
MuVieCAST: Multi-View Consistent Artistic Style Transfer

Nail Ibrahimli, Julian F. P. Kooij, Liangliang Nan
Delft University of Technology

Julianalaan 134, Delft 2628BL, The Netherlands
{n.ibrahimli, j.f.p.kooij, liangliang.nan}@tudelft.nl

Abstract

We introduce MuVieCAST, a modular multi-view consis-
tent style transfer network architecture that enables consis-
tent style transfer between multiple viewpoints of the same
scene. This network architecture supports both sparse and
dense views, making it versatile enough to handle a wide
range of multi-view image datasets. The approach con-
sists of three modules that perform specific tasks related to
style transfer, namely content preservation, image transfor-
mation, and multi-view consistency enforcement. We ex-
tensively evaluate our approach across multiple applica-
tion domains including depth-map-based point cloud fu-
sion, mesh reconstruction, and novel-view synthesis. Our
experiments reveal that the proposed framework achieves
an exceptional generation of stylized images, exhibiting
consistent outcomes across perspectives. A user study fo-
cusing on novel-view synthesis further confirms these re-
sults, with approximately 68% of cases participants ex-
pressing a preference for our generated outputs compared
to the recent state-of-the-art method. Our modular frame-
work is extensible and can easily be integrated with vari-
ous backbone architectures, making it a flexible solution for
multi-view style transfer. More results are demonstrated on
our project page: muviecast.github.io

1. Introduction
Style transfer has gained popularity in computer vision
for its ability to create unique and visually appealing im-
ages [5, 13, 14, 21, 25, 28, 31, 33, 35, 46, 54, 64]. Con-
ventional style transfer techniques [13, 21, 25] involve
transforming an input image to mimic the style of a refer-
ence image. 3D stylization methods instead transfer styles
between 3D scene representations [2, 18, 20, 22, 30, 65].
These methods typically operate on input formats such as
point clouds [2, 20, 30], meshes [18], or neural radiance
fields [22, 65] to generate style transfers for a single 3D
scene representation.

In this work, we address multi-view style transfer, i.e. the

challenge of maintaining consistency across multiple views
of a static scene or object. We aim for a universal solution
that works well in diverse 3D scene representation domains,
removes the need for groundtruth data or precomputed 3D
information, and can adapt to different datasets and view
coverages [50].

More concretely, we seek a function, f(I,C,S), that
takes a set of calibrated multi-view images of the scene,
I = I1, I2, ..., IN , with corresponding camera parameters,
C = C1, C2, ..., CN , and a style image, S, and outputs
styled images that maintain both photometric and style con-
sistency across all views. In practice, we can use Structure
from Motion (SfM) [40, 41, 49] to estimate camera param-
eters from input images when they are not available. For-
mally, we define this function as f(I,C,S) = I′, where
f transforms each input image Ii to I ′i to adopt the style
of image S. The function should capture the knowledge of
both the 3D geometry and 2D image structure, while retain-
ing the input image’s content and applying the desired style,
ultimately generating multi-view consistent images.

To address these challenges, we propose MuVieCAST,
a modular framework for consistent, flexible, and fast style
transfer between multiple views of the scene. MuVieCAST
comprises multiple modules to execute various tasks includ-
ing feature extraction, style transfer, and consistency en-
forcement. Its modular design enables integration with dif-
ferent computer vision backbones.

It offers unconstrained and pretrained options for style
transfer, giving flexibility in choosing styles. Furthermore,
we present multiple backbone options for customized net-
work architectures, such as geometry learning [15, 55], fea-
ture extraction [51], and image transformation [21, 47].

In summary, our modular multi-view consistent style
transfer framework offers a fast, versatile, and robust solu-
tion that accommodates both sparse and dense views, pro-
vides flexibility in terms of arbitrary and pretrained options
for style transfer, and provides multiple backbone options,
making it suitable for a diverse range of tasks and applica-
tions, such as novel-view synthesis, point cloud reconstruc-
tion, and mesh reconstruction.

https://muviecast.github.io/


2. Related work

Our work is related to neural style transfer for images,
videos, and 3D scenes. We discuss each in turn.

2.1. Single-view neural style transfer

Neural style transfer [13, 25, 34] is a technique that utilizes
pretrained convolutional neural networks to extract features
from a content image and a style image. The goal is to
transfer the style of the style image onto the content image
by optimizing for loss functions. There are two types of
neural style transfer methods: optimization-based and feed-
forward-based approaches.

Optimization-based methods involve iterative optimiza-
tion to minimize content and style losses. The popu-
lar approach involves calculating the Gram matrix [13],
which captures the correlations between feature maps, to
compute the style loss. Researchers have explored alter-
native style loss formulations to enhance semantic con-
sistency and high-frequency style details. Several meth-
ods [5, 29, 31, 35] use nearest neighbor search and mini-
mize distances between features extracted from correspond-
ing content and style patches in a coarse-to-fine manner.

The feed-forward-based methods use neural networks to
transfer the style information of the style image to the in-
put image in a single forward pass. Though the naive feed-
forward approach is fast [25], it requires training on specific
styles and may not generalize well to arbitrary styles. To
address this issue, Huang et. al. [21] use first-order statis-
tics to encode the style information and transform the image
style via AdaIN layers. This method matches the mean and
variance of intermediate features between content and style
images. This allows for more flexible style transfer by ad-
justing the scaling and shifting of the content features based
on the statistics of the style features. The WCT [33] ap-
proach further explores the covariance instead of the vari-
ance, and it also uses whitening and coloring transforma-
tion to match the second-order statistics of the input image
to those of the reference image. Additionally, the LST [32]
scheme leverages convolutional neural networks to reduce
the computational cost of solving the transformation ma-
trix in the WCT [33] method for real-time universal style
transfer. Several works [24, 38] utilize a monocular depth
prediction network to integrate depth preservation to [25] as
an additional loss function.

2.2. Video stylization

Video stylization aims to transfer the style of a style im-
age to a sequence of video frames. To solve the problem of
flickering that arises with image stylization methods, many
techniques [4, 6, 11, 17, 19] use optical flow constraints
to train autoencoders networks that can transfer a specific
style to videos. Recent developments have allowed video

style transfer to be performed for arbitrary styles [9, 12, 57].
However, as shown by Huang et. al. [20], applying these
methods for 3D scene stylization can result in undesirable
outcomes, including blurry or inconsistent images across
different novel views. In light of this, our focus in this work
is to enforce consistency across multiple views.

2.3. 3D style transfer

The goal of 3D style transfer is to modify the appearance
of a 3D scene to match the style of a desired image when
rendered from different viewpoints. Previous methods rep-
resent real-world scenes as point clouds, triangle meshes, or
radiance fields, which are then fed as input for neural net-
works to produce stylized renderings. For instance, some
methods [20, 42] utilize 3D point clouds that are first pro-
cessed with the desired style and then passed through a con-
volutional renderer. Stylemesh [18] applies style transfer
on mesh reconstructions of indoor scenes. Recent meth-
ods [22, 65] stylize radiance fields [3, 39, 63] which are
effective for novel view synthesis of real-world scenes cap-
tured at high density. However, common NeRF backbones
used in style transfer [3, 22, 26, 39, 63] require dense view
coverage to reconstruct accurate radiance fields. Few-shot
learning NeRF methods [45, 53] are known to have limi-
tations in handling large baseline shifts, which impact the
quality of reconstructed radiance fields.

Contrary to existing methods, MuVieCAST is flexible
with the number of views (dense and sparse) and shows
no need for precomputing a 3D representation. It directly
learns to generate stylized views and produce high-quality
stylizations within a short training time. The generated out-
puts are sufficiently consistent, making them suitable for
various downstream applications such as depth estimation,
point cloud and mesh reconstruction, and novel-view syn-
thesis.

3. Method
In this section, we present our novel approach for multi-
view consistent style transfer, which transfers the style of an
artistic image to a set of target images of the same scene or
object while maintaining consistency across multiple views.
As shown in Fig 1, our method comprises three main com-
ponents: style transfer network (TransferNet), content-style
feature extraction, and a multi-view stereo (MVS) based ge-
ometry learning module.

First, we use TransferNet to transform the input RGB
space image to the style space. Then, we extract feature rep-
resentations from both the input and transformed images us-
ing a pretrained deep neural network. These features guide
the style transfer network to generate images with similar
artistic features while preserving the content.

To ensure consistency across multiple viewpoints, we
utilize an MVS-based geometry learning module that lever-



M
VS

 
Ba

ck
bo

ne
M

VS
 

Ba
ck

bo
ne

Im
ag

eN
et

 
Ba

ck
bo

ne
Im

ag
eN

et
 

Ba
ck

bo
ne

C

C

Im
ag

eN
et

 
Ba

ck
bo

ne

S

Tr
an

sf
er

N
et

ℒ !
"#
$%

ℒ &
'
(
"%
(
"

ℒ )
'
$*
+
%

ℒ ,
%-
".

ℒ /
+
0%
'
+

S

S

C

Style features

Content features

Style image

MVS features Shared weights

Input data

Camera paramsImage Feature Space

Geometry Feature Space

Figure 1. Our proposed network structure (MuVieCAST) has three
main components: Content-style feature extraction (green) op-
erates on the image feature space for preserving the content and
style. TransferNet performs image transformation. Geometry
learning module (blue) operates on the geometry feature space
for preserving the geometry.

ages the geometric information provided by multiple views.
This module uses input and transformed images as well as
camera poses to estimate the 3D geometry of the scene and
enforce style consistency across different views.

These components work together to produce high-
quality and consistent style transfer results, even in complex
multi-view scenarios. In the next subsection, we detail each
component, including the content-style feature extraction,
the style transfer network, and the MVS-based geometry
learning module.

3.1. Modules

TransferNet Our approach employs a TransferNet mod-
ule for generic style transfer. In contrast to prior multi-view
approaches [22, 65], our method utilizing image-geometry
loss guidance aims to enhance the texture while preserving
the primary gradient structure by considering the first and
second-order spatial derivatives of the original input views.
This approach also assists in maintaining the finer details of
the individual scene image following the stylization. Addi-
tionally, we incorporate 3D geometry loss guidance to en-
sure that the resulting image conforms to the overall scene
geometry captured from multiple views.

Content-style feature extraction We utilize content style
feature reconstruction, which extracts content and style fea-
tures from pretrained Imagenet [8] backbones [51]. Pre-
trained weights from Imagenet are used to extract the fea-
tures, and the resulting content style features guide the
TransferNet to ensure that the content of the input image is

preserved while the style of the artistic image is transferred
onto it. It is important to note that instead of optimizing the
weights of these backbones, we use them solely to extract
features and guide the TransferNet. This approach allows
us to focus the fast network optimization on the Transfer-
Net, rather than learning content extraction from scratch for
a longer period. By using pre-existing knowledge from the
pretrained models, the TransferNet not only leads to higher
quality style transfer results but also significantly reduces
the computational cost of the optimization process.

Geometry learning module We choose to use multi-view
stereo-based approaches as our geometry learning back-
bones for several reasons. First, these methods are gener-
ally applicable and can be used without further tuning. Ad-
ditionally, we can leverage the pretrained modules and fo-
cus on optimizing the weights of TransferNet, which makes
them particularly attractive for our multi-view consistent
style transfer framework. Unlike common neural render-
ing or neural radiance fields approaches [22, 39, 56, 61–
63, 65] used for style transfer, these networks can also ro-
bustly work with sparse views, making them more applica-
ble in a wide range of scenarios. We discuss an ablation
study involving sparse views within our supplementary ma-
terials.

Our framework supports multi-view stereo backbones
[15, 55] which employ a feature pyramid network [37]
to extract multiple levels of features and guide the stereo
matching process. The coarse-to-fine approach involves
processing the images at different scales, starting with a
low resolution and gradually increasing it. This makes our
backbones more memory-efficient and able to handle larger
input sizes [15, 55, 59].

3.2. Loss

Our loss function is a weighted combination of loss terms.
These loss terms aim to achieve multi-view consistent style
transfer, preserving the primary image and geometric struc-
tures of the original views while transforming them into the
generated stylized views.

Content-style loss To achieve content-aware style trans-
fer, we use a combination of content loss and style loss.
The content loss measures the difference between the fea-
ture representations of the target image and the reference
image, which serves as the source of the content informa-
tion. Let Ft and Fr be the feature maps of the target image
and input reference image, respectively and ΩF be the num-
ber of elements in feature maps. The content loss is then
defined as follows,

Lcontent =
1

ΩF

∑
∥Ft − Fr∥22 . (1)



We provide two options for the style loss Lstyle. The first
option is to measure the difference between the Gram ma-
trices [13] of the feature maps of the target image and the
style image, which contains the texture and color informa-
tion. Let Gt and Gs be the Gram matrices of the feature
maps of the target image and style image, respectively, and
ΩG be the number of elements in the Gram matrix, such that
the style loss is defined as

Lstyle =
1

ΩG

∑
∥Gt −Gs∥22 . (2)

Our second option is inspired by the work of Li et al. [34]
which explores a style loss based on instance normalization
statistics. This style loss is defined as

Lstyle =

L∑
i=1

∥µ(Fi,t)− µ(Fi,s)∥22 +

L∑
i=1

∥σ(Fi,t)− σ(Fi,s)∥22 , (3)

where Fi,t and Fi,s are the feature maps of the generated
image and style image at layer i, respectively, L is the total
number of layers used, µ is the mean, and σ is the standard
deviation. The style loss is calculated by computing the L2
norm between the instance normalization statistics of the
feature maps of the generated and style images.

Image-geometry loss To preserve the primary geometric
structures of the input image in the generated image, we
introduce an image-geometry loss which consists of three
terms: Sobel filter loss, Laplacian operator loss, and differ-
entiable Canny edge detector loss.

These three components capture the geometric character-
istics of both the input and generated images. The overall
image-geometry loss is defined as the weighted sum of the
Sobel filter loss (LSobel), Laplacian operator loss (LLaplace),
and Canny edge detector loss (LCanny), which is expressed
as follows:

LSobel =
1

ΩI

∑
smoothL1(∇(Ir),∇(It)) (4)

LLaplace =
1

ΩI

∑
smoothL1(∆(Ir),∆(It)) (5)

LCanny =
1

ΩI

∑
smoothL1(C(Ir), C(It)) (6)

Limgeom = λ∇LSobel + λ∆LLaplace + λCLCanny , (7)

where ∇ is the Sobel filter operator, ∆ is the Laplacian
operator, and C is the differentiable Canny edge detector.
Ir and It correspond to the input and generated images, re-
spectively, and ΩI represents the total number of pixels in

the images. The hyperparameters λ∇, λ∆, and λC control
the relative influence of each component within the overall
image-geometry loss.

The smooth L1 loss function is employed to compute the
discrepancy between the responses of the input and gener-
ated images for each of the three components. The inclusion
of these geometric loss components in the overall loss func-
tion enables effective regularization of the neural network,
preventing excessive divergence from the main geometric
features of the input image.

3D geometry loss To enforce geometric consistency be-
tween the input and output images in our multi-view con-
sistent style transfer framework, we incorporate two types
of losses: volumetric loss and depth loss. Both losses use
the smooth L1 loss function to calculate the differences be-
tween the corresponding elements of the input and target
images.

We apply a coarse-to-fine strategy for computing these
losses. Specifically, we calculate the losses at multiple
stages, with a weight of 23−l at each stage l, where l = 0 is
the finest stage. This allows the network to gradually refine
the output image.

For the volumetric loss, we use an estimated probability
volume for each depth and calculate the distance between
the probability volumes of the input and target images. For
the depth loss, we first estimate the depth map of the styl-
ized target image and the input images using multi-view
stereo backbones. We then calculate the smooth L1 loss
between the estimated depth map of the input images and
the generated target images. These losses are computed at
each stage of the network as

Lvolume =
∑
l

23−l

ΩV(l)

·
∑

smoothL1(Vr(l), Vt(l)) (8)

Ldepth =
∑
l

23−l

ΩD(l)

·
∑

smoothL1(Dr(l), Dt(l)) , (9)

where ΩV(l)
is the total number of voxels in the probability

volume at stage l. Vr(l) and Vt(l) are the probability volumes
of the depth of the input and target images respectively, at
stage l. ΩD(l)

is the total number of pixels in the depth map
at stage l. Dt(l) is the depth values of the stylized image at
stage l, and Dr(l) is the estimated depth values.

Total loss Total loss function is a weighted combination
of loss terms for the content-style (Lcontent and Lstyle), for
the image-geometry (Limgeom), and for the 3D geometry
(Lvolume and Ldepth), i.e.

Ltotal = λcontentLcontent + λstyleLstyle +

λimgeomLimgeom + λvolumeLvolume + λdepthLdepth . (10)



4. Experiments
In this section, we describe our experiment setup and com-
pare different backbones for our approach. We demonstrate
our framework’s multi-view consistency on three applica-
tions: depth-map-based point cloud fusion, mesh recon-
struction, and novel-view synthesis.

4.1. Experiment setup

To demonstrate the modularity of our approach, we perform
experiments using several backbones. Specifically, we uti-
lized pretrained VGG16 and VGG19 modules, which were
trained on the ImageNet dataset [8], as well as CasMVS-
Net and PatchmatchNet geometric multi-view stereo back-
bones pretrained on DTU dataset [1]. Additionally, we used
AdaIN and UNet as style transfer backbones, which were
pretrained on the MS COCO dataset [36]. Table 1 summa-
rizes these backbones tested in our experiments. To show
different network configurations, we limit our discussion to
four configurations, which are presented in Table 2.

Modules Options Pretrained Trainable
Image

learning
VGG16 ImageNet no
VGG19 ImageNet no

Geometry
learning

CasMVSNet DTU no
PatchMatchNet DTU no

TransferNet UNet MS COCO yes
AdaIN MS COCO yes

Table 1. Backbones used in our experiments.

Geometry learning module. PatchmatchNet [55] is a
patchmatch stereo-based approach [10], where a similarity
score is computed between the extracted features of each
image in a coarse-to-fine manner to generate a depth map.
CasMVSNet [15] uses cascaded cost volume regularization
to construct a cost volume [7, 59, 60] and estimate the depth
between the images. To further reduce GPU memory de-
mands, we employ groupwise correlation [16, 58] and in-
place activated batch normalization [48] within CasMVS-
Net.

TransferNet. The UNet backbone is a fully convolu-
tional neural network that is widely used in image segmen-
tation tasks [47]. In our framework, we pretrain UNet for
each specific style using the MS COCO object detection
dataset [36]. The pretraining is performed to learn the style-
specific weights of the network, which are then tuned for
style transfer. In the process of multi-view consistent style
transfer, the optimization is initialized with these pretrained
weights. The other backbone, AdaIN (Adaptive Instance
Normalization), is a style transfer technique [21, 22] that
does not require style-specific pretraining. Instead, it uses a
single encoder network to extract content and style informa-
tion from both the content and style images. The encoder

Figure 2. The bird point cloud reconstructed using depth map fu-
sion from the 49 input images [1] and a style image. This experi-
ment demonstrates the stylization capability of our network (Cas-
MVSNet UNet) to reveal finer details in textured areas, even in
shadowed regions. Both point clouds have identical geometry.

network maps the style image to the feature space, and the
content image features are transformed to this feature space
using adaptive instance normalization. Finally, the trans-
formed content features are mapped back to the image space
by the decoder to generate the stylized output. This decoder
is also initialized with pretrained weights on the MS COCO
dataset [36].

In the supplementary material, we expand on our find-
ings about using UNet’s pretrained module for quick adap-
tation to new styles and images. By using weights learned
from MS COCO object detection, we can swiftly apply
UNet to new style images for given inputs. Pretraining cap-
tures a general understanding of style features and textures
that can be reused, significantly reducing the time and re-
sources needed for training new models for each style.

While both network configurations yielded visually ap-
pealing results, our experiments showed that UNet-based
configurations demonstrated greater accuracy and consis-
tency in maintaining geometry. For each experiment on
point cloud and mesh reconstruction, we trained our model
for 10 epochs, which took less than 5 minutes to complete
on dual RTX2080 Ti.



Naming Geometry ImageNet TransferNet Style loss Total params Trainable params
CasMVSNet UNet CasMVSNet VGG16 UNet Gram 10.2 M 1.7 M

CasMVSNet AdaIN CasMVSNet VGG19 AdaIN IN statistics 7.9 M 3.5 M
PatchMatchNet UNet PatchMatchNet VGG16 UNet Gram 9.5 M 1.7 M

PatchMatchNet AdaIN PatchMatchNet VGG19 AdaIN IN statistics 7.2 M 3.5 M

Table 2. Different network configurations tested in the experiments.

4.2. Point cloud reconstruction

We found that our network is resilient to lighting variations
in the input and attentive to texture details, even in shad-
owed regions. This capability becomes particularly evident
when the network is trained using style images character-
ized by significant color variations. Figure 2 illustrates the
point cloud reconstruction generated from the input views
using depth map fusion [23, 60], which uses learning-based
multi-view stereo matching [15]. Both point clouds contain
the same set of points. Since the input images were cap-
tured under different lighting conditions, the coloring of the
point cloud is blurred and finer details like the birds’ eyes
and body textures are not properly revealed. However, our
network colors the point cloud with better detail.

Figure 3 shows a visual comparison of the point clouds
reconstructed from the original input images and the styl-
ized images. The objective of this experiment is to eval-
uate stylized image consistency across multiple views in
this experiment. From the result, we can conclude that
MuVieCAST can generate highly consistent stylized multi-
view images that allow us to estimate accurate depth from
the styled images and yield good 3D point cloud recon-
struction. Despite the reconstructed point cloud from styl-
ized views exhibiting more noise in its geometry, the recon-
structed point cloud remains adequate for identifying the
object’s geometry.

To showcase the point cloud reconstruction using the
PatchmatchNet backbone, we conducted several experi-
ments, shown in Figure 4. As with our previous experiment,
we aim to demonstrate the consistency of the stylization
across multiple views with the PatchmatchNet backbone.
We observe that the point clouds (d) and (e) are reason-
ably reconstructed, where the depth maps for the two point
clouds were estimated from stylized images by Patchmatch-
Net UNet and PatchmatchNet AdaIN, respectively. We can
observe that both point clouds are sufficient for identifying
the object. During our experiments, we also observed that
in most cases, the UNet backbone performed better than
the AdaIN backbone in terms of geometric consistency of
multi-view style transfer.

4.3. Mesh reconstruction

In this experiment, we demonstrate the efficacy and ro-
bustness of our multi-view style transfer method for neu-

Figure 3. Comparison of the point clouds reconstructed from the
original input images (left column) and stylized images (right col-
umn). Top row: colored with original inputs. Middle row: col-
ored with stylized colors. Bottom row: uniform coloring. The re-
constructed point cloud from stylized views (CasMVSNet UNet)
closely resembles that from the original input, confirming that the
stylization is multi-view consistent.

ral rendering-based mesh reconstruction [44, 56, 61, 62],
which has gained popularity in recent years. Figure 5 shows
mesh reconstruction results using IDR [61]. Our styliza-
tion method preserves consistency for mesh representation-
based geometry estimation, despite some loss of finer de-
tails in the reconstructed meshes. These results further con-
firm the reliability and consistency of our robust multi-view
style transfer approach, for mesh reconstruction.

4.4. Novel view synthesis

MuVieCAST offers a significant advantage over other
methods [18, 22, 65] as it does not require ground truth 3D
data or precomputed 3D implicit fields. To evaluate the ef-
fectiveness of our approach compared to the recent state-of-



(a) Input + Input (b) Input + UNet (c) Input + AdaIN (d) UNet + UNet (e) AdaIN + AdaIN

Figure 4. Point cloud reconstruction results using PatchmatchNet backbone (Geometry + Coloring). The point clouds (a), (b), and (c) are
identical in terms of geometry, with (a) colored by the 64 original input images, (b) colored by the stylized images using the output of
Patchmatchnet UNet, and (c) colored by the stylized images using the output of Patchmatchnet AdaIN. (d) and (e) are reconstructed from
only the stylized images.

(a)
Input image

(b)
Stylized image

(c) Stylized
surface rendering

(d) Reconstruction
from stylized images

(e) Reconstruction
from input images

Figure 5. Neural mesh reconstruction results. First row: CasMVSNet UNet. Second row: CasMVSNet AdaIN. Third row: Patchmatch-
Net UNet. Fourth row: PatchmatchNet AdaIN. The columns in the figure are as follows: (a) Input image. (b) Stylized image, (c) The
stylized mesh surface rendering learned by IDR [61]. (d) The mesh reconstructed from the stylized images. (e) The mesh reconstruction
from the original input images.

the-art method ARF [65], we conducted an anonymous user
survey with 40 participants. During the survey, participants
were provided with sample scene images and style images.
The evaluation was performed on five scenes from the Tanks
and Temples dataset [27], each paired with a distinct style
image. For each scene, participants were presented with two

videos in random order. One video was generated using the
ARF method, utilizing ground truth pose information and
recommended parameters.

To ensure a fair assessment, we adhered closely to the
default trajectory employed by ARF. Additionally, we pre-
viously demonstrated the geometric consistency of our styl-



55.0%
45.0%

Our ARF

90.0%

10.0%

Our ARF

77.5%

22.5%

Our ARF

75.0%

25.0%

ARF Our

Figure 6. The left column shows the scene samples and style images shared with user study participants. In the middle column, frames
from our results are presented on the top rows (on a blue stripe), while frames from the ARF method are displayed on the bottom rows (on
a red stripe). The videos were provided to participants in a randomized order. The pie charts indicate the preferences of the 40 participants.

ization through mesh and point cloud reconstruction exper-
iments. In these comparison experiments, we extended our
evaluation beyond computing radiance fields [39, 43, 52,
63] to include the direct estimation of camera calibrations
from stylized images using the SFM algorithm [49].

The results of the survey indicated that in 68% of the
cases, participants preferred our results over the ones gen-
erated by ARF. To present the survey results for each scene,
Figure 11 shows the comparison outcomes. These findings
highlight the efficacy of our network architecture and its po-
tential for practical applications in style transfer and scene
generation tasks.

5. Conclusion
We have presented MuVieCAST, a multi-view style trans-
fer architecture, that offers a fast, versatile, and robust
solution for various downstream applications, including

stereo matching-based point cloud reconstruction, neural
mesh reconstruction, and novel-view synthesis. In con-
trast to other 3D style transfer methods, our proposed
method does not require precomputed or groundtruth
3D scene representations (point cloud, mesh, radiance
fields, signed distance functions, occupancy fields) and
generates consistent stylized views directly from calibrated
input views. Our experiments have demonstrated the
effectiveness of different backbones in our multi-view
consistent style transfer network architecture, validating
our architectural ideas. The resulting stylized images
are consistent for robust geometry estimation, revealing
finer geometric and texture details of the underlying 3D
scene representation, thereby enhancing downstream
applications. Moreover, our proposed network architecture
trains fast, making it an appealing option for researchers
and practitioners interested in related application domains.



References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. IJCV, pages 1–16, 2016. 5

[2] Xu Cao, Weimin Wang, Katashi Nagao, and Ryosuke Naka-
mura. Psnet: A style transfer network for point cloud styl-
ization on geometry and color. In WACV, pages 3337–3345.
IEEE, 2020. 1

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, pages
333–350. Springer, 2022. 2

[4] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang
Hua. Coherent online video style transfer. In ICCV, pages
1105–1114. IEEE, 2017. 2

[5] Tian Qi Chen and Mark Schmidt. Fast patch-based style
transfer of arbitrary style. In NeurIPSW, 2016. 1, 2

[6] Xinghao Chen, Yiman Zhang, Yunhe Wang, Han Shu, Chun-
jing Xu, and Chang Xu. Optical flow distillation: Towards
efficient and stable video style transfer. In ECCV, pages 614–
630. Springer, 2020. 2

[7] Robert T Collins. A space-sweep approach to true multi-
image matching. In CVPR, pages 358–363. IEEE, 1996. 5

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. IEEE, 2009. 3, 5

[9] Yingying Deng, Fan Tang, Weiming Dong, Haibin Huang,
Chongyang Ma, and Changsheng Xu. Arbitrary video style
transfer via multi-channel correlation. In AAAI, pages 1210–
1217, 2021. 2

[10] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.
Massively parallel multiview stereopsis by surface normal
diffusion. In ICCV, pages 873–881. IEEE, 2015. 5

[11] Chang Gao, Derun Gu, Fangjun Zhang, and Y. Yu. Reconet:
Real-time coherent video style transfer network. In ACCV,
pages 637–653. Springer, 2019. 2

[12] Wei Gao, Yijun Li, Yihang Yin, and Ming-Hsuan Yang.
Fast video multi-style transfer. In WACV, pages 3222–3230.
IEEE, 2020. 2

[13] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, pages 2414–2423. IEEE, 2016. 1, 2, 4

[14] Shuyang Gu, Congliang Chen, Jing Liao, and Lu Yuan. Ar-
bitrary style transfer with deep feature reshuffle. In CVPR,
pages 8222–8231. IEEE, 2018. 1

[15] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong
Tan, and Ping Tan. Cascade cost volume for high-resolution
multi-view stereo and stereo matching. In CVPR, pages
2495–2504. IEEE, 2020. 1, 3, 5, 6

[16] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and
Hongsheng Li. Group-wise correlation stereo network. In
CVPR, pages 3273–3282. IEEE, 2019. 5, 1

[17] Agrim Gupta, Justin Johnson, Alexandre Alahi, and Li Fei-
Fei. Characterizing and improving stability in neural style
transfer. In ICCV, pages 4067–4076. IEEE, 2017. 2

[18] Lukas Höllein, Justin Johnson, and Matthias Nießner.
Stylemesh: Style transfer for indoor 3d scene reconstruc-
tions. In CVPR, pages 6198–6208. IEEE, 2022. 1, 2, 6

[19] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao
Jiang, Xiaolong Zhu, Zhifeng Li, and Wei Liu. Real-time
neural style transfer for videos. In CVPR, pages 783–791.
IEEE, 2017. 2

[20] Hsin-Ping Huang, Hung-Yu Tseng, Saurabh Saini, Maneesh
Singh, and Ming-Hsuan Yang. Learning to stylize novel
views. In CVPR, pages 13869–13878. IEEE, 2021. 1, 2

[21] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
pages 1501–1510. IEEE, 2017. 1, 2, 5

[22] Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin
Gao. Stylizednerf: Consistent 3d scene stylization as styl-
ized nerf via 2d-3d mutual learning. In CVPR, pages 18342–
18352. IEEE, 2022. 1, 2, 3, 5, 6

[23] Nail Ibrahimli, Hugo Ledoux, Julian FP Kooij, and Lian-
gliang Nan. Ddl-mvs: Depth discontinuity learning for
multi-view stereo networks. Remote Sensing, 15(12):2970,
2023. 6

[24] E Ioannou and S Maddock. Depth-aware neural style trans-
fer using instance normalization. In CGVC. Eurographics
Digital Library, 2022. 2

[25] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711. Springer, 2016. 1, 2, 4

[26] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine. In NeurIPS, page 364–375,
2017. 2

[27] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM TOG, 36(4), 2017. 7

[28] Nicholas Kolkin, Jason Salavon, and Gregory
Shakhnarovich. Style transfer by relaxed optimal transport
and self-similarity. In CVPR, pages 10051–10060. IEEE,
2019. 1

[29] Nicholas Kolkin, Michal Kucera, Sylvain Paris, Daniel
Sykora, Eli Shechtman, and Greg Shakhnarovich. Neural
neighbor style transfer. arXiv e-prints, pages arXiv–2203,
2022. 2

[30] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and
George Drettakis. Point-based neural rendering with per-
view optimization. In Computer Graphics Forum, pages 29–
43. Wiley Online Library, 2021. 1

[31] Chuan Li and Michael Wand. Combining markov random
fields and convolutional neural networks for image synthesis.
In CVPR, pages 2479–2486. IEEE, 2016. 1, 2, 4

[32] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.
Learning linear transformations for fast image and video
style transfer. In CVPR, pages 3809–3817. IEEE, 2019. 2

[33] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In NeurIPS, 2017. 1, 2

[34] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. De-
mystifying neural style transfer. pages 2230–2236, 2017. 2,
4

[35] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing
Kang. Visual attribute transfer through deep image analogy.
ACM Trans. Graph., 2017. 1, 2



[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 5, 1

[37] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, pages 2117–2125.
IEEE, 2017. 3

[38] Xiao-Chang Liu, Ming-Ming Cheng, Yu-Kun Lai, and
Paul L Rosin. Depth-aware neural style transfer. In Pro-
ceedings of the symposium on non-photorealistic animation
and rendering, pages 1–10, 2017. 2

[39] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, pages 99–106. Springer, 2020. 2, 3, 8

[40] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Adap-
tive structure from motion with a contrario model estimation.
In ACCV, pages 257–270. Springer, 2012. 1

[41] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global
fusion of relative motions for robust, accurate and scalable
structure from motion. In ICCV, pages 3248–3255. IEEE,
2013. 1

[42] Fangzhou Mu, Jian Wang, Yicheng Wu, and Yin Li. 3d photo
stylization: Learning to generate stylized novel views from a
single image. In CVPR, pages 16273–16282. IEEE, 2022. 2

[43] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 8

[44] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, pages 3504–3515. IEEE, 2020. 6

[45] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. In CVPR, pages 5480–5490. IEEE, 2022.
2

[46] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and
controllable neural texture synthesis and style transfer using
histogram losses. arXiv preprint arXiv:1701.08893, 2017. 1

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention, pages 234–241. Springer, 2015. 1, 5

[48] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.
In-place activated batchnorm for memory-optimized training
of dnns. In CVPR, pages 5639–5647. IEEE, 2018. 5

[49] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, pages 4104–
4113. IEEE, 2016. 1, 8

[50] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In ECCV, pages 501–518.
Springer, 2016. 1

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2014. 1, 3

[52] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH, 2023. 8

[53] Prune Truong, Marie-Julie Rakotosaona, Fabian Manhardt,
and Federico Tombari. Sparf: Neural radiance fields from
sparse and noisy poses. In CVPR, pages 4190–4200. IEEE,
2023. 2

[54] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 1

[55] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo
Speciale, and Marc Pollefeys. Patchmatchnet: Learned
multi-view patchmatch stereo. In CVPR, pages 14194–
14203. IEEE, 2021. 1, 3, 5

[56] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 3, 6

[57] Wenjing Wang, Jizheng Xu, Li Zhang, Yue Wang, and Jiay-
ing Liu. Consistent video style transfer via compound regu-
larization. In AAAI, pages 12233–12240, 2020. 2

[58] Qingshan Xu and Wenbing Tao. Learning inverse depth re-
gression for multi-view stereo with correlation cost volume.
In AAAI, pages 12508–12515, 2020. 5, 1

[59] Jiayu Yang, Wei Mao, Jose M. Alvarez, and Miaomiao Liu.
Cost volume pyramid based depth inference for multi-view
stereo. In CVPR, pages 4877–4886. IEEE, 2020. 3, 5

[60] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In ECCV, pages 767–783. Springer, 2018. 5, 6

[61] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. NeurIPS, 33, 2020. 3, 6, 7

[62] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In NeurIPS, 2021.
6, 3

[63] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, pages 5752–5761. IEEE,
2021. 2, 3, 8

[64] Hang Zhang and Kristin Dana. Multi-style generative net-
work for real-time transfer. In ECCV. Springer, 2018. 1

[65] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In ECCV, pages 717–733. Springer, 2022. 1, 2, 3, 6,
7, 4



MuVieCAST: Multi-View Consistent Artistic Style Transfer

Supplementary Material

A. Configuration details

In this section, we share details of the network architec-
ture configurations referenced in Tables 1 and 2 of the pa-
per. CasMVSNet [15] has 927K parameters, while Patch-
MatchNet [55] has 222K parameters. We divided Cas-
MVSNet cost volume into 8 groups to calculate group-
wise correlation [16, 58]. In CasMVSNet UNet and Patch-
matchNet UNet, we computed content loss at layer relu3 3
and used the Gram matrix-based style loss [13] at layers
relu1 2, relu2 2, relu3 3, and relu4 3 of the VGG16 loss
network [51]. To achieve this, we trimmed the VGG16
until the relu4 3 layer, resulting in 7.6M parameters. Our
UNet [47] has 1.7M parameters. For CasMVSNet AdaIN
and PatchmatchNet AdaIN, we computed content loss at
layer relu4 1 and style loss at layers relu1 1, relu2 1,
relu3 1, and relu4 1 of the VGG19 loss network. We
trimmed the VGG19 [51] until the relu4 1 layer, which
resulted in 3.5M parameters. Our trainable VGG19-based
AdaIN decoder [21] also has 3.5M parameters.

The training time for DTU scan65 with 49 images, a res-
olution of 640 × 480, a neighboring view window size of
3, and a batch size of 1 per GPU on dual RTX 2080 Ti was
measured. For various network architectures, the training
times for 10 epochs are as follows:

Network Architecture Training Time (seconds)
CasMVSNet UNet 174.44

CasMVSNet AdaIN 174.52
PatchmatchNet UNet 153.03

PatchmatchNet AdaIN 155.00

B. UNet style translation

Although UNet-based style transfer methods [25] require
style-specific pretraining, we observed that UNet’s pre-
trained models can quickly adapt to new styles and images.
By using weights learned from MS COCO object detection
dataset [36], we can swiftly apply UNet to new style images
for given inputs. Pretraining captures a general understand-
ing of style features and textures that can be reused, sig-
nificantly reducing the time and resources needed for train-
ing new models for each style. In this experiment, we used
pretrained model of UNet trained with the “Starry Night”.
We pretrained the model with a new hand-drawn style im-
age [21, 64] for 30 mins with a dual RTX2080 Ti. Figure 7
depicts results for style translation.

Figure 7. Results for style translation. First row: original input
samples. Second row: results with pretrained style. Third row:
finetuning with a new style image. Bottom row: the two style
images used in the second and third rows, respectively.



Figure 8. Color adjustment as preprocessing. Top: original im-
ages. Bottom: after color adjustment

C. Color adjustment

Our framework includes a color adjustment feature that al-
lows users to modify the color of images so that their color
distribution is more similar to a specified style image. Sim-
ilar approaches have been previously explored in the litera-
ture [33, 65]. Our framework supports both pre-processing
and post-processing color adjustment. In the paper, we have
only used color adjustment for novel view synthesis exper-
iments, as both a pre-processing step and a post-processing
step.

Our approach is inspired by the work of WCT [33],
where we aim to match the RGB color means and covari-
ances of the input images with those of a style image. This
color mapping can be represented as an affine transforma-
tion

c̃ = Mc+ t, (11)

Figure 9. Color adjustment as postprocessing. Top: styled images.
Bottom: after color adjustment

where c represents the input color that is transformed
into c̃. M is responsible for translating color vectors be-
tween the content and style domains, which is computed as
Usλ

1
2
s V T

s Ucλ
− 1

2
c V T

c . Uc, λc, and Vc are computed using
singular value decompositions of the colors of the content
images, while Us, λs, and Vs are computed using singular
value decompositions of the colors of the style image. The
translation vector t adjusts the mean and can be computed
as µs − Mµc, where µc is the mean color of the content
images and µs is the mean color of the style image.

As the color mapping is affine, the color adjustment
module can be used as either a pre-processing step or a post-
processing step for downstream applications related to ge-
ometry. Figure 8 and Figure 9 demonstrate the effect of us-
ing color adjustment as preprocessing and postprocessing,
respectively.



(a) Input + Input (b) Input + Stylized (c) Stylized + Input (d) Stylized + Stylized

Figure 10. Neural mesh reconstruction. Top row: Mesh editing effect. The reconstructed mesh demonstrates stripe-like geometric features.
Bottom row: Mesh surface coloring (Geometry + Coloring). Meshes (a) and (b) have the same geometric properties but differ in their
coloring. Specifically, (a) and (c) are colored using 64 original input images, while (b) and (d) are colored using the stylized images. The
geometry of (a) and (b) is derived from the original inputs, while the geometry of (c) and (d) is learned from the stylized images.

D. Neural mesh reconstruction

By being independent of the 3D representation of the input,
MuVieCAST has the potential to be used and extended as
a tool for editing 3D scene representations. By using con-
sistent 2D stylized images, we can generate 3D geometric
textures. The top row of Figure 10 shows such an example,
where the reconstructed mesh demonstrates stripe-like geo-
metric features generated from the stylized images. These
consistent features across multiple views are reflected in the
reconstructed mesh as a geometric texture.

Our approach can also be applied to mesh coloring, sim-
ilar to the experiments on point clouds. Recently, there are
neural mesh rendering techniques [56, 61, 62] that disentan-
gle geometry reconstructions from view-dependent appear-
ance estimations. Leveraging this architectural advantage,
we can utilize our method to color the meshes. We trained
the geometry and rendering network of IDR [61] using both
the original images and the stylized images. The bottom

row of Figure 10 demonstrates our experiment results for
mesh coloring.

E. Novel-view synthesis with real-world data

To further assess the capabilities and robustness of Mu-
VieCAST, we conducted novel-view synthesis experiments
using real-world data. Similar to our previous Nerf exper-
iments, we derived camera poses from stylized images to
show the robustness of our method. Figure 11, the left col-
umn shows parts of the original input and stylized images
along with the style image. Our proposed stylization ap-
proach preserves the essential structure and details of the
scene while introducing a unique artistic style, as shown by
these stylized images. Moreover, the right column shows
the novel view synthesis (NVS) results using the computed
radiance fields and camera parameters from stylized im-
ages. The novel views exhibit fine details, accurate geome-
try, and coherent lighting with stylized rendering.



Figure 11. Novel view synthesis using four distinct styles, applied to real-world data. MuVieCAST was trained on each scene for less than
15 minutes, leveraging a dual RTX 2080 GPU. More results are demonstrated on our project page: muviecast.github.io

F. Loss terms

During the development process, we conducted over 500
automated TensorBoard experiments to define the losses.

Our empirical findings indicate that substituting
SmoothL1 loss for MSE loss in the context of content loss
and interchanging MSE loss with SmoothL1 loss for image
geometry loss terms yields comparable outcomes. We
extensively investigated different approaches for volume
loss, including KL divergence, MSE, SmoothL1, and
custom losses. Our findings demonstrated that SmoothL1
loss produced better learning curves. It is important to
note that achieving convergence in volume loss without
considering depth loss can be challenging. Regarding
image geometry loss terms, both MSE and SmoothL1
losses performed similarly.

In addition to the aforementioned loss terms, we also
experimented with some other losses, such as nearest-
neighbor-based losses [31, 65] and total variations [25],
similar to previous works. However, our experiments with
nearest-neighbor-based feature matching loss did not result
in proper improvement, and it proved to be computationally
expensive. Our experiments with total-variation (TV) loss
did not generate visually and geometrically better results
either. Despite this, our framework still supports these loss
terms (nearest-neighbor feature matching NNFM [65] and
total-variation [25]) for users who want to conduct further
experiments.

In Sec. H, we conduct an ablation study involving loss
terms within a sparse view scenario.

G. User survey results

We conducted a user survey involving 40 participants across
5 scenes and 5 styles, following the trajectory set by the au-
thor of ARF [65]. Here, we aim to delve into the reason-
ing behind the outcomes of our user study. We specifically
showcase paired renders per scene: one from ARF and one
from our model. It is important to note that our approach
involves single-step optimization for multi-view consistent
style transfer, and our radiance fields utilize estimated cam-
era poses from styled images.

Here we aim to interpret the factors contributing to the
outcomes of the user survey. Figure 12 provides a closer ex-
amination of the comparison between our results and those
of ARF. In Figure 12 (a), our results were preferred by 90%
of participants (36 out of 40) because of their richer texture
compared to ARF. Figure 12 (b) illustrates that 77.5% of
votes (31 out of 40) leaned toward our interpretation as our
style transfer maintained geometric and semantic clarity,
unlike ARF, which introduced noisy artistic textures, com-
plicating scene understanding. Moving to Figure 12 (c), our
approach produced smoother and more visually appealing
coloring, preserving semantic and geometric understand-
ing, whereas ARF resulted in patchy high-frequency col-
oring. This example received 92.5% of the votes (37 out of

https://muviecast.github.io/


40). Figure 12 (d) showed a more balanced preference, with
a slight inclination (55% of the votes) toward our results.
Upon inspection, our method excelled in recovering distant
objects, while ARF rendered sharper depictions of ground
and foreground elements. Lastly, in Figure 12 (e), 75% of
participants (30 out of 40) opted for ARF results. Our anal-
ysis indicated that our results appeared more blurred com-
pared to ARF, highlighting sharper radiance fields in the lat-
ter.

H. Ablation study for sparse views

In this part, we aim to demonstrate the effectiveness and ro-
bustness of our pipeline with sparse views by conducting
ablation experiments on loss terms. To illustrate this, we
utilize the 4 views of the scan65 dataset from DTU [1] as
an example and experiment with two different architectures,
PatchmathNet UNet and PatchmathNet AdaIN, as shown
in Figure 13 and Figure 14, respectively.

To examine the impact of each loss term, we train the
network separately with each loss term and demonstrate the
corresponding results. These results indicate that the UNet-
based architecture recovers the original image features bet-
ter with the help of content, image-geometry, and 3D geom-
etry losses. On the other hand, the AdaIN-based architec-

ture can recover the original image features using content
and 3D geometry losses. However, the results of 3D geom-
etry loss with AdaIN architecture tend to be blurrier than
those of UNet. Additionally, we observed that the image-
geometry loss pays attention to photometric edges, while
the style loss tends to enhance artistic features in both cases.

From the experiments, we can conclude that the 3D ge-
ometry losses is effective in capturing the overall geome-
try of the scene. However, guiding the network with only
this loss term may reduce the artistic features of the images.
Note that in our ablation studies, we combined volume and
depth loss into a unified 3D geometry loss. Specifically,
we noticed that while volume loss struggles to converge in-
dependently, its integration alongside depth loss enhances
pose estimation, particularly in scenarios involving low-
resolution images. This integration offered promising re-
sults for improving the network’s performance in handling
varied image qualities and dimensions.

Meanwhile, the image geometry loss can be attentive to
the photometric edges, and the content loss can preserve
the original content of the images while reducing the artis-
tic features. Moreover, the style loss can be useful in re-
taining artistic features. These findings motivated us to use
a weighted sum of these loss terms to conduct geometry-
aware style transfer.

(a) 36 out of 40 participants chose our output (second row).

(b) 31 out of 40 participants chose our output (second row).



(c) 37 out of 40 participants chose our output (second row).

(d) 22 out of 40 participants chose our output (second row).

(e) 30 out of 40 participants chose ARF output (first row).

Figure 12. Comparison between ARF [65] and our results. The first row in each subfigure shows the ARF outcome, while our result is
given in the second row.



Figure 13. Ablation study results with PatchMatchNet UNet by separately training the network with different loss terms. The first row
shows the RGB input, and the second row shows the results obtained from the pretrained network. The subsequent rows demonstrate the
results of the network trained with each loss term separately, starting with the content loss in the third row, followed by image geometry,
3D geometry loss, and style loss in the fourth, fifth, and sixth rows, respectively. The last row demonstrates the results obtained by
incorporating all the loss terms.



Figure 14. Ablation study results with PatchMatchNet AdaIN by separately training the network with different loss terms. The first row
shows the RGB input, and the second row shows the results obtained from the pretrained network. The subsequent rows demonstrate the
results of the network trained with each loss term separately, starting with the content loss in the third row, followed by image geometry,
3D geometry loss, and style loss in the fourth, fifth, and sixth rows, respectively. The last row demonstrates the results obtained by
incorporating all the loss terms.


	. Introduction
	. Related work
	. Single-view neural style transfer
	. Video stylization
	. 3D style transfer

	. Method
	. Modules
	. Loss

	. Experiments
	. Experiment setup
	. Point cloud reconstruction
	. Mesh reconstruction
	. Novel view synthesis

	. Conclusion
	. Configuration details
	. UNet style translation
	. Color adjustment
	. Neural mesh reconstruction
	. Novel-view synthesis with real-world data
	. Loss terms
	. User survey results
	. Ablation study for sparse views




