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A B S T R A C T

Registering point clouds of forest environments is an essential prerequisite for LiDAR applications in precision
forestry. State-of-the-art methods for forest point cloud registration require the extraction of individual tree
attributes, and they have an efficiency bottleneck when dealing with point clouds of real-world forests with
dense trees. We propose an automatic, robust, and efficient method for the registration of forest point clouds.
Our approach first locates tree stems from raw point clouds and then matches the stems based on their
relative spatial relationship to determine the registration transformation. The algorithm requires no extra
individual tree attributes and has quadratic complexity to the number of trees in the environment, allowing
it to align point clouds of large forest environments. Extensive experiments on forest terrestrial point clouds
have revealed that our method inherits the effectiveness and robustness of the stem-based registration strategy
while exceedingly increasing its efficiency. Besides, we introduce a new benchmark dataset that complements
the very few existing open datasets for the development and evaluation of registration methods for forest
point clouds. The source code of our method and the dataset are available at https://github.com/zexinyang/
GlobalMatch.
1. Introduction

The light detection and ranging (LiDAR) technology, especially
terrestrial laser scanning (TLS), has brought forest inventories to a
brand new 3D era (Calders et al., 2020; Disney, 2019; Liang et al.,
2016). The registration of TLS scans collected from different viewpoints
is a fundamental and necessary precondition for subsequent forestry
applications. However, the registration of forest point clouds remains
a challenging task due to the mutual occlusion of forest structures.
The most common and reliable practice is marker-based registration,
which requires manually placing and transporting markers and is thus
expensive, laborious, and time-consuming. Approaches dedicated to
urban scenes rely on either local (Cai et al., 2019; Huang et al.,
2022) or global (Chen et al., 2019) descriptors, which are effective
for well-structured urban environments. However, due to the complex-
ity, irregularity, and instability of forest environments, these methods
become fragile and ineffective when applied to forest point clouds.
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Given the fact that tree stems are the most stable structure in the
forest environment, existing forest point cloud registration methods
rely on the extracted tree stems and other attributes for the registra-
tion. These methods share a similar two-stage workflow: stem mapping
followed by stem matching (Henning and Radtke, 2006, 2008; Liang
and Hyyppä, 2013; Liu et al., 2017; Kelbe et al., 2016a,b; Tremblay
and Béland, 2018; Dai et al., 2020; Ge et al., 2021; Polewski et al.,
2019; Guan et al., 2019; Hauglin et al., 2014; Hyyppä et al., 2021). The
stem mapping stage locates tree stem positions and extracts necessary
individual tree attributes, e.g., diameter at breast height (DBH) and
tree height. The second stage establishes correspondences of tree stems
across a pair of point clouds by matching their positions and attributes,
which is typically conducted in an iterative trial-and-error manner (see
Fig. 1(a)). Although this stem-based strategy has been continuously
improved in the past decades, significant limitations remain as follows.

(1) Inefficiency in stem mapping. Most methods (Liang and Hyyppä,
2013; Kelbe et al., 2016a,b; Liu et al., 2017; Tremblay and Béland,
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2018; Polewski et al., 2019; Guan et al., 2019; Hyyppä et al., 2021)
adopt an existing algorithm originally developed for tree detection
or parameter estimation to identify tree stems. However, the existing
stem detection algorithms (Othmani et al., 2011; Liang et al., 2011;
Kelbe et al., 2015; Xia et al., 2015; Yang et al., 2016a; Polewski et al.,
2017; Ye et al., 2020; Hyyppä et al., 2020) can be time-consuming
since they introduce computationally intensive steps (e.g., individual
tree segmentation, leaf and wood separation, and subsection stem
modeling) to guarantee the completeness of detection and the high
accuracy of extracted tree attributes.

(2) Ambiguities and inefficiency in stem matching. Most existing stem
atching methods rely on both tree locations and other attributes

e.g., DBH, tree height, or tree crown) (Liu et al., 2017; Kelbe et al.,
016a,b; Tremblay and Béland, 2018; Dai et al., 2020; Ge et al., 2021;
auglin et al., 2014; Dai et al., 2019), and thus they are sensitive to
mbiguities in the extracted tree attributes. For example, it is common
hat multiple trees in a plantation forest have similar DBH and height
alues. Besides, the overwhelming computational burden is a fatal flaw
f most stem-based matching algorithms. Specifically, their running
ime grows dramatically with the increasing number of trees due to the
xhaustive nature of their verification based on the iterative trial-and-
rror alignment framework, which results in their inability to handle
orest data containing a large number of trees, not to mention the
emand for highly accurate tree attributes.
(3) Insufficient data for evaluation. Though improvements have been

reported, the actual progress is vague to the research community be-
cause experiments are conducted on different closed datasets. To enable
reliable evaluation and comparison of forest point cloud registration
methods, open-access benchmark datasets with a large data volume
and diverse forestry scenarios are urgently needed but unfortunately
lacking.

In this work, we aim to resolve the above challenges to achieve
efficient and robust registration of forest point clouds. Since exploiting
individual tree attributes slows down stem mapping and makes stem
matching sensitive to complex forest environments, we build an effi-
cient attribute-free registration method named GlobalMatch for forest
point clouds. The proposed approach relies on tree positions only,
avoiding the computationally expensive and unstable tree attribute
derivation process. It consists of a stem mapping algorithm that can
efficiently locate tree stems in raw scans and a simple yet significantly
efficient stem matching algorithm that needs no extra tree attributes
but only stem positions. Moreover, most existing forest registration
methods follow an iterative trial-and-error procedure (Henning and
Radtke, 2006, 2008; Liang and Hyyppä, 2013; Kelbe et al., 2016a,b; Liu
et al., 2017; Tremblay and Béland, 2018; Dai et al., 2020; Guan et al.,
2020; Ge et al., 2021; Hauglin et al., 2014; Dai et al., 2019; Polewski
et al., 2019; Hyyppä et al., 2021) and have a complexity between cubic
and exponential with regard to the number of trees (Liang and Hyyppä,
2013; Kelbe et al., 2016a; Tremblay and Béland, 2018; Polewski et al.,
2019) or keypoints (Guan et al., 2020; Dai et al., 2020). By contrast,
our work falls in the inlier-grouping framework and has quadratic
time complexity, so it can be applied to point clouds of large forest
environments or those with dense tree instances. The comparison of
these two underlying registration frameworks is illustrated in Fig. 1
and detailed in Section 2.2.

Extensive experiments show that our approach inherits effectiveness
and robustness and meanwhile exceedingly increases the efficiency of
the stem-based registration scheme. For comprehensive evaluation and
valid comparison of registration algorithms, we also introduce a new
benchmark dataset named Tongji-Trees, to complement the very rare
publicly available data for marker-free registration of TLS scans of
forest areas. In summary, our main contributions include:

(1) A fast stem mapping method that can robustly extract stem posi-
tions from raw forest scans.
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(2) An efficient, robust, and deterministic stem matching algorithm
that does not require iteratively extracting the correspondences
and estimating the registration transformation. Our algorithm has
quadratic time complexity, making it suitable for registering point
clouds of large forestry areas.

(3) A benchmark dataset for evaluating forest point cloud registration
methods. The new dataset consists of twenty point clouds col-
lected from four forest plots with diversity concerning understory
vegetation and the density, distributions, and species of trees.

2. Related work

In light of the extensive literature on point cloud registration
(Maiseli et al., 2017; Dong et al., 2020), in this section, we mainly
review the works that are most relevant to ours, namely, stem mapping,
stem-based registration, and benchmark datasets.

2.1. Stem mapping

Existing stem mapping solutions mainly fall into two categories:
range image-based methods (Haala et al., 2004; Forsman and Halme,
2005; Forsman et al., 2012) and unordered point-based methods (Oth-
mani et al., 2011; Liang et al., 2011; Kelbe et al., 2015; Xia et al.,
2015; Yang et al., 2016a; Polewski et al., 2017; Ye et al., 2020; Shao
et al., 2020). The former category of methods, taking advantage of the
ordered image structure, can efficiently extract tree stems by grouping
the pixels of the range image based on local properties. However, range
images are not always available, which hampers their use. The latter
category of methods slices the point cloud vertically and identifies
tree stems by fitting 2D circles or 3D cylinders. A series of contigu-
ous circles or cylinders are then connected to form a complete tree
stem. Typically, complex shape fitting (e.g., ellipse Ye et al., 2020 or
tapered cylinder Kelbe et al., 2015), skeleton optimization (Othmani
et al., 2011), individual tree segmentation (Yang et al., 2016a; Guan
et al., 2019), supervised point classification (Polewski et al., 2017), and
growth direction constraints (Xia et al., 2015; Ye et al., 2020) are used
to improve detection integrity and mapping accuracy. However, these
computationally intensive steps harm the efficiency of stem mapping.

We want to point out that existing stem mapping techniques pursue
the completeness of detection results or the accuracy of calculated
tree attributes using computationally expensive steps, which may not
be necessary. In registration, not every single tree contributes to the
registration. A good registration result can be guaranteed as long
as parts of trees in the overlapping area have been identified. It is,
therefore, valuable to design a fast stem mapping approach for forest
point cloud registration. In this work, we introduce a fast stem mapping
method to locate stems from raw scans. As our registration method does
not require accurate tree attributes, our stem mapping does not have
computationally expensive steps for complete stem structure recovery.

2.2. Stem-based registration

Marker-free forest registration techniques generally use tree stems
as basic primitives. They broadly fall into two registration frameworks:
iterative trial-and-error (Fig. 1(a)) and inlier-grouping (Fig. 1(b)).

2.2.1. Iterative trial-and-error based methods
In these methods (Henning and Radtke, 2006, 2008; Liang and

Hyyppä, 2013; Kelbe et al., 2016a,b; Liu et al., 2017; Tremblay and
Béland, 2018; Dai et al., 2020; Guan et al., 2020; Ge et al., 2021;
Hauglin et al., 2014; Dai et al., 2019; Polewski et al., 2019; Hyyppä
et al., 2021), finding the optimal transformation is achieved through
an iterative process. First, a minimum sample set (MSS) is chosen to
calculate a transformation. Using this transformation, source stems are
then transformed to the coordinate system of target stems. Finally,
correspondences are extracted by matching close trees with similar tree
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Fig. 1. Comparison between the existing forest point cloud registration framework
and ours. (a) The iterative trial-and-error framework. Given two sets of keypoints,
correspondences and transformations are estimated and refined iteratively until the
optimal transformation is found. (b) Our inlier-grouping framework. With two sets of
stem positions extracted from forest scans, our method first establishes correspondences
by grouping all inliers, and then it computes the optimal transformation using the
correspondences. Compared to the methods that follow the iterative trial-and-error
framework, our method establishes correspondences and computes the transformation
only once.

attributes and employed to re-estimate the transformation. The above
three steps are iteratively conducted until the optimal transformation
(i.e., the one with the largest number of corresponding trees) is found.
One well-known paradigm of this type of method is the random sample
consensus (RANSAC) algorithm (Fischler and Bolles, 1981; Kelbe et al.,
2015; Tremblay and Béland, 2018).

These methods are robust but computationally expensive since, in
each iteration, all the stem positions are transformed and used to
determine the inliers. Attempting all possible MSSs is thus not computa-
tionally affordable. For example, restricted by the heavy computational
burden of examining all possible stem matches, Liang and Hyyppä
(2013) only manage to achieve 2D horizontal alignment of forest TLS
scans and remain the vertical translation unsolved. On the other hand,
sampling MSS randomly (i.e., RANSAC) does not perform well at a
high outlier ratio (which is common in forest environments) since its
running time increases exponentially with the outlier ratio (Cai et al.,
2019; Kelbe et al., 2015). To enable the practical registration of point
clouds of large forest environments, current studies have proposed
three strategies to address the computational inefficiency.

The first strategy is to discard unlikely MSSs. Specifically, the
similarities derived from relative stem positions (Hauglin et al., 2014;
Kelbe et al., 2016a,b; Liu et al., 2017; Tremblay and Béland, 2018;
Hyyppä et al., 2021) and additional tree attributes (e.g., DBH Hauglin
et al., 2014; Kelbe et al., 2016a,b; Liu et al., 2017; Tremblay and
Béland, 2018 and tree height Hauglin et al., 2014; Liu et al., 2017)
are used to eliminate false MSSs and sort the remaining ones. These
methods work well for forests of small or medium sizes. However, most
of them remain inefficient when dealing with large-scale forests. For
example, the memory usage and execution time of Kelbe et al. (2016a)
can reach prohibitively large when the forest scene has more than
50 trees, while its efficient version (Tremblay and Béland, 2018) also
takes more than an hour for registering scans containing more than
100 trees. Moreover, they can become impractical in plantation forests
due to the ambiguities of tree attributes. Using only the locations of
trees as input, the 2D coarse registration method presented by Hyyppä
et al. (2021) can efficiently co-register multiplatform LiDAR data in
large-scale forests. However, the algorithm is designed to solve a 2D
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registration problem and only works with well-leveled point clouds
(i.e., the Z axis of the point cloud points upward).

The second strategy is to reduce the number of keypoints. Recent
studies introduce novel keypoints, e.g., visual occlusion points identi-
fied from shaded areas (Guan et al., 2020) or mode points extracted
from tree crowns (Dai et al., 2019, 2020). Compared to stems, these
local keypoints typically have a smaller number. They are used to
register forest scans (Dai et al., 2019; Guan et al., 2020) or to guide
the stem matching (Dai et al., 2020) to bypass the computational
burden of matching numerous stems. Notwithstanding the enhanced
efficiency, these local keypoints require high-quality input point clouds
that are still challenging to acquire for complex forest environments (Ge
et al., 2021). Furthermore, similar to stem positions, the increase in the
number of keypoints also results in a dramatic increase in computation
time (Guan et al., 2020).

The third strategy is to use advanced optimization techniques. Ge
et al. (2021) register multiview forest point clouds by adopting the
4-points congruent sets algorithm (Aiger et al., 2008; Ge, 2017) that
reduces the number of trials required to establish a reliable registra-
tion. Polewski et al. (2019) apply simulated annealing metaheuris-
tic (van Laarhoven and Aarts, 1987) to determine the optimal corre-
sponding trees between multiplatform LiDAR point clouds. Dai et al.
(2019) consider the alignment as a maximum likelihood estimation
problem and employ the coherent point drift algorithm (Myronenko
and Song, 2010) to fuse forest airborne and terrestrial point clouds.

2.2.2. Inlier-grouping based methods
This category of methods seeks the optimal transformation in a

one-shot manner. Specifically, all corresponding trees (i.e., inliers) are
first extracted and then employed to determine the optimal transfor-
mation. On the one hand, rather than verifying the transformation and
refining correspondences in each iteration as in the iterative trial-and-
error framework, inlier-grouping methods extract correspondences and
estimate the transformation only once and are thus generally more
efficient (Zhao et al., 2021). On the other hand, as the transformation is
estimated only once, the resulting transformation may not be accurate
if the correspondences are unreliable (Gressin et al., 2013; Dai et al.,
2019). Therefore, the key to these methods is to extract true correspon-
dences (i.e., inliers) and eliminate false ones (i.e., outliers) Cai et al.,
2019.

Though the inlier-grouping framework has been widely adopted in
registration techniques targeting man-made objects (Chen and Bhanu,
2007; Albarelli et al., 2010; Aldoma et al., 2012) or urban scenes (Yang
et al., 2016b; Cai et al., 2019), it is rarely used in forest point cloud
registration. To the best of our knowledge, the co-registration approach
for multiplatform forest LiDAR data proposed by Guan et al. (2019)
is the only one that falls into this framework. For each stem position
extracted from raw scans via individual tree segmentation, the horizon-
tal coordinates and neighboring stem positions are used to construct a
2D triangulated irregular network (TIN). Then, stem correspondences
are extracted by matching 2D TINs (where the matching quality is
measured by the number of similar triangles within the TINs) and
employed to determine the registration transformation. Their method
can reach a satisfactory accuracy (i.e., less than 20 cm) in co-registering
multiplatform LiDAR scans, while their running time has not been
reported.

In this work, we propose a stem matching method that follows
the inlier-grouping framework. We generalize the urban matching ap-
proach of Yang et al. (2016b) to forest environments, and we tailor
three main improvements for robust and efficient forest point cloud
registration. First, we utilize only geometric coordinates because the
semantic features defined in their method are not available in forest
environments. Second, by constructing local triangles that encode rel-
ative stem positions, we reduce the algorithmic complexity concerning
the number of trees from sextic to quadratic. Last, unlike their greedy
grouping algorithm that directly adopts the line-to-line geometric con-
sistency of Chen and Bhanu (2007), we propose a graph-to-graph
consistency measure that guarantees the robustness in triangle-based

correspondence grouping.
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Fig. 2. The pipeline of the proposed method. (a) Input point clouds. (b) Stem positions. (c) Stem matches. (d) Registration result. Given a pair of forest TLS point clouds as
input (a), the stem positions of trees are first extracted from each point cloud (b). Then, correspondences between stem positions are established by exploiting relative distances
of the stem positions (c). Finally, registration is achieved by applying the transformation computed from the stem correspondences (d).
2.3. Benchmark datasets

Existing benchmark datasets for point cloud registration typically
target man-made objects, indoor scenes, or urban environments (Mian
et al., 2006; Theiler et al., 2015; Sanchez et al., 2017; Chen et al., 2019;
Dong et al., 2020). Very few datasets are publicly available for the
evaluation of registration methods for forest point clouds. To the best of
our knowledge, WHU-FGI (Dong et al., 2020) and ETH-Trees (Theiler
et al., 2015) are the only two datasets for this purpose, which contain
only five and six scans of a single forest plot, respectively. The other FGI
forest dataset (Liang et al., 2018) is intended for assessing tree attribute
extraction algorithms, which cannot be used for evaluating registration
methods due to the inaccessibility of the registration ground truth. In
this work, we release Tongji-Trees, a new benchmark dataset consist-
ing of twenty scans for the comprehensive evaluation of marker-free
registration methods for TLS scans of forest areas.

3. Methodology

Our method takes as input a pair of forest TLS scans and outputs
a rigid transformation to register the two scans. It consists of three
main stages illustrated in Fig. 2: stem mapping, stem matching, and
registration, which are detailed as follows.

3.1. Stem mapping

This stage aims to identify stem positions, i.e., the intersections of
stem axes and the ground surface, from a raw TLS scan. This is achieved
by first extracting stems, followed by intersecting the stem axes and the
ground surface.

To avoid interference from unstable structures such as forest canopy
and understory vegetation, we identify the stem points of trees be-
fore the extraction of individual stems. To filter out forest canopies,
we create a digital terrain model (DTM) based on the input point
cloud (Zhang et al., 2016) and mark the points within 0.2–3 m from
the DTM as the understory layer. Before excluding understory shrubs,
we downsample the data of the understory layer for efficiency reasons.
We exploit a voxel grid structure with a resolution of 1 cm, and for each
voxel, only the point that is closest to its centroid is kept. Considering
that tree stems typically have a vertical orientation, we identify tree
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Fig. 3. An example of stem extraction results (a close-up view). The reconstructed
DTM is visualized in brown and the extracted tree stems are in green. In this point
cloud, the number of points is 30,574,461, while the number of extracted tree stems
is only 116. Our method uses the extracted tree stems for registration.

stems by looking into the pointwise verticality (Demantké et al., 2012;
Weinmann et al., 2013) defined as

𝑣 = 1 − |

|

𝑛𝑧|| , (1)

where 𝑛𝑧 represents the third component of the normal vector of
a point. A value of 1 indicates that the local surface of a point is
perfectly vertically oriented, while a zero value indicates a perfectly
horizontal local geometry. In this work, we use a fixed radius of 10 cm
for querying the neighbors of a point using the method described
in Behley et al. (2015) to estimate its normal using principal component
analysis (Sanchez et al., 2020). We mark the points whose verticality is
higher than a threshold 𝛾 as stem points. Because most real-world trees
are near vertical, we empirically set 𝛾 to 0.9 in all our experiments.
With this threshold, stem points are identified as those whose normal
deviates within 5.8 degrees from the horizontal direction. A smaller 𝛾
is recommended if the majority of trees in the data are inclined. By
extracting the stem points, we also significantly reduce the amount
of data to be further processed. Fig. 3 shows an example of the stem
extraction results, in which the number of points in the extracted stems
is only about 1∕80 the size of the initial input.

With the stem points identified from the previous step, we ex-
tract individual tree stems by detecting cylinders using the RANSAC
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Fig. 4. Stem matching. (a) Stem positions. (b) Triangles encoding the local relative relationship of stem positions. (c) Locally matched triangle pairs. Each pair is assigned a random
color for the visualization purpose. (d) Globally matched triangle pairs and stem matches. In this example, 12 stem matches (denoted by the white lines in (d)) are extracted from
53 target stem positions (denoted by the blue dots in (a)) and 53 source stem positions (denoted by the red dots in (a)). The numbers of initial triangles for the target and source
scans are both 523 (b). The numbers of locally and globally matched triangle pairs are 43 (c) and 13 (d), respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
algorithm (Fischler and Bolles, 1981). Since detecting multiple cylin-
ders by sequentially applying RANSAC is inefficient and sub-optimal
(e.g., a previous wrong detection usually harms the subsequent de-
tection) (Pham et al., 2016), we first employ the Euclidean clustering
algorithm (Rusu et al., 2009b) to separate the stem points into small
groups each containing a single stem (or in very rare cases few adjacent
stems for trees with multi-branch structures near the ground surface).
Then for the points of each stem, we apply RANSAC to detect a cylinder.
It is worth noting that a few incorrectly detected stems will not affect
the subsequent registration because they do not have correspondences
in the other point cloud and are thus filtered out in the stem matching
stage. Finally, we obtain a set of stem positions  = {𝐥𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑙} by
intersecting the axes of the cylinders with the DTM model, where 𝑁𝑙
denotes the number of stem positions.

3.2. Stem matching

The goal of this stage is to establish the correspondences between
the previously extracted stem positions of the two input point clouds.
Our stem matching method differs from most existing methods in the
following two aspects: (1) it requires only the information of stem
positions while existing methods (Liu et al., 2017; Kelbe et al., 2016a,b;
Hauglin et al., 2014; Tremblay and Béland, 2018; Dai et al., 2020; Ge
et al., 2021) also require additional tree attributes, such as DBH, tree
height, or tree crown; (2) our stem matching is a deterministic non-
iterative process while existing methods (Henning and Radtke, 2006,
2008; Liang and Hyyppä, 2013; Kelbe et al., 2016a,b; Liu et al., 2017;
Tremblay and Béland, 2018; Dai et al., 2020; Guan et al., 2020; Ge
et al., 2021; Hauglin et al., 2014; Dai et al., 2019; Polewski et al., 2019;
Hyyppä et al., 2021) follow an iterative trial-and-error procedure that
is less efficient.

Our stem matching consists of three steps as shown in Fig. 4. We
first construct a set of local triangles for each scan from its stem
positions to encode their relative spatial relationship. These triangles
are then matched in the subsequent local matching and global matching
steps to obtain the correspondences between the stem positions of the
two input scans. In the following, we elaborate on each step of our stem
matching algorithm and derive its overall time complexity.
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3.2.1. Triangle construction
RANSAC-based methods (Kelbe et al., 2016a,b; Tremblay and Bé-

land, 2018; Dai et al., 2020) commonly use an exhaustive approach
to create triangles from the stem positions, i.e., any triplet of stem
positions forms a triangle. Thus, the number of triangle pairs to be
verified using this exhaustive approach is
(

𝑁⋆
𝑙
3

)

⋅
(

𝑁 ′
𝑙
3

)

,

where 𝑁⋆
𝑙 and 𝑁 ′

𝑙 denote the number of stems in the source and
target scans, respectively. With this exhaustive approach, the number of
triangles to be matched increases explosively with the number of stems
extracted from the input point clouds. We observe that only certain
triangles whose vertices have correspondences in the other point cloud
contribute to stem matching and it is sufficient to build triangles by
only connecting the adjacent stem positions. To this end, we construct
only local triangles by connecting every stem position with its 𝐾-
nearest stem positions. This simple strategy significantly reduces the
number of triangle pairs to be verified from (𝑁⋆

𝑙 )
3 ⋅ (𝑁 ′

𝑙 )
3 to 𝑁⋆

𝑙 ⋅ 𝑁 ′
𝑙 .

Specifically, with an increasing number of detected stem positions in
a scan, the number of triangles created by the exhaustive approach
increases cubically, i.e.,

𝑁𝑒 =
1
6
𝑁3

𝑙 − 1
2
𝑁2

𝑙 + 1
3
𝑁𝑙 , (2)

while that of our method increases linearly, i.e.,

𝑁𝐾 = 𝐾2 −𝐾
2

𝑁𝑙 , (3)

where 𝑁𝑙 is the number of stem positions, and 𝑁𝑒 and 𝑁𝐾 denote the
number of triangles constructed by the exhaustive approach and our
method, respectively. In our implementation, we set 𝐾 to 20, which
ensures sufficient local triangles to be constructed to establish the cor-
respondences between the two sets of stem positions. Fig. 5 depicts how
the number of triangles increases for both methods. Our triangle con-
struction step has quasilinear complexity of 

(

𝑁⋆
𝑙 log𝑁⋆

𝑙 +𝑁 ′
𝑙 log𝑁

′
𝑙
)

.
With the set of triangles  ⋆ = {𝑡⋆𝑖 , 1 ≤ 𝑖 ≤ 𝑁⋆

𝑡 } constructed
from the source scan and the set of triangles  ′ = {𝑡′𝑖 , 1 ≤ 𝑖 ≤ 𝑁 ′

𝑡 }
constructed from the target scan, where 𝑁⋆

𝑡 and 𝑁 ′
𝑡 denote the number

of triangles in the source and target scans respectively, we establish the
correspondences between the source and target triangles in two steps:
a local matching step and a global matching step.
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Fig. 5. The relationship between the number of constructed triangles and the number
f stem positions. Curves for the exhaustive approach and our method (with 𝐾 = 20)
re plotted using stem positions extracted from the proposed Tongji-Trees dataset. For
ur method, the number of triangles increases linearly with respect to the number of
tem positions, while the increase for the exhaustive approach is cubic.

.2.2. Local matching
In this step, we establish triangle-wise correspondences between

he two sets of triangles. This can be easily achieved by comparing
he edge lengths of two triangles from the two sets. For efficiency
easons, we first sort the vertices of each triangle such that the one
pposite to the longest edge comes first and the triangle is in counter-
lockwise orientation. The following lemma lays the foundation for our
riangle-wise local matching.

emma 1. If three stem positions in the source scan 𝐥⋆𝑖 , 𝐥
⋆
𝑗 , 𝐥

⋆
𝑘 ∈ ⋆

have correspondences in the target scan 𝐥′𝑖 , 𝐥
′
𝑗 , 𝐥

′
𝑘 ∈ ′, the source triangle

▵ 𝑙⋆𝑖 𝑙
⋆
𝑗 𝑙

⋆
𝑘 ∈  ⋆ is congruent with the target triangle ▵ 𝑙′𝑖 𝑙

′
𝑗 𝑙
′
𝑘 ∈  ′.

As the contrapositive of Lemma 1, the following lemma is equally
true:

Lemma 2. Given three pairs of stem positions ⟨𝐥⋆𝑖 , 𝐥
′
𝑖⟩, ⟨𝐥

⋆
𝑗 , 𝐥

′
𝑗⟩, ⟨𝐥

⋆
𝑘 , 𝐥

′
𝑘⟩, if

the source triangle ▵ 𝑙⋆𝑖 𝑙
⋆
𝑗 𝑙

⋆
𝑘 ∈  ⋆ is not congruent with the target triangle

▵ 𝑙′𝑖 𝑙
′
𝑗 𝑙
′
𝑘 ∈  ′, then at least one pair of the stem positions does not match.

By verifying any pair of source and target triangles, we accumu-
late potentially matched triangle pairs (Lemma 1) and filter out false
matches (Lemma 2). In our work, we define the local dissimilarity
between two triangles 𝑡1 and 𝑡2 as

𝐷𝑙𝑜𝑐𝑎𝑙(𝑡1, 𝑡2) =
3
∑

𝑖=1

|

|

𝜀⋆𝑖 − 𝜀′𝑖|| ,∀ ||𝜀
⋆
𝑖 − 𝜀′𝑖|| < 𝜖, (4)

where 𝜀⋆𝑖 and 𝜀′𝑖 denote respectively the length of the corresponding
edges in the two triangles. 𝜖 is the maximum allowed difference in edge
length for two triangles to be matched, which is empirically set to 5 cm
in all our experiments. Note that if the difference in edge length of any
pair of edges is greater than 𝜖, the two triangles are not considered
matched. For each triangle 𝑡′𝑗 in the target scan, we find its potential
corresponding triangle 𝑡⋆𝑖 in the source scan as the one that has the
minimum dissimilarity value, resulting in a locally matched triangle
pair 𝑢 = ⟨𝑡⋆𝑖 , 𝑡

′
𝑗⟩. The local matching step has quadratic complexity of


(

𝑁⋆
𝑡 ⋅𝑁 ′

𝑡
)

, where 𝑁⋆
𝑡 and 𝑁 ′

𝑡 are the number of triangles constructed
in the source and target scans, respectively.

After local matching, a considerable portion of triangles for which
local matches could not be found will be deleted. Since the locally
76

matched triangle pairs may contain outliers, as seen in Fig. 4(c), a g
Fig. 6. Two examples illustrating the global dissimilarity between two locally matched
triangle pairs 𝑢1 = ⟨𝑡⋆1 , 𝑡

′
1⟩ and 𝑢2 = ⟨𝑡⋆2 , 𝑡

′
2⟩. (a) 𝑢1 and 𝑢2 form a consensus set,

i.e., 𝐷𝑔𝑙𝑜𝑏𝑎𝑙(𝑢1 , 𝑢2) < 𝜖. (b) 𝑢2 does not agree with 𝑢1 (i.e., 𝐷𝑔𝑙𝑜𝑏𝑎𝑙(𝑢1 , 𝑢2) > 𝜖) and thus
they cannot form a consensus set.

global matching step is necessary because two triangles being con-
gruent is only a necessary (but not sufficient) condition for the stem
positions to be correspondent.

3.2.3. Global matching
This step aims to establish the correspondences between the two

sets of stem positions encoded in the source triangles and target tri-
angles respectively. In theory, this can be achieved by matching two
undirected fully connected graphs whose vertices are the stem positions
of the source and target scans, respectively. We approach the graph
matching by looking for the largest consensus set of the two graphs.

Unlike the local matching step that compares individual triangles,
our global matching step uses triangle pairs as primitives. Before ex-
plaining our global matching, we first define a metric called global
dissimilarity to measure the consistency between two pairs of locally
matched triangles. Given two locally matched triangle pairs 𝑢1 = ⟨𝑡⋆1 , 𝑡

′
1⟩

and 𝑢2 = ⟨𝑡⋆2 , 𝑡
′
2⟩ (see Fig. 6), we build two undirected fully connected

graphs, i.e., 𝑔⋆ from the vertices of 𝑡⋆1 and 𝑡⋆2 , and 𝑔′ from the vertices of
𝑡′1 and 𝑡′2. Then the global dissimilarity between the two locally matched
riangle pairs 𝑢1 and 𝑢2 is defined as

𝐷𝑔𝑙𝑜𝑏𝑎𝑙(𝑢1, 𝑢2) = max |
|

⋆
𝑖 −  ′

𝑖
|

|

, (5)

here ⋆
𝑖 and  ′

𝑖 denote the lengths of the corresponding edges re-
pectively in 𝑔⋆ and 𝑔′. Since 𝑡⋆1 and 𝑡′1, 𝑡⋆2 and 𝑡′2 are respective
ongruent triangle pairs, it is sufficient to test only the edges connecting
ertices of different triangles (i.e., the edges denoted by the dashed
ines in Fig. 6). 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 measures how much adding a new pair of locally
atched triangles disagrees with an existing pair. If a locally matched

riangle pair is consistent with any existing pair, we call it a globally
atched pair, just to differentiate it from the locally matched pairs.
ote that Yang et al. (2016b) compare only the relative positions of

he centroids of two triangles, which has ambiguities. See Fig. 6(b) for
n example, where the distance between the centroids of 𝑡′1 and 𝑡′2 is
dentical to that of 𝑡⋆1 and 𝑡⋆2 but the two pairs of triangles do not match.

We obtain the optimal correspondences between the two sets of
tem positions by finding the largest consensus set. For each locally
atched triangle pair 𝑢𝑖, our method grows a consensus set by accumu-

ating globally matched triangle pairs 𝑢𝑗 that agree with 𝑢𝑖 (i.e., 𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑢𝑖, 𝑢𝑗 ) < 𝜖, where 𝜖 is the same threshold used in the local matching
tep). Fig. 7 illustrates the growth of a consensus set of globally
atched triangle pairs. Each consensus set grows independently and

he one that has accumulated the most globally matched triangle pairs

ives us the optimal correspondences between the two sets of stem
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Fig. 7. An example illustrating the growth of a consensus set. Given an initial set of locally matched triangle pairs  = {𝑢1 , 𝑢2 , 𝑢3 , 𝑢4}, 𝑢𝑖 = ⟨𝑡⋆𝑖 , 𝑡
′
𝑖⟩ (a), our algorithm starts

ccumulating globally matched triangle pairs from an initial pair ⟨𝑡⋆1 , 𝑡
′
1⟩ (b). In each iteration, our method tries to find one more globally matched triangle pair and adds it to the

rowing set ((c) and (d)). The growing process stops when no more triangle pair that is consistent with the initial pair can be found. In this example, the triangle pair 𝑢4 does
ot agree with the initial pair 𝑢1 due to 𝐷𝑔𝑙𝑜𝑏𝑎𝑙(𝑢1 , 𝑢4) > 𝜖 (e). Finally, a set of globally matched triangle pairs  † = {𝑢1 , 𝑢2 , 𝑢3} is obtained, giving us the correspondences of the
tem positions  = {𝑐1 , 𝑐2 , 𝑐3 , 𝑐4} (f). The correspondences are denoted by the green lines connecting the stem positions of the two scans.
ositions. The process for finding the largest consensus set is detailed
n Algorithm 1.

The global matching step has quadratic complexity of
(

𝑁𝑢 ⋅ (𝑁𝑢 − 1)
)

, where 𝑁𝑢 represents the number of locally matched
riangle pairs. It is worth noting that the growth of a consensus set can
e immediately stopped when a sufficient number of globally matched
riangle pairs have been accumulated. However, the growing process
nly involves comparing edge lengths and it is quite efficient to find
he largest consensus set using an exhaustive search because of the
mall number of triangle pairs that remained after the local matching
tep. Such an exhaustive search guarantees the optimal consensus set
s always used for the registration, ensuring robustness in registration.
ote that our global matching step is carried out over the already
atched local triangle pairs, and it has quadratic complexity (measured

gainst the number of locally matched triangle pairs). Existing methods,
uch as Kelbe et al. (2016a,b), Tremblay and Béland (2018), Dai
t al. (2020), perform an exhaustive search on the initial sets of stem
ositions, which has sextic time complexity (measured against the
umber of stem positions). Thus, the complexity of our global matching
s several orders of magnitude smaller. For example, for the scan pairs
hown in Fig. 4, our global matching does 2756 times triangle matching
est, while the methods (Kelbe et al., 2016a,b; Tremblay and Béland,
018) will have to evaluate 548 777 476 times.

.2.4. Overall time complexity
Before deriving the overall time complexity of the proposed stem

atching algorithm, notations for quantities are first recalled for read-
bility. 𝑁𝑙, 𝑁𝑡, and 𝑁𝑢 are the number of detected stem positions,
onstructed triangles, and locally matched triangle pairs, respectively.
he superscript ⋆ represents the source scan, while the superscript ′
enotes the target scan.

The overall time complexity of our method can be derived as fol-
ows. We can consider the majority of input stem positions are inliers,
.e., 𝑁⋆

𝑙 ≈ 𝑁 ′
𝑙 ≈ 𝑁𝑙. In this case, every triangle can find a local match in

he other scan. Thus, the number of locally matched triangle pairs 𝑁𝑢 ≈
⋆
𝑡 ≈ 𝑁 ′

𝑡 ≈ 𝑁𝑡, which leads to the worst-case time complexity. Because
f the linear relationship between 𝑁𝑡 and 𝑁𝑙 (see Eq. (3)), the overall
omplexity can be given by 

(

2 ⋅𝑁𝑙 log𝑁𝑙 +𝑁𝑙 ⋅𝑁𝑙 +𝑁𝑙 ⋅ (𝑁𝑙 − 1)
)

,
hich can be further simplified to 

(

𝑁2
𝑙
)

. Therefore, our method has
uadratic time complexity.

.3. Registration

From the correspondences of stem positions, a rigid transformation
an be computed to register the two input scans. As there is no scale
77

hange among TLS scans, this transformation has 6 degrees of freedom o
Algorithm 1 Global matching
Input: a set of locally matched triangle pairs 
Output: correspondences of stem positions 
1: Initialization:  ← ∅; each consensus set  †

𝑖 ← ∅
2: for each 𝑢𝑖 ∈  do
3: insert 𝑢𝑖 into  †

𝑖
4: for each 𝑢𝑗 ∈  , 𝑖 ≠ 𝑗 do
5: if 𝐷𝑔𝑙𝑜𝑏𝑎𝑙(𝑢𝑖, 𝑢𝑗 ) < 𝜖 then
6: insert 𝑢𝑗 into  †

𝑖
7: end if
8: end for
9: end for

10:  †
𝑚𝑎𝑥 ← max({ †

𝑖 })
11: for each pair of corresponding vertices 𝑐𝑖 ∈  †

𝑚𝑎𝑥 do
12: insert 𝑐𝑖 into 
13: end for

(DoFs) and can be written as a 4 × 4 matrix with the following structure

𝐓 =
[

𝐑 𝐭
𝟎 1

]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑅11 𝑅12 𝑅13 𝑡𝑥
𝑅21 𝑅22 𝑅23 𝑡𝑦
𝑅31 𝑅32 𝑅33 𝑡𝑧
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

where 𝐑 is the 3-DoF rotation and 𝐭 is the 3-DoF translation. More
information about computing a rigid transformation from a set of
correspondences can be found in Sorkine-Hornung and Rabinovich
(2017) and Besl and McKay (1992).

Using the above computed transformation, we can register the two
input point clouds into the same coordinate system. Considering that
scanners nowadays typically produce well-leveled point clouds, the
complexity of the registration problem for such data can be reduced
to 4-DoF, i.e., a translation (3 DoFs) and a rotation around the Z axis
(1 DoF), and the final registration transformation has the following
structure,

�̇� =
[

𝐑(𝜙) 𝐭
𝟎 1

]

=

⎡

⎢

⎢

⎢

⎢

⎣

cos𝜙 − sin𝜙 0 𝑡𝑥
sin𝜙 cos𝜙 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

where 𝐑(𝜙) defines the 1-DoF rotation about the azimuth 𝜙. In this
case, the 4-DoF registration can be achieved by the alignment of the
two scans in the 2D horizontal direction (3 DoFs) and a 1D verti-
cal translation (1 DoF). Specifically, with the 𝑥 and 𝑦 coordinates

f the corresponding stem positions, we estimate the 2D horizontal
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registration parameters 𝜙, 𝑡𝑥, and 𝑡𝑦 by solving a least-squares prob-
lem (Sorkine-Hornung and Rabinovich, 2017). Using the 𝑧 coordinates
of the corresponding stem positions ⟨𝑧⋆𝑖 , 𝑧

′
𝑖⟩, we calculate the verti-

cal translation 𝑡𝑧 = 1
𝑁𝑐

∑𝑁𝑐
𝑖=1

(

𝑧′𝑖 − 𝑧⋆𝑖
)

, where 𝑁𝑐 is the number of
orrespondences of stem positions.

Our method allows both 6-DoF registration and 4-DoF registration.
hen aligning forest TLS scans that are well leveled, the 4-DoF so-

ution is preferred since it takes advantage of the scanners and may
chieve better coarse registration accuracy. We provide an experimen-
al comparison between our 6-DoF and 4-DoF registration strategies in
ection 5.4.3. For the remaining experiments, we employed the 4-DoF
olution.

After the coarse registration of the two scans, a fine registration
lgorithm can be employed to further improve the registration accu-
acy. Although there are fine registration algorithms (e.g., Shao et al.,
020) developed for forest scenarios, we use the iterative closest points
ICP) algorithm (Besl and McKay, 1992) because of its simplicity and
ffectiveness.

.4. Implementation details

For efficiency, we parallelize computationally intensive parts of the
roposed algorithm. Specifically, the following parts of our algorithm
re parallelized:

• neighborhood query, verticality calculation, cylinder detection,
and stem position computation in the stem mapping stage;

• local matching and global matching in the stem matching stage.

. Benchmark dataset

.1. Study areas

The Tongji-Trees dataset contains TLS scans of four plantation forest
lots, which were collected in Shanghai, China (31.15◦ N, 121.12◦ E).

The plot size varies from Plots #1 to #4, with a cover area of 65 × 50,
0 × 50, 80 × 40, and 65 × 55 m2, respectively. Metasequoia trees
re irregularly distributed in Plots #1 and #2, with an average height
f 19 m and 23 m and a density of 1036 trees/ha and 1210 trees/ha,
espectively. As for Plots #3 and #4, Liriodendron chinense trees with
n average height of 7 m and Sapindus mukorossi trees with an average
eight of 10 m were planted in rows with spacing of 5 m and 3 m,
espectively. Compared to Plots #1 and #2, Plots #3 and #4 are
parser, with a density of 433 trees/ha and 982 trees/ha, respectively.
s shown in the top row of Fig. 8, the surface of Plot #1 is covered with
ild grass. Plot #2 is partially overgrown with breast-high shrubs. Both
lots #3 and #4 have bare but humped surfaces. The mutual occlusion
f complex shrubs in Plot #2 makes it more challenging for registration
han in the other plots. Table 1 summarizes the information of all the
lots in the Tongji-Trees dataset.

.2. Data acquisition

By exploiting the ‘‘multi-scan’’ data acquisition approach (Liang
t al., 2016), each of the four plots was scanned at five positions,
.e., one at the center and the other four away around the center,
orming five scans for each plot and twenty scans for the whole dataset.
78
he bottom row of Fig. 8 illustrates the scanner positions for each plot
n the Tongji-Trees dataset. During field surveys, we used a Z+F 5010C
errestrial laser scanner to capture the point cloud data. The scanner
as a measurement accuracy of ±3 mm at 50 m, a measurement range
f 0.3–180 m, and a view angle of 360◦ × 320◦.

.3. Ground truth

Before scanning, we strictly leveled the scanner and set up spherical
eference markers that could help us to produce correspondences for
eriving the ground-truth registration transformation. Each marker was
ounted on a tripod or placed stably on the ground (rather than fixed

n tree stems, which usually causes occlusions). Each raw scan contains
bout 30 million points (see Table 1), with each point represented
s a 7D vector (𝑥𝑦𝑧 coordinates, 𝑟𝑔𝑏 colors, and an intensity value).
lthough our registration method relies on 3D coordinates only, the
rovided attributes may benefit other methods or studies. We identi-
ied the markers and served them as correspondences to compute the
round-truth transformation matrix for every possible pair of scans.
he ground-truth transformation matrices have an average registration
ccuracy of 2.8 mm and thus can be used to evaluate the performance
f registration methods.

. Results and discussion

.1. Experimental setup

Our algorithm is implemented in C++ using Point Cloud Library
Rusu and Cousins, 2011) and OpenMP (Dagum and Menon, 1998). All
xperiments were carried out on a laptop with an Intel Core 2.60 GHz
7 CPU (8 threads) and 32 GB RAM.

.1.1. Test datasets
We have tested the proposed method on our Tongji-Trees dataset,

he WHU-FGI dataset (Dong et al., 2020), and the ETH-Trees dataset
Theiler et al., 2015). The WHU-FGI dataset contains five scans cap-
ured from a 32 × 32 m2 plot of a natural forest dominated by Scots
ines, located at Evo, Finland (61.19◦ N, 25.11◦ E). The ETH-Trees
ataset consists of six scans acquired in a forest with a large amount of
nderwood.

.1.2. Evaluation metrics
To provide a comprehensive evaluation, we evaluated separately the

esults of coarse registration and fine registration (i.e., using the ICP
lgorithm Besl and McKay, 1992 as a post-process). We have recorded
oth matrix-based errors and pointwise errors. Furthermore, we have
alculated the success rate of coarse registration methods.

• Matrix-based errors, i.e., the rotation error 𝑒𝑅 and the translation
error 𝑒𝑡 between the estimated transformation parameters 𝐑, 𝐭 and
the corresponding ground-truth values �̃�, 𝐭:

𝑒𝑅 = arccos
(

tr(�̃�𝐑⊺) − 1
2

)

, (8)

𝑒𝑡 = ‖

‖

𝐭 − 𝐭‖
‖

, (9)

where 𝑒𝑅 measures the difference between the two rotation ma-
trices 𝐑 and �̃�, and 𝑒 quantifies the magnitude of the difference
𝑡
Table 1
Statistics on the Tongji-Trees benchmark dataset.

Plot ID Main tree species Plot size Tree height Tree density Number of points of each scan

(m2) (m) (trees/ha) S1 S2 S3 S4 S5

#1 Metasequoia 65 × 50 19 1036 33,540,068 33,469,682 13,553,220 34,488,581 33,652,969
#2 Metasequoia 90 × 50 23 1210 33,661,875 33,891,812 30,574,461 34,193,448 33,197,039
#3 Liriodendron chinense 80 × 40 7 433 35,510,140 35,169,411 33,680,749 33,445,603 37,076,208
#4 Sapindus mukorossi 65 × 55 10 982 37,189,070 35,274,954 37,113,902 35,598,180 35,783,768
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Fig. 8. The four plots of the Tongji-Trees dataset. (a) Plot #1. (b) Plot #2. (c) Plot #3. (d) Plot #4. The top row shows a representative view and the bottom row shows the five
scanning positions (S1–S5) for each plot. The numbers indicate the distances (in meters) between the related scanning positions.
Table 2
Quantitative evaluation of stem mapping results on the three test datasets, i.e., Tongji-Trees (Plots #1–#4),
WHU-FGI (Dong et al., 2020), ETH-Trees (Theiler et al., 2015).

Metric Results of stem mapping (%)

Plot #1 Plot #2 Plot #3 Plot #4 WHU-FGI ETH-Trees Average

Precision 96.0 97.6 96.1 92.9 97.1 90.8 95.1
Recall 96.8 96.2 94.6 95.5 95.8 93.4 95.4
F1-score 96.4 96.9 95.4 94.2 96.4 92.1 95.2
of the two translation vectors 𝐭 and 𝐭. It is worth noting that
the matrix-based metric is not straightforward for comparing two
registration methods because a method may perform better in
one measure but worse in the other (see Plot #1 in Table 4). In
this case, it is not obvious to determine which method is more
effective.

• Pointwise error, proposed by Chen et al. (2019). Given a source
scan ⋆ = {𝐩⋆𝑖 , 1 ≤ 𝑖 ≤ 𝑁⋆

𝑝 } containing 𝑁⋆
𝑝 points, the pointwise

error is defined as

𝑒𝑝 =
1

𝑁⋆
𝑝

𝑁⋆
𝑝

∑

𝑖=1

‖

‖

‖

𝐑𝐩⋆𝑖 + 𝐭 −
(

�̃�𝐩⋆𝑖 + 𝐭
)

‖

‖

‖

. (10)

Compared to the matrix-based errors, the pointwise error is more
intuitive in comparing the performance of different registration
methods.

• Success rate. A coarse registration is considered successful if the
registered point cloud is sufficiently close to the ground truth,
i.e., with a pointwise error less than a given threshold. This
threshold was set to 50 cm for our test datasets following the
evaluation method described in Chen et al. (2019). The success
rate of coarse registration is measured by the number of successful
registrations divided by the total number of scan pairs.

Matrix-based and pointwise errors are determined primarily by the
quality of point clouds and the consistency of keypoints extracted from
them. These metrics are only meaningful if the algorithm finds the
correct correspondences. A failed registration will result in random and
extremely large error values (> meters). Furthermore, successful coarse
results can be optimized via the ICP algorithm to achieve similarly sat-
isfactory accuracy (see Table 4). However, when a coarse registration
fails, the fine-registration step becomes infeasible, resulting in complete
failure in pairwise registration. From this point of view, we consider the
success rate as the main metric for evaluating coarse registration.
79
5.2. Results

5.2.1. Stem mapping results
We quantitatively evaluated the effectiveness of our stem mapping

method. Using the manually identified stem positions as ground truth,
we calculated the precision, recall, and F1-score of our automatic
detection results. As can be seen from Table 2, our stem mapping
approach achieved 95.1%, 95.4%, and 95.2% in terms of average
precision, recall, and F1-score, respectively on all six test plots.

5.2.2. Registration results
Following the previous studies (Liang and Hyyppä, 2013; Liu et al.,

2017; Tremblay and Béland, 2018; Guan et al., 2020; Dai et al., 2020),
we aligned scans at the corners of each plot to the one at the center.
This is a common practice for registering point clouds of LiDAR-based
forest inventory.

Fig. 9 demonstrates the final registration results of our proposed
method on the three test datasets. As can be seen from the close-up view
of the registration result of each plot, our method properly registered all
TLS scans from diverse forest environments. The test datasets contain
both sparse forests (with a tree density below 500 trees/ha, as shown
in Fig. 9(c) and (e)) and dense forests (with a tree density around
1000 trees/ha, as shown in Fig. 9(a), (b), and (d)). Since our method
has quadratic complexity to the number of trees, it can register the
scans of both sparse and dense forests. Compared to plots covered in
wild grass (see Fig. 9(a)) and plots having bare ground (see Fig. 9(c)
and (d)), Plot #2 is partially overgrown with breast-high shrubs (see
Fig. 9(b)), whereas the WHU-FGI and ETH-Trees datasets contain a
large amount of underwood. Despite the complex understory structures,
our method still extracted valid stem positions and managed to register
these point clouds. Our method is also robust to the distribution of
trees. It correctly aligned scans containing scattered trees (Fig. 9(a),
(b), (e), and (f)) and scans consisting of trees planted in rows (Fig. 9(c)
and (d)). Besides, our registration method succeeded on different tree
species, i.e., Metasequoia (Fig. 9(a) and (b)), Liriodendron chinense
(Fig. 9(c)), Sapindus mukorossi (Fig. 9(d)), and Scots pines (Fig. 9(e)).
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Fig. 9. Registration results on the three test datasets. (a) to (d) Plots #1–#4 of the Tongji-Trees dataset, respectively. (e) WHU-FGI (Dong et al., 2020). (f) ETH-Trees (Theiler
et al., 2015). From left to right: an overview, a cross-section, and a close-up view of the registered point clouds of each plot. Scans S1–S5 in each plot are visualized in red,
yellow, green, blue, and purple colors, respectively, and the S6 of ETH-Trees is in pink. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Table 3 reports a quantitative evaluation of our final registration
results. The average pointwise error of all test plots is 1 cm, showing
the great potential of the proposed approach to substitute the costly
marker-based methods.

5.3. Comparison

We have compared our method with three existing coarse registra-
tion algorithms: TOA (Kelbe et al., 2016a), Fast-TOA (Tremblay and
Béland, 2018), and FMP+BnB (Cai et al., 2019).
80
• TOA and Fast-TOA are both tree-oriented approaches and are
often used as the baseline methods for evaluating forest point
cloud registration methods. Fast-TOA is an efficient variant of
TOA. Using tree positions with DBH values as keypoints, they
extract correspondences using the RANSAC strategy coupled with
geometric and attribute constraints derived from the keypoints.
The correspondences are used to determine a least-squares fit for
the rigid transformation.

• FMP+BnB is one of the state-of-the-art methods for pairwise reg-
istration of general TLS scans (Ge and Hu, 2020; Li et al., 2021).
Intrinsic-shape-signatures keypoints (Zhong, 2009) are extracted
from the two point clouds, described using fast point feature
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Table 3
Accuracy of the proposed method on the three test datasets, i.e., Tongji-Trees (Plots #1–
#4), WHU-FGI (Dong et al., 2020), ETH-Trees (Theiler et al., 2015). 𝑒𝑝 denotes the
pointwise error, while 𝑒𝑅 and 𝑒𝑡 represent the two components (i.e., rotation and
ranslation errors) of matrix-based errors, respectively.
Plot ID Forest environment Fine registration errors

Tree locations Understory 𝑒𝑝 (cm) 𝑒𝑅 (mrad) 𝑒𝑡 (cm)

Plot #1 Dense, scattered Wild grass 0.7 0.5 0.7
Plot #2 Dense, scattered High shrub 1.3 1.2 1.0
Plot #3 Sparse, regular Bare ground 0.9 0.3 0.8
Plot #4 Dense, regular Bare ground 1.0 0.3 1.0
WHU-FGI Sparse, scattered Underwood 1.6 0.9 1.4
ETH-Trees Sparse, scattered Underwood 0.8 0.9 0.6

Average 1.0 0.7 0.9

histograms (Rusu et al., 2009a), and then matched to generate
initial correspondences. Fast match pruning (FMP) is used to
prune the correspondence set, followed by fast branch-and-bound
(BnB) on the remaining correspondences to determine the optimal
registration parameters.

Note that TOA and Fast-TOA are not end-to-end solutions: they can-
ot directly consume raw point clouds but require stem maps (i.e., stem
ositions and DBHs) as input. For a fair comparison, we prepared stem
aps for every scan as has been done in the Fast-TOA paper (Tremblay

nd Béland, 2018). Moreover, TOA was not able to produce any results
or scans containing a large number (e.g., greater than 70) of trees.
ast-TOA also becomes quite inefficient when handling point clouds
onsisting of more than 100 trees. For example, it took over an hour
o register two scans containing only 117 and 109 trees, respectively.
ence, we had to reduce the number of trees in every stem map to
pproximately 50 (similar to the number of trees in the experimental
ata used in the original paper Tremblay and Béland, 2018) to be able
o conduct the comparison. To guarantee sufficient overlap between
ach pair of simplified stem maps, we manually selected these 50 stems
o include all corresponding ones.

.3.1. Effectiveness
Following the common practice for plot-scale forest measurement,

e used all coarse registration methods to register side scans of each
lot to the central ones. Since all scan pairs overlap sufficiently, our
pproach and the three competing methods were able to register them
ll. All coarse registration results were further refined using the ICP
lgorithm (Besl and McKay, 1992). Both the coarse and fine registration
rrors are reported in Table 4.

Our method outperforms the others in terms of coarse registration
ccuracy on three of the six test plots and achieves the best overall
erformance with a minimum average pointwise error of 5.9 cm.
e can also see that the ICP step significantly improved the coarse

egistration results, and it eliminated the accuracy gap between coarse
egistration methods. This indicates that, when evaluating a coarse
egistration method, we should prioritize its efficiency and success rate
ver accuracy.

.3.2. Efficiency
The running times of our method are reported in Fig. 10. The

verage running times of the stem mapping and stem matching stages
re 14.1 s and 0.6 s, respectively. The stem mapping stage takes most
f the time, while the stem matching stage is relatively fast, taking
ess than three seconds even when handling scans containing a large
umber of trees (more than 200 trees/scan).

Fig. 11 reports the running times of our proposed method and the
ompeting methods. We can see that our approach is much faster than
he two stem-based methods, i.e., TOA and Fast-TOA, even though
heir preparation times of stem maps were not counted and their input
as already simplified. Notably, TOA (relying heavily on DBH values)
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Fig. 10. Histograms of running times of the proposed method. (a) The stem mapping
stage. (b) The stem matching stage. (c) The whole coarse registration process.

Fig. 11. Comparison of running times. Note that the running times of TOA (Kelbe
et al., 2016a) and Fast-TOA (Tremblay and Béland, 2018) contain only their stem
matching part that performs on simplified stem maps (∼50 trees/scan), and the times
for the creation of their input (stem maps) were not included. For FMP+BnB (Cai et al.,
2019), the running time includes both keypoint detection and matching, and similarly
for our method, the running time includes both stem mapping and stem matching.

took unacceptably long times on Plot #3, Plot #4, and ETH-Trees
because trees in these plots have similar attributes. Our method tackles
the inefficiency problem of the stem-based strategy by significantly
reducing the complexity of stem matching, which allows it to handle
scans containing a large number of trees and leads to consistently high
efficiency. Compared to the local-descriptor-based approach FMP+BnB



ISPRS Journal of Photogrammetry and Remote Sensing 197 (2023) 71–86X. Wang et al.
Table 4
Accuracy comparison with three competing coarse registration algorithms, i.e., TOA (Kelbe et al., 2016a), Fast-TOA (Tremblay and Béland,
2018), and FMP+BnB (Cai et al., 2019). Every method successfully registered all scan pairs from the side scans of each plot to the central ones.
All coarse registration results were further optimized by using the ICP algorithm (Besl and McKay, 1992) as a fine registration step. 𝑒𝑝 denotes
the pointwise error, while 𝑒𝑅 and 𝑒𝑡 represent the two components (i.e., rotation and translation errors) of matrix-based errors, respectively.

Plot ID Method Coarse registration errors Fine registration errors

𝑒𝑝 (cm) 𝑒𝑅 (mrad) 𝑒𝑡 (cm) 𝑒𝑝 (cm) 𝑒𝑅 (mrad) 𝑒𝑡 (cm)

Plot #1

TOA 11.0 10.9 8.7 0.7 0.5 0.7
Fast-TOA 9.4 9.2 6.7 0.7 0.5 0.7
FMP+BnB 9.1 3.2 8.8 0.7 0.6 0.7
Ours 6.2 0.7 6.3 0.7 0.5 0.7

Plot #2

TOA 27.8 22.4 21.4 1.2 1.2 0.9
Fast-TOA 27.3 24.7 19.7 1.5 1.2 1.2
FMP+BnB 6.6 2.5 6.3 1.1 1.2 0.9
Ours 6.2 1.2 6.0 1.3 1.2 1.0

Plot #3

TOA 1.4 1.5 1.3 0.7 0.3 0.8
Fast-TOA 1.3 1.3 1.2 0.7 0.3 0.7
FMP+BnB 3.5 1.1 3.5 1.1 0.4 1.0
Ours 3.6 0.5 3.6 0.9 0.3 0.8

Plot #4

TOA 3.9 3.6 3.8 0.9 0.3 0.9
Fast-TOA 3.7 3.6 3.5 0.9 0.3 0.9
FMP+BnB 6.3 1.8 6.3 1.1 0.4 1.1
Ours 3.1 0.3 3.1 1.0 0.3 1.0

WHU-FGI

TOA 7.6 7.6 5.5 1.7 1.0 1.5
Fast-TOA 6.1 7.5 3.7 1.7 1.0 1.5
FMP+BnB 7.3 3.6 6.9 1.4 0.8 1.2
Ours 7.6 0.6 7.6 1.6 0.9 1.4

ETH-Trees

TOA 20.7 22.8 18.2 0.8 0.9 0.6
Fast-TOA 22.2 20.0 20.0 0.8 0.9 0.7
FMP+BnB 5.0 3.6 4.5 0.8 0.9 0.6
Ours 8.7 3.4 8.6 0.8 0.9 0.6

Average

TOA 12.1 11.4 9.8 1.0 0.7 0.9
Fast-TOA 11.7 11.0 9.1 1.0 0.7 1.0
FMP+BnB 6.3 2.6 6.1 1.0 0.7 0.9
Ours 5.9 1.1 5.8 1.0 0.7 0.9
Table 5
Success rates of all coarse registration methods.

Method Success rate of coarse registration (%)

Plot #1 Plot #2 Plot #3 Plot #4 FGI ETH Average

TOA 100 90 100 100 100 67 91
Fast-TOA 100 80 100 100 100 87 94
FMP+BnB 50 80 90 60 70 87 74
Ours 100 100 100 100 100 100 100

Fig. 12. Histogram of stem-based overlap ratios on all scan pairs of the three test
datasets.

that intends to accelerate the coarse registration of general TLS scans,
the running time of our method is only 1/6 of it on average.

5.3.3. Robustness
We have also tried to exhaustively register all scan pairs of each plot

to understand the robustness of our method concerning overlap ratio.
The three datasets form a total of 65 scan pairs. Some of these scan
pairs have a small overlap (see Fig. 12), which usually fails marker-
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free registration methods. By providing simplified stem maps (∼ 50
trees/scan), TOA registered 59 scan pairs while Fast-TOA succeed on
61. FMP+BnB failed in aligning almost a quarter of scan pairs (with
only 48 successful) due to the limited overlap of the input scan pairs.
In contrast, our method managed to register all 65 raw scan pairs.
We have recorded the success rate of all competing methods on the
coarse registration of each plot. The results are reported in Table 5,
from which we can see that the forest-oriented registration methods
(i.e., TOA, Fast-TOA, and ours) are more robust than the general local
descriptor-based methods (i.e., FMP+BnB). Among these methods, our
method has the highest successful registration rate (i.e., no failure
cases).

In addition to the registration errors reported in Table 4, we also
recorded the pointwise errors for the registration of all other scan pairs
in each plot of the three test datasets. Our method achieves the best
performance on 47.5% (19 out of 40) scan pairs. Intuitive visualization
of the comparison results is demonstrated in Fig. 13.

5.4. Ablation study

5.4.1. Stem mapping with/without the verticality constraint
In the stem mapping stage, we apply a verticality constraint to filter

out understory points, which speeds up the subsequent stem modeling
process. We have conducted an ablation study to validate the effects
of this constraint. Specifically, we ran our stem mapping algorithm
with and without the verticality constraint and evaluated the results
based on the ground truth (i.e., manually identified stem positions).
Table 6 reports the results. We can see that the verticality constraint
accelerated the stem mapping process. On the other hand, even without
the verticality constraint, our method still correctly registered all scan
pairs. The results indicate that our approach is not limited to vertical
trees.
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Fig. 13. Pointwise errors (in logarithmic scale) for the registration of all other scan pairs in each plot of the three test datasets (in addition to the registration accuracy reported
n Table 4). (a) to (d) Plots #1–#4 of the Tongji-Trees dataset, respectively. (e) WHU-FGI (Dong et al., 2020). (f) ETH-Trees (Theiler et al., 2015). For the visualization purpose,
he error value for any failed registration with a pointwise error exceeding 10 m is truncated to 10 m.
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Table 6
Comparison of stem mapping with and without the verticality constraint. 𝑒𝑝 denotes
he pointwise error of coarse registration results.
Plot ID Verticality Running time Success rate 𝑒𝑝 (coarse)

(s) (%) (cm)

Plot #1 ✓ 7.9 100 6.2
✗ 11.8 100 5.6

Plot #2 ✓ 12.2 100 6.2
✗ 94.1 100 13.4

Plot #3 ✓ 5.8 100 3.6
✗ 91.0 100 4.1

Plot #4 ✓ 6.5 100 3.1
✗ 38.4 100 2.6

WHU-FGI ✓ 7.7 100 7.6
✗ 102.4 100 8.1

ETH-Trees ✓ 6.1 100 8.7
✗ 85.6 100 25.1

5.4.2. Comparison with stem matching methods
We performed an ablation study to investigate the efficacy of our

matching approach. Specifically, we registered side scans of each plot to
the central ones by utilizing the tree positions of simplified stem maps
(SSM) used by TOA/Fast-TOA algorithms as the input for our matching
approach. Table 7 reports the results. Our matching approach produced
the most accurate results on five out of six test plots, showing the best
overall performance with an average pointwise error of 6.8 cm.

5.4.3. 6-DoF registration versus 4-DoF registration
As has been explained in Section 3.3, our method allows both 6-DoF

registration and 4-DoF registration for well-leveled TLS forest scans,
and for such data, the 4-DoF solution is preferred. To understand the
effectiveness of both the 6-DoF registration and the 4-DoF registra-
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tion strategies, we compared them using the three test datasets. This
Table 7
Accuracy comparison of stem matching algorithms implemented in TOA (Kelbe et al.,
2016a), Fast-TOA (Tremblay and Béland, 2018), and ours. Using simplified stem maps
(SSM) as input, all matching methods successfully aligned all scan pairs from the side
scans of each plot to the central ones. 𝑒𝑝 denotes the pointwise error, while 𝑒𝑅 and
𝑡 represent the two components (i.e., rotation and translation errors) of matrix-based
rrors, respectively.
Plot ID Method Coarse registration errors

𝑒𝑝 (cm) 𝑒𝑅 (mrad) 𝑒𝑡 (cm)

Plot #1
TOA 11.0 10.9 8.7
Fast-TOA 9.4 9.2 6.7
SSM + ours 4.4 0.7 4.5

Plot #2
TOA 27.8 22.4 21.4
Fast-TOA 27.3 24.7 19.7
SSM + ours 20.5 2.0 20.3

Plot #3
TOA 1.4 1.5 1.3
Fast-TOA 1.3 1.3 1.2
SSM + ours 3.2 0.9 3.2

Plot #4
TOA 3.9 3.6 3.8
Fast-TOA 3.7 3.6 3.5
SSM + ours 1.0 0.3 1.0

WHU-FGI
TOA 7.6 7.6 5.5
Fast-TOA 6.4 7.5 3.7
SSM + ours 5.0 1.0 5.0

ETH-Trees
TOA 20.7 22.8 18.2
Fast-TOA 22.2 20.0 20.0
SSM + ours 6.5 3.5 6.0

Average
TOA 12.1 11.5 9.8
Fast-TOA 11.7 11.1 9.1
SSM + ours 6.8 1.4 6.6

comparison has revealed that the coarse registration results from both
the 6-DoF and the 4-DoF strategies are sufficiently accurate for the
subsequent ICP fine registration to converge. We further computed the
horizontal and vertical deviations of the pointwise errors and depicted
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Fig. 14. Box plot showing the horizontal and vertical deviations of pointwise registra-
tion errors, for both the 6-DoF registration and the 4-DoF registration. ‘‘3D’’ denotes
the pointwise error, while ‘‘Horizontal’’ and ‘‘Vertical’’ represent the horizontal and
vertical components of the pointwise error, respectively. ‘‘Mean’’ and ‘‘Median’’ are the
respective average and middle values of all pointwise errors. ‘‘Outlier’’ is defined as an
error value located outside the whiskers of the box plot.

them in a box plot shown in Fig. 14. From this figure, we can see that
the 4-DoF registration results are more accurate than those from the
6-DoF registration, and the 4-DoF registration strategy is remarkably
accurate in the horizontal direction (with a mean horizontal pointwise
error of only 1.5 cm). The 4-DoF strategy is more accurate because it
takes the advantage of well-leveled scans.

It is also worth noting that the registration errors in the vertical
direction are greater than in the horizontal direction. This is a common
limitation of the stem-based methods (Liu et al., 2017; Kelbe et al.,
2016a; Tremblay and Béland, 2018; Dai et al., 2020; Ge et al., 2021)
because stem positions are more accurate in the horizontal direction
than those in the vertical direction. In other words, the 𝑧 coordinates of
the extracted stem positions are more sensitive to the change of DTM,
compared with their 𝑥 and 𝑦 coordinates, as illustrated in Fig. 15(a).
The registration results depicted as outliers in Fig. 14 were obtained
for the scans in Plot #2 and ETH-Trees where the ground near stems
was severely occluded by understory vegetation, leading to large errors
in the 𝑧 coordinates of the stem positions. This can be explained from
the illustration shown in Fig. 15(b). Such a test indicated that by
decomposing the registration problem into two sub-problems, i.e., hor-
izontal alignment and vertical alignment, the 4-DoF strategy can take
advantage of the accurate horizontal coordinates of stem positions.

5.5. Limitation

Our stem mapping algorithm exploits cylinder primitives to extract
tree stems, which may not handle tree stems with complex structures,
e.g., tree stems consisting of multiple branches from the bottom (see
Fig. 16). Since the large proportion of trees in the tested forest types
has a single main stem and the complex stems will be treated as outliers
and filtered out in the global matching step, we have not encountered
such issues in our experiments. However, our method will fail if the
majority of the trees have such complex structures.

6. Conclusion

We have introduced an efficient and robust method to align TLS
point clouds captured in forest environments. Our method accelerates
the current stem-based registration strategy in both stages by proposing
a fast stem mapping method as well as a robust and efficient stem
84
Fig. 15. Inaccuracy in the extracted stem positions. (a) The vertical component of
stem positions is sensitive to the change of DTM. (b) Insufficient ground data (due to
occlusions) results in a large error in the 𝑧 coordinate of the stem position.

Fig. 16. A tree whose stem cannot be modeled using a cylinder. (a) Point cloud.
(b) Two horizontal cross-sections of the point cloud.

matching algorithm requiring only the extracted stem positions. Com-
pared to existing forest-oriented registration techniques, our method
performs on par or better regarding effectiveness and robustness while
outperforming them significantly in terms of efficiency. We have also
released a new benchmark dataset to the community to enable reliable
evaluation and comparison of registration algorithms for forest point
clouds.

Our method uses object-level primitives (i.e., tree stems) for reg-
istration, which has shown excellent performance. In future work, we
would like to integrate this approach into frameworks for registration
of multiview data, co-registration of multiplatform data, and fusion of
spatial–temporal data.
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