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Abstract: We propose an enhancement module called depth discontinuity learning (DDL) for learning- 1

based multi-view stereo (MVS) methods. Traditional methods are known for their accuracy but struggle with 2

completeness. While recent learning-based methods have improved completeness at the cost of accuracy, 3

our DDL approach aims to improve accuracy while retaining completeness in the reconstruction process. To 4

achieve this, we introduce the joint estimation of depth and boundary maps, where the boundary maps are 5

explicitly utilized for further refinement of the depth maps. We validate our idea by integrating it into an 6

existing learning-based MVS pipeline where the reconstruction depends on high-quality depth map estimation. 7

Extensive experiments on various datasets, namely DTU, ETH3D, “Tanks and Temples” and BlendedMVS, 8

show that our method improves reconstruction quality compared to our baseline, Patchmatchnet. Our ablation 9

study demonstrates that incorporating the proposed DDL significantly reduces the depth map error, for instance 10

by more than 30% on the DTU dataset, and leads to improved depth map quality in both smooth and boundary 11

regions. Additionally, our qualitative analysis has shown that the reconstructed point cloud exhibits enhanced 12

quality without any significant compromise on completeness. Finally, the experiments reveal that our proposed 13

model and strategies exhibit strong generalization capabilities across the various datasets. 14

Keywords: Multi-view Stereo, 3D Reconstruction, Depth Map Refinement, Depth Boundary Estimation 15

1. Introduction 16

Multi-view stereo (MVS) techniques have been widely used to obtain dense 3D reconstruction 17

from images. MVS allows aerial images to be converted into accurate 3D models, which provide a 18

more comprehensive representation of the large scene. This 3D information can be used for various 19

applications, such as digital surface modelling [1], landform analysis [2], and urban planning [3]. It 20

provides valuable insights into the shape, structure, and topography of the scene, enabling better 21

understanding and interpretation of remote sensing data. 22

Traditional MVS techniques [4–6] extract dense correspondences from multiple calibrated 23

views and generate a dense 3D representation (i.e., point cloud or dense triangle mesh) of the scene. 24

These methods rely on image correspondences in the RGB space, which are sensitive to textureless 25

and non-Lambertian surfaces, and lighting variations. Recent developments in deep learning allow 26

the use of learned feature maps instead of directly working on RGB images to build more robust 27

MVS pipelines [7–17]. By learning feature maps about the objects in the scene, learning-based MVS 28

methods have demonstrated better completeness than traditional methods in reconstructing man- 29

made objects with low texture and non-Lambertian surfaces. Recent learning-based MVS methods 30

learn to reconstruct the depth map from input images by regularizing the 3D cost volume [7,13] or 31

by Patchmatch-based iterative optimization [17,18]. Still, depth estimation remains challenging, and 32

depth discontinuities at transitions between object boundaries are usually erroneous [19,20]. While 33

this kind of error can be alleviated by post-processing filters, it often reduces the completeness of 34

the reconstruction. 35

In MVS pipelines, it is common for a single depth value to be estimated per pixel, accompanied 36

by a smooth surface assumption. This spatial regularization technique results in higher-quality depth 37

maps, as shown in previous studies such as [21,22], which in turn improves the completeness of the 38

reconstructed 3D model. However, a limitation of this approach is that it tends to oversmooth the true 39

depth continuities at object boundaries, as pointed out in recent works such as [20,23]. Furthermore, 40
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Figure 1. We propose to estimate depth as a bimodal univariate distribution. Using this depth representation,
we improve multi-view depth reconstruction, especially across geometric boundaries.

as illustrated in Fig.1, pixels near depth discontinuities can pose ambiguity in determining which 41

side of the depth boundary they belong to. 42

These findings motivate us to pursue two complementary objectives. First, we aim to explicitly 43

detect the geometric edges, instead of relying solely on photometric edges that capture color and 44

texture changes [21,22]. Geometric edges more accurately indicate the true locations of object 45

boundaries than photometric edges (see Fig. 1). We propose to estimate geometric boundary maps 46

jointly with the depth maps, such that smooth depth surfaces can be enforced while considering the 47

local geometry. Second, as shown in Fig. 1, we propose to estimate per-pixel depth as a univariate 48

bimodal distribution rather than as a single depth value. This allows us to explicitly represent the 49

depth ambiguity and avoids over-smoothing the depth discontinuities. We integrate both objectives 50

into a multi-task learning architecture to improve the depth accuracy while avoiding the completeness 51

trade-off of previous approaches. 52

To confirm the validity of our idea, we integrate it into the existing learning-based Multi- 53

View Stereo (MVS) pipeline. Extensive experiments that we ran on various benchmark datasets 54

(see Sect. 4) demonstrate that our method obtains better results.1 Moreover, our method has high 55

generalization capabilities, which have been validated by training our model on one dataset and 56

testing it on other datasets. 57

In summary, the contributions of this work to multi-view stereo networks are: (1) a novel 58

multi-task learning architecture for joint estimation of depth maps and object boundary maps for 59

learning-based multi-view stereo pipelines; (2) a bimodal depth representation that represents 60

depth as a distribution learned from multi-view images; (3) a general loss formulation for depth 61

discontinuity-based spatial regularization, which helps to learn discontinuities in depth and to 62

regularize the depth maps. 63

The structure of this article is as follows: In Section 2, we will review the existing literature 64

and contrast the most related works to our approach. Section 3 will delve into our methodology 65

and outline the MVS pipeline we use to test our approach. Section 4 will present and discuss the 66

experimental results obtained from our study. Finally, in Section 5, we will conclude the paper by 67

summarizing our main findings. 68

2. Related work 69

As learning-based MVS networks are inspired by photogrammetry-based MVS algorithms and 70

developed from two-view methods, we review photogrammetry-based MVS algorithms, learning- 71

based two-view methods, and the recent development in learning-based MVS networks. 72

2.1. Photogrammetry-based MVS 73

Multi-View stereo methods purely built upon photogrammetry and multi-view geometry theory 74

are usually referred to as traditional multi-view stereo methods. Janai et al. [24] showed that the 75

taxonomy of the traditional multi-view stereo methods can be divided into four classes based on 76

their representations of the scene and output. These scene representations are depth maps, point 77

clouds, volumetric representations, and mesh or surfaces. 78

Volumetric representations use either discrete occupancy function [25] or levelset alike signed 79

distance functions [26], which limits them to small-scale reconstruction. The most common mesh- 80

1 The code is available at https://github.com/mirmix/ddlmvs

https://github.com/mirmix/ddlmvs
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based approaches run variations of the marching cubes algorithm [27] on top of a signed distance 81

function based on a volumetric surface representation [28]. 82

The seminal point cloud-based method by Furukawa et.al. [4] has shown that starting with 83

an initial sparse set of point features it is possible to create an initial set of patches and densify 84

them by iterative greedy expansion and photo-geometric filtering. These methods usually demand a 85

uniformly sampled sparse set of points across the image domain to be able to create point clouds 86

with better completeness. 87

Depth map-based approaches usually first try to estimate a 2.5D depth map for each view. By 88

using multi-view fusion pipelines [28,29], these depth maps are consolidated into a single geometric 89

model. Although the plane sweeping algorithm [30] has high memory consumption, it was the 90

most commonly used technique for depth map estimation. To use plane sweeping stereo for a 91

large dynamic range of outdoor videos, Pollefeys et al. [31] took advantage of GPS and inertia 92

measurements to place the reconstructed models in geo-registered coordinates. Using random 93

initialization and propagation techniques, the PatchMatch-based MVS algorithms [5,32] were able 94

to estimate the depth map of each view with low memory consumption. In this work, we use a 95

differentiable PatchMatch-based module to achieve a similar goal. 96

2.2. Learning-based two-view methods 97

Learning-based two-view methods have introduced the initial building blocks for two-view 98

stereo matching and depth estimation, which were later adapted for multi-view settings. The most 99

common building blocks for learning-based depth map estimation pipelines are feature extraction 100

and depth estimation from the feature space. Shared weight-based feature extraction was introduced 101

by [33], and later improved by using cost volume regularization for depth map extraction [34– 102

36]. To reduce memory demand of the cost volume, Duggal et al. [18] introduced differentiable 103

PatchMatch Stereo (PMS) for two-view depth map estimation. These approaches were later adapted 104

for multi-view settings via differentiable homography [7,12,13,17,35]. 105

EdgeStereo [37] uses a pre-trained sub-network for detecting the edges, and the edge cues are 106

then fed into the disparity branch to improve the disparity map. Tosi et al. [20] showed that it is 107

possible to improve the quality of the learning-based two-view stereo networks by integrating an 108

MLP-based bimodal mixture density network. In their work, they improved the accuracy of stereo 109

matching networks [35,36] that were used as a backbone to their mixture density head. Inspired by 110

these works, we also represent depth as bimodal distribution, and we jointly estimate depth maps and 111

object boundary maps in the multi-view stereo setting using a novel multi-task learning architecture. 112

Our pipeline does not involve any parallel (sub)networks and learns directly from multi-view images 113

to estimate edge-depth pairs jointly. 114

The continuous disparity network [23] aims to regress the multi-modal depth by jointly estimat- 115

ing both probability and offset volume by minimizing a Wasserstein distance between the ground 116

truth and the distribution estimated from the volumes. The offset volume aims to obtain continuous 117

disparity estimations. Our method avoids regressing the offset values and instead, directly estimates 118

bimodal distribution parameters. 119

2.3. Learning-based MVS 120

State-of-the-art learning-based MVS approaches adapt the photogrammetry-based MVS al- 121

gorithms by implementing them as a set of differentiable operations defined in the feature space. 122

MVSNet [7] introduced good quality 3D reconstruction by regularizing the cost volume that was 123

computed using differentiable homography on feature maps of the reference and source images. 124

Its network architecture is similar to the learning-based two-view stereo matching architecture 125

GCNet [34]. Both MVSNet [7] and GCNet [34] regularize cost volume using a 3D CNN-based 126

U-Net. The cost volume itself has a very high demand for memory. To circumvent this problem, 127

R-MVSNet uses GRUs [8] to regularize the cost volume sequentially. Follow-up works [13,16], 128

used feature pyramids and cost volume pyramids to learn in a coarse-to-fine manner instead of 129

constructing a cost volume at a fixed resolution. To fully avoid the construction of feature cost 130

volume, Wang et. al. [17] introduced a learning-based Multi-View PMS pipeline. Variations of 131

PMS are seen as suitable options to work with high-resolution images since both traditional and 132
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learning-based Multi-View PMS avoids the memory demands of Plane Sweep Stereo or feature cost 133

volume regularization. 134

In contrast to two-view or multi-view Plane Sweep stereo [28,29] and cost volume regularization 135

methods [7,34], to reduce memory consumption our pipeline estimates depth maps by fully avoiding 136

the cost volume creation and usage of 3D CNN networks. For this, we are leveraging differentiable 137

PatchMatch-based Multi-View Stereo as part of the internal structure of our pipeline [5,17]. 138

The recent work of PatchMatchNet [17] showed state-of-the-art results in terms of reconstruction 139

completeness, which is used as a baseline in this work. 140

To enhance the quality of scene reconstruction, our proposed method focuses on estimating 141

the geometric boundaries of objects in the scene where depth discontinuities occur. We introduce a 142

technique to regularize the depth map by incorporating an estimated boundary map. Our approach 143

distinguishes itself from DEF-MVSNet [38] in terms of how edge information is represented and 144

modeled. While DEF-MVSNet primarily focuses on determining flow directions as pixel offsets, our 145

method explicitly learns and smooths the edge map by defining each pixel as a bimodal distribution. 146

This distinction contributes to the unique characteristics of our approach. 147

Similarly, our method deviates from BDE-MVSNet [39], which also aims to find flow directions 148

for edge pixels using gradient information. Instead, we explicitly learn the boundary map, placing 149

emphasis on regularizing smoothness in regions that are not classified as boundaries. In comparison 150

to ElasticMVS [40] which proposes an elastic part representation for encoding physically connected 151

part segmentations, our approach focuses solely on explicitly learning the boundary map. By utilizing 152

the boundary map for regularization, our objective is to enhance smoothness rather than encode 153

physically connected part segmentations and capture surface connectedness and boundaries within 154

the image. 155

During the development of our method, we also explored some depth derivative-based loss 156

functions, similar to those utilized in previous works [37,41]. However, we did not observe significant 157

improvements when employing these loss functions. Therefore, we adopted a different approach 158

by explicitly learning the boundary map to regulate smoothness in regions that are not classified as 159

boundaries. 160

In comparison to two-view stereo matching pipeline SMD-Nets [20], we employ a mixture 161

density network as an internal structure for depth refinement, inputting it with RGB-Depth pairs 162

instead of rectified left-right image pairs. Unlike previous methods, we learn the depth and boundary 163

map simultaneously, utilizing the same backbone architecture for estimating the density parameters 164

and boundary map in parallel. In comparison with previous methods, our pipeline utilizes a 2D 165

CNN-based U-Net architecture [42] to estimate the bimodal depth density parameters for each pixel 166

in discrete space. 167

3. Method 168

In contrast to existing MVS approaches with depth map representations, in which the depth 169

of each pixel is expressed as a single value, our approach takes advantage of a bimodal depth 170

representation that represents depth as distribution. Our depth map is thus not a common grid 171

of per-pixel scalars, but per-pixel mixture density parameters. The motivation of this module is 172

to implicitly integrate the uncertainty notion into our pipeline, which enables us to learn depth 173

discontinuities for spatial regularization of the depth map and to further alleviate the noise gathered 174

in intra-object transitions, foreground-background transitions, and partial occlusions. 175

The overview of our proposed network architecture is shown in Fig. 2. Our network has three 176

parts, namely, feature extraction, coarse-to-fine PatchMatch Stereo (PMS), and depth discontinuity 177

learning, detailed as follows. 178

3.1. Feature extraction 179

We employ a widely used technique in the Computer Vision field known as feature pyramid 180

learning [12,13,16], which enables us to build our algorithm in a coarse-to-fine regression fashion. 181

We adopted the Feature Pyramid Networks [43] with residual connections between encoder and 182

decoder, and use three layers of decoder outputs as our extracted features. Each subsequent level 183

has half the resolution of the level before it, and the finest level has half the width and height of the 184
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Figure 2. An overview of the proposed multi-view depth discontinuity learning network that outputs depth and
edge information for each pixel. The brown arrows represent input feed and the blue arrows represent pipeline
flow. We first extract multi-scale features from color images with FPN [43] alike auto-encoder. Then we feed
extracted features and camera parameters to the coarse-to-fine PMS module to extract the initial depth map.
Using the initial depth map and RGB pair, our network learns bimodal depth parameters and geometric edge
maps. We use mixture parameters and photo-geometric filtering to compute our final depth map. The edge map
visualized here is negated edge map (for a clear view).

original image. In Fig. 2, the red blocks show three scales of features fed to the coarse-to-fine PMS 185

module. 186

3.2. Coarse-to-fine PMS 187

Being agnostic to the backbone our method is independent of the underlying rough depth 188

estimation method. Both cost volume regularization and the PatchMatch-based approach can be 189

used for depth estimation. We follow PatchmatchNet [17] that demonstrates good reconstruction 190

completeness and low memory demands. Our pipeline regress three levels of initial depth maps in a 191

coarse-to-fine manner. 192

We randomly initialize the depth values at the coarsest level, and at a finer level, we initialize 193

the depth values with the outputs of the coarser levels. Following the initialization step, we run an 194

iterative feedback loop between the propagation and evaluation steps. We propagate our estimates 195

with good scoring values to the neighboring pixels. In the evaluation step, we use candidate depth 196

values for differentiable homography warping and matching cost computation. 197

3.3. Depth discontinuity learning 198

The output of coarse-to-fine PMS is a conventional depth map of half the resolution (half width 199

and half height) of the original input. Hui et al. [44] showed that a low-resolution depth map can be 200

progressively upsampled with the guidance of the associated high-resolution color image. This idea 201

inspires the proposed framework’s attempt to match the resolution of the color and depth images. 202

Contrary to existing learning-based networks [7,45], which revise depth maps using residual 203

networks, we refine depth maps via learning mixture density parameters and geometric edge maps. 204

In contrast to SMD-Nets [20], which employ corrected image pairs as input, we use RGB-depth 205

pairs as the input to the depth refinement network and convolutional mixed density networks as the 206

internal structure. To the best of our knowledge, our work is the first learning-based MVS method 207

that explicitly learns depth discontinuity maps (aka geometric edge maps) to simultaneously refine 208

the quality and improve the smoothness of the depth maps. 209

In our pipeline, we use a 2D CNN-based U-Net [42] architecture to estimate the bimodal depth 210

density parameters of each pixel in a discrete space. During the development of our pipeline, we 211

experimented with different network variations to learn separate boundary maps and mixture density 212

parameters, including two parallel network streams and single encoder and multiple decoder archi- 213

tectures. However, we found that using multiple subnetworks increased the number of parameters 214

and GPU memory demands without leading to any substantial improvement in results. Therefore, we 215

chose to use a single encoder and decoder architecture for our proposed pipeline. Based on the fact 216

that depth maps have piecewise smoothness and that they can be improved by spatial regularization 217

to smooth regions as shown in earlier works [21,22,46], we propose to refine depth-map quality by 218

learning depth discontinuities. 219
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Previous methods based on pixel-wise single value estimates implicitly balance the depth 220

estimation error between nearby foreground and background pixels for boundary points. Our 221

refinement network regresses the parameters of a bimodal distribution. We use the bimodal Laplacian 222

distribution, which was inspired by Tosi et al. [20] work. During development, we observed that the 223

Laplacian distribution [47] had slightly better results than the Gaussian. The Laplacian distribution 224

has a sharper shape modality than Gaussian. It optimizes over L1 distance instead of L2 distance 225

between the groundtruth and estimated mean. This makes it more robust against outliers. The 226

bimodal Laplacian density distribution can be written as 227

θ = {α, µ1, σ1, µ2, σ2} (1)

p(x; θ) =
α

2σ1
exp(−|x − µ1|

σ1
) +

1 − α

2σ2
exp(−|x − µ2|

σ2
)

where α is the mixture weight that can be seen as the likeliness of each mode. Later in our work (see 228

Sec. 4), we observe that the network learns to assign different α values to different scene parts, and 229

in most cases it is binary classifying foreground and background pixels. µ1 and µ2 are the two depth 230

estimates of the corresponding modes. σ1 and σ2 are the two depth variance measures of each depth 231

value. We also treat α
σ1

and 1−α
σ2

as responsibility scores, which aims to determine the responsible 232

mode for the depth of a given pixel. 233

Besides extending bimodal depth estimation to the multi-view case, our proposed convolutional 234

mixture density network also shows that with a single stream compact discontinuity learning network 235

architecture, it is possible to achieve three goals: (1) Upsampling; (2) Refining; (3) Multi-task 236

learning. 237

3.4. Loss function 238

Our loss function has four terms: Depth-groundtruth loss, Edge-depth loss, Smoothness loss, 239

and Bimodal depth loss, each defined with a specific purpose. 240

Depth-groundtruth loss. This loss term measures the difference in depth maps between
prediction and the groundtruth. It is defined as the mean absolute error (MAE) of the estimated
depth map, i.e., L1 distance between the estimated depth and ground-truth depth across all stages of
the PMS and the final reconstructed depth,

Lgt =
3

∑
k=0

[
1

Nk
L1(Dk, D̂k)], (2)

where k ∈ {0, 1, 2, 3} denotes the scale index of the coarse-to-fine PMS that estimates initial low- 241

resolution depth maps, with 0 representing the finest input and output resolution, and from 3 to 1 242

the coarser-to-finer scales of the PMS output. D̂k and Dk represent the ground-truth depth map and 243

estimated depth map at resolution level k, respectively. The DTU dataset [48] contains masks that 244

identify pixels with valid ground truth depth information. Nk represents the number of pixels in each 245

scale. 246

Edge-depth loss. Geometric edges or boundaries are expected where there are depth dis-
continuities in the depth map. Thus, the edge-depth loss term measures how much the estimated
edges agree with the second-order depth variations (i.e., depth discontinuities). It is defined as the
mean squared error (MSE) (L2 distance) between the estimated edge E and groundtruth changes of
variations in depth D̂,

Led =
1
N
L2(E, ϕ(∆D̂, τ)), (3)

where ϕ is the function that takes Laplacian of the depth and threshold value τ to return the 247

mask image where the Laplacian response [49] of the depth map is higher than the τ. The DTU 248

dataset [48] contains masks that identify pixels with valid ground truth depth information. The 249

variable N represents the count of masked pixels that have corresponding ground truth labels for 250

depth. With this term, we explicitly inform the network that we are expecting geometric edges or 251

boundaries at the pixels where there exist depth discontinuities. We calculate depth discontinuities 252

using the Laplacian operator, which is the second-order depth change. 253
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Smoothness loss. Except for the geometric edges and boundaries with depth discontinuities,
real-world objects typically demonstrate piecewise smoothing surfaces. Thus, we would like to
encourage local smoothness for the regions without depth discontinuities. We achieve this by
introducing an edge-aware smoothness loss term to penalize second-order depth variations in non-
boundary regions,

Lsm =
1
N ∑

i∈Ω
ω(Ei)|∆Di|

ω(Ei) = exp(−βEi)

, (4)

where Ei will have an estimated value close to 1 for boundaries and close to 0 for non-boundary 254

pixels. ω is a weight function that plays a role of a switch, which returns a value close to 0 for 255

boundaries and close to 1 for non-boundary pixels. Thus, second-order depth change in non-boundary 256

regions contributes to our smoothness loss. β is a tunable hyper-parameter that controls the sharpness 257

of change in the ω function. N denotes the number of pixels in the image space Ω with a valid 258

grountruth depth. To the best of our knowledge, this is the first time depth discontinuities are 259

explicitly learned and used for spatial regularization in multi-view stereo networks. 260

Bimodal loss. We adopt a common approach of minimizing the negative-log likelihood of the 261

distribution to increase the likelihood of true depth. Tosi et al. [20] have demonstrated that this loss 262

term for bimodal depth in the two-view stereo setting can produce inspiring results. Our bimodal 263

loss term is defined as 264

Lbi =
1
N ∑

i∈Ω
− log(p(D̂i; θ, i)), (5)

where D̂i represents the groundtruth depth measured at pixel i, and θ is the parameter of the bimodal 265

distribution introduced in Eq. 1. The distribution p can be computed using the Eq. 1. N denotes the 266

number of the pixels in the image space Ω with a valid grountruth depth. 267

Total loss. We simply use the weighted sum of the aforementioned loss terms

Ltotal = Lgt + λ1Led + λ2Lsm + λ3Lbi (6)

as a training criterion for our network to optimize the parameters via backpropagation. λ1 = 4, 268

λ2 = 1.25, and λ3 = 0.5 are hyper-parameters empirically set based on our experiments on the 269

validation set. 270

4. Experiments and Evaluation 271

We used the same model to quantitatively evaluate the generalization capabilities of our method 272

and to compare it with other methods. All the metric results of the other methods were collected 273

from the corresponding papers, and the 3D point clouds of other papers were reconstructed using the 274

code and pre-trained models provided by the authors. 275

4.1. Datasets 276

We have tested and evaluated our method on multiple datasets: the small baseline dataset 277

DTU [48], and the large baseline datasets “Tanks and Temples” [50], ETH3D [51] and Blended- 278

MVS [52]. 279

The DTU dataset [48] is a benchmark with 120 scenes captured by a structured-light sensor 280

under seven different lighting conditions. It has been widely used for developing learning-based 281

MVS methods and evaluating their performance in terms of completeness and accuracy. All the 282

learning-based methods in Tab. 1 are trained on the same 79 scans, validated on the same 18 scans, 283

and evaluated on the remaining 22 scans. 2
284

“Tanks and Temples" is a real-world large-scale dataset consisting of both indoor and outdoor 285

scenes [50]. It has two parts: an intermediate set consisting of images of sculptures, large vehicles, 286

2 Validation set: scans 3, 5, 17, 21, 28, 35, 37, 38, 40, 43, 56, 59, 66, 67, 82, 86, 106, 117.
Evaluation set: scans 1, 4, 9, 10, 11, 12, 13, 15, 23, 24, 29, 32, 33, 34, 48, 49, 62, 75, 77, 110, 114, 118.
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Figure 3. Comparison between our method and the baseline method PatchmatchNet [17] on a set of scenes
from the Tank and Temples dataset [50]. For each scene, the top row shows the results from PatchmatchNet,
and the bottom row shows the results from our method. A zoomed view of the marked image region is shown
on the right of each result.

and house-scale buildings (taken from the exterior), and an advanced set consisting of images of large 287

indoor scenes and large outdoor scenes with complex geometric layouts and repetitive structures. 288

The ETH3D dataset [51] is a collection of calibrated images, containing various indoor and 289

outdoor environments, including urban scenes, garages, and rooms. The dataset provides ground 290

truth camera poses, 3D point cloud geometry, and images for each scene, making it suitable for tasks 291

such as camera pose estimation and 3D reconstruction. 292

BlendedMVS [52] is a large-scale MVS dataset for generalized multi-view stereo networks. 293

The dataset contains samples covering a variety of scenes, including architecture, sculptures, aerial 294

images, and small objects. 295

4.2. Evaluation on DTU dataset 296

In this section, we present our findings based on the DTU benchmark [48], where we evaluated 297

the performance of our method using the accuracy, completeness, and overall metrics. The accuracy 298

metric measures the mean error distance between the closest points in the reconstruction and the 299

reference based on structured light. The completeness metric quantifies the mean error distance 300

between the closest points in the reference and the reconstruction. The overall metric is the algebraic 301

mean of accuracy and completeness. Lower scores indicate better performance in this benchmark. 302

The result on the DTU dataset is reported in Tab. 1. For a fair comparison, all techniques were 303

trained on the same dataset and employed the same validation and train split. From the result, we can 304

see that traditional photogrammetry-based methods generally have better accuracy, while learning- 305

based methods have better completeness and overall performance. Furthermore, it also reveals that 306

the completeness gap between learning-based and photogrammetry-based methods is bigger than 307

their gap in accuracy, which motivated us to use a coarse-to-fine PMS to build our initial depth 308
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Method
Accuracy
(mm) ↓

Completeness
(mm) ↓

Overall
(mm) ↓

Traditional photogrammetry-based
Camp [55] 0.835 0.554 0.695
Furu [4] 0.613 0.941 0.777
Tola [6] 0.342 1.190 0.766
Gipuma [5] 0.283 0.873 0.578

Learning-based
SurfaceNet [9] 0.450 1.040 0.745
MVSNet [7] 0.396 0.527 0.462
R-MVSNet [8] 0.383 0.452 0.417
CIDER [15] 0.417 0.437 0.427
P-MVSNet [14] 0.406 0.434 0.420
Point-MVSNet [10] 0.342 0.411 0.376
AttMVS [56] 0.383 0.329 0.356
Fast-MVSNet [11] 0.336 0.403 0.370
Vis-MVSNet [57] 0.369 0.361 0.365
CasMVSNet [13] 0.325 0.385 0.355
UCS-Net [12] 0.338 0.349 0.344
EPP-MVSNet [58] 0.413 0.296 0.355
CVP-MVSNet [16] 0.296 0.406 0.351
AA-RMVSNet [59] 0.376 0.339 0.357
DEF-MVSNET [38] 0.402 0.375 0.388
ElasticMVS [40] 0.374 0.325 0.349
MG-MVSNET [41] 0.358 0.338 0.348
BDE-MVSNet [39] 0.338 0.302 0.320
UniMVSNet [53] 0.352 0.278 0.315
TransMVSNet [54] 0.321 0.289 0.305
PatchmatchNet [17] 0.427 0.277 0.352
PatchmatchNet + Ours (L1,4) 0.405 0.267 0.336
PatchmatchNet + Ours (L1,2,3,4) 0.399 0.280 0.339

Table 1. Quantitative comparison with photogrammetry-based and learning-based MVS methods, on the DTU
dataset [48]. Two different settings (with different loss functions) of our method were tested. L1: depth-
groundtruth loss; L2: edge-depth loss; L3: smoothness loss; L4: bimodal loss. Please note that the metrics are
error-based and thus the smaller the better.

estimation block, to reduce the accuracy gap while still improving completeness. During a similar 309

development phase, several methods such as UniMVSNet [53] and TransMVSNet [54] have been 310

published, showcasing superior performance compared to our proposed approach. However, despite 311

these advancements, we maintain a strong belief in the effectiveness of our Depth Discontinuity 312

Learning (DDL) module in enhancing the baseline performance of PatchmatchNet. This reveals 313

that learning depth discontinuities is an effective means to improve both reconstruction accuracy and 314

completeness. 315

4.3. Evaluation on “Tanks and Temples” dataset 316

In this section, we present our findings based on the “ Tanks and Temples” dataset [50]. This 317

benchmark has three metrics, namely, recall, precision, and F-score. Recall and precision represent 318

the completeness and accuracy of the reconstruction, respectively, both measured in percentage (%). 319

The F-score combines precision and recall, and it is defined as the harmonic mean of a model’s 320

precision and recall. 321

In our experiments, we used our model trained using the DTU dataset with 14 epochs with 322

all the proposed loss terms. We compared the results against those from our baseline method 323

PatchmatchNet [17]. For both methods, we ran the same depth map fusion algorithm with the same 324

threshold value to not gain any advantage in the evaluation process. As can be seen from the statistics 325
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Method
Accuracy

(%) ↑
Completeness

(%) ↑ F-score ↑

PatchmatchNet 64.81 65.43 64.21
Ours 64.96 65.21 64.37

Table 2. Quantitative evaluation of our method and comparison with PatchmatchNet [17] on the ETH3D
training set [51]. Following the benchmark, the accuracy and completeness measures are quantified using the
percentage of points below a 2 cm error margin (the higher the better).

Intermediate set Advanced set
Methods P (%) ↑ R (%) ↑ F-score ↑ P (%) ↑ R (%) ↑ F-score ↑

PatchmatchNet 43.64 69.38 53.15 27.27 41.66 32.31
Ours 45.12 69.69 54.30 28.31 41.06 32.80

Table 3. Evaluation and comparison with PatchmatchNet [17] on the “Tanks and Temples" dataset [50].

Point clouds (testing) Depth maps (validation)

Methods
Acc.

(mm) ↓
Comp.
(mm) ↓

Overall
(mm) ↓

Depth map
(mm) ↓

Error ratio
(%; error > 8 mm) ↓

PatchmatchNet [17] 0.427 0.277 0.352 7.09 11.58
Architecture + L1 0.412 0.273 0.342 5.41 9.07

Architecture + L1,2,3 0.412 0.270 0.341 5.44 8.96
Architecture + L1,4 0.405 0.267 0.336 5.47 9.01

Architecture + L1,2,3,4 0.399 0.280 0.339 5.28 8.79
Table 4. Ablation study on the point clouds and depth maps from the DTU dataset [48]. L1: depth-groundtruth
loss; L2: edge-depth loss; L3: smoothness loss; L4: bimodal loss. Note that L2 and L3 cannot be separated
because they together work for edge-aware smoothness.

reported in Tab. 3, our results on the intermediate set have better performance on all evaluation 326

metrics. On the advanced set, our results demonstrate better accuracy and F-score, and the results 327

from PatchmatchNet have slightly better completeness. As depicted in Fig. 3, our approach improves 328

baseline [17] in accurately capturing the overall geometry and exhibits improved completeness in 329

smooth regions. This is substantiated by both qualitative and quantitative results, which demonstrate 330

that our approach outperforms the baseline in terms of overall reconstruction quality. 331

4.4. Evaluation on ETH3D dataset 332

In this section, we present our findings based on the ETH3D benchmark [51]. The ETH3D 333

benchmark [51] consists of high-resolution images of scenes with sparse scene coverage, high 334

viewpoint variation, and camera parameter information. The quantitative evaluation of our method 335

and the comparison with PatchmatchNet [17] on the ETH3D dataset [51] are detailed in Tab. 2. Both 336

methods have used the same fusion pipeline. Our method demonstrates better accuracy and F-score, 337

while PatchmatchNet has better completeness. 338

4.5. Ablation study 339

We have conducted an ablation study to understand and analyze the contributions of the 340

aforementioned loss terms of our architecture. The results are detailed in Tab. 4. Since the edge- 341

depth loss and the smoothness loss terms together strive for edge-aware smoothness, we do not 342

separate them in our experiments. We retrieve the last two metrics from the validation set while 343

tuning our hyper-parameters. The “Depth map” represents the accuracy of the estimated depth map, 344

calculated using mean absolute error (MAE) between the estimated depth map and groundtruth. 345

“Error > 8 mm” represents the percentage of points in the depth map having a higher error than 8 346

mm. 347

From Tab. 4, we can see that using all lost terms improves the depth map quality on the 348

validation set. For testing, we observe that our point clouds have better completeness and overall 349
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Boundary and Smooth region Depth maps
Methods Boundary region (mm) ↓ Smooth region (mm) ↓ Whole depth map (mm) ↓

PatchmatchNet [17] 22.05 6.66 7.09
Ours 19.86 4.84 5.28

Table 5. Evaluation of depth map errors in boundary and smooth regions using the DTU dataset [48].

metrics with bimodal and depth ground-truth loss while having edge-aware smoothness term results 350

in better accuracy. Our network also improves the arithmetic mean of accuracy and completeness if 351

we compare it against the baseline. 352
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(b) GPU memory consumption

Figure 4. Edges maps and GPU Memory consumption. (a) Edges maps of a few randomly chosen examples.
For each example, the images from left to right are the color image, the edge map predicted by HED [60],
our learned edge map, and the α map, respectively. We can see that our learned edge maps better capture the
depth discontinuities, regardless of the photometric changes. It is also interesting to observe that our α maps
distinguish between foreground and background. (b) Comparison of GPU memory demands with existing
learning-based MVS networks on DTU dataset with image size 1152 × 864.

4.6. Effect of depth discontinuity learning 353

From the above experiments and evaluation, our method demonstrates superior reconstruction 354

quality in terms of completeness and overall quality, which benefits from our depth discontinuity 355

learning. To understand the role of depth discontinuity learning in reconstruction, we visualize 356

the learned depth discontinuities (denoted as edge maps) for a few randomly picked examples in 357

Fig. 4 (a), and compare them with the edge maps predicted using the seminal learning-based edge 358

detection method HED [60]. We can see that by learning depth discontinuities, our network can 359

retrieve edges where the true depth discontinuities lie. Thus, as a key component for learning-based 360

MVS pipelines, our discontinuity-aware depth learning is more robust to photometrical changes, 361

shadows, and small variations in depth. In the earlier stage of the development of DDL-MVS, we 362

tried to feed the network with HED [60] output and jointly refine the depth and edge maps similar to 363

EdgeStereo [37]. It turned out that even after refinement, the edges were too sensitive to photometric 364

changes, leading to higher depth errors. 365

To reveal how our depth discontinuity learning contributes to depth estimation, we demonstrate 366

the α map of each example in the last column of Fig. 4 (a), where α is the mixture weight in the 367

bimodal Laplacian density distribution (see Eq. 1). It is surprisingly interesting to observe that our 368

network tries to learn to differentiate foreground and background, for which the α values express a 369

binary classification for foreground and background pixels. 370

Our suggested framework enhances the quality of depth maps for both smooth and boundary 371

regions, as demonstrated quantitatively in Tab. 5. We have computed mean absolute error (MAE) 372

between the estimated depth and the groundtruth. In contrast to the rest of the pixels, which 373

correspond to a smooth area, boundary pixels are those pixels where the laplacian of the groundtruth 374

depth is greater than 5. 375
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Figure 5. Comparison between our method and the baseline method PatchmatchNet [17] on a set of scenes
from the DTU dataset [48]. For each scene, the colored image at the top shows with green boxes the results
from PatchmatchNet, and the colored image at the bottom with blue boxes shows the results from our method.
A zoomed view of each marked image region is shown on the right of each result. The blue images depict our
results, while the green images depict the baseline results.

COLMAP [32]

PatchmatchNet (baseline) [17]

Ours

Figure 6. Comparisons with the state-of-the-art traditional photogrammetry-based MVS method COLMAP [32]
and learning-based MVS method PatchmatchNet [17].

The proposed approach also enhances the quality of the point clouds as demonstrated qualita- 376

tively in Fig. 5, from which we can see that thin structures and smooth regions are captured more 377

completely, and the boundary regions have a lower amount of noise. 378

Figure 6 presents a comparison of our proposed learning-based MVS method with two methods, 379

namely COLMAP [32] and PatchmatchNet [17] (our baseline). COLMAP is a state-of-the-art 380
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traditional photogrammetry-based method. We visualized the outcomes of the methods on four 381

different scene parts from the “Tanks and Temples” [50] dataset, and the last column of the figure 382

shows the exterior of the courtroom’s top, with the lower part of the point cloud clipped to better 383

reveal the ceiling’s completeness and accuracy. 384

To ensure a fair comparison, we provided COLMAP with the ground-truth camera parameters. 385

Our experiments demonstrate that our proposed method generates denser and more complete point 386

clouds than the traditional photogrammetry-based method. However, the traditional method achieves 387

better accuracy, partially due to its sparsity. Our method’s results exhibit the highest completeness 388

and are cleaner than the other methods. Additionally, our method outperforms PatchmatchNet [17] 389

in terms of reconstruction accuracy. Please refer to the supplementary video for more visual 390

comparisons. 391

4.7. Generalization to aerial images 392

To further evaluate the generalization capabilities of our proposed methods, we conducted 393

experiments using aerial images. Aerial images are commonly used in remote sensing applications 394

for tasks such as large-scale 3D reconstruction. For our experiments, we utilized the BlendedMVS 395

dataset [52], which consists of aerial images with a low resolution of 768 × 576 images. 396

Figure 7 demonstrates some example images from the BlendedMVS dataset, illustrating the 397

qualitative results obtained from our proposed methods. These results show that our method can 398

generate 3D reconstructions from aerial images, even with low-resolution input images. This 399

indicates the potential of our approach for remote sensing applications that require large-scale 3D 400

reconstructions from aerial imagery. 401

On a single RTX 2080, the time needed for depth inference per image is 90 ms when using 402

5 neighboring views, and increases to 110 ms when using 7 neighboring views. As an illustration 403

of the running time, the bottom left building example in Fig. 7 is comprised of 77 images. It takes 404

79.993 seconds to generate a point cloud from the calibrated views with the default 5 neighboring 405

views. 406

Figure 7. Experiments with BlendedMVS dataset. Qualitative results of our proposed methods for aerial
image-based 3D reconstruction are visualized here.

4.8. Memory consumption and running times 407

In Fig. 4, we report our comparison of GPU memory demands with existing learning-based 408

MVS networks on the DTU dataset [48], from which we can see that the memory demand of our 409

network is much lower than most of the existing networks. In the DTU dataset with the default 410

parameters and the 5-view case, the average depth inference time for our model is 345ms. This 411
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is comparable to the performance of PatchmatchNet [17], which took 300ms. We used a GPU of 412

NVIDIA GeForce RTX 2080 for the experiments. 413

4.9. Limitations 414

Although our method has good completeness and a good overall score (see Tab. 1), it has still 415

not reached the accuracy level of traditional photogrammetry-based algorithms such as Gipuma [5], 416

which is a common weakness in recently developed learning-based MVS methods with high com- 417

pleteness score. In this paper, our goal is to improve the accuracy of the reconstruction process while 418

simultaneously maintaining a high level of completeness. Although the accuracy of our proposed 419

network is not among the highest compared to some traditional state-of-the-art methods, we would 420

like to emphasize that currently, learning-based approaches struggle to achieve a state-of-the-art 421

accuracy result while maintaining a high completeness score. This is due to the trade-off between 422

accuracy and completeness in the depth map fusion process, which is a key component of the 423

reconstruction pipeline. Such a trade-off implies that increasing completeness leads to an increasing 424

potential source of noise. Although using bimodality helps to reduce the noise, we observe that our 425

work, like other traditional and learning-based algorithms, contains noise, especially in sparsely 426

viewed regions that may need further research. It is also worth noting that in this work we have used 427

the same fusion pipeline as in other papers [7,17]. 428

5. Conclusion 429

We have presented a strategy for improving the baseline MVS network by learning depth 430

discontinuities. The proposed depth discontinuity learning module has demonstrated superior 431

performance compared to the baseline [17]. The results of our ablation study, as shown in Tab. 4, 432

highlight the significant reduction in depth map error achieved by incorporating the proposed DDL 433

module, reducing the error by more than 30%. Experimental findings presented in Tab. 5 demonstrate 434

the enhanced quality of our approach in terms of depth map accuracy in smooth and boundary regions. 435

Moreover, our visual results shown in Fig. 3 and Fig. 5 revealed that the reconstructed point cloud 436

obtained from our approach exhibits improved accuracy in capturing object and scene details 437

compared to the baseline model while maintaining completeness. 438

The results of Fig. 5 and Tab. 5 further reinforce the superiority of our method, with better 439

qualitative and quantitative results in both smooth and boundary regions in the DTU [48] dataset. 440

These results indicate that our method has strong generalization capabilities and the ability to produce 441

high-quality depth maps with improved accuracy and precision. Furthermore, our experimental 442

results demonstrate the potential of our method for remote sensing applications, such as large-scale 443

point cloud reconstruction from aerial images. 444

Our experiments have demonstrated that learning depth maps as a mixture distribution and 445

integrating depth discontinuities into the network as prior knowledge for piecewise smoothness 446

regularization leads to improved reconstruction quality, with enhanced accuracy and overall quality 447

of the final reconstruction. 448
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