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The conventional wisdom in point cloud analysis predominantly explores 3D geometries. It 
is often achieved through the introduction of intricate learnable geometric extractors in the 
encoder or by deepening networks with repeated blocks. However, these methods contain a 
significant number of learnable parameters, resulting in substantial computational costs and 
imposing memory burdens on CPU/GPU. Moreover, they are primarily tailored for object-level 
point cloud classification and segmentation tasks, with limited extensions to crucial scene-level 
applications, such as autonomous driving. To this end, we introduce PointeNet, an efficient

network designed specifically for point cloud analysis. PointeNet distinguishes itself with its 
lightweight architecture, low training cost, and plug-and-play capability, while also effectively 
capturing representative features. The network consists of a Multivariate Geometric Encoding 
(MGE) module and an optional Distance-aware Semantic Enhancement (DSE) module. MGE 
employs operations of sampling, grouping, pooling, and multivariate geometric aggregation to 
lightweightly capture and adaptively aggregate multivariate geometric features, providing a 
comprehensive depiction of 3D geometries. DSE, designed for real-world autonomous driving 
scenarios, enhances the semantic perception of point clouds, particularly for distant points. Our 
method demonstrates flexibility by seamlessly integrating with a classification/segmentation head 
or embedding into off-the-shelf 3D object detection networks, achieving notable performance 
improvements at a minimal cost. Extensive experiments on object-level datasets, including 
ModelNet40, ScanObjectNN, ShapeNetPart, and the scene-level dataset KITTI, demonstrate 
the superior performance of PointeNet over state-of-the-art methods in point cloud analysis. 
Notably, PointeNet outperforms PointMLP with significantly fewer parameters on ModelNet40, 
ScanObjectNN, and ShapeNetPart, and achieves a substantial improvement of over 2% in 
3𝐷 𝐴𝑃𝑅40 for PointRCNN on KITTI with a minimal parameter cost of 1.4 million. Code is publicly 
available at https://github .com /lipeng -gu /PointeNet.
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1. Introduction

With the popularity of 3D sensors such as LiDARs and depth cameras Geiger et al. (2012), point cloud analysis has gained 
significant prominence in both academic research and industrial development Qi et al. (2017a,b); Li et al. (2018); Ma et al. (2022); 
Zhang et al. (2023c). Unlike grid-based RGB images, point clouds comprise unordered and irregular points that outline the surfaces 
of objects in 3D space. This characteristic poses significant challenges in designing effective point cloud analysis models.

PointNet and PointNet++ Qi et al. (2017a,b) are pioneering works capable of directly analyzing unordered point clouds without 
the need for preprocessing. Just as ResNet He et al. (2016) serves as a prominent backbone in image processing, PointNet/PointNet++ 
has emerged as the widely adopted backbone network in subsequent point cloud analysis models Qi et al. (2019); Yang et al. 
(2020); Shi et al. (2019); Ma et al. (2022). The iterative evolution in these methods adheres to the “continual increment” principle, 
primarily focusing on modifying the backbone network, PointNet++, to capture more representative local geometric features. Specific 
improvements fall mainly into two aspects: introducing well-designed local geometric extractors (such as Graph Convolution Wang 
et al. (2019); Lin et al. (2022), Adaptive Point Convolution Xu et al. (2021), and Residual Point Block Ma et al. (2022)) into 
the encoder or simply stacking repeated blocks to deepen the network Ma et al. (2022); Liu et al. (2019). Such strategies, while 
capable of boosting performance, inevitably lead to a notable surge in network parameters. Fortunately, Point-NN Zhang et al. 
(2023c) recognizes this longstanding challenge and for the first time attempts to employ a counterintuitive “subtraction” strategy by 
trimming PointNet++, retaining only its non-learnable components, i.e., sampling, grouping, and pooling. This allows tasks like point 
cloud classification, segmentation, and even 3D detection to be performed without the need for training. While this unique strategy 
significantly reduces training costs, it falls short of exploiting the local geometry properties of point clouds, relying solely on spatial 
neighboring information. Additionally, existing point cloud analysis methods, including Point-NN, primarily focus on object-level 
point clouds, with limited extensions to more valuable scene point clouds (such as those in autonomous driving scenarios). These 
problems hinder Point-NN from fully unleashing its potential.

In this paper, we propose an efficient network for point cloud analysis, dubbed PointeNet. Our model is highly streamlined, 
comprising only non-parametric components such as sampling, grouping, pooling, and a minimal number of learnable parameters, 
and can be flexibly combined with a point cloud classification/segmentation head, or be embedded into cutting-edge 3D detection 
networks tailored for real-world autonomous driving scenarios to enhance performance. Specifically, PointeNet comprises two cru-

cial modules: the Multivariate Geometric Encoding (MGE) module, and the Distance-aware Semantic Enhancement (DSE) module. 
MGE comprises non-parametric farthest point sampling (FPS), k-nearest neighbor (k-NN), and pooling components, along with our 
proposed Multivariate Local Geometric Aggregation (MLGA) module incorporating a minimal number of Multi-Layer Perceptron 
(MLP) layers. This module captures multivariate 3D geometric features within local regions of point clouds, encompassing curvature, 
normal, and spatial neighboring information. DSE is a lightweight module specifically tailored for autonomous driving scenarios, 
incorporating only two MLPs and four Fully Connected (FC) layers. It focuses on capturing the rich semantic features of the point 
cloud through 3D semantic segmentation tasks, decorating the point cloud to significantly enhance the performance of arbitrary 3D 
detection networks. Notably, these semantic features are distance-aware, allowing for dynamic adjustment of the segmentation diffi-

culty for each point, particularly focusing more “attention” on challenging distant points. We evaluate the performance of PointeNet 
through a comparative analysis with thirty-three competitors across the ScanObjectNN Uy et al. (2019), ModelNet40 Wu et al. 
(2015), ShapeNetPart Yi et al. (2016), and KITTI Geiger et al. (2012) datasets. Remarkably, PointeNet surpasses all competitors, 
showcasing its superior performance. The contributions of this work are threefold:

• We propose an efficient network, dubbed PointeNet. It excels in lightweight capture and adaptive aggregation of multivariate 
geometric and semantic features, making it suitable for point cloud segmentation/classification and enhancing cutting-edge 3D 
object detection networks tailored for autonomous driving scenarios.

• We propose a lightweight Multivariate Geometric Encoding (MGE) module, featuring non-learnable FPS, k-NN, and pooling 
components, supplemented by a Multivariate Local Geometric Aggregation (MLGA) module with a minimal number of learnable 
parameters, to capture diverse 3D geometric features.

• We propose an optional lightweight Distance-aware Semantic Enhancement (DSE) module tailored for autonomous driving 
scenarios. It dynamically adjusts the segmentation difficulty for each point, giving more “attention” to challenging distant points 
to capture distance-aware semantic features.

2. Related work

2.1. Point cloud analysis

There are two main paradigms for processing irregular and unordered point clouds: grid-based and point-based methods. Grid-

based methods Liang et al. (2022); Qi et al. (2019); Shi et al. (2020); Lang et al. (2019) first project irregular point clouds onto 
regular grids, such as pillars or voxels, and then process them using 2D/3D convolutional neural networks (CNNs). This paradigm 
significantly enhances the processing speed by transforming the point cloud into structured grids. However, projecting onto grids 
may lead to information loss, degrading the quality of the point cloud representation Yang et al. (2019).

In contrast, point-based methods have emerged to directly process irregular point clouds without additional regularization, pre-

serving the point cloud details more accurately. PointNet Qi et al. (2017a) is a pioneering method that utilizes shared MLPs to handle 
2

unordered point clouds as input directly. PointNet++ Qi et al. (2017b) builds upon PointNet by introducing a hierarchical feature 
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learning paradigm, allowing for the recursive capture of local geometric structures. Due to the promising performance exhibited by 
PointNet++, particularly in leveraging local geometric representations, including multi-scale geometric information, it has become 
a foundational element in modern point cloud analysis methods. Subsequent works, such as KPConv Thomas et al. (2019), RSCNN 
Liu et al. (2019), 3D-GCN Lin et al. (2022), PAConv Xu et al. (2021), PointConv Wu et al. (2019) and PointMLP Ma et al. (2022), 
either introduce intricate local geometric extractors or simply stack repeated network blocks to achieve further performance improve-

ments. However, these strategies make the networks more cumbersome and less efficient. Subsequently, Point-NN adopts a contrary 
approach by abandoning intricate geometric extractors and relying solely on FPS, k-NN, and pooling to extract neighborhood infor-

mation, achieving commendable performance. However, due to its capture of geometric features being singular and simplistic, it still 
falls short of achieving state-of-the-art (SOTA) performance. Drawing on the successful experience of Point-NN, we propose PointeNet, an 
efficient network primarily based on these non-learnable components, aiming to capture representative multivariate geometric and semantic 
features at a minimal parameter cost.

2.2. Local geometry exploration

Since the powerful ability to capture local geometric features of point clouds demonstrated by PointNet++ Qi et al. (2017b), 
subsequent research has mainly focused on exploring local geometric representations, which can be divided into three categories: 
convolution-based, graph-based, and attention-based methods. Classic convolution-based methods, with PointConv Wu et al. (2019)

as a representative example, employ MLPs to approximate continuous weights and density functions within convolution filters. 
It extends dynamic filtering to a novel convolution operation. Unlike convolution-based methods, graph-based methods explore 
relationships between points. For instance, DGCNN Wang et al. (2019) introduces EdgeConv, a novel method that generates edge 
features describing the relationships between points and their neighbors, capturing local features of the point cloud. 3D-GCN Lin et al. 
(2022) employs a 3D graph convolutional network to form deformable 3D kernels, directly performing convolutional computations 
on point clouds. Related to graph-based methods, attention-based methods similarly focus on exploring direct relationships between 
points, as seen in works like PCT Guo et al. (2021) and Point Transformer Zhao et al. (2021). Although these methods have achieved 
success in point cloud analysis, they have consistently employed an “increment” principle, undoubtedly introducing more learnable 
parameters and thereby reducing computational efficiency and exacerbating the burden on CPU/GPU. Compared with these methods, 
our PointeNet achieves better performance with fewer parameters.

2.3. Deep network architecture for point clouds

The advancement of point cloud analysis methods is often inspired by breakthroughs in image processing networks. For instance, 
following the success of ResNet He et al. (2016) based on simple convolutions in the field of image processing, subsequent methods 
often use it as a backbone and continuously improve upon it. Similarly, after the breakthrough achieved by PointNet/PointNet++ 
based on simple MLPs in point cloud processing, they have become the mainstream backbones for point cloud analysis. After the 
success of graph- Felzenszwalb and Huttenlocher (2004), attention- Wang et al. (2018), and transformer-based Dosovitskiy et al. 
(2021) methods in the field of image processing, they have inspired a series of point cloud analysis works Wu et al. (2019); Wang et al. 
(2019); Ran et al. (2021); Guo et al. (2021); Zhao et al. (2021). For example, both Stratified-Transformer Lai et al. (2022) and 3DCTN 
Lu et al. (2022) are based on Transformers. The former significantly expands the receptive field through a stratification strategy, 
thereby efficiently capturing long-range context, while the latter combines the powerful local feature learning ability of convolutions 
with the remarkable global context modeling capability of Transformers. Although effective, transformers lead to an increase in the 
number of parameters. Moreover, PointNeXt Qian et al. (2022) explores the potential of PointNet++ via training strategy and model 
scaling. However, experimental evidence suggests that its significant performance improvements in some scenarios largely depend 
on multiple GPUs to increase the batch size (e.g., using four GPUs, each with a batch size of 8, on the ShapeNetPart dataset) during 
training, thus necessitating substantial hardware resources. Differently, our PointeNet has fewer parameters and does not require a 
large batch size during training, yet achieves state-of-the-art performance.

3. Revisiting point-based methods

Unlike grid-based methods, point-based methods have gained popularity due to their ability to directly learn the underlying point 
cloud representation without preprocessing. PointNet/PointNet++ Qi et al. (2017a,b) are pioneers in this paradigm, employing 
a hierarchical feature learning approach through the stacking of multiple learning stages. We first delve into the core idea of 
PointNet++ and then explore the strengths and weaknesses of subsequent methods.

Given a set of points  =
{
𝑝𝑖 ∣ 𝑖 = 1,… ,

}
∈ ℝ×3, where  is the number of points. The core idea of PointNet++ is to 

utilize FPS for down-sampling point clouds, use k-NN for grouping points, and then employ local geometric extractors to extract 
features, followed by max pooling to aggregate these features. The key steps for geometric feature extraction and aggregation can be 
formulated as:

𝑓𝑐 =
(
Φ
(
𝑓𝑐,𝑗

)
∣ 𝑗 ∈𝑐

)
(1)

where  (⋅) means aggregation function (i.e., max-pooling in PointNet++), Φ (⋅) denotes the local feature extractor (i.e., MLPs in 
3

PointNet++), and 𝑓𝑐,𝑗 is the 𝑗-th neighbor point feature of center point 𝑝𝑐 within the local region.
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Fig. 1. Overview of PointeNet. It is an efficient network comprising two key modules: the Multivariate Geometric Encoding (MGE) module and the Distance-

aware Semantic Enhancement (DSE) module. MGE captures multivariate geometric features, while DSE captures distance-aware semantic features. It can be flexibly 
combined with segmentation/classification heads to achieve excellent point cloud segmentation/classification tasks. Furthermore, it can be embedded in arbitrary 
scene-level tasks, such as 3D object detection (3OD), thereby further enhancing their performance.

Fig. 2. Overview of MLGA. It is capable of lightweight capture of 3D geometries, including the spatial neighboring 𝑓𝑠
𝑐
, curvature 𝑓𝑐

𝑐
, and normal 𝑓𝑛

𝑐
features within a 

local region, and then undergoes a multivariate adaptive aggregation (MAA) module to adaptively aggregate various features, outputting multivariate local geometric 
features 𝑓𝑔

𝑐 .

Regarding network architecture design, PointNet++ establishes a versatile baseline for point cloud analysis. Later, based on 
this baseline, several methods are introduced, either emphasizing local geometric extractors Wang et al. (2019); Lin et al. (2022); 
Thomas et al. (2019); Xu et al. (2021) or stacking repeated network blocks to deepen the network Ma et al. (2022); Liu et al. (2019). 
While these methods can capture detailed local geometric information and often yield promising performance, their development 
encounters three challenges.

Firstly, the incorporation of complex geometric extractors or the expansion of the network to improve the representation of local 
geometric features invariably introduces a significant number of learnable parameters. This increase leads to higher computational 
complexity and places a greater strain on CPU/GPU resources. For example, PointMLP Ma et al. (2022) stacks residual network blocks 
to reach 16.7 million parameters, and training for segmentation tasks on ShapeNetPart can take up to 23 hours. This demonstrates 
a substantial computational burden. Secondly, the development of intricate local geometric extractors is approaching maturity and, 
in some cases, saturation. This is evidenced by the growing difficulty in securing performance improvements on well-known bench-

marks like ModelNet40, ScanObjectNN, and ShapeNetPart. Thirdly, current methods are predominantly tailored for object-level point 
cloud analysis scenarios and rarely consider more realistic and valuable scene-level applications, such as autonomous driving. These 
limitations prompt us to explore a new paradigm that “lightens the load” on deep learnable networks. This is, is it feasible to devise 
an efficient, lightweight framework for point cloud analysis that not only requires fewer parameters but also delivers satisfactory performance 
at both the object and scene levels?

Excitingly, Point-NN has made the first successful attempt to perform point cloud analysis by constructing a PointNet++-style 
hierarchical framework that relies solely on non-learnable components such as FPS, k-NN, and pooling. However, it depends only on 
single spatial neighborhood information, overlooking other potential point cloud features, such as normals and curvatures of local 
surfaces, as well as semantic features. Moreover, it lacks customized optimization for real-world, scene-level applications.

4. Methodology

4.1. Overview

To overcome the aforementioned limitations, we introduce PointeNet (see Fig. 1), an efficient network designed for point cloud 
analysis. This network is adept at lightweightly capturing and adaptively aggregating diverse geometric and semantic features of 
point clouds with a minimal number of learnable parameters, ensuring a lightweight yet potent processing method. Additionally, it 
is specifically optimized for real-world autonomous driving scenarios.

The process of encoding multivariate geometric features (see Fig. 2) and distance-aware semantic features (see Fig. 3) can be 
formulated as:

𝑓𝑔
𝑐
=

(
Φpos

({(
𝑝𝑐,𝑗 , 𝑓𝑐,𝑗

)}
𝑗∈𝑐

, (𝑝𝑐 , 𝑓𝑐)
)
,Φsur

({
𝑝𝑐,𝑗

}
𝑗∈𝑐

))
(2)

( )
4

𝑓𝑠
𝑐
=Φ𝑠𝑒𝑚 𝑝𝑐 , 𝑓

𝑔
𝑐

(3)
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where 
(
𝑝𝑐,𝑗 , 𝑓𝑐,𝑗

)
represent the coordinates and features of the 𝑗-th neighbor point of the center point 

(
𝑝𝑐, 𝑓𝑐

)
within the local region, 

respectively. Φ𝑝𝑜𝑠 (⋅) and Φ𝑠𝑢𝑟 (⋅) are functions responsible for capturing spatial neighboring features and curvature-normal features, 
respectively. And, Φ𝑠𝑒𝑚 (⋅) is a function for extracting distance-aware semantic features tailored for real-world autonomous driving 
scenarios.  is an aggregation function, and in PointeNet, it is our proposed multivariate adaptive aggregation (MAA) module.

Our efficient PointeNet exhibits some prominent advantages: i) PointeNet inherently exhibits permutation invariance, which 
aligns seamlessly with the properties of point clouds. ii) PointeNet bypasses the necessity for meticulously crafted feature extractors, 
effectively accomplishing position encoding, multivariate feature extraction, and feature aggregation with a minimal set of learnable 
parameters. iii) Due to its streamlined network architecture, PointeNet can be trained without the need for substantial hardware 
resources, such as multiple GPUs.

4.2. Multivariate geometric encoding

To accurately represent a point cloud, it is intuitive to aim for a comprehensive understanding of its spatial relationships, surface 
characteristics, and semantic attributes. Nevertheless, current methods (e.g., PointMLP Ma et al. (2022) and Point-NN Zhang et al. 
(2023c)) largely neglect surface intricacies or rely on intricate fusion methods to blend diverse features. Addressing this gap, we 
propose the Multivariate Geometric Encoding (MGE) module, aimed at efficiently capturing and adaptively aggregating multivariate 
geometric features.

MGE includes non-parametric FPS, k-NN, pooling components, and the Multivariate Local Geometric Aggregation (MLGA) mod-

ule, with MLGA serving as the crucial module. As shown in Fig. 2, MLGA is capable of capturing spatial neighboring information 
within local regions, as well as comprehensively detailing local surface features, including curvature and normal information. Addi-

tionally, it facilitates the adaptive aggregation of these multivariate geometric features. Note that MLGA incorporates only a minimal 
number of MLPs for the transformation of feature channels. For example, PointeNet involves significantly fewer parameters com-

pared to PointMLP: only 8.73% (1.1 million vs. 12.6 million) on ModelNet40, 7.14% (0.9 million vs. 12.6 million) on ScanObjectNN, 
and 51.88% (8.3 million vs. 16.0 million) on ShapeNetPart. In the following, we detail the process of capturing and aggregating 
multivariate geometric features.

The encoding of spatial neighboring information, similar to Point-NN, is represented by the following formula:

𝑓𝑠
𝑐
=
(

(
𝑓𝑐, 𝑓𝑐,𝑗

)
+ 𝑃𝑜𝑠𝐸

(
△𝑝𝑐,𝑗

))
⊙𝑃𝑜𝑠𝐸

(
△𝑝𝑐,𝑗

)
, 𝑗 ∈𝑐 (4)

where 𝑓𝑐 and 𝑓𝑗 represent the center and neighbor features within the local region, respectively. △𝑝𝑐,𝑗 represents the normalized 
coordinates of neighboring points by the mean and standard deviation. 𝑃𝑜𝑠𝐸 (⋅) refers to the position encoding, and here, it is 
implemented using trigonometric functions.

Surface feature information in point clouds refers to a set of features that represent the shape of surfaces in 3D space. These 
features are crucial for point cloud analysis, with common surface feature information including normals, curvature, smoothness, 
boundaries, and even textures. Among these, normals and curvature are the most representative surface features. GeoMAE Tian et al. 
(2023) has successfully demonstrated this by using normals and curvature of local surfaces in point clouds as self-supervised signals 
for pre-training, thereby enhancing the performance of downstream tasks such as 3D object detection. Therefore, to improve the 
representation of single spatial neighboring features in the encoder, we incorporate surface curvature and normal as two additional 
geometrical features. For a set of neighboring points 𝑝𝑗 , we initiate the process by calculating the matrix:

𝑀𝑐 =
1
𝑐

𝑐∑
𝑗=1

𝑝𝑐,𝑗𝑝
𝑇
𝑐,𝑗

− 𝑝̄𝑐 𝑝̄
𝑇
𝑐

(5)

where 𝑝̄𝑐 =
1
𝑐

∑𝑐

𝑗=1 𝑝𝑐,𝑗 is the centroid of the local region. Next, we perform Singular Value Decomposition (SVD) on the matrix 
𝑀𝑐 to obtain the eigenvalues 𝑐1, 𝑐2, 𝑐3 and corresponding eigenvectors 𝑛1, 𝑛2, 𝑛3. Here, we use the eigenvector 𝑛3 corresponding to 
the smallest eigenvalue 𝜆3 as the pseudo-normal vector 𝑁𝑐 = 𝑛3. Following that, we normalize the three eigenvalues to obtain the 
pseudo-curvature vector 𝐶𝑐 =

{
𝑐0, 𝑐1, 𝑐2

}
:

𝑐𝑚 =
𝑐𝑚∑3
𝑖=1𝑐𝑖

,𝑚 ∈ {1,2,3} (6)

As both pseudo-curvature and pseudo-normal vectors are low-dimensional, it is necessary to embed them into high-dimensional 
geometric features using an MLP layer, i.e., 𝑓𝑛

𝑐
=𝑀𝐿𝑃

(
𝑁𝑐

)
and 𝑓𝑐

𝑐
=𝑀𝐿𝑃

(
𝐶𝑐

)
.

Unlike previous methods Zhang et al. (2019) that aggregate multiple features using several MLPs, we ingeniously introduce 
learnable parameters 𝛼, 𝛽 to efficiently learn channel-wise weights and biases for each feature with fewer parameters, i.e., 𝑓𝑠

𝑐
, 𝑓𝑛

𝑐

and 𝑓𝑐
𝑐
:

𝑓𝑔
𝑐
=

∑
𝑖={𝑠,𝑐,𝑛}

(
𝛼𝑖 ⊙ 𝑓𝑖

𝑐
+ 𝛽𝑖

)
(7)

where ⊙ denotes dot product and 𝑓𝑔
𝑐 is the output of aggregated multivariate geometric features. These multivariate geometric 
5

features, after being processed through MLP layers to expand feature channels, achieve higher robustness by adaptively aggregating 
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Fig. 3. Overview of DSE. It introduces the distance factor 𝑑 into the semantic segmentation loss function, adaptively differentiating segmentation difficulty by region 
to derive distance-aware semantic features 𝑓𝑠

𝑐
. These features are combined with the geometric features 𝑓𝑔

𝑐 to output the final features 𝑓𝑔𝑠
𝑐 .

using learnable parameters and incorporating data augmentation strategies (e.g., random translations, scaling, and rotations) during 
the training process.

4.3. Distance-aware semantic enhancement

Prior point cloud analysis methods, such as PointMLP Ma et al. (2022) and Point-NN Zhang et al. (2023c), are traditionally 
limited to object-level classification/segmentation tasks and lack custom optimizations for scene-level tasks, such as applications in 
autonomous driving scenarios. In real-world autonomous driving applications, the field of view is significantly broader, and point 
clouds tend to become sparser with increasing distance. This sparsity poses a challenge for effective perception, especially for distant 
points in scene-level tasks. Differently, object-level tasks involve dealing with a single object, which is limited in size and features a 
relatively uniform point cloud distribution, thus avoiding problems of varying densities between distant and nearby point clouds.

The intuitive solution is to allocate more “attention” to the sparser point clouds at a distance, while the relatively denser point 
clouds nearby require only a small amount of “attention” for effective perception. PV-RCNN Shi et al. (2020) aims to highlight 
foreground points through semantic segmentation, yet it overlooks the varying segmentation difficulties present in different areas of 
the point cloud scene, especially those differences related to distance. Consequently, the essential strategy is to reallocate attention 
from the denser, nearby point clouds to the sparser, distant regions, facilitating a more balanced perception network.

To address it, we introduce the Distance-aware Semantic Enhancement (DSE) module (see Fig. 3), which incorporates the distance 
factor into the semantic segmentation task (using Focal Loss Lin et al. (2020) for segmentation loss). It encodes categorical semantic 
information for each point as semantic features to enhance the semantic perception of point clouds, particularly for distant points. 
Specifically, DSE employs just four fully connected (FC) layers and the Sigmoid function, based on the multivariate geometric features 
𝑓𝑔 from MGE and corresponding position 𝑝𝑐 , to perform binary classification for each point (foreground or background) and outputs 
the segmentation features from the intermediate segmentation process as semantic features 𝑓𝑠. These features contain rich semantic 
details about whether each point is foreground or background, and can serve as additional features of the point cloud to facilitate 
the network to better perceive foreground objects. Additionally, it utilizes two MLPs and the Softmax function to extract the distance 
factor 𝑑 ∈ [0,1] based on the absolute values of the 𝑥, 𝑦 coordinates for each point 𝑝. Owing to its architecture, comprising just four 
FCs and two MLPs, DSE stands out for its exceptional lightness, with a minimal parameter cost of only 0.017 million.

Subsequently, we incorporate 𝑑𝑐 of each point into Focal Loss Lin et al. (2020), replacing the original adjustment factors 𝛼 and 𝛾
to adaptively adjust the segmentation penalty based on the distance, as expressed by the formula:

𝐿𝑠𝑒𝑔 = −𝑑𝑐
(
1 − 𝑝𝑡

) 1
𝑑𝑐 log𝑝𝑡 (8)

where 𝑝𝑡 =
(
1 − 𝑦𝑐

)
∗
(
1 − 𝑦̂𝑐

)
+ 𝑦𝑐 ∗ 𝑦̂𝑐 signifies the probability that a predicted sample is classified as the positive class. The term 

−𝑑𝑐
(
1 − 𝑝𝑡

) 1
𝑑𝑐 functions as the weight for the log𝑝𝑡 term, with 𝑑𝑐 serving as an adaptive factor for each point that adjusts this weight. 

For distant points, their 𝑥, 𝑦 coordinates are relatively large, yielding higher distance factors 𝑑𝑐 . Conversely, for closer points, their 
distance factors 𝑑𝑐 are smaller. As a result, 1

𝑑𝑐
for distant points is smaller than for nearby points, resulting in a greater penalty for 

distant points represented by 
(
1 − 𝑝𝑡

) 1
𝑑𝑐 log𝑝𝑡 compared to nearby points. Finally, the overall loss is scaled by the distance factor 𝑑𝑐 .

To enrich point clouds with pointwise features 𝑓𝑔𝑠 that capture more information, we concatenate multivariate geometric features 
with distance-aware semantic features and then multiply this combination by the predicted probability of each point, denoted as 
𝑓𝑔𝑠 = 

(
𝑓
𝑔
𝑐 , 𝑓

𝑠
𝑐

)
∗ 𝑦̂𝑐 . Concatenating these two features directly can better preserve both geometric and semantic information, and 

multiplying them by the predicted probabilities can more effectively highlight foreground points. By decorating the point cloud 
with additional representative features, necessitating only minor code adjustments and a low computational expense (1.4 million 
parameters), the efficiency of any 3D object detection network can be significantly boosted cost-effectively and efficiently.

5. Experiments

We conduct a comprehensive evaluation of PointeNet not only on object-level datasets such as ModelNet40 Wu et al. (2015), 
6

ScanObjectNN Uy et al. (2019), and ShapeNetPart Yi et al. (2016), but also on the scene-level dataset KITTI Geiger et al. (2012). 
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Table 1

Shape classification on synthetic ModelNet40. We report the class-average accuracy (mAcc) and overall 
accuracy (OA) on the testing set. The best performance value is in bold, and the second-best is underlined. 
Note that 𝐶 denotes the embedding dimension of PointeNet and ∗ means the reproduced results.

Method mAcc (%) OA (%) Param. FLOPs Train

Time

PointNet 86.0 89.2 - - -

PointNet++ - 91.9 1.4 M - -

PointCNN 88.1 92.5 - - -

PointConv - 92.5 18.6 M - -

KPConv - 92.9 15.2 M - -

Point Transformer 90.6 93.7 - - -

EQ-PointNet++ - 93.2 - - -

3DCTN (Multi-scale) 91.6 93.2 4.2 M 3.7 G -

PointNeXt-S 90.8 93.2 1.4 M 1.6 G -

APES - 93.8 - - -

FlatNet-P - 92.6 - - -

PointMLP∗ 90.8 93.3 12.6 M 14.6 G 6.2 h

Point-NN∗ - 81.3 0 M 0 G 0 h

PointeNet (C=36) (Ours) 91.5 93.9 1.1 M 2.0 G 2.4 h

PointeNet (C=66) (Ours) 91.4 93.9 3.2 M 6.7 G 4.4 h

Detailed ablation studies demonstrate the effectiveness and efficiency of PointeNet with both quantitative and qualitative analysis. 
Note that our experiments are executed on a single RTX 4090 GPU.

5.1. Datasets

For Shape Classification, we evaluate the performance on the synthetic ModelNet40 Wu et al. (2015) and the real-world ScanOb-

jectNN Uy et al. (2019) datasets. ModelNet40 comprises 9843 training and 2468 testing meshed CAD models distributed across 40 
categories. ScanObjectNN includes 15000 objects categorized into 15 classes, featuring 2902 unique object instances in real-world 
scenarios. Due to the presence of background, noise, and occlusions, ScanObjectNN poses significant challenges for existing methods. 
In our experiments, we specifically consider the most challenging perturbed variant (PB_T50_RS).

For Part Segmentation, we employ the ShapeNetPart Yi et al. (2016) dataset, which consists of 16881 shapes with 16 classes, 
totaling 50 part labels. In each class, the number of parts varies from 2 to 6.

For 3D Object Detection, our experiments are conducted on the KITTI dataset Geiger et al. (2012), which is a popular benchmark 
for 3OD in autonomous driving scenarios. It contains 7481 samples for training and 7518 samples for testing. Each sample consists 
of a point cloud and an RGB image with nine categories.

5.2. Shape classification on ModelNet40

We also evaluate PointeNet and compare our method with several recent works, including PointNet Qi et al. (2017a), PointNet++ 
Qi et al. (2017b), PointCNN Li et al. (2018), PointConv Wu et al. (2019), KPConv Thomas et al. (2019), Point Transformer Zhao et 
al. (2021), EQ-PointNet++ Yang et al. (2022), 3DCTN Lu et al. (2022), PointNeXt Qian et al. (2022), APES Wu et al. (2023), FlatNet 
Zhang et al. (2023a), Point-NN Zhang et al. (2023c) and PointMLP Ma et al. (2022), for the 3D shape classification task on the 
synthetic ModelNet40 Wu et al. (2015) benchmark. Following the standard practice in the community, we report the class-average 
accuracy (mAcc) and overall accuracy (OA) on the testing set in Table 1.

When the embedding dimension is set to 36, our PointeNet outperforms PointMLP by 0.6% in OA (93.9% vs. 93.3%) and 0.7% in 
mAcc (91.5% vs. 90.8%), all while requiring 12 times fewer parameters (1.1 M vs. 12.6 M) and 7 times fewer FLOPs (2.0 G vs. 14.6 
G). Moreover, compared to PointMLP, our method proves to be more cost-effective in terms of training times, cutting it in half (2.4 
hours vs. 6.2 hours). Compared to other methods, including 3DCTN and PointNeXt, our method achieves better performance with 
fewer parameters. These results validate the efficiency and superiority of our method in shape classification tasks. Additionally, when 
the embedding dimension is increased to 66, the performance of PointeNet does not change. Therefore, in subsequent ModelNet40 
experiments, we set the embedding dimension to 36.

5.3. Shape classification on ScanObjectNN

Although our PointeNet has already demonstrated its efficiency in shape classification tasks on the synthetic ModelNet40, to 
thoroughly validate this capability, we extend our evaluation to the real-world ScanObjectNN Uy et al. (2019), where we compare 
PointeNet with several recent methods, including PointNet Qi et al. (2017a), PointNet++ Qi et al. (2017b), PointCNN Li et al. (2018), 
SpiderCNN Xu et al. (2018), SimpleView Goyal et al. (2021), GBNet Qiu et al. (2022), 3DCTN Lu et al. (2022), PointNeXt Qian et al. 
(2022), SN-Adapter Zhang et al. (2023b), PointGL Li et al. (2024), PointWavelet Wen et al. (2023), PointMLP Ma et al. (2022) and 
Point-NN Zhang et al. (2023c).

As shown in Table 2, when the embedding dimension is set to 36, our PointeNet utilizes only one-fourteenth of the parameters 
7

used by PointMLP (0.9 M vs. 12.6 M), yet achieves superior performance. Specifically, our method surpasses PointMLP by 1.3% in 
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Table 2

Shape classification on the real-world ScanObjectNN. We report the class-average accuracy (mAcc) and 
overall accuracy (OA) on the testing set. The best performance value is in bold, and the second-best is 
underlined. Note that 𝐶 denotes the embedding dimension of PointeNet and ∗ means the reproduced results.

Method mAcc (%) OA (%) Param. FLOPs Train

Time

PointNet 63.4 68.2 3.5 M - -

PointNet++ 75.4 77.9 1.7 M - -

PointCNN 75.1 78.5 15.2 M - -

SpiderCNN 69.8 73.7 - - -

SimpleView - 80.5 - - -

GBNet 77.8 80.5 8.4 M - -

3DCTN (Multi-scale) 79.5 81.5 4.2 M 3.7 G -

PointNeXt-S 85.8 87.7 1.4 M 1.6 G -

SN-Adapter-PointMLP 84.6 86.3 - - -

PointGL 85.2 86.9 - - -

PointWavelet-L 85.8 87.7 - - -

PointMLP∗ 83.2 85.0 12.6 M 14.6 G 4.8 h

Point-NN∗ - 64.8 0 M 0 G 0 h

PointeNet (C=36) (Ours) 84.5 86.1 0.9 M 2.1 G 3.1 h

PointeNet (C=66) (Ours) 86.1 87.6 2.6 M 7.1 G 5.6 h

PointeNet (C=90) (Ours) 86.4 87.9 4.5 M 13.2 G 7.8 h

Table 3

Part segmentation on ShapeNetPart. We report mean IoU scores across classes (Cls. mIoU) and instances (Inst. 
mIoU) on the testing set. The best performance value is in bold, and the second-best is underlined. Note that 𝐶
denotes the embedding dimension of PointeNet and ∗ means the reproduced results.

Method Cls.

mIoU (%)

Inst.

mIoU (%)

Param. FLOPs Train

Time

PointNet 80.4 83.7 8.3 M - -

PointNet++ 81.9 85.1 1.8 M - -

Kd-Net - 82.3 - - -

SpiderCNN 82.4 85.3 - - -

SPLATNet 83.7 85.4 - - -

CSANet - 85.7 - - -

PointNeXt-S (C=160)∗ 81.8 85.5 22.5 M 110.2 G 17 h

FlatNet-P - 84.9 - - -

APES 83.7 85.8 - - -

G-PointNet++ 82.4 85.5 - - -

PointMLP∗ 84.0 85.7 16.0 M 5.8 G 9.3 h

Point-NN∗ - 70.7 0 M 0 G 0 h

PointeNet (C=36) (Ours) 83.7 85.2 5.3 M 1.3 G 3.6 h

PointeNet (C=66) (Ours) 84.2 85.6 8.3 M 2.8 G 5.0 h

PointeNet (C=90) (Ours) 84.2 85.8 12.3 M 4.7 G 6.2 h

mAcc (84.5% vs. 83.2%) and 1.1% in OA (86.1% vs. 85.0%). Compared to other methods, including PointNN, 3DCTN, and PointNeXt, 
our method also maintains a significant advantage. Moreover, our method exhibits a smaller gap between class average accuracy 
(mAcc) and overall accuracy (OA) compared to PointMLP (1.6% vs. 1.8%), suggesting that PointeNet avoids bias towards any specific 
category, demonstrating commendable robustness. These results on the real-world ScanObjectNN dataset thoroughly validate the 
efficiency and superiority of our method in the shape classification task. Additionally, as the embedding dimension is increased to 
66 and 90, the performance of PointeNet is consistently improved. Therefore, in the subsequent ScanObjectNN experiments, we set 
the embedding dimension to 90.

5.4. Part segmentation on ShapeNetPart

We present the results of PointeNet and compare our method with several recent works, including PointNet Qi et al. (2017a), 
PointNet++ Qi et al. (2017b), Kd-Net Klokov and Lempitsky (2017), SpiderCNN Xu et al. (2018), SPLATNet Su et al. (2018), CSANet 
Wang et al. (2022), PointNeXt Qian et al. (2022), FlatNet Zhang et al. (2023a), APES Wu et al. (2023), G-PointNet++ Liu and Tian 
(2024), PointMLP Ma et al. (2022) and Point-NN Zhang et al. (2023c), for the 3D shape part segmentation task on the ShapeNetPart 
benchmark, as summarized in Table 3.

Analyzing these results, when the embedding dimension is set to 66, our PointeNet achieves comparable segmentation perfor-

mance to PointMLP with only half the parameters (8.3 M vs. 16.0 M), especially in Cls. mIoU, where it surpasses PointMLP by 0.2% 
(84.2% vs. 84.0%). And, our method significantly outperforms in training time, requiring only half the time needed for PointMLP 
(5.0 h vs. 9.3 h). Compared to other methods, including Point-NN, SN-Adapter, and G-PointNet++, our method also demonstrates 
stronger segmentation capabilities. Furthermore, when trained on a single RTX 4090 GPU, our method shows superior advantages 
8

over PointNeXt, without being limited by small batch sizes. Additionally, when the embedding dimension is simply increased to 90, 
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Fig. 4. Visualization of part segmentation results on ShapeNetPart. The top line represents the ground truth, while the bottom line corresponds to our predictions. 
Upon visualization, our predictions closely align with the ground truth.

Table 4

Results of PointRCNN with and without PointeNet on the KITTI val set. The best performance value is in bold, and the second-best 
is underlined. ∗ means the reproduced results.

Method Car (3D AP𝑅40) Pedestrian (3D AP𝑅40) Cyclist (3D AP𝑅40)

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND 90.55 81.61 78.56 55.94 51.15 46.17 82.97 66.74 62.78

PointPillars 87.75 78.41 75.19 57.30 51.42 46.87 81.57 62.93 58.98

PV-RCNN 92.10 84.36 82.48 64.26 56.67 51.91 88.88 71.95 66.78

PC-RGNN 90.94 81.43 80.45 - - - - - -

Voxel-RCNN 91.72 83.19 78.60 - - - - - -

VoxSeT 91.02 82.01 79.04 - - - - - -

CAT-Det 90.12 81.46 79.15 - - - - - -

VP-Net 89.01 82.19 79.46 - - - - - -

FARP-Net 89.91 83.99 79.21 - - - - - -

PointRCNN∗ 91.28 80.78 78.37 65.12 56.43 49.24 90.02 72.42 67.44

PointRCNN + PointeNet 92.34 83.13 80.78 66.00 58.62 52.09 92.99 73.97 69.50

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 +1.06 +2.35 +2.41 +0.88 +2.19 +2.85 +2.97 +1.55 +2.06

3DSSD∗ 91.84 84.52 82.10 59.49 54.69 50.46 89.82 69.73 65.49

3DSSD + PointeNet 92.23 85.18 82.66 61.76 56.00 51.59 88.82 72.29 67.75

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 +0.39 +0.66 +0.56 +2.27 +1.31 +1.13 -1.00 +2.56 +2.26

our PointeNet only exhibits a slight improvement, with a 0.2% increase in Cls. mIoU. Therefore, in the subsequent ShapeNetPart 
experiments, we set the embedding dimension to 66.

Additionally, we present visualizations of the ground truth and predicted segmentation in Fig. 4. Intuitively, the predictions from 
our PointeNet closely match the ground truth, providing qualitative evidence for the validity of our method. These quantitative and 
qualitative results all demonstrate the effectiveness and efficiency of our PointeNet.

5.5. 3D object detection on KITTI

To validate the practicality and efficiency of our method in real-world, scene-level applications, we utilize the classic PointRCNN 
Shi et al. (2019) and 3DSSD Yang et al. (2020) as baselines and evaluate them on the real-world autonomous driving dataset KITTI 
Geiger et al. (2012). We compare our method with several established 3D object detection networks, including SECOND Yan et al. 
(2018), PointPillars Lang et al. (2019), PV-RCNN Shi et al. (2020), Voxel-RCNN Deng et al. (2021), PC-RGNN Zhang et al. (2021), 
VoxSeT He et al. (2022), CAT-Det Zhang et al. (2022), VP-Net Song et al. (2023) and FARP-Net Xie et al. (2024).

The findings from Table 4 reveal that our PointeNet considerably enhances the performance of both PointRCNN and 3DSSD across 
the categories of Car, Pedestrian, and Cyclist, with the most notable improvements exceeding 2%. Notably, even the somewhat dated 
PointRCNN, when augmented with our PointeNet, achieves a performance level comparable to PV-RCNN, which benefits from the 
synergistic use of both Voxel- and Point-based structures. Furthermore, the integration of PointeNet enables 3DSSD to outperform its 
eleven competitors.

Fig. 5 further highlights the qualitative impact of our PointeNet on PointRCNN and 3DSSD, showing that our method significantly 
reduces both false detections and missed detections, thereby boosting the overall detection performance. These experimental out-

comes conclusively prove that our method not only stands out in real-world application scenarios but also demonstrates exceptional 
9

efficiency.
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Fig. 5. Visualization of 3D detection results on the KITTI val set. The red 3D bounding boxes represent the ground truth, while the blue/yellow ones denote 
the prediction results. Upon visualization, our PointeNet aids PointRCNN and 3DSSD in reducing both missed detections and false detections, enhancing the overall 
detection accuracy. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 5

Ablation results of the proposed MLGA on the ShapeNetPart testing set. We analyze the effect of the multivariate geometries, 
including spatial neighboring, normal, and curvature, as well as the multivariate feature aggregation strategy (i.e., MAA or 
Pointwise Addition), on PointeNet. Note that the embedding dimension of PointeNet is set to 36.

Geometries Aggregation Cls.

mIoU (%)

Inst.

mIoU (%)

Param. FLOPs Train

Time
Neighboring Normal Curvature MAA Add.

✓ 82.98 84.76 4.4 M 1.3 G 3.2 h

✓ ✓ ✓ 83.47 84.94 5.3 M 1.3 G 3.5 h

✓ ✓ ✓ 83.48 85.13 5.3 M 1.3 G 3.5 h

✓ ✓ ✓ ✓ 83.65 85.09 4.4 M 1.3 G 3.5 h

✓ ✓ ✓ ✓ 83.73 85.17 5.3 M 1.3 G 3.6 h

5.6. Ablation study

5.6.1. Effects of MLGA

The proposed Multivariate Local Geometric Aggregation (MLGA) module captures multivariate geometric features, including 
spatial neighboring, curvature, and normal information, and adaptively aggregates these geometric features for enhanced represen-

tation. To thoroughly validate the effectiveness of these geometric features and the proposed Multivariate Adaptive Aggregation 
(MAA) module, we conduct comprehensive experiments, with findings detailed in Table 5. Analysis of the initial three rows reveals 
that spatial neighboring, curvature, and normal information all make significant contributions to PointeNet. The comparative results 
of the fourth and fifth rows also show that adaptively aggregating these geometric features through MAA is more effective than 
10

simply adding them together pointwise.
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Table 6

Ablation results of the proposed DSE on the KITTI val set. We analyze the 
effect of MGE and DSE (with/without the distance factor 𝑑) on PointeNet.

PointRCNN MGE DSE Car (3D AP𝑅40)

w/o 𝑑 w/ 𝑑 Easy Mod. Hard

✓ 91.28 80.78 78.37

✓ ✓ 91.98 82.35 80.39

✓ ✓ ✓ 92.04 82.51 80.49

✓ ✓ ✓ 92.34 83.13 80.78

Table 7

The effect of noise on PointeNet. We analyze the robustness of PointeNet by introducing different levels of Gaussian 
noise into the datasets. 𝜎 denotes the standard deviation of the introduced Gaussian noise, specified relative to the 
radius 𝑟 of the bounding sphere of a point cloud.

Method ShapeNetPart (C=66) ModelNet40 (C=36) ScanObjectNN (C=90)

Cls. mIoU (%) Inst. mIoU (%) mAcc (%) OA (%) mAcc (%) OA (%)

𝜎 = 0 84.2 85.6 91.5 93.9 86.4 87.9

𝜎 = 0.1% ∗ 𝑟 84.4 (+0.2) 85.8 (+0.2) 91.0 (−0.5) 93.2 (−0.7) 86.4 (−0.0) 87.7 (−0.2)

𝜎 = 0.5% ∗ 𝑟 84.3 (+0.1) 85.6 (−0.0) 90.4 (−1.1) 93.1 (−0.8) 85.6 (−0.8) 86.9 (−1.0)

𝜎 = 1% ∗ 𝑟 84.1 (−0.1) 85.3 (−0.3) 90.7 (−0.8) 92.9 (−1.0) 84.8 (−1.6) 86.7 (−1.2)

𝜎 = 3% ∗ 𝑟 82.0 (−2.2) 84.0 (−1.6) 89.1 (−2.4) 91.9 (−2.0) 82.4 (−4.0) 84.2 (−3.7)

𝜎 = 5% ∗ 𝑟 79.9 (−4.3) 82.3 (−3.3) 87.9 (−3.6) 91.1 (−2.8) 81.0 (−5.4) 83.2 (−4.7)

5.6.2. Effects of DSE

We perform ablation studies on the challenging Car category within the KITTI dataset to evaluate the impact of MGE and Distance-

aware Semantic Enhancement (DSE), both with and without the distance factor 𝑑, on the performance of PointeNet. According to 
the findings presented in Table 6, the multivariate geometric features produced by MGE contribute significantly to the improved 
performance of PointRCNN, notably achieving an enhancement of 2.02% on the hard level. Absent the distance factor to adaptively 
modulate the segmentation difficulty for semantic features, a slight improvement of 0.1% is observed across all three levels of 
difficulty. However, when DSE incorporates the distance factor, PointeNet further boosts the performance of PointRCNN, particularly 
marking a performance increase of 0.78% on the moderate level.

5.6.3. Effects of noise perturbation

The superior performance of PointeNet can largely be attributed to its ability to capture multivariate geometric features, par-

ticularly local surface normals and curvature. However, such geometric features are normally considered sensitive to noise. To 
comprehensively evaluate the robustness of PointeNet against noise, we introduce different levels of Gaussian noise into the datasets 
and test our method on both part segmentation and classification tasks.

These results are detailed in Table 7. It can be observed that introducing noise to the input point clouds adversely impacts the 
performance of PointeNet across all evaluated datasets. It is worth noting that when Gaussian noise is at lower levels (𝜎 at 0.1% and 
0.5% of the bounding sphere’s radius of a point cloud), the performance of the part segmentation task on ShapeNetPart has slightly 
increased, while that of the classification task on ModelNet40 and ScanObjectNN has slightly decreased. This could be explained 
by the fact that ShapeNetPart is the most challenging dataset, and adding lower levels of noise to the point clouds instead serves 
to enhance the sample data to some extent, thereby facilitating a slight performance improvement. Conversely, ModelNet40 and 
ScanObjectNN are relatively simpler datasets, even slight noise leads to a decline in performance. The most significant decline in 
performance is observed on ScanObjectNN. This is because ScanObjectNN is collected from the real world and inherently contains 
certain levels of noise. The introduction of Gaussian noise exacerbates the existing noise, resulting in more pronounced performance 
drops.

These experimental results reveal that our method demonstrates good robustness under lower-level noise conditions, particularly 
evident on ShapeNetPart. However, it inevitably suffers significant performance degradation under higher-level noise conditions.

6. Conclusion

While prior methods in point cloud analysis have demonstrated promising success, they often face challenges associated with in-

creased complexity, limiting their applicability to real-world scene-level scenarios and posing efficiency concerns. In response to these 
challenges, this paper introduces a lightweight network specifically optimized for scalability in real-world autonomous driving appli-

cations, offering a more efficient approach to point cloud analysis. Our proposed network leverages non-learnable components, such 
as FPS and K-NN, and introduces a minimal number of learnable parameters through the proposed Multivariate Geometric Encoding 
(MGE) module. This module adeptly captures and adaptively aggregates multivariate geometric features, ensuring a lightweight 
yet comprehensive representation of the point cloud. Furthermore, we incorporate a Distance-Aware Semantic Enhancement (DSE) 
module tailored for autonomous driving scenarios, capturing distance-aware semantic features. The integration of both multivariate 
geometric and semantic features contributes to a more efficient and superior performance in point cloud analysis. In future work, we 
11

aim to explore more potential point cloud features to further enhance the capabilities of our lightweight network.
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