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Abstract— Multi-sensor object detection is an active research
topic in automated driving, but the robustness of such detection
models against missing sensor input (modality missing), e.g., due
to a sudden sensor failure, is a critical problem which remains
under-studied. In this work, we propose UniBEV, an end-to-
end multi-modal 3D object detection framework designed for
robustness against missing modalities: UniBEV can operate
on LiDAR plus camera input, but also on LiDAR-only or
camera-only input without retraining. To facilitate its detector
head to handle different input combinations, UniBEV aims to
create well-aligned Bird’s Eye View (BEV) feature maps from
each available modality. Unlike prior BEV-based multi-modal
detection methods, all sensor modalities follow a uniform ap-
proach to resample features from the original sensor coordinate
systems to the BEV features. We furthermore investigate the
robustness of various fusion strategies w.r.t. missing modalities:
the commonly used feature concatenation, but also channel-wise
averaging, and a generalization to weighted averaging termed
Channel Normalized Weights. To validate its effectiveness, we
compare UniBEV to state-of-the-art BEVFusion and MetaBEV
on nuScenes over all sensor input combinations. In this setting,
UniBEV achieves better performance than these baselines for
all input combinations. An ablation study shows the robustness
benefits of fusing by weighted averaging over regular concatena-
tion, and of sharing queries between the BEV encoders of each
modality. Our code will be released upon paper acceptance.

I. INTRODUCTION

THE perception system of an intelligent vehicle typically
relies on multiple sensors [1], [2], including LiDARs

and cameras, to take advantage of their individual strengths
and complementary nature for robust object detection. For
example, cameras provide rich texture information while
LiDAR delivers dense point clouds with accurate geomet-
ric information. Most works on multi-sensor models focus
only on optimal detection performance when all sensors
are available. However, ideally a model could also be
used when the input of one of its sensors is missing, i.e.,
modality missing, without any retraining. A unified model
to handle both multi-sensor and single-sensor inputs would
facilitate gracefully degradation of its perception system in
case of catastrophic sensor failure (e.g., broken connector)
without needing to load a new set of model parameters,
but also provide flexibility by supporting diverse hardware
configurations (e.g., vehicles with different sensors). This
work therefore focuses on the design of a ‘robust’ multi-
sensor object detection model, which in this context refers
to the trained model’s ability to fuse camera and LiDAR
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Fig. 1. Comparison of our UniBEV with other relevant works.
(a). BEVFusion [3] fuses multi-modal BEV features extracted from two
separate branches with concatenation. (b) MetaBEV [4] fuses multi-modal
BEV features extracted from two separate branches with a fusion module
consisting of several deformable attention layers. (c) Our UniBEV extracts
multi-modal BEV features from their original coordinate systems with
uniform BEV encoders and fuses the BEV features with the CNW module.
C and L in the figure represent the input from cameras and LiDAR.

information for object detection, but also to operate on only
a single modality.

Recent state-of-the-art (SotA) in multi-sensor object detec-
tion for self-driving exploits dense Bird’s-Eye view (BEV)
features as an intermediate representation to integrate multi-
sensor information, which can then be used by a generic
object detection head. BEVFusion [5] pioneers fusing multi-
modal BEV features for LiDAR and cameras. It employs
two separate branches to independently extract BEV features
from each modality, and subsequently fuses these features
through concatenation, as shown in Fig. 1 (a). Notably,
the designs of the camera and LiDAR branches in BEV-
Fusion are non-uniform: The camera branch relies on a
(type of) Lift-Splat-Shoot (LSS) [6] component to explicitly
predict the depth distribution of the image features, and
map them from their camera coordinates to the spatial BEV
coordinates. In contrast, the LiDAR branch already natively
expresses its features in spatial coordinates and thus does
not apply additional transformations to encode its BEV
features. This may lead to the misalignment of camera and
LiDAR BEV features as they are extracted in distinct ways.
Recently MetaBEV [4] improves over BEVFusion by replac-



ing its concatenation with a learnable module with several
deformable attention layers to better align the features, while
still keeping BEVFusion’s BEV feature encoder approach,
see Fig. 1 (b). Since the feature misalignment is not really
solved, the gain of the fusion inference is modest.

We argue that for ‘robust’ multi-modal 3D object detec-
tion, i.e., for both multi-sensor and single-sensor inputs with-
out retraining, it is important that the BEV representations of
all sensor modalities are well aligned. We therefore propose
a new end-to-end model named UniBEV, shown in Fig. 1 (c),
which revisits several key architectural design choices to im-
prove feature alignment: First, it uses a uniform deformable
attention-based architecture for both its camera and LiDAR
branch to build each sensor’s BEV features, avoiding the
need for a camera-only LSS-like explicit depth prediction.
Now both branches use deformable attention to construct
their BEV features, and the learned queries can be shared
between both branches to further facilitate feature alignment
and provide interactions between the two branches. Second,
to fuse the multi-sensor features, we investigate using simple
averaging over concatenation to avoid zeroing-out half the
features when only a single sensor is available. We also
propose an extension to a learned weighted average of feature
channels, called Channel Normalized Weights (CNW).

Our main contributions are as follows:
• We propose UniBEV, a multi-modal 3D object detector

designed for robustness against missing modalities. It
follows a uniform approach across all modalities to
encode the sensor-specific features into a shared BEV
feature space to facilitate alignment between modali-
ties. UniBEV exhibits a more robust performance than
its baselines against modality missing failure without
needing to load a different set of model parameters.

• When taking multi-modal data as input, UniBEV out-
performs SotA multi-modal methods on the nuScenes
dataset. For fair benchmarking, we reimplemented the
closed-source MetaBEV and evaluated all multi-modal
baselines under similar training conditions (e.g. same
hardware, no data augmentation). We will release all
source code upon paper acceptance.

• We investigate the impact of various feature fusion
strategies: concatenation, averaging, and a simple exten-
sion to weighted averaging we call Channel Normalized
Weights. For the same number of feature channels
after fusion, the CNW performs better when modality
missing is considered than the commonly used fusion
by feature concatenation.

II. RELATED WORK
Every sensor type has specific limitations for real-world

driving scenarios, hence multi-modal 3D object detection has
gained great attention in recent years, especially the fusion
between cameras and LiDAR. Nevertheless, the alignment
between camera and LiDAR features is challenging as they
are defined in different coordinates. Some methods fuse
multi-modal features directly from their native coordinates
with some specially designed components, such as attention

[7]–[11]. DeepFusion [12] is the representative work among
them, it simply performs cross-attention on multi-modal
features with LiDAR features as queries and with camera
features as keys and values. FUTR3D [13] brings the idea of
DETR3D [14] and Object DGCNN [15] into the multi-modal
domain. With the prior knowledge of camera extrinsics,
FUTR3D leverages the shared object queries interacting
with multi-view image features and LiDAR BEV features
to sample instance-level features.

Other SotA methods build a unified intermediate BEV
representation to align and fuse multi-modal features [16],
[17]. A benefit of such BEV representations is they can serve
various tasks through distinct network heads, such as simul-
taneous object detection and BEV map segmentation [5],
[6], [18]–[20]. BEVFusion [3], [5] deploys Lift-Splat-Shoot
(LSS) [6] to predict image depth distributions and project
the image features in BEV, and deploys a regular point
voxelization method, such as PointPillars [21] or CenterPoint
[22], to extract BEV features from LiDAR point clouds. The
multi-modal BEV feature maps are fused by concatenation.
MetaBEV [4] upgrades the fusion module of BEVFusion
to a deformable attention-based fusion block. [23] uses a
simple summation fusion module to integrate cross-modal
BEV features and achieve convincing performance at a long
distance. In this study, our primary emphasis is on the
alignment within the BEV feature domain to address the
challenges posed by missing sensor scenarios.

A few works have looked into increasing robustness
against modality missing [4], [24], [25]. These improve
robustness by applying Modality Dropout during training,
i.e., some portions of the training samples are presented
without the input of one of the sensors. In this paper,
we focus on this Modality Dropout setting, and explore a
model’s holistic test performance when presented with both
or only one input modality.

III. METHODOLOGY

We now describe our new architecture, UniBEV, for robust
LiDAR-camera 3D object detection. As illustrated in Fig. 2,
UniBEV consists of four parts: features extractors, uniform
BEV encoders, a fusion module, and the detection head. Each
part will be described in the following subsections.

A. Feature Extractors

For the initial feature extraction, UniBEV has a similar
design to previous works [14], [18], relying on common
image/point cloud backbones [3], [5], [13], [25]. Images from
V camera views are fed into an image backbone, such as
ResNet [26], resulting in image features F i

C ∈ RHC×WC×NC

for 1 ≤ i ≤V , where HC×WC is the resolution of the feature
map in the native image coordinates, and NC is the feature
dimension. Similarly, the LiDAR scan is processed by a
regular point cloud backbone, such as VoxelNet [27], which
voxelizes and extracts grid-shaped features in Bird’s Eye
view FL ∈RHL×WL×NL , where HL, WL, and NL are the spatial
shape and feature dimensions of the features.



Fig. 2. The overall architecture of the UniBEV framework. 1). Multi-view images and point clouds are processed through their respective backbones
to generate multi-modal features. 2). A predefined set of grid-shaped BEV queries, shared across modalities, is utilized. Guided by these shared BEV
queries, modality-specific BEV encoders further refine the camera and LiDAR features independently to establish aligned BEV features. These encoders
are constructed using deformable attention modules and accept unified queries, relevant reference points, and the backbone-extracted features as inputs. 3).
The camera and LiDAR BEV features are fused along the channels according to the learned CNW values.

B. Uniform BEV Feature Encoders

After feature extraction, FL and FC are still represented in
different coordinate systems. FL is expressed in 3D spatial
coordinates similar to the target BEV space, while FC uses
2D image coordinates. Existing methods generally further
transfer the image features into the Bird’s Eye view with
LSS [6] and simply fuse the two BEV features through
concatenation [5], [28]. We argue that the difference in
network architecture between these branches may affect the
alignment of the camera and LiDAR BEV features. Further-
more, concatenating features requires zero-filling when one
modality is missing. As a result, the decoder head would
operate on BEV features that are highly different depending
on the available inputs, which may impact its robustness to a
missing modality. UniBEV therefore implements a uniform
design for all sensor modalities for better aligned BEV
features, as explained next.

Queries: First, a set of learnable BEV query vectors [18]
with associated 3D spatial locations is defined. These queries
are shared by all modalities (our ablation study will also
consider separate queries per modality). We define learnable
parameters Q ∈ RH×W×N as BEV queries, where H ×W
represent the 2D BEV spatial grid resolution in the vehicle’s
local spatial coordinates, and N is the number of channels in
the BEV queries. R∈RD×H×W×4 contains the corresponding
spatial coordinates of BEV reference points in a 3D spatial
grid H×W ×D as homogeneous coordinates (x,y,z,1). Note
that D reference locations are defined along the z-direction
in the pillar of each 2D query location in Q. We shall use
R(z) to denote only the references at level 1 ≤ z ≤ D.

Projection: The BEV spatial locations R are projected
to the original spatial coordinate system of each modal-
ity’s feature map, as shown in Fig. 2, similar to FUTR3D

[13] 1. Namely, for the feature map of each camera i =
{1,2, ...,V}, the 3D points R are projected to its 2D image-
based coordinates Ri

C = PC(R,Pi) using the known camera
extrinsics expressed by its homogeneous projection matrix
Pi. Similarly, RL = PL(R) projects the references to the
LiDAR feature map’s spatial coordinates, for instance to
scale the spatial resolution, though in practice often PL is
an identity function.

Encoding: Finally, each modality’s BEV feature map is
constructed using 3 layers of deformable self-attention and
deformable cross-attention between the BEV queries and
sensor feature maps. The feature map at the first layer of
the camera BEV encoder, FBEV ′

C , is obtained by summing
over all views where a reference is visible, and over all D
locations for each query [18],

FBEV ′
C = ∑

1≤i≤V
∑

1≤z≤D
De f ormAttn(Q,Ri

C(z),F
i
C), (1)

where De f ormAttn is the deformable cross-attention defined
in [29], [30]. The output of the last layer is the final camera
BEV feature map FBEV

C passed to the fusion module.
Mirroring the cameras, the LiDAR BEV encoder performs

the same operations, with its first feature map likewise

FBEV ′
L = ∑

1≤z≤D
De f ormAttn(Q,RL(z),FL). (2)

Note that due to how deformable attention works, both FBEV
C

and FBEV
L will retain the H ×W ×N size of the initial Q.

C. Fusion Module: Channel Normalized Weights

In the majority of multi-modal 3D object detection ap-
proaches [3], [5], [13], [25], [28], concatenation along the

1Recall FUTR3D is not a BEV-based detector, nor does it use deformable
attention to sample camera features.



feature dimension is utilized as the fusion method to combine
features from different modalities, to preserve a maximum
amount of information. However, if one considers scenarios
where a sensor input is missing, concatenation fusion must
compensate for the absent input to ensure the number of
channels provided to the decoder does not change. For
instance, by filling the fused BEV features with placeholder
values, typically all zeros.

We shall investigate a simple alternative, namely fusing
BEV feature maps by averaging (or summing [23]) over all
available modality feature maps. On the one hand, averaging
risks diluting information from a more reliable sensor with
that of the less reliable sensor. On the other hand, this fusion
strategy never needs to resort to placeholder values, and
ensures that the fused BEV feature map always has the same
number of channels as each modality BEV feature map, even
if one input modality is missing.

We also propose a generalization of average fusion which
we call Channel Normalized Weights (CNW). The key idea
is that the reliability of each channel in the feature map
may differ from sensor to sensor, and we should account
for this when sensor measurements can be fused. CNW
therefore has as learnable parameters a N-dimensional vector
Am for each modality m, which remains fixed after training.
The i-th element Am(i) indicates the relative importance of
modality m for the fused result of the i-th channel. Before
fusion, weights Am are normalized (denoted Am) over all
available sensor modalities such that they sum to 1 per
channel. Thus with two modalities, LiDAR and camera,
AC(i),AL(i) = so f tmax(AC(i),AL(i)), s.t.

CNW (FBEV
C ,FBEV

L ) = FBEV
C ⊙AC +FBEV

L ⊙AL, (3)

where ⊙ indicates channel-wise multiplication with im-
plied broadcasting over the spatial dimensions. In case only
a single modality is available, so f tmax is applied to a single
value per channel and normalization reduces to assigning full
weights to that modality, e.g., CNW (FBEV

C ) = FBEV
C .

It is easy to see that CNW reduces to average fusion
when all the learned channel weights in AC and AL approach
1
2 . On the other hand, CNW can also reflect concatenation
fusion by allowing channels in the fused output to only take
information from one modality if those channels’ learned
weights approach 0 or 1 only. Intuitively, CNW adds a small
number of learnable parameters to give the model more
flexibility between these special cases, allowing it to optimize
the relative importance of each modality for fusion, and
still allowing meaningful values for the single modal input.
Our experimental results shall show UniBEV constructs
BEV features with a similar magnitude distribution for each
modality, ensuring that our CNW discerns the importance of
different channels rather than a random scale function.

D. Detection Head and Modality Dropout Strategy

Following previous works [13], [14], [18], [31], we cast
the bounding box detection as a set prediction problem
and adopt the decoder of BEVFormer [18] for 3D object

detection task. To train the model for sensor missing failure,
we deploy the common Modality Dropout (MD) training
strategy [4], [24], [25]. Thus during training we drop with a
probability pmd the BEV features of one of the modalities,
either FBEV

C or FBEV
L . Furthermore, in case we do drop one

of the modalities, pL indicates the probability of keeping
LiDAR, while pC = 1 − pL is the probability of keeping
the cameras. Thus, the overall probability of keeping both
sensors is 1− pmd , of only LiDAR is pmd · pL, and of only
cameras is pmd · pC = pmd · (1− pL).

IV. EXPERIMENTS

A. Implementation Details

Dataset and Metrics. We train and evaluate our approach
on the nuScenes dataset [2]. nuScences is a large-scale multi-
modal driving dataset, which includes 6 cameras and a 32-
beam LiDAR in the sensor suite. As we target robustness
against missing input modalities, we report the test perfor-
mance on LiDAR+camera, on LiDAR-only, and on camera-
only, and report common mean Average Precision (mAP) and
nuScenes detection score (NDS) [2]. As a summary metric
for ‘robustness to modality missing’, we also report for both
metrics the average performance over all these three possible
sensor inputs. For example, our summary mAP is simply,

summary mAP =
1
3
(mAPL+C+mAPL+mAPC). (4)

Model. We use ResNet-101 [26] with FPN [32] as
UniBEV’s camera feature extractor and VoxelNet [27] as
its LiDAR feature extractor. CNW is the default fusion
approach. The grid shape of the unified query is set to
200×200 with N = 256.

Baselines. Our first multi-sensor baseline is BEVFusion
[5], and uses their implementation which includes a more
powerful image backbone, Dual-Swin-Tiny [33], and Cen-
terPoint [22] head. Since BEVFusion uses concatenation
for fusion, we use zero-filling for MD. Our second fusion
baseline is the recent MetaBEV [4], which improves the con-
catenation approach of BEVFusion to a deformable attention-
based fusion module. Our MetaBEV implementation uses the
same backbones and detector head as UniBEV 2.

To assess if the results on one sensor only are reason-
able, we also evaluate related uni-modal baselines: LSS [6],
BEVFormer S [18], PointPillars [21], and CenterPoint [22].
Additionally, we let UniBEV C denote the camera branch of
UniBEV only trained with multi-view images, to compare
to the camera-only methods. Likewise, UniBEV L is the
LiDAR-only branch of UniBEV.

Training Details. Our model is trained in an end-to-end
manner for 36 epochs. Due to the utilization of various tricks
in baseline methods and the absence of publicly available
code, accurately reproducing the performance reported in
their papers proves to be challenging. For a fair comparison,
all the baselines are retrained with the same data pipeline

2The code of MetaBEV has not been released yet. We reproduced their
BEV-encoder and fusion strategies based on the paper. Their multi-task
learning strategy was not implemented for a fair comparison.



TABLE I
EVALUATION RESULTS ON THE NUSCENES val SET (BEST/ SECOND BEST). COLUMNS INDICATE THE TEST INPUT MODALITIES: L+C = LIDAR AND

CAMERAS, L = ONLY LIDAR, AND C = ONLY CAMERAS. NON-FUSION MODELS ARE PROVIDED FOR COMPLETENESS, USING ”-” WHERE THEY DO

NOT APPLY. NOTE: WE TRAINED ALL MODELS OURSELVES, TO ENSURE EQUAL TRAINING STRATEGIES, AND SINCE [4] HAS NO PUBLIC CODE. THIS

LEADS TO LOWER PERFORMANCE COMPARED TO REPORTED BENCHMARK RESULTS [3], [4], ESPECIALLY DUE TO A LACK OF DATA AUGMENTATION.

Method Train L + C L C Summary Metric

Modality NDS ↑ mAP ↑ NDS ↑ mAP ↑ NDS ↑ mAP ↑ NDS ↑ mAP ↑

LSS [6] C - - - - 33.0 28.1 - -
BEVFormer S [18] C - - - - 46.2 40.9 - -
UniBEV C C - - - - 44.3 36.9 - -

PointPillars [21] L - - 49.1 34.3 - - - -
CenterPoint [22] L - - 65.4 57.0 - - - -
UniBEV L L - - 65.2 57.8 - - - -

BEVFusion [3] L + C (MD) 65.3 58.7 60.6 49.1 29.6 22.6 51.8 43.5
MetaBEV [4] L + C (MD) 67.5 62.5 65.2 57.8 33.6 25.9 55.4 48.7
UniBEV (ours) L + C (MD) 68.5 64.2 65.3 58.2 42.4 35.0 58.7 52.5

as our model without data augmentation techniques, such
as CBGS [34]. Every baseline model underwent training on
four Nvidia A40 GPUs, with the entire training duration for
each model spanning roughly one week.

Unless stated otherwise, for all models the MD probability
is pmd = 0.5, and the probability for keeping each modality is
identical, i.e., pL = pC = 0.5. Therefore, in the whole training
process, on average 50% of iterations are trained with multi-
modal inputs, 25% with LiDAR-only inputs, and 25% with
camera-only inputs.

The image and point cloud backbones are initialized
with the weights of FCOS3D [35] and CenterPoint [22],
respectively. Our model is implemented in the open-sourced
MMDetection3D [36].

B. Multi-Modal 3D Object Detection

Table I showcases the inference performance of the fusion-
based detector on both multi-modal input, as well as single-
modality input using the same trained weights.

Multi-modal robustness. The summary metrics of our
UniBEV (58.7% NDS and 52.5% mAP) significantly sur-
pass the baseline methods, indicating that UniBEV is more
robust over varying input modalities. On all input modalities,
UniBEV outperforms its multi-modal baselines, achieving
68.5% NDS and 64.2% mAP for LiDAR+camera fusion,
especially the difference in camera-only performance is
notable. Despite employing a more powerful image backbone
[37], BEVFusion lags markedly behind UniBEV when only
camera input is available.

Given that the CenterPoint head of BEVFusion and our
detection head exhibit comparable detection capabilities (as
evidenced by the near identical performance of UniBEV L
and CenterPoint), the performance difference for camera-
only between UniBEV and BEVFusion can be attributed to
the quality of BEV features and its fusion strategy. Fig. 3
illustrates that compared to BEVFusion, UniBEV’s camera
and LiDAR BEV features more clearly discern similar object

locations and that these are better spatially aligned. Besides,
BEVFusion utilizes LSS [6] as the camera BEV encoder
to project image features into the BEV feature space. This
enforces an inductive bias on its camera BEV features not
present in its LiDAR BEV features, as exhibited by the
hexagon-shaped outline.

Fig. 3. Example of the BEV feature maps of different modalities for
a single sample. High intensity indicates high variance across channels at
that location. UniBEV aligns modalities for object detection, resulting in
strong responses at the same locations in both the camera and LiDAR.

While MetaBEV exceeds BEVFusion across all input
types due to its enhanced fusion module, it is also outper-
formed overall by UniBEV. For the LiDAR-only scenario,
MetaBEV does achieve comparable performance to UniBEV,
which is unsurprising given the similarities in the LiDAR
branch design between UniBEV and MetaBEV. However,
similarly to BEVFusion, MetaBEV also adopts LSS as its
camera BEV encoder. Although it applies deformable atten-
tion to two BEV features instead of our more simple CNW,
the BEV feature misalignment cannot be fully compensated
for by merely a more powerful fusion strategy.

Qualitative results. To support the comparison between
UniBEV and its multi-modal baselines, we show some
qualitative detection results in Fig. 4. For instance, we can



see that BEVFusion for camera-only suffers from various
false negatives, whereas MetaBEV tends to have more false
positives.

Fig. 4. Qualitative detection results on nuScenes val set. Columns:
L+C, L, and C input. Rows: BEVFusion, MetaBEV, UniBEV (ours). Green
boxes: ground truth; Red boxes: predictions. The key different zones are
highlighted and zoomed in by orange boxes.

Fig. 5 (a) visualizes UniBEV’s N = 256 normalized CNW
weights, sorted from most LiDAR weighted to most camera
weighted, and also reports their total summed weights. We
observe the sum of camera weights is smaller than the sum of
LiDAR weights (106.1 < 149.9). In other words, the learned
fusion weights represent overall more reliance on LiDAR
than on camera, which aligns with the overall better per-
formance of LiDAR-only models over camera-only models.
Still, we do observe quite diverse weight values. Certainly,
not all channels favor LiDAR, and few weights are close
to 0.5, the default for regular average fusion. The general
higher influence of LiDAR on the fused results may also
explain why the camera-only inference of UniBEV performs
marginally worse than UniBEV C, while the LiDAR-only
inference of UniBEV even slightly outperforms UniBEV L.

To validate CNW does not just scale channels to compen-
sate for different magnitudes between LiDAR and camera
BEV features, Fig. 5 (b) illustrates that the distribution of
the average channel activations across the spatial map is the
same for both modalities.

Inference speed. Finally, we measure the inference speed
of all multi-modal methods using both input modalities.
Using a Nvidia V100 GPU with a batch size of 1, we find
that the average inference speed is 0.7 FPS for BEVFusion,
1.4 FPS for MetaBEV, and 1.6 FPS for our UniBEV. Thus,
UniBEV achieves the highest speed of all multi-modal meth-
ods by a small margin, indicating its improved performance
does not come at the cost of efficiency. We do note that BEV-
Fusion uses a more powerful but slower backbone [3], [37].

Also, UniBEV’s inference speed increases when running on
multi-modal input, achieving 2.5 FPS for camera-only, and
3.9 FPS for LiDAR-only.

Fig. 5. (a) Visualization of CNW’s learned weights, with channels
sorted by weight. (b) Histogram for the mean value per channel of
camera and LiDAR BEV features from a single sample. The histogram
demonstrates the channel-wise alignment of the two BEV feature maps.
Both modalities exhibit a mean and variance of 0 and 0.3, respectively.

TABLE II
COMPARISON OF DIFFERENT FUSION APPROACHES ON NUSCENES VAL

SET FOR A FIXED DECODER DIMENSION OF 256. THE MODALITY

DROPOUT STRATEGY IS APPLIED TO ALL MODELS. (BEST/
SECOND BEST)

Encoder mAP

Method Dimensions L+C ↑ L ↑ C ↑ Summary Metric ↑
UniBEV cat N/2 = 128 63.8 57.6 34.4 51.9
UniBEV avg N = 256 64.1 57.6 35.1 52.3
UniBEV CNW N = 256 64.2 58.2 35.0 52.5

C. Ablation Study

We here discuss our ablation results for the different
fusion modules, the effect of probabilities pL and pC during
Modality Dropout, and the unified BEV queries.

1) Comparison of different fusion modules: We first test
the performance of UniBEV with the different fusion strate-
gies of Section III-C: concatenation (UniBEV cat), average
(UniBEV avg) and CNW (UniBEV CNW). Table II demon-
strates that concatenation exhibits the lowest performance
with a summary mAP of 51.9%. Since a missing modality
results in concatenation filling multiple fused channels with
zeros, such missing information cannot be compensated by
the remaining sensor. Both UniBEV avg and UniBEV CNW
avoid zero-filling in modality dropout, and subsequently el-
evate their performance to closely matched levels, achieving
52.3% and 52.5% summary mAP respectively.

When evaluating the performance across diverse in-
put modalities, the L+C and L-only performances of
UniBEV CNW improve relative to UniBEV avg, particularly
evident in the L-only performance, but the C-only perfor-
mance sees a decline. We hypothesize that CNW effectively
lets the detector head rely more on LiDAR for the final fusion
result, impacting its camera-only performance. Overall, the
performance gap between CNW and average fusion appears
minor, and if such a trade-off is favorable for the target
application remains a future research.



2) Effect of probabilities pL and pC during Modality
Dropout: Next, we investigate the influence of the probabil-
ities of keeping the different modalities during MD. Table III
showcases the performance of the model when changing pL
and pC while keeping the probability of dropping a modality
fixed to pmd = 0.5.

The L+C performance declines significantly in the two
extreme cases where pL = 0 and pL = 1. However, in the
other cases the L+C performance remains mostly stable,
even when LiDAR-only and camera-only probabilities are
unbalanced. As expected, the performance of LiDAR-only
and camera-only consistently improves as the proportion of
their respective inputs used during training increases.

As shown in the table, LiDAR-only mAP increases by
12.8 percentage points as the probability of LiDAR-only
training rises from 0% to 75%, but already achieves an mAP
of 45.5% even without LiDAR-only inputs during training.
Remarkably, training with 100% LiDAR-only during MD
decreases both LiDAR-only and L+C performance compared
to including 25% camera-only training iterations, indicating
that the camera-only input also regularizes the network for
LiDAR.

The camera-only performance sees a substantial increase
in mAP by 33 percentage points as the proportion of camera-
only training iterations increases from 0% to 100%. However,
unlike LiDAR, the camera-only performance can only reach
3.0% mAP without any training with camera-only inputs, and
does not benefit from adding LiDAR-only training iterations.

These observations further support our insights, namely
that fusion mostly relies on the more informative sensor, in
this case LiDAR, which allows to train the LiDAR features
through fusion even with few LiDAR-only training iterations.
The same is not true for the camera features, which as
the weaker modality strictly relies on MD to make the
network achieve good performance. This observation also
suggests that especially emphasizing the weaker modality
during training could enhance the overall robustness of the
model, even for the other modality. Due to the optimal
summary and L+C performance, we keep pmd = 0.5 and
pL = pC = 0.5 as the default for all our other experiments.
We leave studying the impact of varying the MD probability
pmd as future work.

TABLE III
EFFECT OF SENSOR DROPPING PROBABILITIES ON NUSCENES VAL SET.
THE MD PROBABILITY pmd IS 0.5. (BEST/SECOND BEST/default setup)

mAP

pL pC L+C ↑ L ↑ C ↑ Summary Metric ↑

0 1 63.2 45.5 36.0 48.2
0.25 0.75 64.0 57.8 35.8 52.5
0.50 0.50 64.2 58.2 35.0 52.5
0.75 0.25 63.8 58.3 33.2 51.8
1 0 60.8 55.9 3.0 39.9

3) Unified Queries vs. Separate Queries: Finally, we
compare the performance of UniBEV using shared BEV

queries Q across modalities against a variant that learns
separate queries for each modality. Table IV shows the model
with unified queries has a minor edge over its counterpart
with separate queries across all three input combinations, as
well as in the summary metric (52.5% vs. 52.2% summary
mAP). Interestingly, the model with separate queries matches
the performance with UniBEV L (refer to Table I, 57.8%
mAP) while the unified queries model can slightly exceed
this LiDAR-only trained counterpart. A possible explanation
is that shared queries provide a weak interaction between the
BEV encoders during training, which facilitates aligning their
feature spaces. We conclude that the overall performance
difference is only small, though the unified query design
has the additional advantage that it requires fewer model
parameters. For these reasons, we have adopted it as our
default configuration.

TABLE IV
COMPARISON BETWEEN SEPARATE QUERIES DESIGN AND UNIFIED

QUERIES DESIGN ON NUSCENES VAL SET. (BEST/SECOND BEST)

mAP

Method L+C ↑ L ↑ C ↑ Summary Metric ↑

separate queries 64.0 57.8 34.9 52.2
unified queries 64.2 58.2 35.0 52.5

V. CONCLUSIONS

We have presented UniBEV, a multi-modal 3D object
detection model designed with missing sensor modality in-
puts in mind. The experiments demonstrate UniBEV’s higher
robustness to missing inputs compared to SotA BEV-based
detection methods, BEVFusion, and MetaBEV. UniBEV
achieves 52.5% mAP on average over all input combinations,
significantly improving over the baselines, with BEVFusion
averaging at 43.5% mAP, and MetaBEV averaging at 48.7%
mAP. Our proposed CNW fusion approach demonstrates
superior performance compared to the commonly employed
concatenation. The analysis of the learned weights reveals
the inherent characteristics of a fusion process, notably that
the model exhibits a greater reliance on LiDAR features as
compared to camera features.

Future research can address dynamically adjusting channel
weights, for instance based on the environmental conditions
or content of the scene. Another open question remains
what properties multi-modal features should exactly possess
for robustness. Finally, we will explore if UniBEV’s fused
BEV features also benefit other tasks, such as BEV map
segmentation. We hope that our work will inspire further
research on robust perception for autonomous driving.
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