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Fast Building Instance Proxy Reconstruction for
Large Urban Scenes

Jianwei Guo, Haobo Qin, Yinchang Zhou, Xin Chen, Liangliang Nan, Hui Huang

Abstract—Digitalization of large-scale urban scenes (in particular buildings) has been a long-standing open problem, which attributes 
to the challenges in data acquisition, such as incomplete scene coverage, lack of semantics, low efficiency, and low reliability in path 
planning. In this paper, we address these challenges in urban building reconstruction from aerial images, and we propose an effective 
workflow a nd a  f ew n ovel a lgorithms f or e fficient 3D  bu ilding in stance pr oxy re construction fo r la rge ur ban sc enes. Sp ecifically, we 
propose a novel learning-based approach to instance segmentation of urban buildings from aerial images followed by a voting-based 
algorithm to fuse the multi-view instance information to a sparse point cloud (reconstructed using a standard Structure from Motion 
pipeline). Our method enables effective instance segmentation of the building instances from the point cloud. We also introduce a 
layer-based surface reconstruction method dedicated to the 3D reconstruction of building proxies from extremely sparse point clouds. 
Extensive experiments on both synthetic and real-world aerial images of large urban scenes have demonstrated the effectiveness of 
our approach. The generated scene proxy models can already provide a promising 3D surface representation of the buildings in large 
urban scenes, and when applied to aerial path planning, the instance-enhanced building proxy models can significantly improve data 
completeness and accuracy, yielding highly detailed 3D building models.

Index Terms—urban scene reconstruction; photogrammetry; instance segmentation; aerial path planning; surface reconstruction

1 INTRODUCTION

Digitizing large-scale urban scenes is of great interest in
computer vision and computer graphics communities [1],
[2], [3], [4], as a 3D representation of urban scenes is essential
for various real-world applications, such as urban planning,
navigation, and environmental simulations. Compared to
expensive vehicle-mounted or airborne LiDAR-based data
acquisition approaches, aerial-based photogrammetry sens-
ing using unmanned aerial vehicles (UAVs) provides a more
affordable and flexible way to capture detailed geometry of
complex urban scenes [5], [6], [7], [8].

The mainstream UAV-based aerial imaging methods typ-
ically follow a coarse-to-fine paradigm that requires two
flight passes. The first pass captures an unknown scene
quickly using a pre-defined pattern and generates a conser-
vative approximation of the scene geometry that is referred
to as a scene proxy. Such a coarse model is then used for
aerial path planning in the second pass in which the flights
of image acquisition are performed along an optimized
trajectory to produce a more complete and better recon-
struction. Previous works strive to improve the second pass
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on aerial path planning [8], [9], [10], [11], [12], while less
attention has been paid to the first pass on 3D scene proxy
generation. In practice, scene proxies are generated based on
either simple extrusion of building footprints [13] or surface
mesh reconstruction using dense point clouds [8], [9], [10],
which has limitations such as low geometric accuracy, long
capture process, and high demands of on-site computing
power. Recently, [11] compute 2.5D proxies by detecting
shadows from satellite images. This method relies heavily
on satellite images with noticeable shadows and flat scene
grounds, which has limited accuracy in practice. We argue
that generating more accurate and tightly enclosed 3D scene
proxies would improve the quality of planned aerial paths.

In this paper, we aim to address the open problem of
high-quality building instance proxy generation from multi-
view aerial images. This is a great challenge due to three
reasons: (i) First, existing image-based 3D reconstruction
workflows can robustly recover camera poses and a sparse
3D point cloud via Structure from Motion (SfM). It is also pos-
sible to generate a dense point cloud by using Multiple View
Stereo (MVS) for better proxy reconstruction. However, the
MVS step has high computational demands, especially for
large urban scenes, which limits the scalability of previous
methods [8]. In this work, we resort to using only sparse SfM
data for efficient proxy generation. (ii) Second, the sparsity,
incompleteness, noise, and outliers in the data pose great
challenges to proxy reconstruction. For example, high-rise
buildings are typically captured by only a few hundred
points, and low buildings are often partially occluded by
nearby buildings and trees. Previous point-based [14], [15]
or primitive-based [16], [17] surface reconstruction methods
require dense and complete point clouds as input, and thus
cannot recover faithful structures from such corrupted data.
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Fig. 1: The reconstruction of a large (2.9 km2) downtown central scene. Left: the coarse input point cloud computed from
7,000 images and the building instance proxies reconstructed using our method (130 seconds on a commodity desktop
computer). Right: the final detailed 3D model of the entire scene with building instance information inherited from the
proxies, which is reconstructed (via ContextCapture running 10 days on a high-end server cluster) from 50,305 images
acquired based on our proxy-derived drone aerial path.

(iii) Lastly, building instance information of the scene is lack-
ing. Such information is crucial for distinguishing nearby
buildings to improve safety in data acquisition and enable
fine-grained path planning to capture finer building details.
Moreover, such information also promotes 3D models for a
wider range of practical applications.

To address the above-mentioned challenges, we propose
a novel workflow that enables efficient 3D building proxy
reconstruction at the instance level, suitable for large-scale
urban scenes. Due to the extreme sparseness and incom-
pleteness, the value of SfM points is often considered low
and has been overlooked in past research. In this work, we
re-examine its value because the SfM points still retain key
features of building structures. Our main finding is that the
sparse inputs are already sufficient for high-quality proxy
reconstruction with high efficiency, which is made possi-
ble by our building instance segmentation and layer-based
building proxy reconstruction methods. To obtain building
instances, we introduce a neural network dedicated to gen-
erating building instance masks from aerial images. The
multi-view instance masks are then fused with the sparse
point cloud, and the building instances are obtained by
exploiting the cross-modality information. With the building
instance information, we propose a new layer-based surface
extraction method to obtain a watertight and manifold mesh
for each building, yielding an instance-enriched 3D model
of the entire scene. The obtained 3D building proxies can
already provide a lightweight surface representation of the
scene. In particular, they enable more reliable and fine-
grained aerial path planning for image acquisition toward
urban reconstruction at a higher level of detail.

The main contributions of our work include:
1) a novel workflow for efficient 3D building proxy re-

construction at the instance level for large-scale urban

scenes from aerial images, which enables fine-grained
aerial path planning to recover finer details of urban
buildings.

2) InstFormer, a novel neural network that extracts build-
ing instance masks from aerial images, and a voting-
based multi-view instance fusion algorithm that ex-
ploits cross-modality information for effective building
instance segmentation in sparse and noisy point clouds.

3) a layer-based building proxy reconstruction algorithm
that can generate lightweight surface models of urban
buildings from extremely sparse point clouds.

4) Two benchmark datasets for urban scene segmentation
and reconstruction, respectively. The first one is for
instance segmentation of buildings, which contains 720
aerial images captured from four cities with varying
flight altitudes, and with buildings manually anno-
tated. The other one is a synthetic benchmark with three
large-scale virtual scenes dedicated to comprehensive
evaluations of flight planning and 3D urban reconstruc-
tion.

2 RELATED WORK

2.1 3D Geometric Proxy Generation
3D proxy reconstruction aims at automatically creating 3D
coarse models from images or point clouds. One category
of methods obtains a simplified representation of buildings
by leveraging mesh decimation approaches. Such methods
typically reconstruct a dense mesh model from the input
points [18] followed by a simplification process exploiting
geometric cues, such as quadric error metric [19], planar
proxies [20], [21], [22], [23], [24], or general quadric sur-
faces [25], [26]. Another line of work attempts to detect
geometric primitives from point clouds [27] and assemble
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primitive shapes into a coarse polyhedron. For example,
Chauve et al. [28] propose an adaptive decomposition of 3D
space induced by planar primitives and form a watertight
polygonal mesh by Delaunay triangulation. Lin et al. [29]
fit parametric building blocks to the input LiDAR data
for building reconstruction. Monszpart et al. [30] explore
relation-based primitive fitting to provide compact and sim-
plified representations of urban scenes. Nan and Wonka [17]
and Kelly et al. [31] propose optimization approaches based
on integer programming to approximate the geometry of
the buildings. Bauchet and Lafarge [32] design a kinetic data
structure for partitioning the space into convex polyhedra,
from which the underlying surface mesh can be extracted
with a min-cut formulation. Alternative methods are also
proposed to reconstruct 2.5D building models [33], [34]
including roofs [35] from LiDAR input or images. These
methods require dense and relatively high-quality 3D point
clouds as input, which are usually not feasible or expensive
to satisfy with practical data acquisition systems, and thus
they cannot guarantee plausible results due to the require-
ment of detecting a complete set of primitives from such
corrupted data with severe missing structures.

2.2 Aerial Path Planning for Urban Scene Reconstruc-
tion
The goal of aerial path planning is to obtain high-quality
trajectories for reliable and efficient data acquisition using
UAVs, to enable high-quality 3D reconstruction of large-
scale scenes. This challenging task is closely related to
image-based scene reconstruction [36] and view selection
(e.g., Next-Best-View planning [37], [38]). In contrast to
the conservative fixed-height trajectories of zigzag patterns
used by commercial software for oblique photography (e.g.,
DJI-Terra* and PIX4D†), current research interests focus on
maximizing scene coverage and meanwhile minimizing the
trajectory length. Roberts et al. [9] and Hepp et al. [10] design
novel scene coverage models and employ submodularity
to select candidate views. Koch et al. [39] further utilize
semantic information obtained using neural networks to
optimize flight paths, where the semantics of the proxy
model are used to define free and occupied airspace. This
method relies on a semi-automatic approach to extract target
objects and is limited to small-scale scenes. Smith et al. [8] in-
troduce reconstructability heuristics into view optimization
and develop novel optimization approaches to maximize
reconstruction quality. Zhang et al. [13] jointly optimize
the view selection and path planning in a single step by
considering both scene reconstruction and path quality.

While paying less attention to scene proxy generation,
most previous path planning methods [6], [8], [9], [10] recon-
struct an MVS dense mesh to estimate the scene geometry
and flyable airspace. Although they can efficiently obtain
dense points from down-sampled images [6] or only a small
set of images [8], MVS is still the most time-consuming
process in these pipelines. The high computational cost
hinders its usage in processing large-scale scenes containing
densely populated buildings. Different from previous meth-
ods, our work explores the value of the sparse SfM points

*. https://www.dji.com/dji-terra
†. https://www.pix4d.com

together with prior knowledge about urban buildings. We
propose a novel workflow for reliable building proxy gen-
eration from such often overlooked data and demonstrate
its applicability in aerial path planning for large-scale urban
reconstruction.

2.3 Instance Segmentation

To ensure safety and improve flexibility in data acquisi-
tion using UAVs, we propose to exploit building instance
information of the scene. A large volume of methods has
been proposed for the task of 2D instance segmentation [40],
which can be roughly categorized into proposal-based and
proposal-free methods. Proposal-based methods consider a
top-down strategy that generates region proposals based on
object detection and then predicts an instance mask within
each proposal. According to the number of stages required
for object positioning and mask generation, these methods
can be further divided into single-stage (e.g., YOLACT [41]),
two-stage (e.g., Mask-RCNN [42], mask scoring R-CNN [43],
PANet [44]), and multi-stage (e.g., Cascade R-CNN [45],
Hybrid Task Cascade [46], SCNet [47]) methods. On the
contrary, proposal-free methods work in a bottom-up man-
ner. They first produce per-pixel predictions and then group
pixels into object instances ( [48], [49], [50], [51], [52]).
Our approach is multi-stage based on the Cascade archi-
tecture [45], and we further improve the performance of
the multi-stage detectors by strengthening the correlation
between different tasks (i.e., classification, detection, and
segmentation) using the global context information. Al-
though some recent work uses dual-pathway transformers
for building extraction from remote sensing images [53],
[54], they only address semantic segmentation by solving
a binary classification problem.

Benefiting from point set learning neural networks such
as PointNet++ [55], many 3D instance segmentation meth-
ods have been proposed [56], [57], [58], [59]. These meth-
ods can already achieve encouraging results on small-scale
indoor scenes, but it is still challenging to extend them to
outdoor scenes due to the lack of annotated 3D instance
segmentation datasets. Chen et al. [52] introduce a multi-
view instance segmentation framework for 3D buildings.
They perform 2D roof instance segmentation on the height-
enhanced multi-view images for better performance. This
method relies on the input dense mesh models to generate
usable height maps. In our work, the mesh models are
not available, and we thus directly use sparse point clouds
for 3D instance segmentation. Recently, several direct 3D
instance segmentation methods (such as HAIS [60], Soft-
Group [61] and Mask3D [62]) have improved the instance
segmentation performance on a large-scale outdoor dataset,
STPLS3D [63]. However, these learning-based methods rely
on dense points that are not available for our low-altitude
UAV images. Actually, they cannot extract sufficient point
features from sparse point clouds. A comparison between
SfM sparse point clouds and the mainstream available
datasets is shown in Supplementary Materials. In this paper,
we take advantage of the matured 2D instance segmentation
and 2D-3D correspondences to achieve precise 3D instance
segmentation of urban buildings from sparse points.
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Fig. 2: Algorithm overview. Given a set of aerial images, we first propose an instance segmentation neural network, the
InstFormer, to predict per-building instance masks in each view. Meanwhile, we generate a sparse point cloud from the
input images using the SfM technique. Then by combining the 2D instance masks and the 2D-3D correspondences, we
present a voting-based multi-view instance fusion algorithm to segment all 3D building instances. Finally, a novel layer-based
surface reconstruction method is proposed to generate a 3D scene proxy with all semantically parsed buildings.

3 OVERVIEW

The goal of this work is to enable effective and efficient
3D proxy generation for individual buildings of a scene
from a set of aerial images, which further allows reliable
aerial path planning for detailed urban reconstruction. The
input images are captured by a drone equipped with RGB
cameras. We perform the initial aerial capture using a simple
pre-defined overhead trajectory pattern [9].

An overview of our algorithm is outlined in Fig. 2,
which consists of two novel modules: 3D building instance
segmentation (Sec. 4) and layer-based proxy generation
(Sec. 5). Given the input aerial images, we first propose
a new instance segmentation neural network, called Inst-
Former, to predict per-building instance masks in multi-view
images. Considering the dense distribution of buildings
and occlusion caused by nearby buildings and trees, our
instance segmentation is performed on the nadir images
only, where the building roofs are fully visible and can be
reliably segmented without ambiguity. We recover camera
poses and generate a sparse point cloud from the input
images by using SfM, where the correspondences between
the feature points of the images and the reconstructed 3D
points are also obtained. Based on the roof instance masks
and the 2D-3D correspondences, we present a voting-based
multi-view instance fusion mechanism that filters out over-
segmented and invalid instances. The remaining masks are
then projected back into the 3D space to segment the entire
buildings. Since the SfM point cloud is typically sparse
and has large missing regions (see Fig. 2), it is problematic
to generate a faithful mesh from such data using existing
reconstruction methods such as Poisson surface reconstruc-
tion [14]. To this end, we introduce an efficient layer-based
proxy reconstruction algorithm that exploits structure priors
of buildings to extract a volume mesh from such corrupted
data. Following that, we obtain a manifold and watertight
proxy model of each building by removing its interior
redundant faces.

4 3D BUILDING INSTANCE SEGMENTATION

Building instance segmentation serves as the foundation for
reliable aerial path planning and semantic-aware 3D scene

reconstruction. For point clouds with plausible density and
completeness (e.g., MVS point clouds), it is straightforward
to apply a 3D object detector [64], [65] or a 3D instance
segmentation method [56], [57] to directly extract the 3D
building instances. In our work, the sparse point clouds
generated by SfM suffer from missing data, high levels of
noise, and outliers, which hinder the direct application of
these methods to robustly detect or segment 3D building
instances. In this work, we take advantage of the fast de-
velopment in image-based instance segmentation and 2D-
3D correspondences (though a limited number) to achieve
precise 3D instance segmentation of urban buildings from
sparse point clouds.

4.1 2D Building Instance Segmentation

Although the existing 2D instance segmentation net-
works [42], [43], [45] have excellent performance on datasets
such as MS-COCO [66], they are difficult to generalize
directly to urban scenes due to large variations in the sizes
and densities of building instances in a scene. We propose
a novel instance segmentation neural network, called Inst-
Former, to produce accurate segmentation masks of dense
buildings. We observe that the buildings in oblique images
are more likely to be occluded by the nearby buildings or
trees, while they typically do not overlap in nadir images.
This motivates us to perform instance segmentation using
nadir images. To train and evaluate our neural network, we
create a new dataset by collecting real-world aerial images
and annotating all the building instances in these images
(see Sec. 6.1).

Fig. 3 summarizes the network architecture of Inst-
Former that predicts accurate instance masks for buildings
at the pixel level. Since an input aerial image is of high
resolution, we split the image into multiple overlapping
blocks before feeding it into the neural network. To handle
the unbalanced distribution of sample categories and avoid
over-fitting, InstFormer adopts a 3-stage cascade structure
comprising of three Box branches (i.e., the Bounding Box
Head in Fig. 3). The Box branches in the first two stages are
responsible for gradually outputting coarse bounding boxes
of buildings, and the counterpart in the last stage refines the
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Fig. 3: Network architecture of InstFormer for dense and
multi-scale building instance segmentation. The network
consists of three key modules: Backbone, Neck, and Head. The
TF-Encoder adopts a Vision Transformer as the backbone to
extract the feature pyramid. The Neck module, including
a CARAFE Upsampler [67] and a DyHead, is then applied
to fuse and enhance the extracted features. In the Head
module, we use a 3-stage cascade structure comprising of
three Bounding Box Heads and one Mask Head to locate and
generate instance masks in a coarse-to-fine manner.

box predictions and generates the instance masks. In the fol-
lowing, we briefly describe the key modules of InstFormer,
and a more detailed illustration of the network architecture
as well as the advantages of each module are provided in
the Supplementary Materials.
Overview of InstFormer. Instance segmentation typically
involves three sub-tasks: detecting, classifying, and seg-
menting objects. Therefore, InstFormer adopts a hybrid task
cascade (HTC) architecture. First, multiple tasks such as
detection, mask prediction, and semantic segmentation are
combined at each stage to form a joint multi-stage pro-
cessing pipeline, allowing each stage to benefit from the
other tasks. Second, contextual information goes through an
extra branch for stuff segmentation, and a directional path
is added to allow information to direct flow across stages.
Overall, the HTC architecture effectively improves the flow
of information not only across stages but also between tasks.

In our implementation, InstFormer consists of three key
modules: Backbone, Neck, and Head. Given an input image
block, we first utilize the Pyramid Vision Transformer [68]
as the backbone to extract the feature pyramid (FP, see the
TF-Encoder layer in Fig. 3), which generates high-resolution
feature maps for images with dense and varying-scale in-
stances. To further increase the receptive field to aggregate
contextual information, a Neck module (including a Upsam-
pler and a DyHead) based on the self-attention mechanism is
applied to efficiently fuse and enhance the FP. After that, the
enhanced features are fed into a Pooler layer to obtain fixed-

Fig. 4: Visualization of class activation maps. The building
class score is mapped back to the previous transformer layer
to emphasize the distinctive areas of buildings. Regions with
high response values are shown in red, while regions with
medium and low response values are indicated in green and
blue, respectively.

size feature maps, which are further sent to a Generic RoI
Extractor to extract the regions of interest (ROIs). Then the
ROIs extracted in each stage are sent to the corresponding
Bounding Box heads to predict the final bounding boxes. At
the same time, we also use the Global Context (glbctx) head
combined with a Feature Relay (FR) head to strengthen the
correlation between classification, detection, and segmen-
tation tasks. Finally, a Mask head uniformly processes the
output of the FR and glbctx heads and generates accurate
instance masks. To sum up, the proposed InstFormer can be
mathematically formulated as follows:

xbox
t := R (x, bt−1) , bt := Bt

(
xbox
t

)
, (1)

xmask
t := R (x, bt) , mt :=Mt

(
F
(
xmask
t ,m1:t−1

))
,

(2)

where x is the feature map extracted from the backbone. At
stage t, we use a region-wise pooling operator R to extract
the ROI-wise box features xbox

t based on the feature map
x and the bounding box bt−1 predicted in stage t − 1.
Meanwhile, the mask features xmask

t can be obtained by
pooling x and bt. The prediction boxes bt and masks mt

are learned from the Bounding Box head Bt and Mask head
Mt, respectively. F is a feature fusion operator and m1:t−1

represents the accumulated mask features taken from stage
1 to t−1. In Fig. 4, we use the class activation maps (CAMs)
to get the informative regions used by our InstFormer to
identify the category of buildings. The high-response areas
are buildings, and the low-response areas are backgrounds,
indicating that we can represent the buildings well and
make discriminative localization.
Loss functions. Since there are only two concerned cate-
gories (i.e., buildings and background), we adopt the cross-
entropy loss Lcls

t for the binary classification. To make the
bounding box location more accurate, we use a Complete-
IoU (CIoU) loss [69] as regression loss function Lreg

t . An-
other cross-entropy loss Lmask

t is used to predict the instance
mask. Moreover, we also utilize the loss term Lglbctx intro-
duced in SCNet [47] to obtain effective global contextual
features and output multi-labels, so that we can use these
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Fig. 5: Illustration of the voting-based instance fusion. In the
first image (denoted by #1), the building in the light purple
box is incorrectly separated and in all the three images, the
red box only covers a small part of one building, leading
to inaccuracy or under-segmentation. By fusing the masks
from multi-view images based on a voting mechanism, an
accurate 3D segmentation is achieved.

features later to perform more accurate multi-view instance
fusion. Finally, we perform end-to-end multi-task training
by minimizing the total loss function as follows:

L =
3∑

t=1

αt

(
Lcls
t + Lreg

t

)
+ βLmask + γLglbctx. (3)

The hyperparameter vector α = [α1, α2, α3] are the weights
of classification and regression losses corresponding to each
stage. The hyperparameter β is the weight of the mask loss.
To maintain the consistency of IoU distribution between
training and inference samples, we set β =

∑3
t=1 αt to avoid

over-fitting. Finally, γ corresponds to the loss weight of the
global contextual feature, which is set to γ = 3 by default.
The stage loss weights are set to α = [1, 0.5, 0.25].

4.2 Voting-based Multi-view Instance Fusion

The InstFormer network outputs a set of building masks
from multi-view images, where multiple instance masks
may correspond to the same building. To separate different
buildings in a 3D point cloud, one has to identify the masks
belonging to the same building and then correlate them with
their counterparts in the 3D point cloud. Establishing the
correspondences between multiple masks is not straight-
forward due to the segmentation errors in 2D images. For
example, one building correctly segmented in a few images
could be separated in other views; or there are false positive
buildings. A few such examples are given in Fig. 5.

To reliably fuse the error-prone instance masks from
multiple views, we propose a voting-based approach to
filter out the over-segmented and false positive masks. Let

DI =
{
LIMI

k

}N

k=1
denote the set of all detected building

instances in an image I , where LIMI
k is referred to as the

k-th local instance mask in image I . With the mapping T

(provided by the SfM system) between the 2D feature points
in the images and the sparse point cloud, we can obtain
a set of 3D points PIk that correspond to the 2D feature
points located in LIMI

k. Besides, for the current image I , we
retrieve a set of neighboring images I(I) according to the
mapping T , and in I(I) each neighboring image contributes
to the reconstruction of any subset of points in PIk. Next,
each image J ∈ I(I) casts a vote v (J ||Ik) for each LIMI

k in
image I by checking the visibility of the 3D points PIk in
image J . Specifically, we look into the number of instance
masks from which all points in PIk are visible to determine
if the vote is valid. The following three cases are considered
for scoring:
• v (J ||Ik) = 0. This is not a valid vote, which usually

happens in two cases: (1) Image J contributes the recon-
struction of PIk but only a small part of the building has
been captured by image J and thus the building was not
detected by our InstFormer; (2) The instance segmentation
network recognizes non-building objects located in LIMI

k

as buildings, while no error occurs in image J .
• v (J ||Ik) = 1, which means the local instance masks in

both image I and J belong to the same building. This is
the desired case and is thus considered a valid vote.

• v (J ||Ik) ≥ 2. This is also not a valid vote. It indicates that
the 3D points PIk are segmented into multiple different
instances in image J . This happens when image J pro-
vides a correct segmentation but the local instance mask
LIMI

k in image I is under-segmented, or the segmentation
in image I is correct but the corresponding building in
image J is over-segmented.

To determine whether a local instance mask in image I is
valid, we use all images in I(I) to vote for LIMI

k and obtain
a voting vector V = {v (J1||Ik) , v (J2||Ik) , · · · , v (JN ||Ik)}.
We return the result with the maximal scores: v (Ik) ←
Mode

{
v (Ji||Ik)

∣∣N
i=1

}
, and further determine if the current

instance is correctly segmented by:

Flag
(
LIMI

k

)
=

{
True, if v (Ik) = 1;

False, else.
(4)

For image I , we first discard the invalid local instance
masks. Then for each correct mask, we record in image J a
list of valid local instance masks that generate a valid vote,
i.e., v (J ||Ik) = 1. After processing all images similarly, the
correspondences between local instance masks in different
images have been established. Thus, a group of local in-
stance masks belonging to the same building instance are
collected. The 3D instance segmentation is then achieved
by combining the 3D points corresponding to each local
instance mask in each group.

5 LAYER-WISE PROXY GENERATION

After 3D instance segmentation, we obtain a single point
cloud for each building. As shown in Fig. 6 (a), the point
cloud of the building is severely under-sampled and noisy,
and in particular, important structures such as large parts of
the facade are commonly missing. To handle such corrupted
data, we propose a new slicing-based surface reconstruction
method based on the fact that urban buildings typically
have piecewise constant profiles along the vertical direction.
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Fig. 6: Illustration of the proposed slicing-based proxy generation. Our algorithm takes a sparse point cloud (without
normal information) as input (a), which is uniformly sliced into a sequence of layers along the vertical direction (b). We
generate a global projected point set for each layer by projecting the 3D points from all its above layers onto it (c). According
to point and area gains (i.e., Gpoint and Garea in Eq. 5), we extract a set of dominant structural profiles, whose supporting
planes are visualized in (d), and their corresponding global projected point sets are shown in (e). We then extrude the
dominant structural profiles to form the proxy geometry (f), where the colored planes denote the presence of interior faces.
Finally, an incremental surface extraction is conducted to obtain a watertight mesh, for which a profile of the proxy is
shown in (h).

Terminology. The input point cloud of a building is first
uniformly sliced into a sequence of raw slabs along the
vertical direction, see Fig. 6 (b) for an example. Each slicing
plane is called a layer, and the space between two adjacent
layers is called a layer space. Each layer is also associated
with two entities: the local projected point set formed by pro-
jecting the corresponding 3D points in the above adjacent
layer space onto it; and a global projected point set formed
by projecting the 3D points in all above layer spaces onto
it. From the global projected point set, we extract the 2D
convex hull denoted as a potential structural profile. Here
we use the convex hull instead of α-shape because the
input point cloud is too sparse that α-shape will generate
an incomplete set of faces to reveal the actual profile of
the building. In contrast, a convex hull can create an extra
safety buffer when the reconstructed 3D building is used
for deriving UAV trajectories. Next, we extract a set of
dominant structural profiles (Fig. 6 (d)), each of which has
significant structural differences from its neighboring ones.
The dominant structural profiles together provide sufficient
information to characterize the shape of the building.

Proxy reconstruction. The layers (F1, · · · ,FK ) are sorted
from the top to bottom. Let Pi denote the local projected
point set of the i-th layer andNK the number of 3D points in
the k-th layer space Sk, we have PSPk = Conv

(⋃k
i=1 Pi

)
,

where Conv denotes the operation of extracting a convex
hull. Similarly, PSPk−1 and PSPk+1 denote the potential
structural profiles corresponding to the upper and lower
layers of Sk, respectively.

From the above definition, the shape of PSPK (i.e., the
potential structural profile at the bottom) constitutes the 2D
building footprint. We then search the other dominant struc-
tural profiles (DSPi) from the top to bottom. We identify
DSP1 (i.e., the top dominant structural profile) as the first
potential structural profile whose surface area is larger than
a threshold θ, where θ = 0.2 · Area(PSPK) by default.
For each potential structural profile PSPj , we compute its
structure difference with the previously identified domi-

ALGORITHM 1: Layer-wise Proxy Reconstruction

Input: Sparse point cloud P of a building and the
number of layers K

Output: Building proxy geometry
1 Initialize the potential structural profile set

⋃K
j=1 PSPj ;

2 Initialize the dominant structural profile set DSP← ∅;
Compute the total area of 2D building footprint:

Areatotal ← Area (PSPK)

foreach PSPj in
⋃K

j=1 PSPj do
3 if Areaj ≥ 0.2 ·Areatotal then
4 m← j;
5 DSP1 ← PSPm;
6 k ← 2;
7 break;
8 end
9 end

10 foreach PSPj in
⋃K−1

j=m+1 PSPj do
11 According to Eq. 5, compute 3D points number gain

G
(j)
point ;

12 if G(j)
point ≥ η then

13 According to Eq. 5, compute the area gain G(j)
area;

14 if G(j)
area ≥ ϕ then

15 DSPk−1 ← PSPj−1;
16 DSPk ← PSPj ;
17 k ← k + 1;
18 end
19 end
20 continue;
21 end
22 Extrude polyhedral cells from DSP to assemble the

proxy geometry.

nant structural profile DSPi. A new dominant structural
profile can be identified only if the structure difference is
sufficiently large. Specifically, in the local projected point set
of layer Fj , we count the number (Nout) of points that are
located outside of the shape of PSPj−1. To be robust against
noise, we also compute the area difference between PSPj
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and the previously identified dominant structural profile
DSPi. Then PSPj is said to be a dominant structural
profile if it satisfies the following two criteria:

G
(j)
point =

Nout

Nj−1
≥ η, G(j)

area =
Area(PSPj)

Area(DSPi)
≥ ϕ, (5)

where the default thresholds are set to η = 0.2 and ϕ = 1.1.
We identify all dominant structural profiles by iteratively
processing all potential structural profiles from the top
to bottom. See Algorithm 1 for more details. Please note
that when a new dominant structural profile (PSPj) is
identified, the position and shape of the previous dominant
structural profile should also be updated. Thus, we use
PSPj−1 to replace the previous dominant structural profile.
The reason is that although the shape of PSPj−1 is similar
to the previous dominant structural profile, PSPj−1 has a
larger convex hull which is more suitable for satisfying the
safety requirement.

Finally, we extrude each dominant structural profile
from bottom to up until it touches the upper dominant
structural profile to obtain a convex polyhedral cell. These
polyhedral cells are then stacked together to form the com-
plete volume of the proxy geometry.
Surface extraction. Now we have reconstructed a proxy
geometry by assembling multiple polyhedral cells, which
can already be directly used for visualization. Such mod-
els contain many interior faces due to the direct stacking
process (see Fig. 6 (f) for an illustration), making them
unsuitable for aerial path planning, because existing aerial
path planning algorithms [8], [11], [12] require to sample the
outer surface of a building to compute reconstructability.

Based on the fact that the surface area of the dominant
structural profiles is monotonously increasing from the top
to bottom, we perform incremental surface extraction to
ensure only the outer surface of a building is obtained.
Specifically, when we extrude a dominant structural profile
(that is a 2D convex hull), we exclude part of its top
faces that are within the 2D projection of its immediate
upper dominant structural profile (except for the top-most
one) and its complete bottom (except for the bottom-most
one). Finally, the restricted Delaunay triangulation method
is used to triangulate newly added areas to generate a
watertight mesh model.
Non-buildings reconstruction. Compared with urban
buildings that span a wide range of height, non-building
objects (e.g., ground and trees) are less critical for aerial path
planning because UAVs typically fly above a certain altitude
to avoid collisions. In this work, we reconstruct the overall
proxy of non-buildings by adopting a bilinear interpolation
method given its higher efficiency compared to the Poisson
reconstruction method. Specifically, we first project the non-
building points to the ground plane and build a 2D grid
with a one-meter resolution to uniformly sample the pro-
jected area. Then we lift each vertex of the grid to a height
value interpolated from its adjacent 3D points. This way,
a 2.5D mesh is efficiently created to approximate the non-
buildings. The proxies of both buildings and non-buildings
together allow safe aerial path planning.

TABLE 1: Statistics on the nine test scenes from the
proxy and scene reconstruction dataset. #Img proxy and
#Img final denote the numbers of images for proxy and
final reconstruction, respectively. #3DInst is the number of
building instance proxies in each scene. #SfM pts is the
average number of SfM points per building instance.

Scene Data Type #Img proxy #3DInst #SfM pts #Img final Area (m2)

AK-1 (Fig. 8) Synthetic 95 30 354 2581 40000
JPN-1 (Supplementary Materials) Synthetic 106 17 966 938 15912
CT-1 (Supplementary Materials) Synthetic 82 32 336 2036 18721

Downtown (Fig. 1) Real 7,000 255 625 50305 2959358
Residence-1 (Fig. 7) Real 766 126 479 7835 471390
Residence-2 (Fig. 7) Real 198 196 380 24765 800842

Campus (Fig. 9) Real 1539 12 5713 5391 209812
Polytech (Supplementary Materials) Real 500 1 7134 1230 11162
SI-PARK (Supplementary Materials) Real 1019 14 676 4285 497754

6 EXPERIMENTAL RESULTS

In this section, a set of experiments were conducted on both
synthetic and real urban scenes of different scales to validate
the proposed approach. After introducing our new datasets,
we start with inspecting the performance of InstFormer
against state-of-the-art instance segmentation methods. The
effectiveness of our proxy reconstruction for path planning
is then qualitatively and quantitatively evaluated by com-
paring it with several 3D proxy generation approaches.
Finally, we apply our approach to capture real-world scenes
to achieve high-quality 3D reconstructions. All experiments
were conducted on a desktop computer equipped with an
Intel i7-7700k processor with 4.2 GHz and 32 GB RAM. We
implemented InstFormer in PyTorch based on MMDetection
toolbox [70]. Offline training of InstFormer was on two
NVIDIA GeForce RTX-A6000 (48GB memory) GPUs, and
AdamW was selected as the optimizer. We trained it for
30 epochs on two datasets (our proposed dataset and the
Mapping Challenge [71]), with training times of 12 hours
and 72 hours, respectively.

6.1 Datasets
Aerial instance segmentation dataset. For the training and
evaluation of InstFormer, we have created a new dataset
consisting of 720 nadir images from four cities captured with
varying flight altitudes, and all building instances in these
images have been manually annotated by eight students of
computer science, using the annotation tool of LabelMe [72].
A few annotated images from the building instance segmen-
tation dataset are shown in the Supplementary Materials.
Unlike existing instance segmentation datasets (e.g., COCO,
PASCAL VOC) that all target general objects, we focus on
multi-view images of buildings captured by drones for 3D
urban building reconstruction, where the photos capture
both roofs and facades with high resolution. Besides, build-
ing scales vary largely, and different buildings overlap from
different perspectives. These characteristics pose quite new
challenges to instance segmentation.
Proxy and scene reconstruction dataset. For a compre-
hensive quantitative evaluation, we first test our method
on synthetic scenes with ground-truth geometry, which al-
lows a quantitative assessment of the reconstruction perfor-
mance. Although there exist several virtual scenes that have
been created in the previous work [8], [10], [11], the covered
scenes are small in size and contain only a few (smaller than
10) buildings in each scene. In this work, we introduce a new
synthetic benchmark with three larger-scale virtual scenes
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TABLE 2: Quantitative comparison with state-of-the-art 2D
instance segmentation methods on the proposed dataset.

Methods Object Detection Instance Segmentation

AP AP50 AP75 APL AP AP50 AP75 APL

Mask R-CNN 48.9 70.9 54.7 50.4 48.3 71.4 54.8 49.9
Swin Transformer 47.5 70.6 52.1 48.8 47.1 72.1 52.4 48.5

ConvNext-V2 49.1 70.8 54.5 51.6 48.6 71.0 54.5 50.0
Mask2Former 54.1 76.2 60.4 55.7 52.5 76.8 58.4 53.6

Cascade Mask R-CNN 48.9 69.3 54.9 50.4 47.2 69.5 54.1 48.7
DetectoRS 53.6 75.0 58.7 55.2 51.7 75.8 58.8 53.4

SCNet 51.8 74.6 57.8 53.3 50.6 75.8 57.5 52.2
InstFormer 54.9 77.0 61.8 56.5 53.1 77.9 59.7 54.8

containing dozens of buildings (see Tab. 1), rich geometric
details, and realistic appearances. For each scene, we use
the Unreal Engine‡ and the physical engine of Airsim§ to
simulate the drones to capture the scene and generate highly
realistic images. Tab. 1 reports the detailed statistics of our
new dataset. Please refer to the Supplementary Materials
and video for the visualization of the three virtual scenes.

We also evaluate our method on a dataset of six real ur-
ban scenes. All images were captured using a DJI Phantom
4 RTK, which is a single-camera drone with a focal length
of 24mm. The images for the proxy reconstruction were
captured using the aerial paths generated by [9]. After the
reconstruction of the 3D scene proxies using our proposed
method, we used [11] to generate the optimized aerial paths
for the second-pass image capturing. Tab. 1 reports the
statistics of this dataset. Note that we use ContextCapture
to produce SfM sparse point clouds and MVS reconstruc-
tion given its high efficiency. However, we do not rely on
any specific package. The open-source packages, such as
COLMAP, VisualSFM, and PMVS, can also be used.

6.2 Evaluation on Instance Segmentation
Comparison on 2D instance segmentation. The perfor-
mance of InstFormer is first thoroughly evaluated by quan-
titative comparisons with state-of-the-art instance segmen-
tation methods including Cascade models (Cascade Mask
R-CNN [45], DetectoRS [73], SCNet [47]) and none-cascade
models (Mask R-CNN [42], Mask2Former [74], Swin Trans-
former [75], ConvNeXt-V2 [76]). We retrain and test all
these models on our new aerial instance segmentation
dataset. The evaluation metric is the standard average pre-
cision calculated using mask Intersection-over-Union (IoU).
It measures the precision between predictions and ground-
truth annotations in a range of IoU thresholds, e.g., AP50

and AP75 denoting the scores with IoU thresholds of 50%
and 75%, while AP indicating the average score with IoU
thresholds from 50% to 95% with a step size of 5%. Since
buildings are relatively large objects in the scene, we also
compute APL for evaluating the average precision of large
instances. Tab. 2 reports the quantitative results of these
segmentation methods. The comparison shows that the pro-
posed InstFormer achieves the best performance for both
building detection and instance segmentation, indicating
the superiority of our model on large-scale building instance
segmentation.

We have also evaluated all of the methods using another
public large-scale dataset from Mapping Challenge [71],

‡. https://www.unrealengine.com/
§. https://microsoft.github.io/AirSim/

TABLE 3: Quantitative comparison with state-of-the-art 2D
instance segmentation methods on the Mapping Challenge
dataset [71].

Methods Object Detection Instance Segmentation

AP AP50 AP75 APL AP AP50 AP75 APL

Mask R-CNN 74.7 94.7 86.2 89.9 68.2 94.6 82.9 80.7
Swin Transformer 78.1 94.9 90.6 88.5 74.4 94.9 89.1 84.1

ConvNext-V2 83.0 95.9 92.7 95.2 79.1 95.9 91.7 90.0
Mask2Former 83.2 96.1 92.8 94.7 78.4 96.1 91.5 89.5

Cascade Mask R-CNN 80.3 95.9 91.7 92.6 75.0 95.9 90.2 86.4
DetectoRS 81.0 95.7 91.7 94.0 77.0 95.7 90.4 88.7

SCNet 74.0 94.7 85.5 88.9 69.7 94.2 83.3 84.0
InstFormer 84.1 96.9 93.8 95.8 80.5 96.8 92.8 90.9

aiming to detect buildings from high-resolution satellite
imagery in different urban settings. This dataset consists of a
training set of 280,741 images (300×300 pixels), a validation
set of 60,317 images, and a test set of 60,697 images. Tab. 3
shows the quantitative prediction results, and it can be seen
that Instformer continues to achieve the best performance.
The comparison in terms of APL shows the perception
capacity of Instformer for large buildings. Meanwhile, the
best value of AP indicates the superiority of our model
in multi-scale building instance segmentation. In terms of
object detection, Instformer consistently achieves the best
AP, the key evaluation metric in the Mapping Challenge.
Moreover, Instformer also performs the best in terms of APL

in object detection, which further proves its advantage over
other alternatives in detecting large buildings.
Instance segmentation of dense reconstruction. It is dif-
ficult to quantitatively evaluate instance segmentation di-
rectly in 3D due to the lack of ground truth. Thus, we
carried out a visual inspection by transferring the instance
segmentation result on sparse points to the dense mesh
obtained in the final reconstruction. Specifically, we extract
the building footprint by first projecting all of the sparse
points to the ground and constructing the α-shape from the
projection points. Then for each point in the dense mesh,
we find the closest instance in the sparse cloud and with its
projection point located within the corresponding building
footprint. A KD-tree is used to accelerate the process of
querying the closest point. Fig. 1 and Fig. 7 show our
instance segmentation results on three large urban scenes,
in which both building proxies and dense meshes are accu-
rately segmented.

6.3 Evaluation on Synthetic Scenes
Experimental setup. We conduct synthetic experiments in
a virtual environment that is built on Unreal Engine and
Airsim simulator. In the initial pre-acquisition phase, a UAV
equipped with a single camera performs high-altitude flight,
capturing the ground surface with a vertical perspective for
full coverage imaging (with an 80% along-track overlap and
a 70% across-track overlap). This step results in nadir aerial
images. Subsequently, we compute a sparse point cloud
which is used to construct a proxy model. We use the path
planning algorithm proposed by [11] for evaluation, which
first generates a rich initial view set according to uniformly
sampled points on the surface of the proxy model. Then a
Max-Min optimization is proposed to select a minimal set
of viewpoints that maximize the reconstructability under
the same number of viewpoints. An effective flight path is
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TABLE 4: Quantitative evaluation and comparison on proxy generation and final 3D reconstruction on three synthetic
datasets. For the final reconstruction, Error and scene coverage (measured by Completeness) are recorded. #Images denotes
the number of pre-captured photos for proxy reconstruction. The first- and second-place performances are highlighted
using bold and italic fonts, respectively. LWPxy represents our layer-wise proxy.

Scene #Images SFM (min) Method Proxy
Recon. (min)

Proxy
Face Num.

Proxy
Size (Mb)

Error↓
90% (cm)

Error↓
95% (cm)

Comp.↑
2 cm (%)

Comp.↑
5 cm (%)

Comp.↑
10 cm (%)

AK-1 95 2.7

Coarse 0.87 18189 0.65 8.43 18.14 29.41 57.49 70.25
Convex Hull 0.95 20101 0.66 8.77 20.99 29.54 57.65 70.20

CSF 2.33 49737 1.86 8.16 18.00 29.52 57.23 69.51
MVS Dense 15 503729 40.4 8.44 18.66 29.84 57.74 70.39

LWPxy 1.16 20990 0.73 7.88 16.06 30.12 57.87 70.12

JPN-1 106 3.08

Coarse 0.7 9392 0.33 7.76 20.35 28.59 47.58 56.02
Convex Hull 0.77 10724 0.38 6.68 17.89 28.94 47.71 55.85

CSF 1.83 46357 1.73 7.05 18.24 28.50 47.14 55.45
MVS Dense 11.5 343195 27.7 7.15 18.81 28.97 47.79 56.02

LWPxy 0.92 11652 0.43 6.46 17.81 29.14 47.98 56.12

CT-1 82 2.4

Coarse 1.08 8833 0.31 3.54 12.36 33.73 51.88 57.01
Convex Hull 1.15 11059 0.39 2.98 8.26 33.89 52.11 57.00

CSF 2.58 35659 1.30 2.99 7.14 33.21 51.56 56.63
MVS Dense 12.92 255001 18.9 3.34 10.86 34.14 52.16 57.08

LWPxy 1.28 12509 0.42 2.90 7.24 33.83 52.23 57.16

Fig. 7: Instance segmentation results on the Residence-1 (top)
and Residence-2 (bottom) real scenes. The three rows of
each scene demonstrate the building instance proxies, the
final textured mesh of the scene, and the scene mesh with
highlighted building instances, respectively. The building
instances are randomly colored.

TABLE 5: Ablation study on the effect of instance segmen-
tation and InstFormer. We compare the performance of our
InstFormer-based pipeline with two baseline methods. No-
seg: directly slice and layer the entire scene without instance
segmentation. Clustering: segment the buildings based on
3D clustering.

Scene Method Acc.↓
90% (cm)

Acc.↓
95% (cm)

Comp.↑
2 cm (%)

Comp.↑
5 cm (%)

Comp.↑
10 cm (%)

AK-1 LWPxy 7.88 16.06 30.12 57.87 70.12
Clustering 8.93 21.69 29.88 57.80 70.27

No-seg 8.27 17.98 29.84 57.86 70.34
JPN-1 LWPxy 6.46 17.81 29.14 47.98 56.12

Clustering 8.25 19.83 27.25 46.29 54.75
No-seg 7.13 17.58 28.17 47.27 55.65

CT-1 LWPxy 2.90 7.24 33.83 52.23 57.16
Clustering 3.02 7.10 32.75 51.25 56.18

No-seg 3.48 8.89 32.53 51.32 56.61

created, which passes through all selected viewpoints, to
guide the second fine-grained image collection. Finally, the
collected images are fed into ContextCapture for detailed
reconstruction.
Evaluation metrics. To quantitatively evaluate the scene
proxy reconstruction, we follow the metrics that are com-
monly used in previous path planning methods [8], [11],
[13]. The proxy model is indirectly evaluated by comparing
the quality of the final reconstructed detail model after
the second flight, because the proxy model affects path
planning which in turn determines the quality of the final
reconstruction.

Specifically, we use the point-level metrics introduced
by [8] to compute the reconstruction quality: Error and
Completeness. Error measures the geometric accuracy of the
reconstruction. It is computed as the average distance be-
tween the vertices of the ground-truth model and the re-
construction. Considering noise and outliers, this metric is
evaluated on the majority of the points, i.e., 90% and 95% of
the points that have a distance smaller than x centimeters. A
smaller Error value indicates a higher accuracy. Completeness
measures the coverage of the ground truth by the recon-
structed model. We compute the minimal distance between
the points on the ground truth to their closest points on
the reconstruction, and Completeness is then defined as the
percentages of the distances smaller than a threshold. A
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Fig. 8: Visual comparison on the virtual scene AK-1, for evaluating different scene proxies for aerial path planning. The top
row shows the generated proxies from the sparse input (please refer to Figure 6 in the supplementary materials for the
input sparse points), and then the proxy geometries are used for path planning to collect more images to generate the final
reconstruction results (demonstrated in the second row). The blown-up views in the rest of the figure show the details of
the 3D reconstructions.

larger Completeness value indicates higher completeness.

Comparisons. We compare the quality of our layer-wise
proxy (denoted as LWPxy) against those generated by sev-
eral proxy alternatives, including the coarse proxy by finding

the bounding box of the point cloud of each segmented
building, 3D convex hull of each building, and a surface
approximation approach as the intermediate proxy based
on cloth simulation filtering (CSF) [77]. Note that both



12

TABLE 6: Quantitative comparison of proxy generation and final 3D reconstruction (i.e., , the reconstruction quality, Error,
and scene coverage, Completeness) of paths produced by using different proxies on the real scene Polytech.

Scene #Images SFM (min) Method Proxy
Recon. (min)

Proxy
Face Num.

Proxy
Size (Mb)

Error↓
90% (cm)

Error↓
95% (cm)

Comp.↑
2 cm (%)

Comp.↑
5 cm (%)

Comp.↑
10 cm (%)

Polytech 500 34.15

Coarse 2.84 70434 2.17 63.97 111.34 15.67 44.92 58.82
Convex Hull 2.95 66705 2.65 63.65 108.74 9.83 36.73 57.81

CSF 2.33 122216 4.91 67.93 111.46 12.68 46.36 62.27
MVS Dense 487 6102497 111 63.12 105.81 15.23 49.15 64.12

LWPxy 3.08 61735 2.5 65.32 106.02 15.96 49.77 64.17

coarse and 3D convex hull models are automatically built
based on our instance segmentation for a fair comparison.
Moreover, we adopt the MVS dense mesh reconstructed by
the commercial software, ContextCapture, as a fine proxy.

We conduct the comparison using the three virtual
scenes. Specifically, we first generate building proxies using
each competing method and then derive a flight trajectory
using the same aerial path planning algorithm [11]. The
visualization results of path planning for different proxy
models can be found in the Supplementary Materials. Fi-
nally, the drone is flown along the generated path to capture
images to reconstruct a fine-grained 3D scene model. To
ensure a fair comparison between different proxies, we
follow the protocol proposed by [8] and constrain the num-
ber of planning viewpoints to be as consistent as possible,
resulting in a similar total number of final captured photos.
This way, the path lengths and acquisition times for different
methods are also similar. By fixing the number of images, we
can isolate the effect of camera position on reconstruction
quality, where the camera position is related to the proxy
model.

Tab. 4 reports the quantitative evaluation results of proxy
generation and final reconstruction. We can see that the effi-
ciency of our proxy generation method and the face number
in the reconstructed proxy are comparable to the simple
coarse and 3D convex hull approaches, while CSF and MVS
dense take much longer time and result in larger models.
In terms of final reconstruction quality, our approach gen-
erally attains higher scores than other alternatives, which
can be observed from the Error and Completeness measures,
indicating its superiority to better capture scene geometries
including the details. We can also observe that MVS dense
does not demonstrate the best results. This is because the
point cloud reconstructed from only nadir images has se-
rious incompleteness (especially near the vertical surfaces),
resulting in proxy models with large holes and inaccuracies
(see Fig. 8). A visual comparison of the proxies and final
scene reconstructions associated with the five methods is
demonstrated in Fig. 8. Compared to the fine proxy of MVS
dense, our proxy is more compact yet still achieves compara-
ble or even better reconstructions. From these comparisons,
we can conclude that with a more accurate proxy geometry,
our approach can achieve better accuracy and completeness,
leading to better-detailed reconstruction.
Effect of InstFormer. As has been shown, instance segmen-
tation plays a crucial role in the proposed urban reconstruc-
tion pipeline. To evaluate the efficacy of instance segmenta-
tion, we have implemented two baseline approaches based
on directly slicing the scene to generate a scene proxy. The
first baseline is denoted by No-seg which slices and layers
the entire scene directly without instance segmentation. For

the projected points of each layer, we calculate a poly-
gon contour using the 2D α-shape algorithm. The polygon
contours of all the layers stacked together approximate
the coarse geometry of a building, serving as the scene
proxy model. The second baseline approach to achieving the
segmentation of buildings is based on clustering. First, we
use the CSF method [77] to roughly segment the buildings
from the ground. The building points are then projected
to the ground plane, and we use DBSCAN [78] to cluster
the points into building instances. After that, the same
slicing algorithm is applied to generate the scene proxy.
We have applied these methods to three virtual scenes, and
the results are demonstrated in Tab. 5. From the results,
we can see that though these alternative approaches can
also achieve a rough approximation of the scene, their final
reconstruction quality is much lower than our results based
on InstFormer.

6.4 Evaluation on Real Scene Reconstruction
In this section, we discuss the results of our method applied
to real scenes and conduct a comparison with baselines.
Quantitative evaluation. We plan aerial paths based on
the proxy models generated using our method and other
alternatives for a real scene called Polytech (visualized in
the Supplementary Materials). Then we capture the scene
using the derived aerial paths for high-quality building
reconstruction, and we compare the results using different
proxy generation methods. The Polytech scene contains a
single complex building, for which a high-quality complete
point cloud is acquired using a LiDAR scanner with a
ranging accuracy of 2mm. From the laser scan, a ground-
truth mesh is reconstructed for the quantitative evaluation
of the methods. Tab. 6 summarizes the evaluation results.
Similar to the results on the synthetic scenes, our approach
achieves the best performance in terms of Completeness. The
performance regarding the Error metric is also generally
comparable to that of MVS dense. The overall comparison
demonstrates that our approach can efficiently generate
lightweight proxy models and yield an accurate and com-
plete final scene reconstruction.
Visual comparison and detail recovery. Next, we evaluate
the performance of our method on real-world reconstruction
using several large outdoor scenes. Fig. 1 and Fig. 7 show
the results of our proxies and the final textured models of
three scenes of different scales. To better understand the
superiority of our proxy generation approach, we compare
the final reconstruction results to those obtained from other
proxy reconstruction methods. The reconstructed models on
the Campus scene are shown in Fig. 9, where we also make a
comparison of the details of the reconstructed models. The
zoomed-in views reveal that our approach can recover more
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Fig. 9: Visual comparison on the real scene Campus, for evaluating the effect of different proxy generation methods on the
performance of the final reconstruction. Please zoom in to the blown-up views to see the details of the 3D reconstructions.

geometric details. The visual comparisons on the real scenes
of Polytech and SI-PARK are provided in the Supplementary
Materials and video.

Flexible capture by instance planning. With the instance
segmentation of all buildings, we can plan a more accurate
and complete path for each building, which enables fine-
grained and flexible data capture to obtain a more accu-
rate reconstruction. To achieve that, we have tested two
different strategies for aerial path planning using the same
algorithm [11]:

• Plan single: Generate a single flight trajectory for each
building based on the instance information.

• Plan all: Generate an optimized trajectory for the entire
scene containing all buildings.

Fig. 10 demonstrates the derived aerial paths and the final
reconstruction results of the Campus scene. With the strategy
of Plan all, all buildings are captured at the same time
but on different days, and some buildings are not fully
covered. Therefore, the reconstructed model easily contains
noticeable visual artifacts, which can be observed from the
finer-level details in Fig. 10. In contrast, with the guidance
of instance information, fine-grained path planning can be
performed for each building. Besides, viewpoints focusing
on the same building can be integrated into a flight path,
which enables more efficient capture of important building
details.
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Fig. 10: Visual comparison of the final reconstruction results using two different aerial path planning strategies. The instance
information enables fine-grained aerial path planning and the generation of consistent texture maps.

Fig. 11: Our proxy generation method does not deliver the
exact geometry of slanted roofs (left) and buildings with a
wider top than the bottom (right).

6.5 Limitations

Our layer-wise proxy reconstruction method is designed
based on the assumption that building geometry is de-
scribed by an arrangement of stacked prisms, making it
particularly suitable for the majority of high-rise buildings

in reality. However, for buildings with slanted roofs, our
method can only approximate them with flat tops. In rare
cases where buildings have a top wider than the bottom,
our method will also fail. Fig. 11 shows our reconstruction
results on two such examples. Though the reconstructed
proxy does not deliver the exact geometry of the roofs,
it still conveys the overall building geometry, and it is
sufficient for planning high-quality aerial paths to ensure
image capturing with better coverage and at a finer level of
detail in another pass of data acquisition.

7 CONCLUSION AND FUTURE WORK

We have presented a novel workflow and two algorithms
for efficient and effective 3D building instance proxy re-
construction for large urban scenes. Our workflow attempts
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high-quality urban reconstruction from a different perspec-
tive, i.e., by generating high-quality 3D building proxies
rather than pure aerial path optimization. Extensive ex-
periments on several large urban scenarios have validated
the effectiveness and practicality of the proposed workflow
and its main modules. Specifically, the building proxies
generated using our method can better express the scene
geometry compared to previous methods, and they are par-
ticularly suitable for generating finer-grained aerial paths
to further improve the accuracy and enrich the geometric
detail of architectural models.

Our work reveals that improving the quality of building
proxies provides a straightforward way to address several
challenges in UAV data acquisition for high-quality urban
reconstruction, such as incomplete scene coverage, lack of
semantics, low efficiency, and low reliability of path plan-
ning. In future work, we plan to extend this idea to other
common urban objects, such as trees and bridges, to allow
the creation of semantic-rich detailed 3D models of scenes.
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