2% 37.8% 11.2% 31.0% 24.7% 29.0% 7.2% 27.5%

Stacked C-flow (Ours) 52.5% 37.9% 12.5% 31.3% 26.0% 29.2% 7.7% 28.2%

Feature Matching Recall ↑
Stacked GFI 100.0% 93.2% 50.0% 97.0% 87.2% 95.2% 28.6% 78.7%

Stacked KDE Attention 100.0% 93.2% 41.7% 96.0% 83.0% 91.7% 28.6% 76.3%

Stacked Linformer 100.0% 93.2% 45.8% 92.2% 93.0% 90.3% 30.6% 77.9%

Stacked C-flow (Ours, w/o CSA) 100.0% 93.2% 50.0% 94.9% 91.5% 91.7% 28.6% 78.5%

Stacked C-flow (Ours, w/ τ learning) 100.0% 93.2% 42.3% 91.7% 89.8% 92.3% 27.3% 76.7%

Stacked C-flow (Ours) 100.0% 93.2% 41.7% 94.9% 91.5% 91.7% 35.7% 78.4%

Registration Recall ↑
Stacked GFI 80.0% 56.2% 0.0% 61.6% 40.4% 64.3% 0.0% 43.2%

Stacked KDE Attention 81.5% 47.9% 0.0% 64.6% 46.8% 66.7% 7.1% 45.0%

Stacked Linformer 77.2% 45.2% 0.0% 63.8% 42.3% 66.8% 4.2% 42.8%

Stacked C-flow (Ours, w/o CSA) 76.9% 46.6% 0.0% 62.6% 38.3% 67.3% 7.1% 42.7%

Stacked C-flow (Ours, w/ τ learning) 78.3% 40.2% 0.0% 61.2% 40.0% 66.2% 7.1% 41.8%

Stacked C-flow (Ours) 89.2% 41.1% 0.0% 64.6% 51.1% 70.8% 7.1% 46.3%

Table 14 Ablation study of the
time step parameter τ in C-flow
layers on the 7-Scene validation
dataset. The registration recall
for all scenes is recorded. The
Bolditalic highlight indicates the
best RR

Time step τ Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

0.0 86.2% 39.7% 0.0% 64.6% 29.8% 72.0% 7.1% 42.8%

0.1 78.5% 42.5% 0.0% 65.7% 44.7% 66.1% 14.3% 44.5%

0.2 89.2% 41.1% 0.0% 64.6% 51.1% 70.8% 7.1% 46.3% (↑3.5%)

0.3 81.5% 43.8% 0.0% 60.6% 46.8% 69.6% 7.1% 44.2%

0.4 83.1% 41.1% 8.3% 59.6% 51.1% 64.3% 7.1% 44.9%

0.5 76.9% 46.6% 0.0% 63.6% 48.9% 63.1% 0.0% 42.7%

forget a significant portion of features in the last iteration (i.e.,
x[t−1] andy[t−1]), increasing the risk of vanishinggradient.
Conversely, a small τ reduces the effect of feature interac-
tion, hindering the discriminative ability of cross-modality
features. Thus, there must be an optimal τ for the C-flow
layer. As shown in Table 14, the best RR was achieved when
τ = 0.2.

Second, the stack number T of the C-flow layer is closely
related to I2P registration performance. To find the optimal
T , we tested the value of T from 0 to 5 with τ = 0.2. The
registration results are presented in Table 15. As T increases,
all metrics improve up to T = 3, after which they begin to
decline. The weight of the original feature from F(·) and
G(·) is (1 − τ)T . As T increases, the contribution of x[0]
and y[0] to x[T ] and y[T ] diminishes. This increases the risk

of degradation in the manifold structuresMI andMP . Thus,
we select T = 3 for optimal I2P registration performance.

These experiments indicate that the performance of I2P
registration declines, or the training may fail if τ or T
is too large. We attempt to explain this in-depth from the
perspective of manifold alignment. As shown in Fig. 3, man-
ifold alignment can be interpreted as a manifold smoothing
problem. Both τ and T control the strength of manifold
smoothing. If either τ or T is too large, themanifold becomes
over-smoothing, causing a sharp drop in the discriminative
ability of cross-modality features. Specifically, if τ exceeds
0.5, the manifold structure may degrade, resulting in vanish-
ing gradient. Therefore, τ and T should be carefully selected
in practical applications.
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Table 15 Ablation study of the stack number T in the proposed C-flow
layer on the 7-Scene validation dataset. Mean metrics for all scenes are
recorded

T IR FMR RR

0 26.5% 75.9% 42.8%

1 27.6% 76.2% 44.7%

2 28.1% 77.4% 46.0%

3 28.2% (↑1.7%) 76.3% (↑0.4%) 46.3% (↑3.5%)

4 26.2% 74.8% 45.8%

5 25.4% 72.8% 41.6%

Table 16 Ablation study of different training schemes on the 7-Scene
validation dataset. Mean metrics for all scenes are recorded

Scheme IR FMR RR

One-Stage 27.3% 75.1% 41.9%

Two-Stage 28.2% (↑0.9%) 75.9% (↑0.8%) 46.3% (↑4.4%)

Table 17 Model efficiency analysis in several aspects, like GFLOPs,
average inference memory, parameter size, and FPS

Models GFLOPs Memory (GB) Param (M) FPS

Diff-Reg 1165.3 5.637 358.2 0.25

Baseline 388.1 2.732 28.2 7.874

+B-flow N/A Out of memory 28.4 N/A

+C-flow×1 433.8 2.769 28.4 6.289

+C-flow×2 479.4 2.806 28.5 6.173

+C-flow×3 525.1 2.844 28.7 6.061

Training scheme. We evaluated the performance of the
training schemeoutlined inSec. 3.5.TheOne-stage approach
involves training the entire neural network from scratch for
30 epochs. The Two-stage approach follows the proposed
scheme, with 20 epochs in the first stage and 10 epochs
in the second. Results are provided in Table 16. Compared
to the One-stage approach, the Two-stage training signif-
icantly improves the RR metric. This improvement arises
from the pre-training of the feature extractors and increases
the alignment accuracy of MI [0] and MP [0]. As a result,
the Two-stage setup better satisfies the manifold alignment
prior condition described in Sec. 3.2, thereby improving the
training efficiency and effectiveness.

Model efficiency analysis. We evaluate the efficiency of the
proposedmodel in terms of gigabyte floating point operations
per second (GFLOPs), average inference memory, parame-
ter size, and runtime (frames per second, FPS). The results
are summarized in Table 17. The original B-flow suffers
from computational overhead due to large matrix multiplica-
tions. As shown in Eq. (10), the self-attention operation on
image features requires constructing a feature matrix of size

HW × HW . For a 640 × 480 image, this leads to a matrix
with approximately 9.4 × 1010 elements, making it infeasi-
ble to store or compute on commodity GPUs such as NVidia
GTX 3080. To address this issue, C-flow is proposed, which
requires only a feature matrix of size c × c, with c = 256 in
our experiment. This reduces the computation load to approx-
imately 10−6 of that of B-flow. Since c < 103, the stacked
C-flow layers significantly reduce GFLOPs, memory con-
sumption, and inference latency, making them lightweight
yet effective for I2P registration.

Moreover,we assess the practical deployment of Flow-I2P
on edge devices. As shown in Table 17, Flow-I2P con-
sumes approximately 0.48 TFLOPs and less than 3 GB of
GPUmemory during inference. These requirements are well
within the capabilities of modern low-power GPUs, such as
the NVIDIA Jetson Orin Nano (40 TFLOPs peak, 8 GBGPU
memory, 7-25W power consumption). This makes Flow-I2P
suitable for edge computing scenarios on mobile and embed-
ded robotic platforms. In addition, we compare the runtime
efficiency of Flow-I2P with state-of-the-art methods in Fig.
2. Flow-I2P strikes a favorable balance between registration
accuracy and runtime, achieving a runtime of nearly 6 FPS. In
real-world robotic applications, I2P registration is typically
used when the robot loses localization within a 3D map or
needs to establish accurate 2D-3D loop-closure constraints
during visual SLAM. Thus, the runtime efficiency of Flow-
I2P is sufficient for the majority of robot-centric scenarios.

Finally, we discuss model efficiency in large-scale envi-
ronments, as encountered in practical deployments (Kim
et al., 2023). Large-scale I2P registration entails matching
images to extensive point cloud maps. However, in real-
world robotics and autonomous navigation settings (An et
al., 2024a; Kim et al., 2023), the I2P registration task is com-
monly reduced to small-scale local registration tasks using
pose priors (e.g., from other sensors such as GNSS or IMU)
(An et al., 2024b; Yuan et al., 2021). These priors enable
coarse localization, allowing a relevant subset of the 3Dmap
to be segmented for registration. This localized context dra-
matically reduces the search space, enabling Flow-I2P to
operate efficiently even in large-scale environments.

4.4 Limitations and FutureWorks

The proposed Flow-I2P demonstrates superior performance
in both model comparison and cross-domain generalization
across public datasets that encompass a variety of indoor
and outdoor scenes. These results indicate that the proposed
Beltrami flow is an effective approach for enhancing I2P
registration. However, despite its promising results, Flow-
I2P still has room for improvement before it can be fully
deployed in practical applications.
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Lack 2D-3D correspondences pruning. While Flow-I2P
achieves strong overall performance, it may produce noisy
correspondences in sparse or out-of-distribution scenarios.
To mitigate this, we plan to integrate a dedicated pruning
module inspired by 3D-3D correspondence pruning (Cheng
et al., 2023) to remove unreliable matches in future work.

Accurate I2P registration in real-time. Our current imple-
mentation runs at nearly 6 FPS, which may be insufficient
for latency-sensitive applications such as AR/VR or high-
speed robotics. We outline the future directions to develop
a lightweight variant to improve runtime while maintaining
accuracy.

Generalization to unseen domain. As shown in Tables 4
and 8, generalization across domains is still challenging. We
plan to explore the development of a visual foundationmodel
tailored for I2P registration, capable of generalizing across
different domains and sensor modalities.

Extend C-flow to general registration. Theoretically, the
proposed C-flow can be extended to aligning features mani-
folds generated from the single and multiple modality data.
It suggests that C-flow can be embedded into deep neu-
ral networks for broader registration tasks, including image
registration, point cloud registration, and cross-modal regis-
tration.

5 Conclusion

This paper addresses improving the performance of I2P reg-
istration from the perspective of information geometry. We
began by analyzing howBeltrami flow improves the capacity
of I2P registration by correcting the misalignment between
image and point cloud feature manifolds. Building on this
insight, we proposed B-flow, Beltrami flow based feature
interaction layers, to progressively align feature manifolds.
To mitigate its high computational cost, we introduced C-
flow, a lightweight and efficient variant of B-flow. We then
developed theFlow-I2P registration network to fully leverage
the advantages of C-flow in I2P registration tasks. Exten-
sive experiments across five indoor and outdoor datasets
demonstrate that Flow-I2P significantly outperforms exist-
ing methods, especially under limited training data. These
results validate that incorporating Beltrami flow effectively
enhances the generalization ability of I2P registration.

Appendix

A. Interpretation of manifold alignments in I2P
registration

We present an interpretation of I2P registration from the per-
spective ofmanifold theory. LetMI andMP be differentiable

manifolds in a c-dimensional Euclidean space, containing
{xi }Mi=1 (M=HW ) and {y j }Nj=1, respectively. To reveal the
geometrical relation between MI and MP under the ideal
correspondence condition stated in Eq. (2), we introduce the
following:

Lemma 1 Let image I be a bounded continuous surface on
the 2D region [0, 1]×[0, 1], and point cloudP be a bounded
continuous surface in the 3D space. If F(·) and G(·) are
differential functions that satisfy the ideal correspondence
condition for all correspondences, then for any ideal corre-
spondence 〈Ii , Pj 〉, there exist open sets OI (Ii ) on Ii and
OP (Pj ) on Pj such that

∀P ∈ OP (Pj ), ∃!I ∈ OI (Ii ),F(I |I) = G(P|P). (18)

Proof We can select an open set OP (Pj ) on Pj that lies
within the field of view (FoV) of the camera without occlu-
sion. For P ∈ OP (Pj ), I = π(P), where π(·) is the
projection operator onto 3D space to image plane, as pre-
sented in Eq. (1). Since I is uniquely determined by P , 〈I , P〉
forms a correspondence. Given that F(·) andG(·) satisfy the
ideal correspondence condition for all correspondences, we
have F(I |I) = G(P|P). Thus, this proof is completed.

Furthermore, since F(·) and G(·) are differential func-
tions, the mapping results F(OI (Ii )) and G(OP (Pj )) are
also open sets (i.e., sub-manifolds of MI and MP ). Based
on Lemma 1, F(OI (Ii )) and G(OP (Pj )) coincide, and this
geometrical relationship can be generalized.

Theorem 1 (Manifold structure in ideal correspondence).
Let image I be a bounded continuous surface on the region
[0, 1]×[0, 1]; point cloudP beabounded continuous surface
in the 3D space. If F(·) and G(·) are differential functions
that satisfy the ideal correspondence condition for all corre-
spondences, there exist sets {OI (Ii )}Mi=1 and {OP (Pj )}Nj=1,
such that MI ∩ MP can be decomposed as:

MI ∩ MP =
⋃

〈Ii ,Pj 〉∈C
F(OI (Ii )) ∩ G(OP (Pj )) (19)

where C represents the set of all correspondences.

Proof From Lemma 1, we directly obtain:

MI ∩ MP ⊇
⋃

〈Ii ,Pj 〉∈C
F(OI (Ii )) ∩ G(OP (Pj )) (20)

Conversely, for x = y ∈ MI ∩ MP , we can identify the
correspondence 〈I , P〉 related to x and y, as stated in Eq.
(2). Thus, we can define local regions OI (I ) and OP (P)

such that x = y ∈ F(OI (I )) ∩G(OP (P)). This implies that

MI ∩ MP ⊆
⋃

〈Ii ,Pj 〉∈C
F(OI (Ii )) ∩ G(OP (Pj )) (21)
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Fig. 16 Visualization of manifold alignment after applying stacked C-flow layers. As the number of iterations increases, the accuracy of manifold
alignment improves, leading to higher-quality 2D-3D correspondences

Combing Eqs. (20) and (21), the proof is complete. Fur-
thermore, as discussed inLemma1,F(OI (Ii ))∩G(OP (Pj )=
F(OI (Ii )) = G(OP (Pj ) (as discussed in Lemma 1). The-
orem 1 indicates thatMI ∩ MP encapsulates all the 2D-3D
correspondences.

B. Explanation of Beltrami flow based I2P
registration

The proposed Beltrami flow based I2P registration model in
Fig. 4 can be reformulated as follows:

Definition 2 (Neural diffusion based I2P registration
model). The discrete neural diffusion based I2P registration
model can be expressed as the following optimization prob-
lem:

min
�

T∑
t=0

LI2P(x[t], y[t]|CGT) (22)

{
x[t + 1] = (1 − τ)x[t] + τ(SAI (x[t]) + CAI (x[t], y[t]))
y[t + 1] = (1 − τ)y[t] + τ(SAP (y[t]) + CAP (y[t], x[t]))

t = 0, ..., T − 1

(23)

x[0] = (xT1 , ..., xTM )T = (F(I1|I)T , ...,F(IM |I)T )T

y[0] = (yT1 , ..., yTN )T = (G(P1|P)T , ...,G(PN |P)T )T
(24)

where� represents the parameters of the learnable functions
F(·), G(·), SAI (·), SAP (·), CAI (·), and CAP (·). L I2P is the
regular correspondence loss (Li et al., 2023), andCGT denotes
the ground truth (GT) correspondences.

We interpret the model in Eqs. (22-24) through the viewpoint
of optimal control theory. Eq. (23) can be reformulated as a
time-continuous system:

min
ux (t),uy(t)

J =
∫ 1

0
L I2P(x(t), y(t)|CGT) (25)

⎧⎪⎨
⎪⎩

∂x(t)
∂t

= (SAI (x(t)) − I)x(t) + ux (t)

∂y(t)
∂t

= (SAP (y(t)) − I)y(t) + uy(t)
(26)

Here, Eq. (23) can be interpreted as a differential system
involving x(t) and y(t). When ux (t) = 0 and uy(t) = 0, this

system breaks down into two independent diffusion subsys-
tems that smooth themanifolds of x(t) and y(t), respectively.
However, these independent diffusions are inefficient at min-
imizing L I2P, because they do not share information between
x(t) and y(t). For optimal control, the external forces in this
system (i.e., x(t) and y(t)) must include the similarity infor-
mation between x(t) and y(t). In the neural diffusion based
I2P registrationmodel, this similarity information is captured
using learnable cross-attention layers. The control variables
are defined as:

ux (t) = CAI (x[t], y[t])), uy(t) = CAP (y[t], x[t])) (27)

The parameters in CAI (·) and CAP (·) are updated through
backward propagation by minimizing J in Eq. (22).

We further analyze the role of τ in Eq. (7), which is a
time step to describe the discrete Beltrami flow in Eqs. (4)-
(8). First, τ is a unified time step for image and point cloud
features, because the Beltrami flow formulation treats both
modalities as part of a unified manifold. This design ensures
consistent flow dynamics across both data types. Second,
it is not recommended to set τ as a learnable parameter,
because learning τ poses the risk of inhibiting the learning
efficiency of latent feature z[t] or attention functionA. Third,
the stacked layers denote the continuous forward propagation
of discrete differential equations (i.e., in a manner of explicit
Euler method). Allowing τ to vary across layers would com-
promise the consistency of the discretization and undermine
the interpretation of the network as a numerical solver for a
continuous system. Thus, τ should be a constant parameter.
In future work, we will explore a general Beltrami flow with
the dynamic τ .

Besides, we further provide an in-depth empirical justi-
fication of the proposed Beltrami flow on I2P registration.
As discussed in Fig. 1, the motivation of Beltrami flow is
to enhance the alignment accuracy of manifolds generated
from pixel and point features. It is recalled that the proposed
Beltrami flow layers are embedded into the I2P registration
architecture in a stacked manner. We first visualize the pro-
cess of manifold alignment with the stacked C-flow layers,
and the results are provided in Fig. 16. As pixel and point
features are in a 256-dimensional space, we project these
features into a 2D space for visualization using t-SNE. This
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Fig. 17 Relationship between manifold alignment and I2P registration. Manifolds of pixel features and point features are visualized in 2D space
using the technique of t-SNE. An accurate manifold alignment indicates the more correct 2D-3D correspondences

visualization shows that C-flow layers enhance the quality of
manifold alignment in each iteration, significantly improving
the quality of 2D-3D correspondences. We then visualize the
relationship between the manifold alignment and I2P reg-
istration in Fig. 17. Comparing the manifold alignment of
2D3D-MATR (baseline) (Li et al., 2023) and the proposed
Flow-I2P, it can be observed that Beltrami flow improves the
alignment quality and enlarges the inliers in 2D-3D corre-
spondences, demonstrating the effectiveness of the proposed
Beltrami flow on I2P registration.

At the end of this appendix, we discuss the issue of Eqs.
(12) and (13) with explaining why the following equation
satisfies:

Softmax

(
(x[t]wx )(x[t]wx )

T

√
c

)
· x[t]

= x[t] · Softmax

(
(x[t]vx )T (x[t]vx )√

c

) (28)

Eq. (28) can be seen as an instance of the matrix equation
AX = XB, where rank(A) ≤ c and rank(B) ≤ c. From
the theory of linear equations, X is solvable if A and B have
the same eigenvalues. As rank(A) and rank(B) are below
c, it is possible to learn wx , wy , vx , and vy to make sure X
solvable.Hence, it is feasible to convert spatial-wise attention
to channel-wise attention like Eq. (28).

C. Implementation details of the KDE attention layer

KDE attention is one of the lightweight variants of the pro-
posed B-flow. Its details are provided in the following.

KDE approximation. To reduce the memory usage, we
design a KDE attention layer by approximating x[t] and y[t]
using the multi-dimensional KDE:

f̂ (x|x[t]) = 1

Mhc

M∑
i=1

C∏
c=1

K

(
xc − xci [t]

hc,x

)

ĝ(y|y[t]) = 1

Nhc

N∑
i=1

C∏
c=1

K

(
yc − yci [t]

hc,y

) (29)

hc,x = max(xc[t]) − min(xc[t])
Bin

hc,y = max(yc[t]) − min(yc[t])
Bin

(30)

where K (·) represents the standard Gaussian kernel with a
covariancematrix σ 2I (σ is set to 0.1 by default). xc ∈ R

M×1

and yc ∈ R
N×1 represent the c-th column of x and y, respec-

tively. hc,x and hc,y define the kernel window sizes. They
are determined using Eq. (30) with Bin ∈ N+ as a con-
stant. Eq. (29) indicates that f̂ (x|x[t]) and ĝ(y|y[t]) are the
smoothed continuous distribution of x[t] and y[t]. Bin reg-
ulates the resolution of the distribution. However, f̂ (x|x[t])
and ĝ(y|y[t]) cannot be directly used for computing self- and
cross-attention calculations since the attention layer captures
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the correlation between discrete elements, whereas distribu-
tions f̂ (x|x[t]) and ĝ(y|y[t]) are continuous.
KDE based attention layer. To solve the above problem,
we develop a KDE-based neural diffusion approach for I2P
registration. Since f̂ (x|x[t]) and ĝ(y|y[t]) reflect distribu-
tions in the high-dimensional space, we design self- and
cross-attention mechanisms to capture correlations across
each dimension. This enables the construction of a corre-
lation matrix as follows:

AOf ĝ = Softmax

⎧⎪⎨
⎪⎩

⎛
⎜⎝

〈 f̂1, ĝ1〉 · · · 〈 f̂1, ĝc〉
...

. . .
...

〈 f̂c, ĝ1〉 · · · 〈 f̂c, ĝc〉

⎞
⎟⎠

⎫⎪⎬
⎪⎭ ∈ R

c×c (31)

〈 f̂i , ĝ j 〉 =
∫ +∞

−∞
ωx ( f̂i (x|x[t])) · ωy(ĝ j (x|y[t]))dx (32)

where 〈·, ·〉 denotes the inner product in the L2 function
space.ωx (·) andωy(·) are learnable functions corresponding
towx andwy inEq. (10). Since f̂ and ĝ aremulti-dimensional
distributions, f̂i and ĝ j represent the distributions in the i-th
and j-th dimensions. Similar to Eq. (31), we can construct
Af̂ f̂ , Aĝĝ, and Aĝf̂ . To reduce the computation burden in Eq.
(32), we normalize the distributions and compute the inte-
gration as:

〈 f̂i , ĝ j 〉 ≈
⎛
⎜⎝

f̂ 1i
...

f̂ Bini

⎞
⎟⎠

T

	T
x 	y

⎛
⎜⎝

ĝ1j
...

ĝBinj

⎞
⎟⎠ (33)

where f̂ 1i , ..., f̂ Bini are values of f̂i (x|x[t]) uniformly
sampled over [min(xi [t]),max(xi [t])] and ĝ1j , ..., ĝ

Bin
j are

values of ĝ j (y|y[t]) uniformly sampled over [min(y j [t]) and
max(y j [t])]. 	x ∈ R

Bin×Bin and 	y ∈ R
Bin×Bin are learn-

able matrices denoting the discretization of ωx (·) and ωy(·).
Next, we construct layers of KDE-based self-attention

(KSA) and KDE-based cross-attention (KCA) as follows:

KSAI (x[t]) = x[t] · Af̂ f̂ , KSAP (y[t]) = y[t] · Aĝĝ (34)

KCAI (x[t], y[t]) = x[t] · Af̂ ĝ

KCAP (y[t], x[t]) = y[t] · Aĝf̂

(35)

By replacing SA(·) and CA(·) with KSA(·) and KCA(·)
in Definition 2, we construct a KDE based neural diffusion
model for I2P registration. This model is similar to Eqs. (22-
24), with only Eq. (23) replaced as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x[t + 1] = (1 − τ)x[t]
+ τ(KSAI (x[t]) + KCAI (x[t], y[t]))

y[t + 1] = (1 − τ)y[t]
+ τ(KSAP (y[t]) + KCAP (y[t], x[t]))

(36)

D. Analyzing surface normals for I2P registration

In this section, we discuss why surface normals, specifically,
the image derived normals (SN2d ), and point cloud derived
normals (SN3d ), are beneficial for I2P registration. In general,
SN2d and SN3d are given in the camera coordinate system
and world coordinate system, respectively. For a correspon-
dence 〈Ii , Pj 〉, where n2di ∈ SN2d corresponds to pixel Ii
and n3dj ∈ SN3d corresponds to point Pj , the following con-
straint must be satisfied:

n2di = R · n3dj , n2di ∈ SN2d , n3dj ∈ SN3d (37)

where R is the rotation matrix defined in Eq. (1). This
constraint implies that valid correspondences must preserve
consistency in surface normals under rotation, thus serving
as a valuable correspondence cue during registration.
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