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A B S T R A C T   

We propose a concept of hybrid geometry sets for registering cross-source geometric data. Specifically, our 
method focuses on the coarse registration of geometric data obtained from laser scanning and photogrammetric 
reconstruction. Due to different characteristics (e.g., variations in noise levels, density, and scales), achieving 
accurate registration between these data becomes a challenging task. The proposed method uses geometric 
structures to construct hybrid geometry sets, and the geometric relations between the elements of a hybrid 
geometry set are encoded in a hybrid feature space. This enables effective and efficient similarity query and 
correspondence establishment between the hybrid geometry sets. The proposed global registration method works 
in three steps. Firstly, a set of hybrid geometry sets is constructed using extracted planes and intersection lines. 
Then the features of the hybrid geometry sets are computed to encode the relative pose and topological re-
lationships between the extracted planes and intersection lines, and their correspondences between the two 
inputs are established by querying hybrid geometry sets with similar features. Finally, the global registration 
parameters are calculated using the correspondences, and the registration result is further refined through 
continuous optimization. The robustness of the method has been evaluated using different real-world cross- 
source geometric data of urban scenes. Extensive comparisons with state-of-the-art algorithms have also 
demonstrated its effectiveness.   

1. Introduction 

Photogrammetry and computer vision techniques have enabled the 
acquisition of 3D information about the real world in various formats. 
There are scenarios where different acquisition methods may be used in 
combination. For instance, when scanning complex urban environ-
ments, data obtained from LiDAR scanners and photogrammetric 
reconstruction techniques can complement each other in terms of scene 
coverage and geometric details (Brenner, 2005; El-Hakim et al., 2007; Li 
et al., 2019; Liu et al., 2023). In these scenarios, the registration of cross- 
source geometric data becomes crucial for various applications. 

The registration of unitary-source geometric data (e.g., LiDAR point 
clouds) has been extensively studied (Dong et al., 2020). A current 
consensus is that the coarse alignment is a crucial yet unsolved problem, 
where the data are presented in arbitrary unknown relative orientations. 
To accomplish successful registration, state-of-the-art global registration 
methods require the extraction of salient features from different data 
sources. However, it remains an open problem to define reliable features 
that can be simultaneously extracted and related between different data 

sources (Ghamisi et al., 2019; Saiti and Theoharis, 2020). In this work, 
we address the coarse registration of such cross-source geometric data, i. 
e., laser scans and photogrammetric data in the presentation of dense 
point clouds for urban scenes with plenty of plane structures. 

Fig. 1 shows a pair of cross-source models acquired by a LiDAR 
scanner (Leica BLK360 mini) and the photogrammetric reconstruction 
method (Furukawa and Hernández, 2015). The geometric data acquired 
from LiDAR scanners and photogrammetric technologies exhibit varying 
levels of detail and accuracy, introducing additional complexities in 
registration and data fusion (Baltsavias, 1999). The global registration of 
cross-source geometric data faces the following challenges: 1) Pure 
image-based 3D reconstruction is known only up to scale. Determining 
the actual physical scale of 3D reconstruction can be challenging in 
practice, as it often involves tedious manual specifying known lengths of 
physical objects. 2) The density within a LiDAR point cloud varies 
significantly with the distances of the objects, amplifying the inherent 
density variations between cross-source geometric data. 3) The data loss 
between cross-source geometric data varies depending on the views, and 
LiDAR point clouds may suffer from severe data loss and inaccuracy in 
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areas with water or glasses, while image-based reconstructions typically 
miss texture-less regions. 4) A scan from modern devices can quickly 
accumulate millions of 3D points, posing a critical scalability require-
ment for registration methods. 

Although the local structures captured in cross-source geometric 
data might have different appearances and are prone to failing the 
matching process, such data still encompasses many planar structures (e. 
g., ground planes, roofs, and facades) that convey the abstract charac-
teristics of the scene, along with their intersection lines encoding the 
topology of the planar structures. To this end, we propose an automatic 
and efficient global registration method for cross-source geometric data 
by introducing Hybrid Geometry Set (HGS), which is constructed based 
on planes and their intersection lines extracted from the data. The fea-
tures of HGSs are computed based on some geometric angles and line 
segment proportions, and they convert the initial cross-source geometric 
data into a unified feature space. In summary, the main contributions of 
this work are threefold:  

• We introduce a concept of HGS that encodes spatial relationships 
between 3D planar structures and intersection lines. The proposed 
HGSs establish corresponding relationships without being affected 
by varying data quality. The geometric elements of HGSs are 
extracted from cross-source geometric data, forming descriptive 
feature descriptors. Feature correspondences can be established be-
tween cross-source models based on these feature descriptors.  

• We propose a mathematical formulation for estimating the scale of 
the image-based geometric data in addition to recovering the rota-
tion and translation parameters. This global registration accurately 
aligns the target data with the reference data, providing a reliable 
initialization for fine registration.  

• We introduce a new cross-source dataset that contains LiDAR point 
clouds and the corresponding photogrammetric point clouds. The 
dataset includes ground truth transformations and can be used for 
developing and evaluating global registration methods for cross- 
source geometric data. 

2. Related work 

In most cases, the optimal registration can be achieved in two key 
stages: a global coarse registration stage followed by a local refinement 
stage. The global coarse registration stage aims to establish an approx-
imate alignment between the target and the reference data, while the 
local refinement stage further refines the alignment using techniques 
like Iterative Closest Point (ICP) or its variants (Bae and Lichti, 2004; 
Rusinkiewicz, 2019; Zhang et al., 2022). Since our work focuses on the 

global coarse registration of cross-source geometric data, we mainly 
review the related works in coarse registration and cross-source regis-
tration methods. 

2.1. Global coarse registration 

Pointwise matching methods. The traditional registration methods 
establish correspondences between two models by extracting and 
matching key point features, such as FPFH (Rusu et al., 2009), USC 
(Tombari et al., 2010), and 3D-SIFT (Rister et al., 2017), etc. As the 
pointwise-matching algorithms might generate some false correspon-
dences, outlier filtering techniques are needed to suppress false matches. 
For example, the FPFHSAC method (Holz et al., 2015) registers point 
clouds using FPFH features and a RANSAC process (Fischler and Bolles, 
1981) for the robust estimation of transformation parameters. The fast 
global registration method (FGR) (Zhou et al., 2016) uses FPFH features 
to generate the initial correspondence set, and then they estimate a set of 
poses for multi-way registration problems using a synchronized global 
optimization approach. 

Motivated by the advancements in deep learning, some networks are 
specifically trained to extract the features for 3D matching, such as Deep 
Closest Point algorithm (Wang and Solomon, 2019), PointNetLK (Aoki 
et al., 2019), JoKDNet (Wang et al., 2021), and Feature-Metric Regis-
tration (Huang et al., 2020). Recent point feature-based or deep 
learning-based approaches are typically prone to failure due to chal-
lenges in extracting discriminative point features from cross-source 
geometric data, as they have large differences in terms of point den-
sities, resolutions, and noise levels. 

Structure querying methods. Matching methods based on 3D struc-
tural elements have become increasingly attractive as they are more 
prominent and stable across different data sources. The 4PCS method 
(Aiger et al., 2008) is a classic method that associates data based on the 
4-point coplanar-set structure. Some variants of 4PCS have been pro-
posed to improve the efficiency and scalability (Theiler et al., 2014; 
Mellado, et al., 2014; Xu et al., 2019). In urban environments, semantic 
patterns are useful for establishing correspondences, such as the pre- 
defined windows and doors (Thapa et al., 2009; Yan et al., 2016). 
Yang et al. (2016) present a method using the intersection points of 
vertical lines and the ground as the semantic feature points. Then, the 3- 
point geometrical constraints are used to match these semantic feature 
points. These methods become fragile to establish accurate correspon-
dences when parts of the patterns are missing. Chen et al. (2019) 
introduce a PLADE algorithm which utilizes a structure-level feature 
descriptor encoding the relationship between plane/line primitives. 
Wang et al. (2023) encode the shapes and orientations of extracted local 

Fig. 1. An example of cross-source geometric data acquired by a LiDAR scanner (left) and the photogrammetric reconstruction method (right). The red rectangle 
reveals the limited overlapping ratio of the two input sources. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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patches in the feature descriptors, and a transformation can thus be 
generated from a single correspondence, which leads to a linear 
complexity. Then, they use a rotation-guided RANSAC algorithm to find 
the best transformation. 

2.2. Cross-source registration 

The registration of cross-source geometric data is a special category, 
where the data pairs could be obtained from different data sources, such 
as optical imagery, LiDAR scanner, or photogrammetric reconstruction 
(Mura et al., 2015; Parmehr et al., 2016). In contrast to the unitary- 
source registration, it requires finding a global aligning transform over 
the 7 degrees of freedom (DoF) space, composed of a scale, a translation, 
and a rotation. Even though some registration methods are supposed to 
recover scale and rotation angles, such as the Scale-ICP method (Zinßer 
et al., 2005; Ying et al., 2009) and graph-based method (Huang et al., 
2017), the large variability of cross-source geometric datasets poses 
great challenges for these methods. 

To restore the relative scale, Mellado et al., (2015) present a 
descriptor based on Growing Least Squares in logarithmic scale-space. 
Huang et al. (2021) present a coarse registration method via 3D Four-
ier transformation. Li and Lafarge (2021) introduce an accumulation 
space of planar shapes and use a histogram-matching strategy to 
determine global rotation parameters. This method works only when 
two datasets having nearly identical observation regions. In Peng et al., 
(2014), the registration of LiDAR points and photogrammetric points of 
street views are studied. Under the assumption that the street ground is 
horizontal, the method first matches the ground of the two data, 
reducing the degrees of freedom to be solved. Some other works 
demonstrate cross-source registration as additional experiments within 
the design of registration methods for unitary-source registration (Xu 
et al., 2019; Mellado et al., 2014), while the non-uniform scale and 
varying density of cross-source geometric data have not been sufficiently 
analysed. 

In this work, we observe that middle- and high-level structural fea-
tures are less susceptible to noise and point density, making them rela-
tively stable and prominent. Inspired by those structure querying 
methods (Aiger et al., 2008; Chen et al., 2019; Li and Lafarge, 2021), we 
propose an enhanced feature descriptor that also allows scale estimation 
and reduces the complexity of the descriptor. Our strategy takes 
advantage of data abstraction by exploiting the similarities of structural 
features between cross-source models rather than relying on local point- 
level features. Specifically, we employ geometric structures such as 
planes and intersection lines to establish correspondences between 
cross-source data. These structural features are integrated into the 

proposed HGSs, and the feature vectors of HGSs are correlated to 
determine the global registration parameters. After the coarse align-
ment, the registration result is further refined by a local iterative opti-
mization step that also improves the estimated scale. 

3. Proposed method 

The algorithm takes as input a pair of point clouds generated from 
LiDAR scanning and photogrammetric reconstruction, respectively. In 
our study, the LiDAR point cloud serves as the reference data Pr = {pr

i}, 
which remains fixed throughout the transformation process, and the 
photogrammetric point cloud is considered as the target data Pt = {pt

i}. 
The transformation relationship can be written as: 

pr
i = sRpt

i + t (1)  

where s ∈ R is the scale factor. R ∈ R3×3 is the rotation matrix, and t ∈
R3 is the translation vector that will be applied to the target point cloud. 
This transformation problem involves 7 degrees of freedom (7 DoF). 

The proposed approach has a workflow consisting of three main 
steps, illustrated in Fig. 2:  

• HGSs construction. We first extract structural primitives (i.e., planes 
and their intersection lines) from the two input point clouds. These 
primitives are then utilized to construct HGSs, with each set char-
acterized by a specifically designed feature vector.  

• Coarse registration. We associate the HGSs by matching their 
respective feature vectors between two data sources. These matching 
pairs lead to multiple coarse transform candidates. Then, redundant 
candidates are carefully eliminated in the transform parameter space 
through a clustering process.  

• Transform optimization. An optimal coarse transform is determined 
with the highest matching scores among all transform candidates, 
and then the optimal transform is updated with all supporting 
matching pairs. Finally, a Scale-ICP refinement method is used to 
further improve the transform parameters. 

3.1. HGSs construction 

As the angle measures and ratios of corresponding line segments 
remain unchanged during similarity transformations, we explore using 
the structural primitives to design the structural features. The proposed 
HGSs are hybrid geometric primitive sets composed of planes and lines. 
The intersection angles and segments of primitives can be effectively 

Fig. 2. The workflow of the proposed approach. We first extract structural primitives, from which HGSs are constructed and their features are computed. Subse-
quently, the coarse registration is obtained by matching the feature vectors of the two point clouds. Finally, the Scale-ICP refinement step further improves the 
registration transformation. 
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employed as the foundation for constructing descriptors.  

(1) Structural primitive extraction 

We extract planes from both point clouds, which provide a structural 
representation of the scene. Then, the intersection lines of each pair of 
nearby planes are computed, as these lines convey the connections be-
tween the planes. To facilitate reliable plane extraction, we introduce an 
automatic method that is dedicated to handling point clouds of arbitrary 
scales based on the growth of super-voxels. The method consists of the 
following three main steps:  

a. An octree structure is constructed on the point cloud, where the leaf 
nodes at a predetermined depth serve as the initial cluster seeds. 
These seeds, guided by the octree structure, have a uniform distri-
bution and provide a rough representation of the overall shape of the 
input data.  

b. A region-growing method is employed to generate over- 
segmentation results, which are represented by a set of super- 
voxels with internal structural consistency. During this step, points 
are progressively grouped into the group of adjacent seeds that 
exhibit closer distance and normal directions. After each round of 
growth, the position and normal of each seed are updated to the 
mean values of points in the same group. The growth and update 
steps are iterated until the seed positions remain unchanged as the 
convergence has been achieved, resulting in the formation of 
numerous super-voxels.  

c. From the over-segmented voxels, we detect the coplanar shapes by 
merging the neighbour voxels whose normal vectors have an angle 
less than a threshold (a 10-degree threshold is chosen). We use least 
square fitting to calculate the plane parameters of the merged 

patches. The output primitives are clusters each associated with a 
supporting plane, i.e., the best plane to its inlier points. 

In fact, some other plane extraction methods (Schnabel et al., 2007; 
Li and Lafarge, 2021) are also optional, as long as enough reliable plane 
elements can be found. However, by leveraging the inherent consistency 
within voxels, our method simplifies the overall process, requiring fewer 
parameter tuning procedures than traditional plane fitting algorithms. 
In addition, by constraining the angle between the normal vectors of 
voxels, we can eliminate redundant planes fitted by points on vegeta-
tion. Fig. 3 shows a visual comparison between our method and other 
methods in plane extraction, and we can observe that the traditional 
plane fitting method requires complex parameter tuning. 

The voxel-based method takes advantage of the initial over- 
segmentation to accumulate planar segments, which is robust against 
noise and outliers presented in the data. Additionally, by ensuring the 
uniformity of the initial seeds, the resulting voxels generated from the 
octree structure have similar sizes, as shown in Fig. 4 (c). After the 
planes have been extracted, we compute the lines by intersecting pairs of 
nearby planes. An example of the extracted planes and intersection lines 
is demonstrated in Fig. 4 (d). Although any pair of non-parallel planes 
can result in an intersection line, we only keep the lines located within 
the enlarged bounding box (i.e., actual bounding box size multiplied by 
a factor of 1.2) of the point cloud. 

Now, a set of lines {l1, l2,⋯, lm} is derived from planes, and each line 
is associated with its two supporting planes, i.e., li (Πi1,Πi2). In the next 
step, the HGS feature vectors will be computed based on these planes 
and the intersection lines.  

(2) HGSs construction 

As shown in Fig. 5(a), a single HGS is a set of geometric primitives 

Fig. 3. Comparison between our method and RANSAC-based fitting method with different parameters (MSP: Minimal support points, DT: distance threshold, BR: 
bitmap resolution). 

Fig. 4. An example of the extracted geometric primitives.  
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including two nearby non-parallel planes (i.e. Π11 and Π12) and their 
intersection line l1, as well as another intersection line l2 derived from 
another pair of non-parallel planes. Fig. 5(b) is an illustration of a single 
HGS, where the two intersection lines are not parallel, represented by l1 
and l2, respectively. The accompanying planes of l1 are denoted by Π11 
and Π12. Compared to geometric sets such as 4PCS (Aiger et al., 2008) 
and K4PCS (Theiler et al., 2014), the HGS-based method has a more 
intuitive meaning in extracting structures. 

Intuitively, a number of HGSs can be found for a point cloud. Then, 
HGSs can be matched between cross-source models through geometric 
angles and ratios of segment lengths without being affected by the 
different physical scales of the point clouds.  

(3) HGS features 

Based on the HGS structure (as illustrated in Fig. 5(c)), we define the 
HGS feature to encode the spatial relationships of the structural primi-
tives in an HGS, which is a 5-dimensional feature vector, i.e., 

f 5 = [λ • r, α1,α2, α3,α4]
T (2) 

Here the vector elements are defined as 

r = d12/d34

α1 = ∠(Π11,Π12)

α2 = ∠(l1, l2)

α3 = ∠(l2,Π11)

α4 = ∠(l2,Π12)

. (3) 

Here ∠(*, *) denotes the angle between two primitives. d12 is the 
length between l1 and l2, and d34 is the length between two intersection 
points m3 and m4. λ is a regularization parameter that balances the unit 
between angle and distance ratio when querying matching pairs. The 
HGS feature not only provides an effective representation of the input 
data for matching but also enhances the robustness of matching. 

3.2. Coarse registration  

(1) Feature association 

We use the L2 norm to calculate the distance C between two HGS 
feature vectors, i.e., 

C = ‖f r
i − f t

j‖2 (4)  

where f r
i represents the i-th HGS feature vector in the reference point 

cloud, and f t
j represents the j-th feature vector in the target point cloud 

(see Eq. (2)). Only the HGS pairs with small distance (i.e., C) values can 
be used for identifying potential correspondences between the two point 
clouds, we filter out all HGS feature pairs with a distance value greater 
than a predefined threshold that is empirically set to 0.04 in our 
experiments.  

(2) Transform calculation 

Now, we have obtained a set of potential matching HGS pairs, and 
each pair of HGSs can lead to a 7-DoF transform candidate. In the 
following, we explain how to calculate the scaling factor, rotation ma-
trix, and translation vector from a matching pair of HGSs. 

Scaling factor estimation. Given a matching HGS pair, the scaling 
factor ŝ is directly estimated by calculating the ratio of the distances 
between the corresponding intersection lines, i.e., 

ŝ = dr
12

/
dt

12 (5)  

where dr
12 and dt

12 are the distances between the pairs of lines in the 
reference and the target HGSs (see Fig. 5 (c)). 

Rotation matrix estimation. From Fig. 5 (a), it can be observed that 
once two planes and two lines are selected for an HGS, the spatial 
relationship between the lines and planes is determined. After two HGSs 
are matched, the directions of two lines can be determined. Then, we use 
the unit direction vectors of two pairs of matched intersection lines to 
estimate the rotation matrix. Since the rotation matrix R̂ converting a 
target unit vector nt to the reference vector nr satisfies 

nr = R̂ nt (6)  

we use the covariance matrix of the corresponding direction vectors to 
recover the rotation matrix R̂. The covariance matrix can be calculated 
as 

H =
∑

i=1,2
nlti

nlri
T (7)  

where nlti and nlri are the unit direction vectors of lti and lri , respectively. R̂ 
is estimated by applying the singular value decomposition (SVD) to H. 
As H = UΣVT, we get R̂ = VUT. 

Translation vector estimation. After obtaining the scaling factor and 
the rotation matrix, the estimated translation vector t̂ can be simply 
calculated using a pair of point correspondences 

t̂ = pr
mid − ŝ R̂pt

mid (8) 

where pmid denotes the midpoint of the shortest line segment between 
l1 and l2.  

(3) Parameter validation 

From the previous process, a large number of candidate trans-
formation matrices have been obtained from the potential HGS corre-
spondences, which contain a significant number of redundant matchings 
as well as false matchings. The transform candidates, calculated from all 
matching pairs, can be represented by a set of points in the 7D parameter 
space. In the following, we introduce a validation procedure that elim-
inates the redundant transforms. 

In the parameter space, we cluster similar transformation matrices 

Fig. 5. An illustration of the proposed HGS structure and its feature elements.  
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into groups according to their similarities. The clustering process in the 
parameter space is operated in two sub-spaces, i.e., a 3D translation 
space after scaling and a 3D rotation space. The similarities of the 
translation vectors are defined as the Euclidean distances in the 3D 
translation space, and the similarities of the rotation matrices are 
defined as the angular differences between two rotated unit vectors. A 
simple Euclidean clustering method (Rusu and Cousins, 2011) is used for 
the clustering of these parameter points in the two 3D spaces. The 
clustering criterion for grouping translation vectors is based on a dis-
tance threshold, i.e., dclust = 0.001 • D, where D denotes the diagonal 
length of the bounding box of the LiDAR point cloud. Then, only the 
cluster centres of parameter groups are kept as they reduce the variances 
of different potential transforms. 

Fig. 6 (a) depicts the grouping state of the translation vectors, where 
the translation vectors in different groups are represented by different 
colour points. In Fig. 6 (b), each point is a kept cluster centre, whose 3D 
coordinates correspond to the translation vector, and the short segment 
indicates a direction that is the result of applying the rotation matrix R̂ 
to a unit direction [1,0, 0]T. 

Then, each kept transform (i.e., a cluster centre in the parameter 
space) is applied on the extracted planes to find matching pairs between 
two data sources based on the coplanar criteria: 1) The angle between 
the normal vectors of the target plane and the reference plane is less than 
5 degrees, and 2) the distance dt,r

i between the target plane Πt
i and the 

reference plane Πr
i is less than 0.5 m. Here, dt,r

i is defined as 

dt,r
i =

d
(
pr

c,Πt
i

)
+ d
(
pt

c,Π
r
i

)

2
(9)  

where pr
c and pt

c are the centroids of supporting points of Πr
i and Πt

i, 
respectively. d(∗, ∗) represents the distance between two geometric el-
ements. 

Once the matched planes are obtained, the transform candidate is 
evaluated using a score metric 

Smatch = m+wp*
1

∑m
i=1(ΔDi + Δθi)

(10)  

where m is the number of matched plane pairs. In the second term, wp is 
a weighting factor, and ΔDi represents the distance between the i-th pair 
of matched planes, while Δθi denotes the angle between their normal 
vectors. It is worth noting that ΔDi and Δθi are very small values, thus 
we add them up without considering their physical units. Besides, wp is 
set to a very small value (0.0001 in our implementation) such that the 
second term is always less than 1. This way, m dominates the value of 
Smatch, while the second term will play a decisive role only when two 
matrices have the same number of matched planes. Following the 

computation of scores for all transform candidates, we filter out those 
with the lowest 80 % Smatch values, and the remaining transformation 
matrices are delivered to the next step to determine the optimal 
transformation. 

3.3. Transform optimization and optimal transform determination 

In this step, we further optimize the candidate transforms with 
confidence values, ultimately selecting an optimal transform among all 
the refined candidates. As the normal directions of planes are invariant 
to changes in scaling and translation, the optimization of transformation 
parameters is achieved by optimizing the rotation matrix R̂′ followed by 
the scale factor ŝ′ and translation vector ̂t′. 

Given n pairs of corresponding planes that conform to the same 
transform, we solve the following optimization problem to refine the 
rotation matrix R̂′, 

R̂′ = argmin
R

∑n

i=1
‖nΠr

i
− RnΠt

i
‖

2 (11)  

where nΠ*
i 

denotes the normal vector of plane Π*
i . R̂′ can be solved with 

the SVD method by constructing a covariance matrix similar to Eq. (7). 
Given a point pr

i lying on a plane Πr : [nΠr ,dΠr ], where dΠr denotes the 
distance between the origin of the coordinate system and the plane, and 
nΠr and dΠr satisfy (nΠr )

Tpr
i = dΠr . Based on Eq. (6) and Eq. (8), we can 

derive the following equation, 
(

nΠr
i

)T
t̂′ = dΠr

i
− ŝ′dΠt

i
(12) 

Thus, the scaling factor and the translation vector can be jointly 
refined by solving the following optimization problem: 

ŝ′, t̂′ = argmin
s,t

∑n

i=1
‖
(

nΠr
i

)T
t̂′
− dΠr

i
+ ŝ′dΠt

i
‖

2
(13)  

where n is the number of matched planes. 
After parameter optimization, the resulting transformation matrix is 

expressed as: 

T =

[
ŝ′R̂′ t̂′
0T 1

]

(14) 

Since the transformation matrix only considers the corresponding 
relationship of planes, it cannot be guaranteed to be globally optimal. 
Therefore, in the step of accurate verification, we use a confidence score 
that not only considers plane correspondences but also point corre-
spondences. The confidence score S′match is calculated by the following: 

Fig. 6. Clustering of the candidate transformation parameters in the 3D translation space. Each point in (a) represents a translation vector. Similar transformation 
parameters have been grouped together, and only their centres have been retained. Subfigure (b) displays these cluster centres, with short segments indicating the 
direction of a unit direction [1, 0,0]T for visualization. 
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S′match = wplanes • Rplanes +wpoints • Rpoints (15) 

where Rplanes and Rpoints denote the ratios of matched planes and 
matched points, respectively, i.e., 

Rplanes =
Splanes

total plane number
, (16)  

Rpoints =
number of matched points

total point number
, (17)  

and wplanes and wpoints are the weights for matched planes and points, 
respectively. Splanes has the same form as Smatch in Eq. (10). 

We calculate the S′match of each optimized transformation matrix and 
select the transformation with the highest score as the final coarse 
transformation. After the coarse registration, the Scale-ICP algorithm 
(Zinßer et al., 2005) is used to further refine the registration. 

4. Experiments 

4.1. Experiment setup 

The proposed method is implemented in C++ based on the PCL li-
brary (Rusu and Cousins, 2011). The optimization problem given in Eq. 
(13) is solved by the Gauss-Newton solver provided in the Ceres library 

(Agarwal and Mierle, 2022). All experiments are carried out on a laptop 
with an Intel Core i5-11400 h CPU and 16 GB RAM. 

We tested our approach on 3 datasets, including our own dataset 
“Campus” as well as two public datasets, namely DTU (Aanæs et al., 
2016) and Barn (Knapitsch et al., 2017). Table 1 provides an overview of 
these datasets. Each scene consists of a pair of point clouds obtained 
from different scanning methods. The overlapping ratio is estimated 
based on the coverage area of the reference data over the target data.  

a) Campus dataset: To collect the LiDAR point clouds, we used two 
distinct types of commercial scanners, a static scanner Leica BLK360 
and a mobile DJI AVIA sensor with the Fast-lio2 SLAM algorithm (Xu 
et al., 2022). The photogrammetric point clouds are generated from 
aerial images by the Autodesk ReCap software (Autodesk software 
ReCap Pro, 2022). The aerial images are captured by a digital camera 
mounted on an unmanned aerial vehicle (UAV) from an altitude of 
about 50 ~ 120 m. The ground truth registration parameters were 
obtained by manual registration. Fig. 7 demonstrates the point 
clouds from the Campus dataset.  

b) DTU dataset (Aanæs et al., 2016): Our experiments used the point 
clouds of two scenes from this dataset: DTU set016 and DTU set025. 
The point clouds of these scenes were reconstructed by structured 
light techniques and photogrammetric point clouds generated from 

Table 1 
Statistics on the test datasets.  

Datasets Scene name / 
Overlap ratio 

Acquisition technique/device Points (Million) Valid plane num. Line num. HGS num. 

Campus Campus Pair1 
(~30 %) 

BLK360  15.69 14 52 1750 
MVS  8.37 19 119 4969 

Campus Pair2 
(~30 %) 

BLK360  19.76 22 159 14,652 
MVS  19.22 25 193 11,720 

Campus Pair3 
(~40 %) 

BLK360  31.96 22 144 10,932 
MVS  7.60 17 102 3114 

Campus Pair4 
(~50 %) 

AVIA SLAM  3.71 33 409 121,484 
MVS  7.97 25 240 21,422 

Campus Pair5 
(>60 %) 

AVIA SLAM  2.66 26 261 50,408 
MVS  5.80 33 407 65,700 

Campus Pair6 
(>60 %) 

AVIA SLAM  2.65 20 113 6464 
MVS  6.57 21 151 6671 

DTU DTU set016 
(>80 %) 

Structured light  3.50 22 169 20,992 
MVS  2.55 19 137 6625 

DTU set025 
(>70 %) 

Structured light  3.47 19 134 10,756 
MVS  2.68 15 86 1493 

Barn Barn 
(>70 %) 

LiDAR  12.74 27 241 40,458 
MVS  10.62 18 118 4581  

Fig. 7. Point clouds from our Campus dataset. Top: images. Middle: LiDAR point clouds (acquired by BLK360 and DJI AVIA-based Fast-lio2 SLAM algorithm (Xu 
et al., 2022)). Bottom: photogrammetric point clouds. 
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the DTU Robot Image datasets (Aanæs et al., 2016). Notably, the 
original data of set016 and set025 exhibit precise registration. To 
evaluate the performance of the registration algorithm, we deliber-
ately applied random scale, rotation, and translation transformations 
to the original photogrammetric point clouds.  

c) Barn dataset (Knapitsch et al., 2017): The Barn dataset has a scene 
captured by a LiDAR point cloud and a photogrammetric point cloud. 

In this work, we evaluate the registration results based on two 
commonly used metrics as follows.  

• Root Mean Square Error (RMSE). RMSE is a measure of the average 
distance between two structures. We use the mathematical notations 
( ŝ’ R̂’ t̂’ ) that are consistent with Eq. (14) to present the trans-
formation parameters, i.e., 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
‖(ŝ′R̂′pi + t̂′) −

(
struthRtruthpi + ttruth

)
‖

2
2

√

(18) 

where N is the number of points in the target point cloud. Rtruth, ttruth, 
and struth are the ground-truth values of the parameters. 

• Parameter accuracy. It measures the similarity between the calcu-
lated transformation parameters and the ground-truth parameters. 

The parameter accuracy includes errors es, eR, and et in scale, rota-
tion, and translation, i.e., 

es =
⃒
⃒ŝ′ − struth

⃒
⃒

eR = arccos

(
tr
(
Rtruth(R̂′)T )

− 1
2

)

et = ‖̂t′ − ttruth‖2

(19) 

where tr(•) represents the trace of a matrix. | • | denotes the absolute 
value, and ‖ • ‖2 is the L2 norm. 

4.2. Experimental results 

We show the registration results of Campus-Pair1 in Fig. 8. This 
scene has many irregularly shaped plants on the ground, and non-planar 
points occupy a large proportion of the scene. To intuitively reveal the 
registration quality, we superimpose the colour-coded point clouds on 
the grayscale models, as shown in Fig. 8 (a), where the colour coding 
represents the error distribution. The efficacy of our matching method is 
further demonstrated by several cross-sections of the registered point 
clouds in Fig. 8 (b), where the red dots and blue dots correspond to the 
target points and the reference points, respectively. Similarly, the 
registration results on the DTU dataset are shown in Fig. 9. These results 

Fig. 8. Registration results of Campus-Pair1.  

Fig. 9. Registration results of two scenes from the DTU dataset.  
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demonstrate the robustness of our proposed approach across diverse 
scenarios. 

4.3. Comparisons 

We compared the proposed approach with a few widely used 
methods, including FPFHSAC (Holz et al., 2015), K4PCS (Theiler et al., 
2014), FGR (Zhou et al., 2016), PLADE (Chen et al., 2019), and Scale- 
ICP (Ying et al., 2009). Among these methods, only the Scale-ICP and 
our method can recover the unknown scales in addition to other regis-
tration parameters. To compare with other methods that assume known 
scales, we provide the competing methods with the ground-truth scale 

parameters. The results of the comparative visualization without ICP 
refinement are shown in Fig. 10, and the statistics are reported in 
Table 2. 

In Fig. 10, we demonstrate the visual comparison of the coarse 
registration results from different methods. A coarse registration is 
considered successful if it has led to convergence in the subsequent ICP- 
based fine registration step. We have observed that even with the 
ground-truth scale parameters, methods like FPFHSAC (Holz et al., 
2015), K4PCS (Theiler et al., 2014), and FGR (Zhou et al., 2016) only 
succeeded when the input point clouds exhibited high overlap. The 
K4PCS method relies on feature points to construct the 4-point 
congruent sets, hence it tends to miss sufficient supporting 

Fig. 10. Visual comparison between the coarse registration results from different methods: FPFHSAC (Holz et al., 2015), K4PCS (Theiler et al., 2014), FGR (Zhou 
et al., 2016), PLADE (Chen et al., 2019), and Scale-ICP (Ying et al., 2009). The red crosses indicate that the corresponding coarse registration has led to a failed ICP- 
based fine registration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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correspondences when there are not enough extracted feature points due 
to the limited overlap between the two datasets. The FGR method failed 
when the relative orientations of the two input point clouds were far 
apart from each other. As for the Scale-ICP method (Ying et al., 2009), it 
converged to successful coarse registrations only in cases where sub-
stantial overlap exists. It is worth noting that although both PLADE 
(Chen et al., 2019) and our method have succeeded in the registration of 
all the point cloud pairs, our method outperforms the PLADE method in 
most cases based on evaluation metrics (as reported in Table 2). Our 
method has two advantages. First, our method has an important mea-
sure to estimate the scale factor of the cross-source point clouds, while 
PLADE assumes given scale parameters (or it requires an additional 
process to restore the scale parameter). Second, it reduces the elements 
in the feature vectors to reduce the correlation of the feature variables, 
thus it has better efficiency, as analysed in the following section. 

4.4. Efficiency analysis 

Table 3 presents the runtime analysis of our proposed approach 
along with several competing methods. Notably, FPFHSAC (Holz et al., 
2015), FGR (Zhou et al., 2016), and Scale-ICP (Ying et al., 2009) operate 
based on pointwise correspondences. These methods become computa-
tionally expensive when the number of points increases. In contrast, 
K4PCS (Theiler et al., 2014), PLADE (Chen et al., 2019), and our method 
employ the structure querying strategies and thus demonstrate a clear 
advantage in terms of efficiency. As shown in the last column in Table 1, 
the number of HGSs is much smaller than that of points. Although the 
computational complexity of the feature matching is O(n2), the number 
of querying items is significantly reduced using the constructed HGSs, 
resulting in improved computational efficiency. 

To evaluate the robustness of the proposed method against small 
overlap ratios, we tested our method on the Barn dataset that provides 9 
small LiDAR scans of a scene, as shown in Fig. 11. In this test, the 

Table 2 
Statistics on the comparative results on different datasets using different methods: FPFHSAC (Holz et al., 2015), K4PCS (Theiler et al., 2014), FGR (Zhou et al., 2016), 
PLADE (Chen et al., 2019), and Scale-ICP (Ying et al., 2009).  

Datasets Overlap ratio Metrics FPFHSAC K4PCS FGR PLADE Scale-ICP Ours 

Campus Campus Pair1 
(~30 %) 

es Manual Manual Manual Manual  4.36  0.02 
eR(◦) 24.88 177.20 58.70 0.28  71.32  0.87 
et(m) 12.38 117.70 51.89 0.17  49.01  0.56 
RMSE(m) 15.20 66.40 33.92 0.22  34.18  0.58 

Campus Pair2 
(~30 %) 

es Manual Manual Manual Manual  4.62  0.01 
eR(◦) 17.66 164.70 153.20 0.43  170.10  0.40 
et(m) 56.84 185.20 83.36 0.65  83.24  0.23 
RMSE(m) 33.32 99.60 108.10 0.33  87.14  0.76 

Campus Pair3 
(~40 %) 

es Manual Manual Manual Manual  4.40  0.01 
eR(◦) 7.82 173.50 175.80 0.60  175.00  0.10 
et(m) 8.04 160.10 170.10 0.79  63.13  0.22 
RMSE(m) 6.38 61.17 64.67 0.43  63.22  0.17 

Campus Pair4 
(~50 %) 

es Manual Manual Manual Manual  1.41  0.01 
eR(◦) 6.51 123.90 3.26 1.69  166.25  0.70 
et(m) 6.87 24.01 2.93 0.94  23.63  0.42 
RMSE(m) 4.11 29.09 1.81 0.49  26.99  0.24 

Campus Pair5 
(>60 %) 

es Manual Manual Manual Manual  1.63  0.06 
eR(◦) 34.33 150.10 23.86 1.68  149.20  1.90 
et(m) 13.37 26.52 7.97 0.64  49.70  0.93 
RMSE(m) 8.75 20.48 4.62 0.27  24.69  0.41 

Campus Pair6 
(>60 %) 

es Manual Manual Manual Manual  1.37  0.07 
eR(◦) 9.94 10.28 178.10 0.60  175.30  1.29 
et(m) 7.03 14.94 91.50 0.45  93.23  0.93 
RMSE(m) 13.55 8.83 63.45 0.61  56.89  1.04 

DTU  DTU set016 
(>80 %) 

es Manual Manual Manual Manual  0.97  0.07 
eR(◦) 11.98 3.84 6.18 0.28  111.80  0.21 
et(m) 16.72 4.48 6.52 0.37  44.81  0.48 
RMSE(m) 4.27 0.95 1.66 0.21  15.20  0.15 

DTU set025 
(>70 %) 

es Manual Manual Manual Manual  0.02  0.02 
eR(◦) 5.13 1.69 2.80 1.16  1.98  0.41 
et(m) 7.16 1.57 3.34 1.39  1.52  0.43 
RMSE(m) 2.00 1.14 0.99 0.36  0.96  0.20 

Barn  Barn 
(>70 %) 

es Manual Manual Manual Manual  2.08  0.01 
eR(◦) 5.17 168.70 1.41 0.18  176.80  0.18 
et(m) 1.94 4.45 0.33 0.11  2.54  0.01 
RMSE(m) 1.96 16.24 0.36 0.11  13.30  0.03  

Table 3 
Statistics on the running times (in seconds) on different experiment cases using different methods including FPFHSAC (Holz et al., 2015), K4PCS (Theiler et al., 2014), 
FGR (Zhou et al., 2016), PLADE (Chen et al., 2019), and Scale-ICP (Ying et al., 2009).   

Campus Pair1 Campus Pair2 Campus Pair3 Campus Pair4 Campus Pair5 Campus Pair6 DTU set016 DTU set025 Barn  

FPFHSAC  49.8  339.6  94.7  28.9  38.2  144.7  55.1  115.0  139.3 
K4PCS  41.8  28.7  120.9  52.0  71.9  118.3  129.4  117.1  33.3 
FGR  73.2  65.7  42.0  36.1  63.5  39.9  39.8  99.9  31.2 
PLADE  13.6  23.8  17.5  11.6  12.1  13.4  22.6  9.2  11.4 
Scale-ICP  334.8  871.1  476.3  179.7  125.9  106.3  194.2  346.1  63.6 
Ours  5.8  8.6  11.6  8.8  9.2  5.2  7.7  6.8  7.3  
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reference data is the MVS point cloud, and the target data are the 9 
independent laser scans. The overlap ratios between the target data and 
the reference data range from 20 % to 50 %. This test has revealed that 
the proposed method can generally achieve effective registration with 
an overlap greater than 40 %, and it can even succeed in some cases with 
a low overlap of up to 25 %. It is worth noting that the registration of the 
b09 data failed since only 3 pairs of corresponding planes were captured. 
Such a limitation arose due to that our proposed method requires suf-
ficient pairs of corresponding planes to generate a reasonably large 
number of HGSs. In Table 4, we provide the number of matched planes 
after the application of optimal transformations, along with the regis-
tration errors while matching b01-b08 with the MVS point cloud. From 
both the visual and quantitative results, we can conclude that our 
method has good robustness and efficacy in the registration of cross- 
source point clouds of challenging man-made structures. 

Our approach, nevertheless, has limitations despite the advantages 
demonstrated previously. The method assumes that a scene is dominated 
by piecewise planar structures. This assumption prohibits its applica-
bility to scenes that primarily consist of curved surfaces. 

5. Conclusions 

Combining LiDAR scanning and photogrammetric reconstruction 
technologies can provide complete and accurate 3D representations of 
complex objects or scenes. The complementary nature of these tech-
niques allows for improved scene coverage, geometric details, and visual 
appearance in the final reconstructed models. The proposed approach in 

this work focuses on the registration of LiDAR scans and photogram-
metric point clouds. We introduce a structural geometric set called HGS, 
which captures structural-level features of scenes, enabling automatic 
registration without prior knowledge of the scale parameters and 
improving robustness against varying point densities. Our work has 
shown that using high-level structural information facilitates the 
computation of correspondence queries, leading to higher accuracy and 
efficiency in the matching stage. This strategy also enables the recovery 
of transformation parameters when the point clouds exhibit different 
overlap ratios. Extensive experiments on a set of challenging scenes have 
validated the effectiveness and robustness of the proposed approach for 
the global coarse registration of LiDAR scans and photogrammetric 
point clouds. In future work, we plan to incorporate independently 
detected local structural patterns to better handle scenarios with limited 
overlap. 
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Table 4 
Statistics on the number of matched planes and the corresponding registration errors.   

b01 b02 b03 b04 b05 b06 b07 b08 Min Max Average 

Plane num. 8 6 6 6 9 7 6 5 5 9  6.7 
Es 0.03 0.14 0.19 0.02 0.01 0.01 0.03 0.03 0.01 0.19  0.06 
ER(◦) 0.37 0.43 0.14 0.25 0.22 0.13 0.89 0.22 0.13 0.89  0.33 
Et(m) 0.10 0.22 0.26 0.04 0.03 0.02 0.05 0.11 0.02 0.26  0.10 
RMSE(m) 0.12 0.35 0.48 0.07 0.04 0.03 0.14 0.12 0.03 0.48  0.17  
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the work reported in this paper. 
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Hyyppäb, J., Stilla, U., 2020. Registration of large-scale terrestrial laser scanner 
point clouds: a review and benchmark. ISPRS J. Photogramm. Remote Sens. 163, 
327–342. https://doi.org/10.1016/j.isprsjprs.2020.03.013. 

El-Hakim, S., Gonzo, L., Voltolini, F., Girardi, S., Rizzi, A., Remondino, F., Whiting, E., 
2007. Detailed 3D modelling of castles. Int. J. Archit. Comput. 5 (2), 199–220. 
https://doi.org/10.1260/1478-0771.5.2.200. 

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model 
fitting with applications to image analysis and automated cartography. Commun. 
ACM 24 (6), 381–395. https://doi.org/10.1145/358669.358692. 

Furukawa, Y., Hernández, C., 2015. Multi-view stereo: a tutorial. Found. Trends Comput. 
Graph. vis. 9 (1–2), 1–148. https://doi.org/10.1561/0600000052. 

Ghamisi, P., Rasti, B., Yokoya, N., Wang, Q., Hofle, B., Bruzzone, L., Bovolo, F., Chi, M., 
Anders, K., Gloaguen, R., Atkinson, P.M., Benediktsson, J.A., 2019. Multisource and 
multitemporal data fusion in remote sensing: a comprehensive review of the state of 
the art. IEEE Geosci. Remote Sens. Mag. 7 (1), 6–39. https://doi.org/10.1109/ 
MGRS.2018.2890023. 

Holz, D., Ichim, A.E., Tombari, F., Rusu, R.B., Behnke, S., 2015. Registration with the 
point cloud library: a modular framework for aligning in 3D. IEEE Robot. Autom. 
Mag. 22 (4), 110–124. https://doi.org/10.1109/MRA.2015.2432331. 

Huang, R., Xu, Y., Yao, W., Hoegner, L., Stilla, U., 2021. Robust global registration of 
point clouds by closed-form solution in the frequency domain. ISPRS J. Photogram. 
Rem. Sens. 171, 310–329. https://doi.org/10.1016/j.isprsjprs.2020.11.014. 

Huang, X., Zhang, J., Fan, L., Wu, Q., Yuan, C., 2017. A systematic approach for cross- 
source point cloud registration by preserving macro and micro structures. IEEE 
Trans. Image Process. 26 (7), 3261–3276. https://doi.org/10.1109/ 
TIP.2017.2695888. 

Huang, X., Mei, G., Zhang, J., 2020. Feature-metric registration: a fast semi-supervised 
approach for robust point cloud registration without correspondences. 2020 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR). 

Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V., 2017. Tanks and temples: benchmarking 
large-scale scene reconstruction. ACM Trans. Graphics 36 (4), 1–13. https://doi.org/ 
10.1145/3072959.3073599. 

Li, M., Lafarge, F., 2021. Planar Shape Based Registration for Multi-modal Geometry. In: 
BMVC 2021. 

Li, M., Rottensteiner, F., Heipke, C., 2019. Modelling of buildings from aerial LiDAR 
point clouds using TINs and label maps. ISPRS J. Photogramm. Remote Sens. 154, 
127–138. https://doi.org/10.1016/j.isprsjprs.2019.06.003. 

Liu, W., Zang, Y., Xiong, Z., Bian, X., Wen, C., Lu, X., Wang, C., Junior, J.M., 
Gonçalves, W.N., Li, J., 2023. 3D building model generation from MLS point cloud 
and 3D mesh using multi-source data fusion. Int. J. Appl. Earth Obs. Geoinf. 116, 
103171 https://doi.org/10.1016/j.jag.2022.103171. 

Mellado, N., Aiger, D., Mitra, N.J., 2014. Super 4PCS fast global pointcloud registration 
via smart indexing. Comput. Graph. Forum 33 (5), 205–215. https://doi.org/ 
10.1111/cgf.12446. 

Mellado, N., Dellepiane, M., Scopigno, R., 2015. Relative scale estimation and 3D 
registration of multi-modal geometry using growing least squares. IEEE Trans. vis. 
Comput. Graph. 22 (9), 2160–2173. https://doi.org/10.1109/TVCG.2015.2505287. 

Mura, M.D., Prasad, S., Pacifici, F., Gamba, P., Chanussot, J., Benediktsson, J.A., 2015. 
Challenges and opportunities of multimodality and data fusion in remote sensing. 
Proc. IEEE 22nd European Signal Processing Conference 103 (9), 1585–1601. 
https://doi.org/10.1109/JPROC.2015.2462751. 

Parmehr, E.G., Fraser, C.S., Zhang, C., 2016. Automatic parameter selection for intensity- 
based registration of imagery to LiDAR data. IEEE Trans. Geosci. Remote Sens. 54 
(12), 7032–7043. https://doi.org/10.1109/TGRS.2016.2594294. 

Peng, F., Wu, Q., Fan, L., Zhang, J., You, Y., Lu, J., Yang, J.Y., 2014. Street view cross- 
sourced point cloud matching and registration. In: 2014 IEEE International 
Conference on Image Processing (ICIP), pp. 2026–2030. https://doi.org/10.1109/ 
ICIP.2014.7025406. 

Rister, B., Horowitz, M.A., Rubin, D.L., 2017. Volumetric image registration from 
invariant keypoints. IEEE Trans. Image Process. 26 (10), 4900–4910. https://doi. 
org/10.1109/TIP.2017.2722689. 

Rusinkiewicz, S., 2019. A symmetric objective function for ICP. ACM Trans. Graphics 38 
(4), 1–7. https://doi.org/10.1145/3306346.3323037. 

Rusu, R. B., Cousins, S., 2011. 3D is here: Point cloud library (PCL), In: Proc. ICRA, May 
2011, pp. 1-4. doi:10.1109/ICRA.2011.5980567. 

Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast point feature histograms (FPFH) for 3D 
registration. In: 2009 IEEE Int. Conf. Robot. Autom., pp. 3212-3217. doi:10.1109/ 
ROBOT.2009.5152473. 

Saiti, E., Theoharis, T., 2020. An application independent review of multimodal 3d 
registration methods. Comput. Graph. 91, 153–178. https://doi.org/10.1016/j. 
cag.2020.07.012. 

Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for point-cloud shape 
detection. Comput. Graph. Forum 26 (2), 214–226. https://doi.org/10.1111/j.1467- 
8659.2007.01016.x. 

Thapa, A., Pu, S., Gerke, M., 2009. Semantic feature based registration of terrestrial point 
clouds. Proc. Int. Soc. Photogramm. Remote Sens. 230–235. 

Theiler, P.W., Wegner, J.D., Schindler, K., 2014. Keypoint-based 4-points congruent sets- 
automated marker-less registration of laser scans. ISPRS J. Photogram. Rem. Sens. 
96, 149–163. https://doi.org/10.1016/j.isprsjprs.2014.06.015. 

Tombari, F., Salti, S., Di Stefano, L., 2010. Unique shape context for 3D data description. 
In: Proc. ACM Work. 3D Object Retr, pp. 57–62. https://doi.org/10.1145/ 
1877808.1877821. 

Wang, H., Liu, Y., Hu, Q., Wang, B., Chen, J., Dong, Z., Guo, Y., Wang, W., Yang, B., 
2023. RoReg: pairwise point cloud registration with oriented descriptors and local 
rotations. IEEE TPAM I, 2023. https://doi.org/10.1109/TPAMI.2023.3244951. 

Wang, Y., Solomon, J., 2019. Deep closest point: learning representations for point cloud 
registration. In: 2019 IEEE/CVF International Conference on Computer Vision 
(ICCV), pp. 3523–3532. https://doi.org/10.1109/ICCV.2019.00362. 

Wang, Y., Yang, B., Chen, Y., Liang, F., Dong, Z., 2021. JoKDNet: a joint keypoint 
detection and description network for large-scale outdoor TLS point clouds 
registration. Int. J. Appl. Earth Obs. Geoinf. 104, 102534 https://doi.org/10.1016/j. 
jag.2021.102534. 

Xu, Y., Boerner, R., Yao, W., Hoegner, L., Stilla, U., 2019. Pairwise coarse registration of 
point clouds in urban scenes using voxel-based 4-planes congruent sets. ISPRS J. 
Photogram. Rem. Sens. 151, 106–123. https://doi.org/10.1016/j. 
isprsjprs.2019.02.015. 

Xu, W., Cai, Y., He, D., Lin, J., Zhang, F., 2022. Fast-lio2: fast direct lidar-inertial 
odometry. IEEE Trans. Robot. 38 (4), 2053–2073. https://doi.org/10.1109/ 
TRO.2022.3141876. 

Yan, F., Nan, L., Wonka, P., 2016. Block assembly for global registration of building 
scans. ACM Trans. Graphics 35 (6), 1–11. https://doi.org/10.1145/ 
2980179.2980241. 

Yang, B., Dong, Z., Liang, F., Liu, Y., 2016. Automatic registration of large-scale urban 
scene point clouds based on semantic feature points. ISPRS J. Photogram. Rem. Sens. 
113, 43–58. https://doi.org/10.1016/j.isprsjprs.2015.12.005. 

Ying, S., Peng, J., Du, S., Qiao, H., 2009. A scale stretch method based on ICP for 3D data 
registration. IEEE Trans. Autom. Sci. Eng. 6 (3), 559–565. https://doi.org/10.1109/ 
TASE.2009.2021337. 

Zhang, J., Yao, Y., Deng, B., 2022. Fast and robust iterative closest point. IEEE Trans. 
Pattern Anal. Mach. Intell. 44 (7), 3450–3466. https://doi.org/10.1109/ 
TPAMI.2021.3054619. 

Zhou, Q., Park, P., Koltun, V., 2016. Fast global registration. In: 2016 European 
Conference on Computer Vision (ECCV). https://doi.org/10.1007/978-3-319- 
46475-6_47. 

Zinßer, T., Schmidt, J., Niemann, H., 2005. Point set registration with integrated scale 
estimation. In: International Conference on Pattern Recognition and Image 
Processing (PRIP 2005), pp. 116-119. 

M. Li et al.                                                                                                                                                                                                                                       

https://doi.org/10.1007/s11263-016-0902-9
https://doi.org/10.1007/s11263-016-0902-9
https://doi.org/10.1145/1399504.1360684
https://doi.org/10.1145/1399504.1360684
https://doi.org/10.1109/CVPR.2019.00733
https://doi.org/10.1109/CVPR.2019.00733
https://doi.org/10.1016/j.isprsjprs.2007.05.012
https://doi.org/10.1016/j.isprsjprs.2007.05.012
https://doi.org/10.1016/S0924-2716(99)00014-3
https://doi.org/10.1016/S0924-2716(99)00014-3
https://doi.org/10.1016/j.jag.2004.10.006
https://doi.org/10.1109/TGRS.2019.2952086
https://doi.org/10.1016/j.isprsjprs.2020.03.013
https://doi.org/10.1260/1478-0771.5.2.200
https://doi.org/10.1145/358669.358692
https://doi.org/10.1561/0600000052
https://doi.org/10.1109/MGRS.2018.2890023
https://doi.org/10.1109/MGRS.2018.2890023
https://doi.org/10.1109/MRA.2015.2432331
https://doi.org/10.1016/j.isprsjprs.2020.11.014
https://doi.org/10.1109/TIP.2017.2695888
https://doi.org/10.1109/TIP.2017.2695888
http://refhub.elsevier.com/S1569-8432(24)00087-6/h0090
http://refhub.elsevier.com/S1569-8432(24)00087-6/h0090
http://refhub.elsevier.com/S1569-8432(24)00087-6/h0090
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1016/j.isprsjprs.2019.06.003
https://doi.org/10.1016/j.jag.2022.103171
https://doi.org/10.1111/cgf.12446
https://doi.org/10.1111/cgf.12446
https://doi.org/10.1109/TVCG.2015.2505287
https://doi.org/10.1109/JPROC.2015.2462751
https://doi.org/10.1109/TGRS.2016.2594294
https://doi.org/10.1109/ICIP.2014.7025406
https://doi.org/10.1109/ICIP.2014.7025406
https://doi.org/10.1109/TIP.2017.2722689
https://doi.org/10.1109/TIP.2017.2722689
https://doi.org/10.1145/3306346.3323037
https://doi.org/10.1016/j.cag.2020.07.012
https://doi.org/10.1016/j.cag.2020.07.012
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
http://refhub.elsevier.com/S1569-8432(24)00087-6/h0170
http://refhub.elsevier.com/S1569-8432(24)00087-6/h0170
https://doi.org/10.1016/j.isprsjprs.2014.06.015
https://doi.org/10.1145/1877808.1877821
https://doi.org/10.1145/1877808.1877821
https://doi.org/10.1109/TPAMI.2023.3244951
https://doi.org/10.1109/ICCV.2019.00362
https://doi.org/10.1016/j.jag.2021.102534
https://doi.org/10.1016/j.jag.2021.102534
https://doi.org/10.1016/j.isprsjprs.2019.02.015
https://doi.org/10.1016/j.isprsjprs.2019.02.015
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1145/2980179.2980241
https://doi.org/10.1145/2980179.2980241
https://doi.org/10.1016/j.isprsjprs.2015.12.005
https://doi.org/10.1109/TASE.2009.2021337
https://doi.org/10.1109/TASE.2009.2021337
https://doi.org/10.1109/TPAMI.2021.3054619
https://doi.org/10.1109/TPAMI.2021.3054619
https://doi.org/10.1007/978-3-319-46475-6_47
https://doi.org/10.1007/978-3-319-46475-6_47

	Hybrid geometry sets for global registration of cross-source geometric data
	1 Introduction
	2 Related work
	2.1 Global coarse registration
	2.2 Cross-source registration

	3 Proposed method
	3.1 HGSs construction
	3.2 Coarse registration
	3.3 Transform optimization and optimal transform determination

	4 Experiments
	4.1 Experiment setup
	4.2 Experimental results
	4.3 Comparisons
	4.4 Efficiency analysis

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


