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Abstract

In Visual Place Recognition (VPR) the pose of a query
image is estimated by comparing the image to a map of
reference images with known reference poses. As is typi-
cal for image retrieval problems, a feature extractor maps
the query and reference images to a feature space, where a
nearest neighbor search is then performed. However, till re-
cently little attention has been given to quantifying the con-
fidence that a retrieved reference image is a correct match.
Highly certain but incorrect retrieval can lead to catas-
trophic failure of VPR-based localization pipelines. This
work compares for the first time the main approaches for
estimating the image-matching uncertainty, including the
traditional retrieval-based uncertainty estimation, more re-
cent data-driven aleatoric uncertainty estimation, and the
compute-intensive geometric verification. We further for-
mulate a simple baseline method, “SUE”, which unlike the
other methods considers the freely-available poses of the
reference images in the map. Our experiments reveal that
a simple L2-distance between the query and reference de-
scriptors is already a better estimate of image-matching un-
certainty than current data-driven approaches. SUE out-
performs the other efficient uncertainty estimation meth-
ods, and its uncertainty estimates complement the computa-
tionally expensive geometric verification approach. Future
works for uncertainty estimation in VPR should consider
the baselines discussed in this work.

1. Introduction
Visual Place Recognition (VPR) is the problem of identify-
ing a previously visited place given a query camera image
and a map of geo-tagged reference images [28]. It has appli-
cations in vehicle localization [57], 3D modeling [1], image
search [46], and loop-closure in Simultaneous Localization
and Mapping (SLAM) [8, 28].

VPR is typically approached as an image retrieval prob-
lem, transforming images into feature vectors in a latent fea-
ture space where an efficient nearest neighbor search com-

Figure 1. The Precision-Recall curves on the Pittsburgh dataset [4]
for the three common categories of VPR uncertainty estimation
methods (RUE, DUE, GV), and for our proposed baseline SUE
which uniquely considers spatial locations of the top-K references.
The global image descriptors [9] are fixed for all methods except
BTL [50]. The only difference is the confidence given by each
uncertainty estimation method to the best-matched reference de-
scriptors for the corresponding queries. The legend lists the Area-
under-the-Precision-Recall-curves. As GV methods are two to
three orders of magnitude more computationally expensive than
the others, they are plotted as dotted lines. Surprisingly, simple
L2-distance in feature space is a better estimate of VPR uncer-
tainty than recent deep learning-based uncertainty estimates. SUE
outperforms all other efficient uncertainty estimation methods.

pares the query to all references. The pose of the query
image is then approximated to be the same as that of the re-
trieved nearest neighbor references. Since successful VPR
requires a good image representation that is robust to view-
point and/or appearance changes [16, 28, 30], the field has
benefited from advances in deep representation learning.

However, two images with similar visual content could
still originate from geographically far-apart areas, a concept
referred to as perceptual-aliasing in VPR [16]. For exam-
ple, images with mostly sky could match many locations
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on an outdoor map. This constitutes aleatoric uncertainty,
i.e., inherent noise or ambiguity in the data which cannot be
reduced, as opposed to epistemic uncertainty which could
be addressed with more training data [23]. The close prox-
imity of perceptually aliased images in the feature space can
result in catastrophic failures For instance, a highly confi-
dent false-positive from VPR could result in an incorrect
loop closure in a SLAM pipeline, leading to misaligned
maps [8, 28]. Reliable uncertainty estimation on the qual-
ity of the match is therefore key to avoid such failures by,
e.g., rejecting results above a certain uncertainty threshold.
Moreover, uncertainty estimation can also be used to fuse
multiple predictions in VPR ensemble methods [9].

From existing literature, we identify three categories of
methods to estimate image-matching uncertainty in VPR:
retrieval-based uncertainty estimation (RUE), data-driven
aleatoric uncertainty estimation (DUE), and geometric ver-
ification (GV) by local feature matching. RUE: Tradition-
ally in VPR, the L2-distance between the query and the
best-matched reference in the feature space has been used
as an estimate of uncertainty [35]. The ratio of L2-distance
between the first and second nearest neighbour reference
is also used [18]. DUE: On the other hand, several re-
cent works, such as the Bayesian Triplet Loss [50] and
the Self-teaching Uncertainty Estimation [9], have proposed
to explicitly learn to predict the aleatoric uncertainty from
the query’s image content only. GV: Another way to as-
sert matching confidence is to test for consistent geometry
among matched local features between the query and the
best matching reference in a RANSAC loop [33].

Remarkably, none of the three categories exploit the spa-
tial locations of matched images in the actual reference
map, which we hypothesize can be an important source of
information for estimating VPR matching uncertainty. To
test this hypothesis, we formulate a new simple baseline,
Spatial Uncertainty Estimation (SUE). SUE is a straightfor-
ward and efficient approach to estimating uncertainty for a
query image’s match, using the spatial spread of the phys-
ical poses for the most similar references in the map as a
proxy. A high spatial spread indicates perceptual aliasing
leading to high matching uncertainty, while a low spread
indicates a distinct area is matched. An overview of the
sources of information employed by all categories of meth-
ods and by SUE is provided in Table 1.

While all categories of uncertainty estimation methods
aim for the same task, i.e., rejecting false positives in VPR,
previous evaluations did not include all categories, provid-
ing an incomplete picture of the state-of-the-art. This work
therefore compares the three existing categories and SUE
on a levelled playing field, to provide recommendations for
future research, and insights on the strengths/weaknesses of
each category. For instance, as the preview of the experi-
mental results in Fig. 1 indicates, SUE outperforms other

Categ. Descr.? Poses? Images? Efficient?
RUE Top-K No No Yes
DUE No Only train Yes Yes
GV No No Yes No
SUE Top-K Top-K No Yes

Table 1. Overview of the sources of information needed by the
current main categories for VPR uncertainty estimation, and by
the proposed method SUE: the query/reference global image de-
scriptors, the reference poses, or complete query/reference images.
Efficiency refers to the inference time needed by each approach.

efficient methods (this and other experiments will be dis-
cussed in more detail in Section 4).

Concretely, our contributions are:
1. A comparison of three different categories of uncertainty

estimation methods in VPR.
2. A new simple baseline method, SUE, that considers the

spatial locations of the reference images, a source of in-
formation not used by existing categories.

3. Since GV gives the best uncertainty estimates albeit at
a higher computational cost, we investigate whether the
other methods are complementary to GV.

2. Related work
Visual place recognition was first surveyed in the seminal
work of Lowry et al. [28]. The three fundamental VPR
challenges identified by Lowry et al. are viewpoint changes,
appearance changes, and perceptual-aliasing.

The concept of matching images for VPR dates back
to before the deep-learning era, when handcrafted methods
were used to perform VPR [12, 21, 42, 44]. However, with
the rise of deep learning, many deep learning-based meth-
ods were proposed to solve the first two challenges in VPR.
A broad categorization of these methods can be done based
on their underlying novelty, such as the use of a novel loss
function [26, 39, 45], better training data [2, 6], new ar-
chitectures [48, 51, 56], and new methods for feature ag-
gregation [3, 4, 19, 37]. A number of benchmarks have
been proposed in VPR, for example, the recent Deep Visual
Geo-localization benchmark [7], VPR-Bench [52] and sim-
ilar benchmarks in the image retrieval community [38, 41].
From these benchmarks, it is clear that the deep learning-
based VPR techniques outperform handcrafted techniques
by a significant margin on most datasets.

We focus on the third challenge identified in Lowry et
al., i.e., perceptual aliasing, which arises from aleatoric un-
certainty in the data. This challenge has received less atten-
tion in VPR literature compared to viewpoint and appear-
ance changes. Most works in VPR use the distance (e.g., L2
or Cosine) in feature space between a query and the near-
est neighbor as the uncertainty estimate [7], or the distance
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between the retrieved nearest neighbors [18]. Some more
recent works model the aleatoric uncertainty in image re-
trieval, e.g., the Bayesian Triplet Loss (BTL) [50] and the
Self-Teaching Uncertainty Estimation (STUN) [9]. Both
BTL and STUN estimate the aleatoric uncertainty in the
training data by representing images as distributions instead
of point estimates in the feature space. Each image thus has
an associated mean and variance for a feature descriptor.

Gronat et al. [17] treat VPR as a classification problem
by training place-specific classifiers, one for each place,
where each classifier naturally outputs a confidence esti-
mate for the corresponding pose. Pion et al. [36] ap-
proximate the pose of the query image by aggregating the
pose hypotheses from the top-retrieved nearest neighbors,
weighing each hypothesis based on the distance in the fea-
ture space. The variance of the aggregated pose repre-
sents uncertainty over the pose space. Notably, this con-
cept of pose uncertainty has been modeled in these existing
works [17, 36, 53] and other related tasks such as classi-
cal Particle Filters [14], but, to the authors’ best knowledge,
the uncertainty estimates derived based on the distribution
of pose hypotheses has not yet been studied as a proxy for
image-matching uncertainty.

Beyond global descriptors-based VPR, in local feature
matching-based image retrieval the inlier count (aka. geo-
metric verification) has been used as an estimate of confi-
dence [33]. Zeisl et al. [55] perform 2D-to-3D local fea-
ture matching to estimate a distribution over the possible
query poses. The work of [54] uses such inlier count from
local feature matching and combines it with the pose dis-
tribution of retrieved images to estimate the confidence of
localization. Since local features can appear in similar ge-
ometric configurations (geometric burstiness) across unre-
lated images, [40] proposes to use the pose information to
downweight such matches in the inlier count. However, re-
trieving images based on local feature descriptors is compu-
tationally expensive, whereas VPR instead only efficiently
compares global image descriptors. 1 Absolute Pose Re-
gression (APR) directly regresses the absolute pose given
a camera image, and has also considered pose uncertainty
estimation. Some approaches to uncertainty-aware APR
include CoordiNet [32], Bayesian PoseNet [22], and Hy-
draNet [34]. Unlike VPR, APR approaches do not general-
ize to new environments. In this work, we focus on estimat-
ing the image-matching uncertainty for VPR.

3. Methodology

This section first introduces the task of uncertainty estima-
tion for VPR. We then formalize VPR, and describe the
three main categories of uncertainty estimation methods.

1We study the relation between geometric burstiness and SUE in the
supplementary materials.

Next, we formulate the proposed baseline approach, SUE,
which unlike the other three categories uses the freely avail-
able reference poses information. Finally, we outline how
we combine the different categories of methods with the
computationally expensive geometric verification to inves-
tigate if the uncertainty estimates are complementary.

3.1. Uncertainty estimation in VPR

Typically VPR is considered as an image retrieval task:
finding the most similar reference images to the query by
Euclidean distance in some feature space. The poses asso-
ciated with the images however distinguish VPR from other
image retrieval tasks, such as web search, where matches
are correct if their image content should be judged as the
same. In VPR we often instead refer to the location of
the query and references to judge matches: a retrieved
reference is only acceptable if its pose is within a maxi-
mum distance threshold of the (unknown) true pose of the
query [7, 16, 52]. Ideally, the closest matches in the feature
space thus also have the poses closest to the query pose.
However, this is often not the case in VPR due to percep-
tual aliasing, a form of aleatoric uncertainty since it cannot
be reduced by choosing a different feature encoder or by
using more training data.

It is therefore desirable to obtain some uncertainty score
sq for a query and the retrieved nearest neighbor, where a
low score expresses confidence that the nearest neighbor is
a correct match. A threshold τ on the score could then re-
ject a query (sq > τ ) for which the best match is at risk
of being incorrect to prevent failures of the downstream ap-
plication [16]. The objective of VPR uncertainty estima-
tion is thus to score queries, such that queries with reliable
matches can be distinguished from those with possible in-
correct matches. Note that while an uncertainty estimation
method could provide scores with an explicit probabilistic
interpretation, this is not a strict requirement to apply an
acceptance threshold.

3.2. Formalizing VPR

Given a set of reference images I with known poses P ,
the goal of VPR is to find one or multiple reference images
Ii ∈ I that match the place of a query image Iq . The un-
known pose pq for the query Iq can then be approximated
from the poses of the matched references pi ∈ P , since
correct matches should have been taken in the same area.
The exact formulation of a pose generally depends on the
localization source and the task, for example, 2D GPS co-
ordinates for visual geo-localization [7], or 6D pose [25]. In
this research, we follow a general task-independent formu-
lation and only assume that a pose pi consists of 2D or 3D
spatial coordinates in some global coordinate system.

In the offline map preparation phase of VPR, before ac-
cepting queries, a feature extractor G is applied to every ref-
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erence image Ii ∈ I to obtain D-dimensional reference fea-
ture descriptors fi = G(Ii). Usually G is a trained neural
network [30] or a handcrafted feature descriptor [13]. The
resulting VPR map M = (R,P) contains the reference
feature descriptors set R = {f1, · · · fN}, where each de-
scriptor fi is associated with a corresponding pose pi ∈ P .

At test time, the same feature extractor G is applied
to the query image Iq , and its query descriptor fq =
G(Iq) is compared to the reference descriptors in the
map M. This can be achieved through an efficient
K-nearest neighbor lookup, considering the L2-distances
di = ||fi − fq||2 between each reference i and the query.
This gives an ordered list of K nearest neighbor refer-
ences Rnn = [f(1), · · · , f(K)], ranked by increasing dis-
tance d(1) ≤ · · · ≤ d(K) and with corresponding poses
Pnn = [p(1), · · · , p(K)]. Here we use bracketed subscript
(j) to indicate j-th item in the ranked order, i.e., f(1) =
argminfi∈R||fi − fq||2 is the descriptor with the smallest
distance to the query in the feature space.

Each corresponding pose p(i) ∈ P can be considered as a
hypothesis to estimate the query’s true pose pq , though usu-
ally only the pose of the best matching reference feature de-
scriptor f(1) is considered as the VPR pose estimate p′q for
the query, i.e., p′q = p(1) [52]. We follow this best-match-
based query pose estimation in this work. In benchmarks, a
match is considered correct if p′q is ‘physically near’ to pq .
The threshold on what distance is still accepted as the same
‘place’ depends on the scale of each localization task [28].

3.3. Current VPR uncertainty estimation categories

We now describe various representative uncertainty estima-
tion methods for the three common categories.

Retrieval-based uncertainty estimation (RUE): Com-
monly, the matching uncertainty in VPR is considered pro-
portional to the L2-distance from the best match d(1), so
sq = d(1) [7, 52], as this distance indicates relevant differ-
ences between the visual content of the query and match.

An alternative is to consider the distance ratio between
the first and second nearest neighbor, sq = d(1)/d(2). This
ratio is quite similar to the perceptual aliasing score (PA
score) [18] and the false-positive rejection criterion in the
popular local feature descriptor SIFT [27].

Data-driven uncertainty estimation (DUE): State-of-
the-art VPR encoders are typically deep neural networks
trained on a labeled VPR dataset. The labeled training data
contains the ground-truth poses Ptrain for the training ref-
erences and query images Itrain. A deep encoder G can be
adapted to also predict the aleatoric uncertainty of matching
a nearby pose, by learning from the training query image in
Itrain when an image is distinctive and obtains good pose
matches within Ptrain, and when not (e.g., images of trees,
uniform walls, or sky). Methods in this category include the
Bayesian Triplet Loss (BTL) [50], and STUN [9]. Note that

Query Nearest Neighbor Reference

High Spatial Uncertainty Low Spatial Uncertainty

Feature Space

Physical Space

I
(1)

I
(2)

I
(3)

I
q

I
(1)I

(2)

I
(3)

I
q

Feature Space

Physical Space

Figure 2. In VPR, a query q is compared in feature space to fea-
tures fi ∈ R of reference images with known poses. The nearest
neighbors f(1), · · · , f(K) are retrieved as matches. Left: The re-
trieved references I(1), I(2), I(3) share similar visual content with
the query (walls, pillars, and blobs), but are geographically far
apart, reflecting high uncertainty that the matched reference is cor-
rect. Right: For another query, the retrieved references are geo-
graphically close together, indicating low uncertainty.

the learned uncertainty is based on the training images and
poses, not those in the test-time reference map M.

In general, an uncertainty-aware encoder (f̄i, σ
2
i ) =

G′(Ii) predicts for an image Ii not only the expected fea-
ture f̄i, but also the variance in the feature space, i.e., fi ∼
N(f̄i, σ

2
i ). The total variance in σ2

i can be used as a proxy
for the image-matching uncertainty, sq = ||σ2

i ||1. The com-
putational overhead of the deep network producing an addi-
tional output σ2

i is low.

Geometric verification (GV): Another way to estimate
image-matching uncertainty is to compare the query and the
best-matched reference image in more detail through local
feature matching and geometric verification in a RANSAC
loop, e.g., through the use of SIFT [27], DELF [33], and
SuperPoint [15]. All the matched local features that sat-
isfy a geometric transformation estimated from the ran-
domly sampled set of matched local features between the
query image and the reference image are considered inliers.
The confidence is indicated by the number of inliers cgv ,
which could be expressed as a matching uncertainty esti-
mate, i.e., sq = −cgv . While geometric verification yields
high-quality uncertainty estimates, such post-processing is
computationally expensive compared to the other methods.
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3.4. Spatial uncertainty estimation (SUE) for VPR

We observe that the poses in the reference set P are a poten-
tially powerful and freely available source of information
at test time, which current uncertainty estimation methods
do not exploit (more details will be presented in Sec. 3.1).
The intuition behind this is illustrated in Fig. 2, where we
show that if the nearest neighbors in the feature space are
spatially far apart in their respective 2D/3D world coordi-
nates, it indicates that such a feature suffers from perceptual
aliasing: various areas in the test reference set contain the
queried appearance, thus uncertainty on the pose estimate
should be high. On the other hand, if the nearest neighbors
in the feature space are also spatially close together, there
is agreement among the matching pose hypotheses that the
matched area is distinct within that given reference set, thus
the uncertainty should be low.

To test this insight, we now formulate SUE, a pur-
posefully simple image-matching uncertainty estimation
method. Given the K-best retrieved references, fit a 2D or
3D multivariate Gaussian distribution N(µp,Σp) over their
2D or 3D poses Pnn,

µp =
1∑
i w(i)

K∑
i=1

w(i) · p(i), (1)

Σp =
1∑
i w(i)

K∑
i=1

w(i) · (p(i) − µp)(p(i) − µp)
⊤, (2)

where the relative contribution w(i) of the i-th best refer-
ence pose p(i) decreases as its L2-distance d(i) to the query
in the feature space increases,

w(i) = e−λ·d(i) , where d(i) = ||fq − f(i)||2. (3)

The total variance across the spatial pose dimensions could
then serve as a proxy for image-matching uncertainty, i.e.,
sq = trace(Σp).

The hyper-parameter λ controls the non-linear relative
contribution of a pose pi for the nearest neighbor f(i) ∈ Rnn
given its distance d(i) in the feature space. This hyper-
parameter can be optimized on training data, though our
experiments will show that its choice is remarkably robust
across various real-world benchmark datasets.

3.5. Complementing geometric verification

To study to what extent SUE’s (or another method’s) sq pro-
vides information not captured by the cgv metric from ge-
ometric verification, we treat both scores as a 2D feature
vector and train a classifier to predict if a best-matched ref-
erence should be accepted as a true-positive, or rejected as
a false-positive. The regular rejection threshold is extended
from a single score (sq > τ ) to a linear weighted sum of
both scores (sq/τ1 + cgv/τ2 > 1), by the use of a regular
linear Support Vector Machine (SVM) as a classifier.

4. Experiments
We first present the setup for our experiments. Then, we
compare the performance of all the image-matching uncer-
tainty estimation methods on multiple benchmark datasets.
Next, we test if the methods are complementary to geomet-
ric verification. Finally, we present an ablation over the
hyper-parameters of SUE and provide a discussion.

4.1. Experimental setup

This section describes the datasets, baselines, evaluation
metrics, and implementation details of our work.

Datasets: We use six public VPR datasets in this work:
Pittsburgh-250k [4], Sanfrancisco [10, 47], Stlucia [31],
Eysham [11], MSLS [49] and Nordland [43]. Details of
these datasets and their respective ground-truths in [5].

Baselines: Our primary baselines for uncertainty esti-
mation include the L2-distance in feature space dq , the per-
ceptual aliasing score (PA score [18]), the Bayesian Triplet
Loss (BTL) [50] and STUN [9]. As the code for BTL is not
open-source, we implement it following the pseudo-code
and the network details provided in the original paper.

For geometric verification, we test three types of lo-
cal feature descriptors, namely the handcrafted SIFT [27],
the deep-learning-based DELF [33], and SuperPoint [15],
which we refer to as SIFT-RANSAC, DELF-RANSAC and
Superpoint-RANSAC, respectively.

Evaluation metrics: The precision-recall (PR) curves
have been widely used in VPR for estimating the retrieval
quality [52]. However, they can also be used to estimate
the uncertainty estimate in VPR as widely used in existing
uncertainty estimation tasks in deep learning [20, 29]. The
choice of PR-curves over the Receiver Operating Character-
istic (ROC) curve is due to the absence of true-negatives in
employed VPR datasets. Given a fixed list of retrieved im-
ages, the Precision-Recall curves can reflect the technique
with the better uncertainty estimates sq . A technique that
can perfectly classify between true-positives (TP) and false-
positives (FP), given the uncertainty estimates, achieves an
Area-under-the-Precision-Recall-Curve (AUC-PR) of 1.

For the combination of uncertainty estimates with geo-
metric verification, the task is formulated as binary classi-
fication and we use accuracy as an evaluation metric based
on the ground-truth true-positives and false-positives [5].

Implementation details: For SUE and all the other
baselines except BTL, we use a ResNet-50 backbone with
GeM pooling trained in a self-teaching manner in [9] on the
training split of the Pittsburgh dataset. Each feature vec-
tor fi is 2048 dimensional. For BTL, the same backbone
and training data are used, but using the training procedure
specified in the original BTL paper [50]. For DELF and Su-
perPoint, the implementations are open-sourced by the re-
spective authors, and the default settings are employed. For
SIFT-RANSAC we use the OpenCV implementation with
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Method ↑ Pitts. ↑ Sanfr. ↑ Stluc. ↑ Eyn. ↑ MSLS ↑ Nordland ↑ Average ↓ Time
(RUE) L2-distance 0.87 0.76 0.79 0.87 0.64 0.18 0.69 0.05
(RUE) PA-Score [18] 0.90 0.65 0.77 0.88 0.68 0.21 0.68 0.05
(DUE) BTL [50] 0.44 0.17 0.34 0.45 0.21 0.07 0.28 0.20
(DUE) STUN [9] 0.79 0.57 0.66 0.71 0.44 0.05 0.54 0.10
SUE 0.94 0.84 0.88 0.93 0.77 0.26 0.77 1.08
(GV) SIFT-RANSAC [27] 0.92 0.89 0.93 0.96 0.70 0.15 0.76 129
(GV) DELF-RANSAC [33] 0.97 0.92 0.97 0.95 0.95 0.84 0.93 1587
(GV) Super-RANSAC [15] 0.95 0.95 0.97 0.96 0.87 0.50 0.87 848

Table 2. The AUC-PR of all the compared methods. Higher AUC-PR is better, and best is in Bold. The bottom rows are the computationally
expensive geometric verification methods. The last column lists the time (msec) to give an uncertainty estimate for a single query image.

the number of extracted features set to 5000, the Lowe test
ratio to 0.6, and the number of RANSAC iterations to 1000.

The hyper-parameters in SUE are fined-tuned only on
the Pittsburgh dataset and then fixed as λ = 350 and K =
10 for all datasets and experiments. An ablation over these
parameters is given later in section 4.4. The SVM is trained
with stochastic gradient descent with hinge loss and an L1-
penalty, and a maximum of 1000 training iterations.

4.2. Performance comparison

We first compare all the uncertainty estimation methods for-
mulated in this work, both qualitatively and quantitatively,
and in terms of their computational overhead.

Area-under-the-Precision-Recall-curves: The AUC-
PR for all the methods on all the datasets are summarized
in Table 2. SUE outperforms other efficient methods by
a clear margin, even on the Pittsburgh dataset which was
used for training STUN and BTL. It is also important to
note that a basic L2-distance-based uncertainty already out-
performs BTL and STUN. Moreover, geometric verifica-
tion outperforms all other uncertainty estimates although
SUE achieves comparable performance. The precision-
recall curves for the Pittsburgh dataset are shown in Fig. 1,
and for the remainder datasets are provided in the accompa-
nying supplementary materials.

Computational requirements: We further report the
time taken to compute the GV confidence sq and the un-
certainty estimates in Table 2. Although GV gives useful
uncertainty estimates, the high computational cost of these
GV methods may be prohibitive for real-time online appli-
cations. Our implementation of SUE is about three orders
of magnitude faster than GV using DELF-RANSAC.

Qualitative results: To obtain insight into how the dif-
ferent methods interpret the visual content in query images
and what they are sensitive to, we show in Fig. 3 exam-
ples of the most and the least uncertain query images for
different methods in the Pittsburgh dataset. While all meth-
ods usually consider feature-rich and distinctive buildings
as least uncertain for VPR, differences between the meth-

ods lie in the most uncertain images. Highly saturated test
images are considered most uncertain by L2-distance-based
uncertainty because such saturation did not exist during the
reference traversals of the same scene. On the other hand,
STUN considers images of trees and walls that usually con-
tribute to perceptual aliasing as the most uncertain for VPR.
SUE considers traffic squares and common building pat-
terns as the most uncertain. Note that because SUE uses
the freely available pose information in the test reference
set; whether a traffic square or a building is considered un-
certain is specific to this test reference set and not due to a
generally-applicable visual property.

We further show in Fig. 4 several images that illustrate
failure cases of RUE and DUE in comparison to SUE. Im-
ages of walls generally contribute to high aleatoric uncer-
tainty (DUE) and are closer together in the feature space
in terms of L2-distance (RUE). However, we note that the
query in Fig. 4 Top is correctly matched since only a unique
wall with this pattern exists in the test reference set. SUE
and L2-distance correctly give this query a low uncertainty,
but STUN fails. The query image in Fig. 4 Bottom is given
low uncertainty by L2-distance than ranking with STUN
and SUE. This is because images with large portions of sky
contribute to aleatoric uncertainty but they are close in terms
of the feature space L2-distance. This query is mismatched
and identifies where L2-distance-based uncertainty fails in
comparison to STUN and SUE.

4.3. Complementing geometric verification

Finally, we test if efficient uncertainty estimation can com-
plement geometric verification, as outlined in Sec. 3.5. We
show in Fig. 5 the relation between the different types of
uncertainties with the uncertainty from geometric verifica-
tion. As we note from Table 2, STUN outperforms BTL,
and L2-distance is on average better than the PA-score,
thus we only combine STUN, L2-distance, and SUE with
geometric-verification for this analysis.

SUE provides complementary performance by giving
low uncertainty sq to images that are correctly matched but
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Figure 3. Examples of the two least and the two most uncertain
query images with the corresponding nearest neighbor on the Pitts-
burgh dataset. The colors/symbols indicate whether the retrieved
image is a correct match.
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Figure 4. Two queries and their nearest neighbor reference images
that illustrate cases where SUE outperforms other methods. Ide-
ally a method assigns high uncertainty to the mismatched query
and low uncertainty to the correct match, as SUE does here.

which were given high GV uncertainty. Some of these com-
plementary queries are shown in Fig. 6, where it can be seen
that these queries are images that are generally difficult to
match local feature descriptors, such as facades, trees, and
other repetitive features within the image [24]. We also
show the linear boundaries learned by SVM to classify be-
tween true-positives and false-positives. The classification

Method Pitts. San. Stlu. Eyn. MSLS
Superpoint 85.1 53.2 76.4 67.5 36.9
DELF 86.0 86.6 85.3 78.3 80.2
L2-distance 75.7 57.3 56.2 67.7 36.8
STUN 74.0 54.0 58.0 67.6 37.4
SUE 78.9 70.7 72.8 77.3 46.0
DELF+L2-di. 85.7 86.1 82.3 77.3 72.0
DELF+STUN 85.4 81.6 80.1 75.0 68.2
DELF+SUE 87.1 89.6 88.7 82.1 73.4

Table 3. Binary classification accuracy given the uncertainty es-
timates of various methods, using a linear SVM trained only on
the Pittsburgh dataset. The combination DELF + SUE generalizes
better than baseline combinations, except on the MSLS dataset
where although DELF+SUE is better than the other combinations,
the SVM boundaries learned from Pittsburgh are not the best.

accuracy of the different methods is reported in Table 3.

4.4. Ablation study

SUE requires two hyper-parameters, the number of nearest
neighbors K and the decay parameter λ that controls the
relative contribution of the poses of the nearest neighbors.
We show the ablation over these parameters in Fig. 7 by
plotting the corresponding AUC-PR values for all datasets
given a set of values for each parameter. The trend remains
primarily the same across all datasets. We note that the
AUC-PR increases by considering more nearest neighbors
but the curves mostly plateau after K = 5, since poses from
low-ranked neighbors contribute less to the overall pose hy-
pothesis. For λ, we see that the range 200 − 400 is gen-
erally stable and gives reliable uncertainty estimates. We
also note here (with details in the appendix) that SUE gen-
eralizes to different backbones (CosPlace [6]), and that ex-
ponential weighing of SUE in Equation (2) performs better
than uniform weighing (an average AUC of 0.87 vs 0.70).

4.5. Discussion

We can now make several recommendations for estimating
the image-matching uncertainty in VPR. First, future works
evaluating image-matching uncertainty estimation should
include diverse baselines such as SUE, even if they are
simple. As our intra-category comparison revealed, even
a common L2-distance-based image-matching uncertainty
estimation may outperform data-driven techniques. Sec-
ond, aleatoric uncertainty from training data does not nec-
essarily generalize to the test data, so learning-based ap-
proaches should consider that perceptual aliasing is not just
a property of the image content, but also the reference map
at test time. Referring back to the example of the sky in
images being ambiguous for an outdoor map; in an indoor
map containing just one open-air patio, such images with
sky might instead be considered distinctive for their loca-
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Figure 5. The relation between geometric verification uncertainty (x-axis) and the L2/STUN/SUE uncertainty (y-axis) on the Pittsburgh
dataset [4]. Each point represents a query, with blue indicating a correct match, and red otherwise. The linear SVM boundaries are shown
as black lines, while the dashed lines are the SVM margins. Scores have been linearly scaled to the [0, 1] range based on the min/max value
in the training data, and for better visualization the vertical scale is in log-space, hence the SVM boundaries appear non-linear. The class
distributions in the right-most plot reveal that SUE complements geometric-verification, especially when the latter has low confidence.

Figure 6. Correctly matched queries that are given high uncer-
tainty by DELF-RANSAC and low uncertainty by SUE.

Figure 7. Effect of changing SUE’s hyper-parameters K and λ on
the AUC-PR. For each curve, the other fixed hyper-parameter is
chosen as K = 10 or λ = 350.

tion. Third, while GV gives the best uncertainty estimates
at the expense of high computational needs, it is still sus-
ceptible to aleatoric uncertainty within the image, as repet-
itive structures, trees, and walls may also lead to incorrect
matches of local features. In VPR, GV methods can still
benefit from complementary uncertainty estimates provided
by other methods, such as SUE.

We also note some potential limitations of SUE. SUE
may underestimate the uncertainty if K is too small to re-
trieve aliased references from multiple locations. Selecting
K for maps with mixed scene depths can therefore be chal-
lenging. Images in areas with low scene depth will already
be perceptually distinct at small spatial offsets, whereas
at high scene depth even images further apart may suffer

from perceptual aliasing. A K that suffices for small scene
depths could be too small for areas with high scene depths.
This could be mitigated by dynamically incrementing K till
w(K) becomes nearly zero. Now consider reference loca-
tions A and B which are perceptually aliased, i.e. all their
image descriptors are similar. If A has 1000 references and
B has one, even with K ≥ 1001, SUE will always be con-
fident about queries from either A or B as nearly all re-
trieved matches are spatially close. The high coverage of
A over B thus presents an unwanted confidence bias, unless
the chance of visiting A over B at test time is also 1000×
higher. Nevertheless, we have shown that despite these as-
sumptions SUE performs well on many real-world datasets.
We study this more in depth in the supplementary materials,
and there also present a possible solution.

5. Conclusions
We have compared different approaches for estimating the
image-matching uncertainty in VPR, which provided (sur-
prising) insights into this task, e.g. existing methods that
learn aleatoric uncertainty from the training dataset often
do not generalize well to the reference map at test time, and
the common L2-distance in the feature space can be a more
reliable indicator of matching uncertainty. We have shown
that matching uncertainty in VPR is tightly related to the
reference set at test time. Our new baseline SUE uniquely
considers the spatial locations of the references, and out-
performs all but the computationally expensive geometric
verification. Its uncertainty estimates complement those
of geometric verification. The choices for SUE’s hyper-
parameters generalize for most queries across the tested
datasets. We made recommendations for future research in
this area.
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Tsai, Ramakrishna Vedantham, Timo Pylvänäinen, Kimmo
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[36] Noé Pion, Martin Humenberger, Gabriela Csurka, Yohann
Cabon, and Torsten Sattler. Benchmarking image retrieval
for visual localization. In International Conference on 3D
Vision (3DV), pages 483–494. IEEE, 2020. 3
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6. Supplementary Material
We provide here an ablation of SUE by changing the back-
bone and the weight function. A probabilistic interpretation
of SUE is then presented and later used to perform density
compensation for dissimilarly distributed query and refer-
ence images. We further provide the precision-recall curves
for the remainder five VPR datasets. The complementar-
ity of SUE, STUN, and L2-distance to GV is also shown on
these datasets. We also show these complementarity plots of
other techniques with SUE. Then, we connect the concept
of geometric burstiness [40] with SUE. Finally, some qual-
itative results are shown in the form of correctly/incorrectly
matched queries ranked with different types of uncertainty
estimates.

6.1. More ablation studies of SUE

We perform two further experiments: changing the back-
bone feature extractor from STUN [9] to CosPlace [6] to
show SUE’s generality to other backbones in Fig. 8, and the
benefit of using the exponential weighing function (in Equa-
tion (2) of the main paper) instead of the uniform weighing,
as reported in Table 4.

Weigh. Pitts. San. Stlu. Eyn. MSLS Avg
Uniform 0.81 0.77 0.67 0.77 0.49 0.70
SUE 0.94 0.84 0.88 0.93 0.77 0.87

Table 4. SUE weighs the contribution of the nearest neighbor
poses based on the distance in the feature space with an expo-
nentially decaying function. This performs better than uniform
weighing of the variance of the reference poses.

6.2. A probabilistic view of SUE

We here present a probabilistic view of SUE, which will
help formulate a modified version in Section 6.3 to account
for different spatial distributions of queries and references.

Consider M ∈ {1, · · · , N} as a stochastic ‘match’ vari-
able that indicates which of the N references is a true refer-
ence. So, M = i would mean reference i is the ‘true’ match
for the query. Then p(M = i) expresses the prior belief that
any reference i could be the true reference.

Assuming that some reference i is the true reference,
M = i, then the observed query feature fq can be ex-
pected to be similar to the reference feature fi, with some
homoscedastic Gaussian noise or variation added to all fea-
ture dimensions,

p(fq|M = i) = N(fq|f(i),Σf ) (4)

∝ e−λ·||fq−f(i)||2 (5)
∝ w(i). (6)

So, the weight term of Equation (3) can be considered as
the non-normalized likelihood term. Note that the hyperpa-
rameter λ subsumes the noise parameter Σf .

Through Bayes’ rule, we can express the posterior belief
over M given the query feature as

p(M |fq) =
p(fq|M)p(M)

p(fq)
=

p(fq|M)p(M)∑
j p(fq|M = j)p(M = j)

.

(7)

With a uniform prior (p(M) = 1/N ) that indicates equal
probability for all references, we can see that the posterior
reduces to p(M |fq) = w(i)/

∑
j w(j), since the constant of

the prior factors out in the numerator and denominator.
If we now assume that our VPR technique is reasonable,

and that the query position should be located at the ‘true’
reference, then we can express the expected query position,
given our belief on the match of each reference, i.e.,

E[p(M)|fq] =
∑
i

[
p(M = i|fq)p(i)

]
(8)

= µp (9)

Here we recognise Equation (1), assuming the uniform prior
p(M). While we do not necessarily consider this expected
pose to be representative of the true query pose (it could
be an average location between distant visually-matching
areas), it does allow us to compute the expected squared
pose distance of the true match to the query,

E
[
||p(M) − µp||2

∣∣∣∣fq] ≈ trace(Σp) = sq, (10)

where Σp is as defined in Equation (2) for the uniform prior
p(M). In other words, in SUE sq estimates the expected
(squared) distance between the match’s pose and the query
pose, thus the smaller sq the higher the chance is that a
match selected according to our posterior belief is within
an acceptable distance to the true query pose.

Finally, reference i′ = argmaxi p(M = i|fq) with the
highest posterior probability of being the correct match is
selected, which based on the likelihood term (and with uni-
form prior) will be i′ = 1, i.e. the nearest neighbor in the
feature space.

Note that in the above, a uniform prior p(M) means all
references are assumed a-priori equally likely to match the
query. In case some areas in the map contain more refer-
ences than other areas, this also implies a higher prior belief
that the query will occur in such a denser sampled area. This
‘default’ prior is therefore not a uniform spatial prior over
the mapped area, but it assumes that the local spatial density
of references in the map is indicative of the probability of a
query appearing in such a local region.

12



Figure 8. SUE remains SOTA by changing the backbone feature extractor to CosPlace [6] with no retuning of SUE’s hyper-parameters.
CosPlace is also used as the backbone for L2-distance and PA-score, but it was not possible to change the backbone for BTL and STUN.

6.3. Spatial density compensation for dissimilar
query/reference spatial distributions

As explained in SUE’s potential limitations of Discussion
Section 4.5 and Appendix Section 6.2, the default formula-
tion of SUE assumes that each reference is equally probable
to match a query, i.e., a uniform prior p(M) is assumed. In
other words, the query and reference images/poses are ex-
pected to be distributed similarly over the map, and the spa-
tial density of the references in an area reflects the assumed
prior probability for a query to be located in that area.

To illustrate, consider two perceptually-aliased locations
A and B, where location A is represented by 100 images and
location B by one image. If a query occurs at A or B, SUE’s
uncertainty estimate as currently formulated in Equation (2)
will be low, since the many references at location A will all
agree on low spatial variance, while the contribution of dis-
tant references at location B are 100× less. This high con-
fidence could be desired if location A is also 100× more
likely to be visited at query-time than location B (i.e. the
uniform p(M) holds, so the spatial density of the references
reflects a spatial prior of a query’s location). However, this
prior could also be undesired if we expect queries at A and
B are equally likely to occur, irrespective of the reference
density. Ultimately, what is desired depends on the applica-
tion and data collection procedure.

In case the uniform prior p(M) over references is unde-
sired, we can substitute it with a different prior in the equa-
tions of Section 6.2. Specifically, in Equation (7) the like-
lihood terms should not be multiplied with a constant prior
term (which cancelled out in the numerator and denomina-
tor). Still, it may be more convenient to express the prior
over references in terms of a spatial prior for the query. In
other words, a reference would be more probable to match
if it is in a area where the query is more probable to occur,
while a reference would be less probable if there are more

other references in the same spatial area. Let pq(p) denote
the desired spatial prior for the query to be at a pose p, and
pr(p) denote the spatial density of the references at a pose
p, then

p(M = i) ∝
pq(p(i))

pr(p(i))
. (11)

We will refer to this as spatial density compensation. In
practice, we can thus compensate SUE for a desired spa-
tial prior by multiplying the reference weight w(i) with a
term (proportional to) the desired prior p(M). Note from
Equation (11) that if the spatial distributions of queries and
references are assumed equal, we again obtain that p(M) is
uniform, as is the case for the default SUE formulation.

6.4. Validating spatial density compensation

In this section, we test the spatial density compensation con-
cept of adjusting SUE as explained in Section 6.3.

Applying a uniform spatial prior for the query Let’s
assume the spatial density of query poses is uniform, so all
query poses within the map are equally likely, in which case
term pq(p) becomes a constant (and thus will cancel out
when normalizing the weights).

The spatial density of the references pr(p) can be esti-
mated from the finite samples of poses in the reference set.
We can for instance model the spatial density of references
by simply taking the distance z(i) of the reference i to its k-
th nearest neighbor in the pose space, such that the area z2(i)
is inversely proportional to the local density of the reference
i, i.e., pr(p(i)) ∝ 1/z2(i). Hyperparameter k regularizes the
smoothness of the estimated reference pose density.

We can now see that p(M = i) ∝ z2(i), thus the density
compensated SUE for this uniform spatial prior for query
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(a) Pittsburgh query (b) Pittsburgh reference

(c) Stlucia query (d) Stlucia reference

Figure 9. The density of queries and references is depicted using
the distance (z) of each query/ref to its nearest neighbour (k = 1)
in the pose space. Queries and references in Pittsburgh dataset
are highly dense and hence uniformly spatially distributed. The
queries and references are non-uniformly (albeit similarly) spa-
tially distributed in the sparser Stlucia dataset.

poses is obtained by re-weighing Equation (3) with z2(i), i.e.,

w(i) = e−λ·d(i) · z2(i). (12)

Do common datasets have a uniform query distribution?
We used the above formulation of spatial density to study
the properties in the used VPR datasets. First, we find that
most of our datasets do have a mostly uniform spatial dis-
tribution for both queries and references, except the Stlu-
cia dataset. Fig. 9 illustrates the distribution of distances to
the k = 1 nearest neighbors for the Pittsburgh and Stlucia
datasets. Second, we can conclude that the assumption that
references and queries have a similar spatial distribution
does hold in common VPR dataset, hence SUE’s default
formulation with uniform reference prior is reasonable.

To properly validate the density compensation concept of
Section 6.3, we also create a modified version of the Stlu-
cia data such that queries and reference actually do have
a different spatial distribution. We greadily subsample the
Stlucia queries such that the spatial density of the resampled
queries is uniform.

Does assuming a uniform query distribution help? Fi-
nally, we test the density compensated SUE of Equa-
tion (12) on the VPR datasets for different choices of k,
see Table 5.

Since queries and references of datasets other than Stlu-
cia are already uniformly distributed spatially, the table con-
firms that density compensation does not lead to any ma-
jor effect on SUE’s performance. We also see that for the

Compensation Pitts. San. Stlu. Eyns. MSLS
none 0.94 0.84 0.89 0.93 0.76
k = 1 0.94 0.84 0.82 0.93 0.76
k = 3 0.94 0.84 0.84 0.93 0.77
k = 10 0.94 0.81 0.85 0.92 0.77

Table 5. SUE’s AUC-PR with reference density compensation.

z none k=1 k=3 k=5 k=8 k=10
8− 9 0.92 0.96 0.96 0.96 0.94 0.94
10− 11 0.68 0.76 0.73 0.7 0.71 0.69

Table 6. SUE’s AUC-PR with reference density compensation us-
ing different values of k on the Stlucia dataset when the queries
are resampled to have a close to uniform spatial density (e.g.,
z = 8 − 9). Reference density compensation helps SUE when
queries are spatially uniformly distributed and references are non-
uniformly distributed. Best across the columns is in Bold.

(unmodified) Stlucia dataset, density compensation actually
hurts performance because the queries and references are in
fact non-uniformly and similarly distributed. The default
uniform prior assumption of SUE is therefore better suited
for Stlucia.

However, if we test density compensated SUE on the
modified Stlucia dataset where queries are in fact uniformly
spatially distributed while the references are not, then we
do observe a benefit over the default SUE as shown in Ta-
ble 6. In this case, the spatial prior of density compensated
SUE does hold, where as the default SUE assumption that
queries and references are similarly distributed does not.

In conclusion, whether spatial density compensation is
needed depends on the specifc spatial distributions of the
references and queries in a dataset. For the studied VPR
benchmark datasets that represent densely collected queries
and references, the default assumption of SUE that their
spatial distributions are similar holds. Still, in applications
where we can expect that queries and references are dis-
tributed differently, then additional density compensation
can be helpful. The formulation of spatial density compen-
sation can be motivated from a probabilistic view on SUE.
Future work can investigate better estimates for query and
reference density for non-uniformly distributed data to fur-
ther improve SUE.

6.5. Precision-Recall curves

In addition to the Precision-Recall curves of the Pittsburgh
dataset in Fig. 1, the PR-curves for the remainder five
datasets are shown in Fig. 10. SUE outperforms the meth-
ods in the RUE and DUE categories on all datasets. GV
remains the overall state-of-the-art, albeit at a two to three
orders of magnitude higher computational cost.
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Figure 10. The precision-recall curves on the six datasets using SUE and other baselines. SUE outperforms the existing methods within the
efficient category on all datasets. Note how an L2-based retrieval uncertainty outperforms the data-driven aleatoric uncertainty estimated
in BTL and STUN.

6.6. Complementing geometric verification

We further show in Fig. 11 the generalization of SVM
trained on the Pittsburgh dataset to other datasets. For all
these datasets, the relation of our SUE uncertainty with
DELF-RANSAC leads to complementarity with queries in

the bottom-left of the plot that can be linearly separated.

6.7. SUE combined with other uncertainty estimates

For completeness, we show the combination of other un-
certainty estimation methods with SUE in Fig. 12. Most of
the queries that can be classified as true- or false-positives
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Figure 11. The relation of L2-based uncertainty, STUN, and SUE with geometric verification uncertainty. The SVM boundaries are learned
on the Pittsburgh dataset only. Each point represents a query, and the color indicates whether it is a true-positive (Blue) or a false-positive
(Red). The linear SVM boundaries are shown as black lines, while the dashed lines are the SVM margins. The combination of SUE with
geometric-verification leads to more correctly matched queries in the bottom right (where SUE is certain but GV is uncertain) of the plots
identifying complementarity. For better visualization, the vertical scale is in log-space, due to which the SVM boundaries appear non-linear
to the reader but are linear.

by other methods can already be classified using only SUE.
We hypothesize that this is because of SUE’s similarity to
BTL and STUN which also estimate the aleatoric uncer-
tainty, and since SUE already uses the L2-distance and near-
est neighbours in its uncertainty estimate.

6.8. Relating SUE to geometric burstiness

Relation: Features that appear in similar configurations
across multiple unrelated reference images are referred to
as geometric burstiness (GB) [40]. Ideally, such features
should not be considered for estimating the image matching
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Figure 12. The relation of L2-based, PA-score, BTL, and STUN uncertainties with SUE uncertainty. Each point represents a query, and
the color indicates whether it is a true-positive (Blue) or a false-positive (Red). The linear SVM boundaries are shown as black lines, while
the dashed lines are the SVM margins. As indicated by the near-vertical decision boundaries, most of the queries that can be classified as
true- or false-positives by other methods can also be classified by SUE, and we do not see much complementarity.

confidence using geometric verification (GV). Whether
images are related or unrelated is determined using their
pose information, i.e., different images that are physically
close to each other could be looking at the same place.
While the use of pose information of the Top-K retrieved
reference images is common between SUE and GB, the
latter is evaluated for image re-ranking and the former
for VPR. GB is implemented on top of GV and is more
computationally expensive than GV, concretely by an
order of K, but gives better uncertainty estimates. For
completeness, we implement a version of GB inspired
by [40] and compare it to SUE. The implementation details
are as follows.

Our implementation of GB: We use SIFT features, and
perform feature matching in a RANSAC loop between a
query and its Top-K retrieved nearest neighbors. Local fea-
ture matches [qi, rkj ] that satisfy a geometric transform (ho-
mographic) are considered inliers, where qi is the ith query
feature and rkj is the jth feature in kth nearest neighbour.
A query feature qi contributes to geometric burstiness if it
forms part of the inlier set for multiple (say T ) retrieved im-

ages, and in the most naive case, such [qi, rkj ] should be
discarded from the inlier count. But similar to [40], we
down-weight their contribution by T instead of completely
discarding such inliers.

However, Sattler et al. [40] further studied that the top
retrieved images could come from the same place, and
hence query features could legally form part of the inlier
set for multiple retrieved images. To classify whether a
set of reference images represents the same place or not,
we use the definition of place from [7] where images that
are within 25 meters of each other are considered as the
same place. Thus, only inliers from reference images of
different (more than 25 meters apart) places are classified
as geometric bursts. We use K = 20 and for feature
matching the same hyperparameters are used as that of
SIFT-RANSAC.

Results: We report in Table 7 that adding GB on top of
SIFT-RANSAC leads to better performance than just using
SIFT-RANSAC. Overall, among all uncertainty estimation
methods, DELF-RANSAC still performs the best. GB is the
most computationally expensive among all the uncertainty
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↑ Pitts. ↑ Nord. ↑ MSLS ↓ Time
L2-dist 0.87 0.18 0.64 0.05
STUN 0.79 0.05 0.44 0.10
SUE 0.94 0.26 0.77 1.08
SIFT 0.92 0.15 0.70 129
DELF 0.97 0.84 0.95 1587

GB (SIFT) 0.92 0.31 0.87 2709

Table 7. AUR-PR and computation time (msecs) comparison of
the methods discussed in the main paper with geometric bursti-
ness [40]. Best across the columns is in Bold. Implementing GB
on top of SIFT-RANSAC leads to better performance but at sev-
eral orders of magnitude higher computational cost.

Figure 13. SUE remains complementary to GB since many true-
positives can be separated from false-positives using SUE uncer-
tainty and not using GB. See other such plots in this paper for
details on the employed info-graphics.

estimation methods. Note that GB could also be added on
top of Superpoint-RANSAC and DELF-RANSAC albeit at
an even higher computational cost.

We further test if SUE remains complementary to GB,
given that both methods use reference poses. Fig. 13 shows
that the uncertainty estimates from SUE can also comple-
ment GB. In conclusion, the several orders of magnitude
higher computational needs of GB compared to SUE, and
their mutual complementarity suggest that SUE is a useful
baseline for uncertainty estimation in VPR.

6.9. Qualitative results

We show examples of queries with their corresponding
nearest neighbors ranked with the uncertainties computed
by the different types of uncertainty estimation methods in
Fig. 14. We keep the set of randomly chosen queries the
same for all the methods. These examples further indicate
what each method is sensitive to for uncertainty estimation.
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Figure 14. Exemplar matched/mismatched queries are ranked with different types of estimated uncertainties in the Pittsburgh dataset. Note
that the set of chosen queries is the same for all types of uncertainty estimation methods. I(n) denotes the nearest neighbor where the
subscript n denotes its rank. The number of nearest neighbors shown relates to the corresponding number needed by each method (e.g.
PA-score requires two nearest neighbors). The retrieved nearest neighbors for BTL are different than other methods due to the different
feature encoder. A good uncertainty estimation method when used for ordering would rank correct matches to the left and incorrect matches
to the right of the reader. The query image in column 12 of SUE depicts the failure case of SUE, where the perceptually aliased nearest
neighbors are geographically far-apart leading to high uncertainty but the best match is still the correct match.
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