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AdLeaf: Quantitative leaf reconstruction from TLS point clouds
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Abstract—Quantitatively reconstructing the 3D structure of
individual leaves within tree canopies is critical for understanding
forest function and environmental responses to climate change.
While quantitative structure models (QSMs) using terrestrial
laser scanning (TLS) effectively capture woody structures, they
lack the capability to accurately reconstruct non-woody leaf
components. This study proposes AdLeaf (Accurate and Detailed
Leaf), a novel approach for fine-scale reconstruction of individual
leaves using TLS point clouds. AdLeaf combines wood-leaf
separation, individual leaf segmentation, detection and repair
of incomplete leaves, explicit reconstruction, and parameter
extraction. It automates semantic segmentation at the tree scale to
separate woody and leafy components. Instance segmentation is
refined through similarity graphs. Incomplete leaves are detected
and repaired using shape concavity analysis and symmetry-based
mirroring. AdLeaf enables direct measurement of leaf attributes,
including count, area, inclination, volume, and azimuth.

Validation using field scans, synthetic data, and both in-
situ and destructive measurements shows high accuracy: leaf
counting errors ranged from 0.58% to 8.23% for trees with
201-4,000 leaves. Reconstructed leaf geometries had mean and
standard deviations below 0.83 cm and 0.70 cm, respectively.
Leaf area measurements (10–180 cm2) achieved a coefficient of
determination (R²) of 0.95, bias of -0.20 cm², and root mean
square error of 5.63 cm2. Incomplete leaf detection errors were
below 28%, with the repaired area relative RMSE reduced by
9.4%. By addressing QSM limitations, AdLeaf enables explicit
3D leaf reconstructions that support detailed analysis of canopy
light interception, spatial heterogeneity, and photosynthesis. It
provides a robust framework for linking leaf structure to function
at the tree level, advancing forest structure and radiative transfer
research.

Index Terms—Terrestrial laser scanning, Quantitative recon-
struction of non-woody parts, Physical structure, QSM, Tree-level
individual leaf measurement

I. INTRODUCTION

TREE structure, encompassing the 3D arrangement of
stems, branches, and leaves, plays a crucial role in

photosynthesis and tree function. The spatial distribution and
shape of leaves determine a tree’s ability to efficiently in-
tercept and distribute light. While radiative transfer models
simulate light distribution, accurately representing individual
leaves at the tree scale remains a challenge [1], [2]. Many
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models simplify canopies into aggregated entities or stratified
layers, using virtual leaves that fail to capture spatial het-
erogeneity, which introduces uncertainties in remote sensing
applications [3]. Precise estimation of leaf structural traits
is essential for predicting tree functions, such as respiration
and biomass, and for understanding tree adaptation to envi-
ronmental changes [4]–[6]. The growing demand for forest
monitoring highlights the need for advanced methods to extract
tree structural features. LiDAR technology (Light Detection
And Ranging), particularly terrestrial laser scanning (TLS),
offers non-destructive, high-precision 3D measurements ideal
for near-field forest sensing [7]–[9]. TLS excels at creating
detailed 3D representations of trees, making it a powerful tool
for extracting tree structural features [10], [11]. This study
uses TLS to reconstruct individual leaves within tree canopies
and extract their structural parameters.

Traditional methods for quantifying leaf traits rely on man-
ual measurements, which are time-consuming, labor-intensive,
and often destructive, hindering result replication and failing
to capture the spatial distribution and topological relationships
of leaves within the canopy [12]–[14]. While photogramme-
try has been applied to low-lying plants, its extension to
tall woody species remains challenging [15], [16]. Advances
in computational power have popularized 3D reconstruction
techniques for tree structural traits [17], [18], but achiev-
ing high geometric accuracy remains a significant challenge.
Precise measurements are essential for remote sensing and
ecological modeling [19]. Optical remote sensing provides
high-resolution multispectral data for stand- or regional-scale
analyses [20] but lacks the resolution needed for tree- or
leaf-scale structures. Some studies have utilized TLS point
clouds to infer leaf positions and reconstruct trees at the leaf
scale, but often aggregate point clouds to approximate canopy
shapes [21]–[23]. In sparse vegetation or leaf-off periods,
“branch skeleton” models estimate leaf positions, though their
universal applicability remains uncertain [24]–[26]. Despite
advancements, current methods face significant limitations in
quantitatively reconstructing individual leaves.

Some 3D tree reconstruction models may appear visually
credible, but their accuracy for quantitative remote sensing
applications, such as radiative transfer, remains uncertain [27],
[28]. Côté et al. emphasized that reconstructed models must
replicate the radiative transfer properties of real plants. This
requirement was validated in pine species [29], [30]. Similarly,
Ollinger identified key factors influencing near-infrared (NIR)
canopy reflectance, such as leaf angle distribution, aggregation,
and optical properties [31]. However, the complex canopy
structure complicates understanding these factors’ relative
contributions. Ollinger further demonstrated that traditional
metrics like leaf area index (LAI) and canopy height are
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insufficient to fully explain canopy reflectance [32]. A com-
prehensive understanding of photon radiative transfer within
the canopy requires considering tree spatial distribution, crown
shape, and the arrangement and orientation of leaves [33],
[34]. While leaf optical properties such as transmittance can
be measured directly with spectrometers, quantifying leaf
density, angle distribution, and spatial arrangement remains
a significant challenge.

Recent advances in point cloud processing have en-
abled fine-scale estimation of structural traits in broadleaf
forests [35], [36]. Voxel-based methods encode detailed infor-
mation on leaf and woody densities, aggregation, angle distri-
bution, and optical properties. Voxelized data can be integrated
into radiative transfer models through ray tracing techniques to
simulate canopy reflectance and absorption, providing insights
into the factors affecting canopy reflectance [37]. However,
many approaches estimate leaf distribution by proximity to
branches, rather than directly mapping, which introduces de-
viations from actual canopy structures [38], [39].

Despite these advancements, achieving individual leaf-scale
resolution remains a significant challenge [40]–[42]. QSM
often fails to capture interior canopy leaf features [43], [44]
due to its reliance on virtual leaves, limiting accurate represen-
tation of leaf angle distributions. While leaf normal estimation
algorithms show potential, they often lack consistency in
natural field conditions [45]. Methods such as planar fitting to
estimate leaf normals, while effective for whole-tree analysis,
remain labor-intensive [46]. Indirect methods, such as those
using sunlight attenuation, offer integrated information but are
limited in precisely locating leaf positions and shapes [47],
[48].

TLS research primarily focuses on indirect estimation of
leaf parameters, including Leaf Area Index (LAI), leaf incli-
nation angles, and Leaf Angle Distribution (LAD). However, a
universal method for directly measuring multiple leaf param-
eters within a quantitative reconstruction framework is still
lacking. Existing TLS-based methods for estimating leaf area
and related parameters can be classified into five categories:
(1) Inversion methods, which use echo counts or intensity to
estimate canopy gap fractions, are affected by distance, angle,
and reflectance [49]; (2) Leaf plane fitting, which segments
leaf clusters and fits planes to compute leaf normals [9],
[45], is computationally complex and not scalable for multi-
tree environments; (3) Voxel-based methods, which calculate
contact frequencies to estimate leaf area density [35], [46],
require uniform tree scanning; (4) Normal vector reconstruc-
tion, which identifies neighboring points to reconstruct leaf
normals, though sensitive to noise and inconsistencies [9],
[45]; and (5) Triangulation-based methods, which use point
triplets to compute normal vectors [50], are vulnerable to noise
and inaccuracies. Each category has its own limitations, and a
unified framework balancing accuracy and scalability remains
a challenge.

TLS now enables precise observation of individual tree
leaves, allowing researchers to address long-standing QSM
limitations in leaf reconstruction. A critical prerequisite for
tree reconstruction from TLS point clouds is the separation of
photosynthetic components (leaves) from non-photosynthetic

components (branches and trunks), a process that relies on
geometric and radiative features. Non-photosynthetic points
typically exhibit higher density than photosynthetic ones due
to factors like discrete leaf orientations, canopy gaps, and
mutual occlusion. Methods such as Ferrara’s use of density
features with the DBSCAN algorithm and Tao’s circle detec-
tion on horizontal slices have been employed to distinguish
these components in broadleaf evergreen trees [51], [52].
Existing tools like CSF, Treeseg, and Lewos facilitate point
cloud segmentation for separating ground, trees, branches,
and leaves. This study builds on these techniques by re-
fining leaf-level point cloud processing to extract detailed
photosynthetic component features at the individual tree scale.
Despite progress, most current methods remain visualization-
focused [53], often relying on randomly placed generic leaf
models that lack quantitative leaf traits [41], [54]. Limitations
such as tree size, leaf distribution, sensor performance, point
cloud processing workflows, and leaf occlusion continue to
hinder TLS’s full potential in leaf-scale studies [50], [55],
[56]. This is a critical juncture for utilizing TLS to map
complete canopy structures. Such advancements will improve
the granularity of forest TLS point cloud analyses and enhance
its contributions to high-resolution studies of forest ecological
structure and function [22], [57].

Fig 1 illustrates the proposed AdLeaf method, which ad-
dresses the limitations of current state-of-the-art TLS point
clouds processing approaches in quantitatively reconstructing
individual leaves. AdLeaf achieves this by explicitly and
accurately reconstructing individual leaves within the canopy,
enabling the extraction of a comprehensive set of structural
parameters, including leaf count, shape, size, surface area,
volume, inclination, orientation, and position. Building on our
previously published QSM framework [58], we systematically
provide a TLS-based methodology for measuring the structure
of branches and leaves at the tree scale [59]. We have devel-
oped a software prototype of the AdLeaf modeling workflow
and plan to make it publicly accessible. The remote sensing
data generated by AdLeaf, which describes the structural
properties of plant canopies, holds the potential to supply
detailed geometric and structural parameters for large-scale,
high-resolution plant functional models at the leaf level [60].
The contributions of this paper are as follows:

• Propose a theoretical framework and methodology for
measuring the photosynthetic components of trees, ad-
dressing QSM limitations in quantitative leaf reconstruc-
tion.

• Address canopy heterogeneity by quantifying the spatial
and functional traits of individual leaves at the tree level.

• Provide a reliable tool for accurate leaf reconstruction,
enabling studies of canopy light interception, resource
allocation, and 3D radiative transfer.

II. DATA COLLECTION

We used TLS to collect detailed leaf data from real trees as
well as synthetic simulations from virtual trees.
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Fig. 1: Illustration of the proposed AdLeaf method.

A. TLS In-situ Tree Scanning
Our study site is a typical temperate deciduous broadleaf

forest in northern China, located in Beijing. We scanned six
trees of varying sizes using a Faro FocusS 350 Plus (September
and October 2022), as detailed in Table I. The scanning
resolution was 10, 240 × 4, 627 (43.7 MPts) with a point
spacing of 6.1 mm at a 10-meter distance. The scanning for
each station was completed in 8 minutes. The registration and
denoising of multi-station data for each tree were performed
using FARO SCENE [61].

B. Leaf Data of Real Trees
Leaf samples. Following TLS scanning, 340 leaves (in

total) were extracted from the point clouds of six trees (see
Table I), with each leaf assigned a unique ID. To ensure
distribution variability, each canopy was divided into upper,
middle, and lower layers. Branches were randomly selected,
and leaves were harvested in random order from bottom to
top. To assess AdLeaf’s performance in segmenting individual
leaves, we manually isolated the point cloud data for each
harvested leaf. Table I presents detailed statistical data on the
manually collected leaves from the sampled trees.

Measurement of leaf areas. The leaf areas of the harvested
leaves were measured using a handheld LI-3000C leaf area
meter. This device employs an electronic rectangular approx-
imation method with a resolution of 1 mm2 and a scanning
speed of 1 m/s. For leaf areas exceeding 10 cm2, the error
is less than 1%. This data was used to validate the leaf area
measurements produced by AdLeaf.

TABLE I: Statistics on the 6 scanned trees and leaves.
Tree ID Species Height (m) DBH (cm) #Scans #Total leaves #Harvested leaves

1 Cherry 3.60 8.84 4 762 81
2 Cherry 2.50 5.96 4 343 27
3 Paper mulberry 7.80 12.01 3 1500 40
4 Poplar 15.50 22.99 3 4000 33
5 Poplar 3.70 2.51 2 201 50
6 Mulberry 2.70 2.10 2 1560 109

C. Leaf Data of Virtual Trees
We supplemented real data with synthetic point clouds gen-

erated through simulations, which allowed us to test configura-

TABLE II: Statistics on the synthetic trees and leaves.

Tree ID Tree height (m) #Leaves Areas of simulated reference leaves (cm2)
1 8 50 90, 50, 30, 40, 60
2 13 50 35, 85, 55, 50, 70
3 18 40 35, 70, 60, 45, 50
4 23 50 75, 30, 60, 70, 100
5 28 50 75, 55, 45, 50, 70

tions, identify biases, and mitigate human errors. To generate
the synthetic leaf data, five 3D tree models were created in
SpeedTree [62] with heights of 8 m, 13 m, 18 m, 23 m,
and 28 m, respectively. Branches and leaves were customized
by adjusting their number, size, position, and curvature to
approximate natural conditions. The 3D tree models were then
imported into HELIOS++ [63], where parameters were set
to simulate the Riegl VZ-400 LiDAR platform, with a pulse
frequency of 300 kHz, laser pulse length of 5 ns, laser emission
frequency of 300,000 pts/s, scanning accuracy of 5 mm, and
a maximum scanning angle of 120°. The simulated beams
interact with the surfaces of the virtual trees, producing the
point clouds.

III. METHODOLOGY

As illustrated in Figure 1, the proposed AdLeaf method
consists of four key steps: (1) wood-leaf separation (Sec-
tion III-A), (2) leaf completion (Section III-C), (3) leaf in-
stance segmentation (Section III-B), and (4) leaf reconstruction
(Section III-D)

A. Wood-Leaf Separation

The core objective of AdLeaf is to achieve high-precision
3D reconstruction of individual leaves at the tree scale, which
necessitates a sufficiently accurate classification of leaf-wood
separated point clouds. Leaf-wood separation is a typical bi-
nary classification problem that requires labeling each point in
the point cloud as either “wood” or “leaf”. However, due to the
frequent overlap and complex distribution of points belonging
to leaves and woody components, traditional methods often
fail to achieve fully automated and accurate separation, par-
ticularly at the boundaries between leaves and fine branches.
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Fig. 2: AdLeaf is a key step in the quantitative reconstruction of individual leaves at the tree scale. (a) Wood-leaf separation;
(b) Leaf instance segmentation; (c) Leaf completion; (d) Leaf reconstruction.

To address this challenge, we designed an efficient leaf-wood
separation method for AdLeaf based on graph modeling and
shortest-path optimization.

In the method design, we model the geometric relationships
within the point cloud using a graph constructed with an
adjacency list, where each point in the point cloud serves as a
vertex of the graph, and the spatial distances between neigh-
boring points are used as edge weights. This approach not
only reduces memory consumption but also allows irrelevant
vertex pairs to be skipped efficiently during graph traversal,
thereby improving computational efficiency. The edge weights
are defined as the squared Euclidean distance, which enhances
the distinction for short distances while avoiding numerical
precision issues. A KD-tree is employed for fast neighborhood
searching, and edges are added between each point and its K
nearest neighbors based on a distance threshold δ, ensuring a
balance between computational efficiency and adaptability of
the graph structure.

To achieve efficient separation, we focus on identifying the
shortest path from each point to the tree trunk. Traditional
shortest-path algorithms require calculating paths between all
vertex pairs, with computational costs increasing dramatically
as the point cloud size grows. To overcome this, we adopt
the Shortest Path Faster Algorithm (SPFA) and incorporate
optimization strategies, including Small Label First (SLF) and
Large Label Last (LLL). Specifically, SLF prioritizes points
with smaller distances, dynamically adjusting queue order to
accelerate path relaxation, while LLL delays the processing
of distant points to minimize redundant operations within
the queue. These optimizations enable SPFA to achieve near-
linear time complexity, significantly improving efficiency and
scalability (see Algorithm 1 in the appendix).

To further enhance separation accuracy, we design a
shortest-path backtracking strategy to correct misclassified leaf
points connected to woody components. During the execution
of SPFA, parent node information for each point is recorded
to construct path arrays. Subsequently, leaf points identified
as “end nodes”, i.e., points with parent nodes but no further
extensions, are traced back R steps along the path to remove
potentially misclassified points. This strategy adjusts local con-
nectivity, substantially improving the accuracy and robustness
of the leaf-wood separation.

Additionally, to address misclassifications caused by the

geometric similarity of secondary and fine branches to leaves,
we incorporate point cloud normal vectors and curvature
characteristics for further optimization. First, we calculate the
covariance matrix using the 45 nearest neighboring points for
each point and perform eigenvalue decomposition. The eigen-
vector corresponding to the smallest eigenvalue is extracted
as the normal vector, while the curvature is defined based on
the ratio of the eigenvalues to characterize the local geometric
properties of the point. A curvature threshold (e.g., 0.03) is
then applied to classify points with low curvature as woody
points, effectively removing fine and secondary branch points
and enhancing the accuracy of the leaf-wood separation.

We perform visual evaluations in 3D using CloudCompare.
Points classified as wood, rather than leaves, are further sepa-
rated. A manual inspection of branches and leaves is conducted
to transfer any misclassified leaf points from branches to the
correct leaf category (Fig. 3).

B. Leaf Instance Segmentation

AdLeaf segments individual leaves using a similarity graph
where vertices represent points and edges reflect spatial rela-
tionships between the points. Based on this similarity graph
structure, clusters corresponding to individual leaves are ex-
tracted by thresholding edge weights. Connected vertices form
distinct clusters that are output as segmented leaves (see Fig. 4
and Algorithm 2 in the appendix).

Leaf segmentation is a critical step in quantitatively re-
constructing individual leaves at the tree scale, aiming to
independently isolate each leaf from the entire tree. During
the segmentation process, the concept of connectivity-density
hybrid segmentation is employed, where density clustering is
first used for coarse segmentation, followed by graph-based
optimization of connectivity to separate structures such as
leaves, petioles, and twigs from the canopy point clouds. It
involves two main stages: (1) initialization of segmentation
instances and (2) instance segmentation based on similarity
graphs. The AdLeaf algorithm ingeniously combines geo-
metric modeling with graph-based methods, utilizing precise
normal computation, 3D Delaunay triangulation, and similar-
ity graph segmentation strategies. This approach effectively
addresses the challenge of leaf segmentation in canopy point
clouds, improving both segmentation accuracy and computa-
tional efficiency, particularly in complex canopy structures.
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Fig. 3: Branch and leaf separation performed by both automatic and manual steps. (a), (c), (e), and (g) demonstrate tree point
clouds (colored by height) before separation of branches and leaves; (b), (d), (f), and (h) show the corresponding point clouds
with separated branches and leaves, which green color denotes non-woody structures and brown color woody structure.

Fig. 4: Segmentation of all individual leaves at the tree level. (a), (c), (e), and (g) show individual leaves in different colors
and wood structures in brown. (b), (d), (f), and (h) show the non-wooden structures in different colors after leaf separation.

1) Initialization of Segmentation Instances: This is the
first step of AdLeaf’s segmentation process, which primarily
involves the computation of normals and poses. To accurately
describe the geometric morphology and curvature of leaves,
AdLeaf employs point cloud normal calculations. First, the
algorithm traverses the entire canopy point cloud, selecting a
reference point as the root node, and identifies its neighbor-
ing points using a KD-tree data structure. Within the local
neighborhood, the algorithm computes the normal for each
point by solving the covariance matrix to extract eigenvalues
and eigenvectors, where the eigenvector corresponding to the
smallest eigenvalue is taken as the normal vector. This process
effectively captures the curvature information of the leaves,
facilitating the subsequent identification of leaf shapes.

Next, AdLeaf performs 3D Delaunay triangulation on the
canopy point cloud, converting the discrete points into a
mesh. This step helps construct the canopy’s topological
structure, enabling more efficient processing of point cloud
data. Each edge in the mesh is assigned a weight based on
vertex attributes, with the weight calculation incorporating
both the geometric distance between vertices and the angular
difference between their normal vectors. Edges with lower
weights indicate higher similarity between leaves, aiding in
their identification. Delaunay triangulation ensures a more
rational connection between points, thereby providing precise
geometric data support for subsequent segmentation opera-
tions.

2) Leaf Segmentation Based on Similarity Graph: The sim-
ilarity graph helps AdLeaf capture the geometric and normal
vector similarities between leaves in the point cloud. After
the initialization stage, AdLeaf constructs a similarity graph,

where each point in the point cloud is treated as a vertex, and
edges are constructed by calculating the similarity between
points. The weight of each edge represents the geometric and
normal vector similarity between points. Points with smaller
normal vector angles and closer spatial distances are assigned
lower weights, indicating a higher likelihood of belonging to
the same leaf.

The similarity graph is constructed by connecting each point
to both the source and sink nodes using t-links and connect-
ing each point to its neighbors with n-links. This approach
effectively captures similarity relationships within the point
cloud, providing critical information for leaf segmentation.
Once the similarity graph is built, AdLeaf assigns weights
to each edge and uses a union-find algorithm to sort and
merge edges in the graph. During this process, edges are
traversed in ascending order of weight. If two vertices belong
to different sets, their sets are merged; otherwise removed.
This procedure effectively prevents misconnections between
points from different leaves, ensuring segmentation accuracy.
By applying a threshold, AdLeaf further reduces the number
of edges, improving the connections between different leaves.

3) Leaf Clustering and Final Segmentation: Based on the
similarity graph, AdLeaf performs final leaf segmentation
through a clustering approach. The algorithm constructs a
3D similarity graph using edge weights and extracts indi-
vidual leaf point clusters through thresholding operations on
neighboring point weights. Specifically, AdLeaf searches each
node’s adjacency list in the similarity graph and assigns
connected vertices to distinct leaf clusters according to a
predefined threshold. By iterating through the leaf clusters
in a double-loop manner, AdLeaf extracts the point set for
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Fig. 5: Leaf point cloud closure and hole filling using the
morphological operation.

each leaf. This process achieves accurate leaf segmentation,
laying a solid foundation for subsequent leaf reconstruction
and measurement.

C. Leaf Completion

At the tree scale, TLS scanning often results in incomplete
leaf point clouds due to occlusions. To fully reconstruct a leaf
and provide an accurate geometric shape, AdLeaf proposes
a completion algorithm based on the principles of concavity,
convexity, and symmetry. This algorithm consists of two main
steps: (1) detection of incomplete leaves and (2) repair of
incomplete leaves (see Algorithm 3 in the appendix).

1) Detection of Incomplete Tree Leaves: After leaf seg-
mentation, we first identify incomplete leaf point clouds.
To achieve this, AdLeaf leverages the concavity/convexity
principle of a reference plane in conjunction with the spatial
geometric information of the leaf point cloud to detect missing
portions of the leaf. Initially, a statistical filter is applied
to remove noise from the point cloud, ensuring detection
accuracy. Then, the principal direction and centroid of the
leaf point cloud are computed using the minimum bounding
box principle (Eq. 1), which provides the global geometric
information of the point cloud. Next, a reference plane is
fitted, and the leaf point cloud is orthogonally projected onto
a 2D plane (Eq. 2, Fig. 5), allowing the internal and external
contours to be extracted. The centroid is computed as:

C =
1

n

n∑
i=1

ri (1)

where C is the centroid vector, n is the number of points,
and ri is the position vector of each point. The orthogonal
projection matrix P is calculated as:

P = I − n · nT

nT · n
(2)

where I is the identity matrix, and n is the plane’s normal
vector.

The grayscale values are normalized to the range 0 to 255,
followed by a morphological closing operation to fill any
holes in the image, ensuring a comprehensive reflection of
the leaf’s shape. On this basis, the convex hull algorithm is
applied to calculate the maximum distance from the points

to the convex hull, and the degree of damage is determined
based on the percentage of the leaf area occupied by holes
(Fig. 6). These methods, when combined, effectively identify
incomplete leaves, especially in cases with large missing
edges.

2) Repairing Incomplete Tree Leaves: Once incomplete
leaves are identified, AdLeaf leverages the reflectional symme-
try of leaves to infer the shape of the missing parts and perform
geometric completion. First, the two most distant points on the
leaf are selected, and the line connecting these points is used
as the splitting line, dividing the leaf into two parts. Next,
based on the concavity and convexity detection of each part,
the algorithm determines which part is relatively complete. If
both parts exhibit convex or concave shapes, the side with
more points is selected as the source point cloud; if one side
is convex and the other concave, the convex part is chosen as
the source.

Then, Principal Component Analysis (PCA) is used to
calculate the pose of the source point cloud, followed by
an inverse matrix transformation to map the missing part of
the point cloud. Through this approach, AdLeaf generates a
symmetric point cloud for the missing part, and repairs the
leaf’s shape through relative position and structural matching
(see Fig. 7).

3) Generation of Complete Leaves: To further refine the
repair results, AdLeaf uses the minimum bounding rectangle
to analyze the longest edges of the leaf and infer the axis
of symmetry. The algorithm computes the vectors of the
two longest edges and uses vector dot products to assess
the distance of each non-zero point to the vector, thereby
determining which points are closest to the axis of symmetry.
AdLeaf generates the repaired point cloud by determining the
most appropriate symmetry axis. Finally, the generated target
point cloud is merged with the original point cloud to form
a complete leaf. This entire repair process not only restores
the missing portions of the leaf but also ensures the geometric
consistency and natural shape of the leaf.

D. Leaf Reconstruction

The main goal of AdLeaf is to accurately construct the
geometric model of the leaves from 3D point clouds. The
process includes steps such as point cloud projection, geo-
metric surface construction, mesh optimization, and smooth-
ing. Through meticulous computation and precise geometric
processing, AdLeaf reconstructs the true shapes of the leaves,
providing a solid foundation for subsequent leaf parameter
measurement (see Algorithm 4 in the appendix).

The reconstruction begins by projecting the leaf point
cloud onto the best-fit plane. AdLeaf uses PCA to extract
the principal directions of data distribution from the point
cloud’s covariance matrix, enabling dimensionality reduction.
The algorithm first computes the geometric center of the
point cloud and determines the principal axes of distribution.
Then, it selects the eigenvector corresponding to the smallest
eigenvalue as the normal vector of the fit plane. After this,
the data center is aligned with the origin through translation,
and the point cloud is projected onto the fitted plane to
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Fig. 6: Detection and identification of defective leaf point clouds. The blue outline in each subfigure indicates the convex hull
of each leaf.

(a) (b)

(c) (d)

Fig. 7: Two leaf point clouds completed based on symmetry
and concavity principles. Top row: Input incomplete leaf point
clouds. Bottom row: Completion results.

generate a 2D geometric surface (as shown in Fig.8). With this,
AdLeaf not only simplifies complex 3D data but also ensures
that the fitted plane accurately reflects the main geometric
features of the point cloud, simplifying the subsequent surface
reconstruction.

Based on the 2D projection, AdLeaf uses Delaunay tri-
angulation to mesh the projected points, which generates a
basic surface mesh. This process optimizes the quality of the
triangles, ensuring that each triangle meets the requirements
for minimal angles and uniform edge lengths, thereby pre-
venting large or irregular triangles from negatively affecting
the reconstruction. For each triangle vertex, AdLeaf computes
the vertex normal using a weighted average of the normals
from neighboring triangles, ensuring the smoothness of the
surface in the connecting regions. Then, through the fitting
of geometric properties for each vertex and its normal, a

Fig. 8: A leaf point cloud (a) is projected onto a 2D plane (b).

continuous and smooth 3D surface mesh is generated. The
surface mesh not only accurately reflects the geometric shape
of the leaf but also undergoes spatial optimization during
the fitting process, ensuring that each surface’s position and
orientation align with the actual leaf morphology, as shown in
Fig. 9.

This process leverages the overall planarity of leaves to sim-
plify reconstruction while ensuring the final 3D mesh retains
the necessary geometric fidelity for downstream analyses. The
methodology is efficient and robust, making it suitable for
reconstructing the detailed structure of individual leaves from
point clouds.

After generating the initial mesh, AdLeaf enhances the
model quality by optimizing boundary surface elements.
Specifically, the algorithm identifies and removes irregular
large surface elements, especially abnormal triangles located
at the boundary, by comparing the area of each triangle with
the average area of its neighboring triangles. After that, the
mesh is iteratively refined to ensure uniform distribution and
continuity. Finally, to improve the smoothness of the leaf
structure, AdLeaf applies the Laplacian smoothing algorithm
to further adjust the mesh node positions. Through iterative
adjustment, each node’s position is optimized by combining
a weighted average of neighboring nodes, improving the
geometric structure and making the leaf surface smoother and
more natural.

Once optimization is complete, AdLeaf maps the 2D surface
mesh back to 3D space using affine transformations, restoring
the original shape of the leaf. This process ensures the precise
correspondence of geometric positions and orientations, while
further optimizing the leaf surface curvature to ensure that the
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Fig. 9: Eight leaves reconstructed from point clouds. The first row shows the input leaf point clouds, and the second row
shows the corresponding reconstructed mesh models. The points in (a) - (d) contain color information and are complete. In
contrast, the points in (e) - (h) do not have color information and are incomplete, and thus leaf completion was performed
before reconstruction.

reconstructed model better reflects the physical characteristics
of the leaf. All steps adhere to the principles of geometric
consistency and natural morphology, ultimately achieving the
true restoration of the leaf’s geometric structure and fine detail
optimization.

E. Leaf Parameter Measurement

With the previously reconstructed leaf models, practical
and application-relevant leaf measurements can be obtained,
such as surface area, volume, leaf inclination angle, and
azimuth angle. These measurements support plant morphology
analysis, functional studies, and ecological modeling.

For the calculation of leaf inclination and azimuth angles,
AdLeaf conducts geometric analysis based on point cloud nor-
mals. By computing the angle between the leaf point cloud’s
projection plane and the Z-axis, the leaf inclination angle is
obtained, and the angle between the projection vector and the
X-axis gives the azimuth angle. This method is straightforward
and efficient, accurately describing the leaf’s tilt direction and
posture in 3D space, providing a reliable basis for analyzing
its spatial distribution.

For surface area and volume calculation, AdLeaf employs
a discrete algorithm based on the Gauss divergence theorem
to process the leaf’s 3D mesh model. To ensure accuracy, the
algorithm divides the leaf surface into small, smooth regions,
and the surface area is estimated by progressively calculating
the change in the normal vectors between adjacent points.
Additionally, the Maximum Unit Normal Component (MUNC)
is introduced to optimize calculations, ensuring the consistency
between local and total surface areas. For volume estimation,
the algorithm processes the discrete point set using divergence
theory, where the weighted sum of the normal vector gradi-
ents within each voxel is computed. This effectively reduces
errors caused by small cross-sectional areas, thereby enabling
high-precision volume estimation. This approach can handle
irregular shapes of leaves while improving the reliability of
the reconstructed models.

AdQSM is a method based on single-tree LiDAR point
cloud data for constructing explicit wood structure mod-
els [64]. It accurately and comprehensively outputs structural
models of wood components and a series of metrics [58].

When combined with AdLeaf (Fig. 10), AdQSM enhances
the capability of TLS forest remote sensing in quantitatively
reconstructing both woody and non-woody components of
trees.

IV. RESULTS

A. Effectiveness of AdLeaf in Measuring Leaf Count

AdLeaf utilizes instance segmentation of leaf point clouds
within the canopy to count the leaves on an entire tree or
branch. A field survey of leaf counts from seven samples (six
trees and one branch) provided counts of 762, 343, 1500,
4000, 441, 201, and 1560, respectively. AdLeaf determined
leaf counts of 771, 341, 1589, 4329, 415, 192, and 1484, with
relative errors ranging from 0.58% to 8.23% (see Fig. 11).
These results demonstrate AdLeaf’s ability to accurately cap-
ture leaf numbers, with its performance showing no significant
correlation with tree type, morphology, structure, or size.

B. Effectiveness of AdLeaf in Reconstructing Leaf Structure

We assess AdLeaf’s accuracy in reconstructing leaf struc-
tures by calculating the average distance (AD) and standard
deviation (SD) between the input point cloud and the generated
leaf model. The results shown in Table III demonstrate that
AdLeaf accurately reconstructs the non-woody structures of
entire trees, closely matching natural trees. Generally, trees
with high-density point clouds and broad leaves yield more
accurate results. Figure 12 shows that, despite variations in
shape, size, and structural complexity across trees, AdLeaf
consistently delivers high reconstruction quality. Even with
low sampling rates and relatively sparse point clouds, AdLeaf
remains capable of generating visually reliable leaf models.

To further investigate sources of reconstruction error, we
observed that discrepancies mainly originate from occlusion-
induced incompleteness at leaf tips and petioles, scanner
positioning errors, and under-segmentation in dense canopy
regions. For Tree 2 and Tree 3, lower point density led to larger
variation in fitted mesh surfaces, especially in overlapping leaf
areas. This suggests that reconstruction accuracy is strongly
affected by both the completeness and angular diversity of
scans.
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Fig. 10: Combining AdLeaf and QSM enables quantitative reconstruction of both woody and non-woody structures of trees.
(a) Photos. (b) Trees point clouds. (c) Branches. (d) Reconstructed leaves. (e) Combining branches and leaves.

Fig. 11: Validity verification of leaf counting.

Figure 13 visualizes the distributions of the errors of re-
constructed leaves in terms of AD and SD, showing relatively
stable AD and SD between 0.40 cm and 0.80 cm. High-quality
reconstructions of non-woody structures by AdLeaf tend to
perform better with trees that have higher-quality point clouds.
As shown in Table III, the AD and SD between the point
clouds and the reconstructed model surfaces are below 0.79

Fig. 12: The distribution of reconstruction error (AD) mea-
sured on Tree 3. The subfigures demonstrate the complete
tree model (top row) and the leaves only (bottom row) from
different views.

cm and 0.70 cm, respectively, demonstrating AdLeaf’s ability
to accurately reconstruct the non-woody structures of trees.
The statistical results show that the AD values of all trees
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(a) AD (b) SD

Fig. 13: Reconstruction accuracy (in terms of AD and SD) of
the sampled trees. (a) AD. (b) SD.

TABLE III: Reconstruction accuracy (in terms of AD and SD)
of sampled tree leaves.

Tree ID Density (Pt/m3) #Point AD (cm) SD (cm)
1 117,189 816,255 0.61 0.51
2 66,871 753,364 0.83 0.68
3 29,193 577,431 0.79 0.70
4 308,876 857,157 0.67 0.57
5 70,879 7,517 0.52 0.48
6 122,939 89,494 0.50 0.44

TABLE IV: Accuracy of leaf areas of scanned trees of different
species.

TreeID Species RMSE rRMSE Bias rBias
1 Cherry tree a 4.90 15.60% 0.47 1.51%
2 Cherry tree b 3.88 13.07% -1.21 -4.08%
3 Paper mulberry 8.04 11.77% -2.21 -3.23%
4 Poplar tree 4.57 14.87% 2.01 6.54%
5 Poplar tree 5.26 15.71% -0.11 -0.35%

remain below 0.83 cm. For trees with simpler structures, point
errors tend to be smaller in the midsection or center of the leaf,
while they are larger at the petiole or leaf tip. Overall, AdLeaf
reliably reconstructs the non-woody structures of different
trees, even when handling sparse point clouds.

C. Effectiveness of AdLeaf in Measuring Leaf Area

To verify the ability of AdLeaf in measuring leaf area,
we investigate its accuracy using both real-scanned trees and
simulated trees.

1) Measuring Leaf Areas of Scanned Trees: After scanning
the trees, we measured the reference leaf area using a leaf
area meter, with values ranging from 10 cm2 to 180 cm2,
and compared them to the leaf areas reconstructed by AdLeaf,
which ranged from 10 cm2 to 170 cm2. The reconstructed leaf
areas closely match the reference values, achieving an R2 of
0.95 and a slope of 0.93 (see Figure 14). The bias of the
error is -0.20 cm2, and the root mean square error (RMSE) is
5.63 cm2. No significant change in error was observed as the
reference values increased. Figure 15 shows the fitting results
of AdLeaf’s leaf area measurements against reference values
for different trees, with accuracy details given in Table IV.

In addition to the evaluation on the tree level, this study also
randomly sampled ten branches from five trees to evaluate the

Fig. 14: Comparison of leaf areas between the values obtained 
by AdLeaf and ground truth, measured on different trees given 
in Table IV. The predictions are consistent across the range 
of leaf areas.

accuracy of the leaf area reconstruction by AdLeaf. Figure 16 
presents the heat map of leaf area fitting c oefficients fo r dif-
ferent branches of each tree, highlighting the high simulation 
accuracy, which aligns with the overall model performance. 
When reconstructing leaf areas from various parts of the trees, 
Broussonetia (Tree 3) exhibited the best simulation results, 
likely because of the superior quality of the point cloud 
obtained during the scanning process.

2) Measuring Leaf Areas of Simulated Trees: Besides the 
evaluation using real-scanned trees, we conducted tests on 
five t rees w ith varying h eights ( simulated u sing HELIOS++), 
where the leaf areas were known. For instance, for an 8-meter-
high tree, the leaf areas of branches A, B, C, D, and E were 
90 cm2, 50 cm2, 30 cm2, 60 cm2, and 40 cm2, respectively. 
The reconstructed leaf area by AdLeaf fell within 98% of 
the reference range (Fig. 17), demonstrating high accuracy, 
regardless of tree heights.

D. Effectiveness of AdLeaf in Repairing Incomplete Leaves

To assess AdLeaf’s effectiveness in detecting and repairing
incomplete leaves, we tested it on leaves from various trees.
We compared the numbers of incomplete leaves detected by
AdLeaf with the manually determined counts (Fig. 18). The
results indicate that AdLeaf’s detection error is under 28%
across different tree samples, with smaller errors observed
in trees with higher leaf counts. This suggests that AdLeaf
performs more effectively as the number of leaves increases.

To evaluate AdLeaf’s ability to repair incomplete leaves, we
compared the leaf areas before and after repair with reference
values. For the first five trees, the accuracy of the leaf area
showed minimal change before and after completion. However,
the accuracy for the sixth tree showed significant improvement
(see Fig. 19). The relative root mean square error (rRMSE)
of the leaf areas before and after completion was 79.7%
and 70.3%, respectively, reflecting a 9.4% improvement in
accuracy. AdLeaf’s repair effect is particularly notable when
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Fig. 15: Comparison of leaf areas between the values obtained by AdLeaf and ground truth. The subfigures correspond to the 
five trees in Table IV.

Fig. 16: R2 heat map of leaf areas derived by AdLeaf.

the point cloud quality is low or the initial measurement
accuracy is poor. The results further demonstrate that AdLeaf
is especially effective in repairing large, severely damaged
leaves, which is consistent with our visual interpretation that
Tree 6 had notably more damaged leaves.

E. Quantitative 3D Visualization of Leaf Angle and Azimuth
Distribution Reconstructed by AdLeaf

With AdLeaf, we also derived leaf angles and azimuths for
the trees. Figures 20 and 21 demonstrate the distributions of

the inclination and azimuth angles of the leaves, respectively.
For these visualizations, we can observe that the leaves in the
outer and lower parts of the canopy are nearly vertical, while
those in the upper parts are more horizontal. The average
azimuth angle tends to point toward the shortest path to
the canopy’s outer edge. Most leaf angles exceed 45°, and
the azimuths are nearly parallel to the normal direction. In
the upper canopy, leaves generally tilt southward at angles
between 30° and 35°, optimizing solar interception (Bailey
and Mahaffee, 2017). Meanwhile, leaves near the ground are
almost vertical, oriented towards the canopy’s outer edge, and
absorb most of the sunlight.

AdLeaf reconstructs leaf angles to maximize sunlight in-
terception. Leaves are oriented towards the normal direction
and are more vertical, reflecting an optimal solar interception
configuration. In the upper canopy, leaves tilt southward at
angles between 30° and 35°, while those closer to the ground
are more vertical, pointing towards the canopy’s outer edge to
capture more sunlight. The physical intuition and visualization
in Fig. 21 support AdLeaf’s measurement results. Overall,
AdLeaf’s leaf angle and azimuth measurements align with our
observational findings.

V. DISCUSSION

AdLeaf enables fine-scale reconstruction of non-woody tree
structures, enhancing TLS capabilities beyond traditional QSM
methods. AdLeaf’s performance was assessed using scanned
and simulated point clouds, in-situ measurements, and de-
structive sampling, focusing on: (a) leaf count accuracy; (b)
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(a) Five branches from a 5m tree (b) Five branches from a 13m tree (c) Five branches from an 18m tree

(d) Five branches from a 23m tree (e) Five branches from a 28m tree

Fig. 17: The leaf area of synthetic trees of different heights. Each subfigure corresponds to the five branches of each tree given
in Table II.

Fig. 18: Validity verification of defective leaf detection.

detection and repair of missing leaves; (c) geometric fidelity
of non-woody structures and leaf area estimation; and (d)
mapping of leaf inclination and azimuth distributions. The
results highlight AdLeaf’s ability to overcome limitations in
existing QSM approaches.

A. Advantages in Quantitative Reconstruction of Tree Leaves

AdLeaf is a TLS-based quantitative reconstruction method
that accurately models tree leaves, capturing attributes such
as count, position, orientation, and area. It addresses spatial
heterogeneity in canopy leaf distribution and supports species-
independent leaf-level mapping and measurement. Field tests
demonstrate a leaf count error of 0.58–8.23%, high geometric
accuracy (with AD < 0.83 cm and SD < 0.70 cm), and robust
leaf area estimation (R2 = 0.95, Bias = -0.20 cm2, RMSE =
5.63 cm2). AdLeaf performs robustly even with lower-quality

point clouds, though its geometric completion process may
slightly reduce precision when data quality is high.

Unlike supervised deep learning approaches [20], [65],
AdLeaf employs unsupervised instance segmentation, elimi-
nating the need for labeled data while maintaining transparent,
adjustable computations. It extracts multiple leaf attributes in
a single pass. By advancing TLS capabilities to tree-level leaf
measurement, AdLeaf introduces innovative reconstruction
techniques, replacing simplified assumptions in forest remote
sensing and contributing significantly to TLS-based forest
ecology research.

B. Runtime Efficiency of AdLeaf

All experiments were conducted on a computer equipped
with a 12th Gen Intel (R) Core (TM) i5-12500H processor
and 16 GB RAM. On average, AdLeaf processed each of six
scanned trees in about 70 seconds. While suitable for single-
tree analysis, scaling to plot-level reconstructions introduces
computational challenges. Future improvements will include
downsampling, prioritized clustering, and parallel batch pro-
cessing to enhance scalability.

C. Challenges and Influencing Factors in Leaf Reconstruction

AdLeaf mitigates reconstruction errors caused by poor seg-
mentation or improper leaf fitting. Assuming effective separa-
tion of leaves from branches, AdLeaf employs graph combi-
nation and shortest path backtracking for automatic segmen-
tation and quality control. Using a graph-cut framework, the
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Fig. 19: Effect of leaf completion on leaf area estimation.

Fig. 20: Visualization of the distribution of leaf angles of
three randomly selected trees. Top: side view. Bottom: the
corresponding top view of the canopy.

Fig. 21: Visualization of the distribution of azimuth corners
of the same trees in Figure 20. Top: side view. Bottom: the
corresponding top view of the canopy.
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method leverages topological relationships and edge weights to
segment leaves, while its core surface reconstruction relies on
additional assumptions and constraints for accurate processing.

To resolve reconstruction issues, AdLeaf incorporates a
3D geometric completion algorithm and a leaf parameter
estimation framework. This framework repairs incomplete
or missegmented leaves based on symmetry and concavity
principles. The axis connecting the two furthest points may
not represent true biological symmetry, especially in broad or
irregular leaves. AdLeaf treats this as a geometric approxima-
tion to support robust bilateral segmentation. Reconstruction
quality is highly dependent on input point cloud resolution and
completeness, which are influenced by scanner specifications
and canopy structure [66], [67].

For leaf area estimation, lower-quality point clouds (often
affected by occlusion) reduce sensitivity, particularly under
high leaf density or ambiguous positions [68], [69]. Absolute
errors are greatest with poor-quality data, but overall area
size is less impacted. Despite variations across tree species,
AdLeaf achieves robust quantitative reconstruction of non-
woody structures, with measurement precision influenced by
scanner accuracy, tree height, and canopy occlusion.

The AdLeaf pipeline includes branch-leaf separation, leaf
segmentation, damaged leaf completion, structural reconstruc-
tion, and parameter estimation, each sensitive to point cloud
quality but tunable for performance gains. Enhanced branch-
leaf separation, for instance, ensures smoother leaf area dis-
tribution and consistent canopy measurements.

Leveraging TLS technology, AdLeaf effectively processes
high-resolution point clouds and holds potential for integration
with multi-sensor or multi-source point cloud fusion technolo-
gies. Future advancements in these areas will further enhance
its capabilities, making it a powerful tool for forest remote
sensing.

D. Limitations and Potential of AdLeaf

AdLeaf offers a practical solution for close-range forest
remote sensing, enabling detailed reconstruction of non-woody
tree structures. Its performance depends on the quality of point
clouds, influenced by TLS instrument capability, scan resolu-
tion, number of stations, duration, and canopy accessibility.
A typical scan takes around 10 minutes, with longer times
required for large or dense trees.

AdLeaf can reconstruct partially scanned leaves but shows
reduced accuracy as data gaps widen. Reliable reconstruc-
tion generally requires at least 50% leaf surface coverage.
Below one-third, convex hull-based defect detection becomes
unreliable. Enhancing robustness under extreme occlusion is
a key direction for future work. Challenges include filter-
ing, noise suppression, wood–leaf separation, segmentation,
and repair accuracy. Though not yet applicable to conifers,
AdLeaf advances TLS-based tree measurements to the leaf
scale, supporting new opportunities in vegetation modeling and
ecological analysis.

AdLeaf requires few input parameters, and its branch pre-
training supports intuitive parameter tuning for leaf segmen-
tation. The estimated leaf areas and orientations closely align

with actual measurements. By integrating wood structure mod-
els from QSM [64], AdLeaf enables seamless scaling from leaf
to canopy without assuming homogeneity, enhancing insights
into structure-function relationships [1].

Although validated in temperate broadleaf environments,
AdLeaf’s geometric modeling and unsupervised segmentation
are theoretically extendable to other broadleaf forest types.
For tropical or coniferous forests, adaptations such as denser
scanning and tailored segmentation thresholds may be nec-
essary. Future work will extend validation to evergreen and
needleleaf environments to enhance generalizability. Ongoing
improvements include higher-resolution scanning, integration
with ULS data, and broader applications such as radiative
transfer modeling and physiological studies [53]. In summary,
AdLeaf represents a promising step toward fine-scale ecolog-
ical analysis and forest remote sensing.

VI. CONCLUSION

This study presents a theoretical and practical framework for
quantitatively reconstructing tree photosynthetic components
using TLS point clouds. The proposed AdLeaf method enables
explicit modeling of individual leaves at the tree level. By
overcoming QSM limitations, AdLeaf transitions from tradi-
tional virtual canopy representations to explicit, quantitative
modeling of individual leaves. This approach provides critical
leaf structural parameters essential for understanding forest
functions and environmental processes under climate change.

AdLeaf captures heterogeneous leaf geometry, including 3D
inclination and azimuth, supporting analysis of light intercep-
tion and resource allocation. Combined with QSM, it enables
comprehensive TLS-based measurement of both woody and
leafy structures, improving plant functional models and reduc-
ing uncertainty in close-range sensing. The explicit 3D outputs
of AdLeaf are compatible with other remote sensing modal-
ities (e.g., imagery). Future directions include fusing AdLeaf
outputs with UAV LiDAR for multiscale canopy monitoring
and integrating with hyperspectral imagery to assess leaf-level
photosynthetic activity and forest health.
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Algorithm 1 SLF+LLL optimized SPFA algorithm

1: Input: point clouds of a single tree
2: Output: wood and leaf points
3:
4: // Constructing Distance-Based Graphs for Point Clouds
5: function ConstructGraph(treeCloud, delta, k)
6: graph← initialize with size |treeCloud|
7: for i← 1 to |treeCloud.points| do
8: (indices, dists)←

kdtree.knnSearch(treeCloud.points[i], k)
9: for j ← 1 to k do

10: if dists[j] ≤ delta2 then
11: graph[i].addEdge(indices[j])
12: end if
13: end for
14: end for
15: return graph
16: end function
17:
18: //Extracting the shortest path using the SPFA optimized

with SLF and LLL
19: function SPFA(graph)
20: distance← array initialized to ∞
21: queue, inQueue, countInQueue← empty structures
22: weightSum← 0
23: while queue not empty do
24: u← queue.front()
25: queue.pop()
26: for each neighbor v of u do
27: if distance[v] > distance[u] + weight(u, v) then
28: distance[v]← distance[u] + weight(u, v)
29: if v /∈ queue then
30: if countInQueue[v] == 0 or LLL condition

then
31: queue.push front(v) {LLL operation}
32: else
33: queue.push back(v) {SLF operation}
34: end if
35: end if
36: inQueue[v]← true
37: countInQueue[v]← countInQueue[v] + 1
38: end if
39: end for
40: end while
41: end function
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Sánchez, M. Searle, and B. Höfle, “Virtual laser scanning with helios++:
A novel take on ray tracing-based simulation of topographic full-
waveform 3d laser scanning,” Remote Sensing of Environment, vol. 269,
2022.

[64] G. Fan, L. Nan, Y. Dong, X. Su, and F. Chen, “Adqsm: A new method
for estimating above-ground biomass from tls point clouds,” Remote
Sensing, vol. 12, no. 18, p. 3089, 2020.

[65] Q. Wang, Y. Pang, D. Chen, X. Liang, and J. Lu, “Lidar biomass
index: A novel solution for tree-level biomass estimation using 3d crown
information,” Forest Ecology and Management, vol. 499, p. 119542,
2021.

[66] M. Poorazimy, S. Shataee, R. E. McRoberts, and J. Mohammadi,
“Integrating airborne laser scanning data, space-borne radar data and
digital aerial imagery to estimate aboveground carbon stock in hyrcanian
forests, iran,” Remote Sensing of Environment, vol. 240, p. 111669, 2020.

[67] J. Zhao, D. Liu, Y. Cao, L. Zhang, H. Peng, K. Wang, H. Xie, and
C. Wang, “An integrated remote sensing and model approach for as-
sessing forest carbon fluxes in china,” Science of the Total Environment,
vol. 811, p. 152480, 2022.

[68] A. Bornand, N. Rehush, F. Morsdorf, E. Thürig, and M. Abegg,
“Individual tree volume estimation with terrestrial laser scanning: Evalu-
ating reconstructive and allometric approaches,” Agricultural and Forest
Meteorology, vol. 341, p. 109654, 2023.
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