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Abstract—Visual Place Recognition (VPR) is an image-based
localization method that estimates the camera location of a
query image by retrieving the most similar reference image
from a map of geo-tagged reference images. In this work,
we look into two fundamental bottlenecks for its localization
accuracy: reference map sparseness and viewpoint invariance.
Firstly, the reference images for VPR are only available at
sparse poses in a map, which enforces an upper bound on
the maximum achievable localization accuracy through VPR.
We therefore propose Continuous Place-descriptor Regression
(CoPR) to densify the map and improve localization accuracy.
We study various interpolation and extrapolation models to
regress additional VPR feature descriptors from only the existing
references. Secondly, we compare different feature encoders and
show that CoPR presents value for all of them. We evaluate our
models on three existing public datasets and report on average
around 30% improvement in VPR-based localization accuracy
using CoPR, on top of the 15% increase by using a viewpoint-
variant loss for the feature encoder. The complementary relation
between CoPR and Relative Pose Estimation is also discussed.

Index Terms—Visual Place Recognition, CoPR, Visual Local-
ization, Pose Estimation

I. INTRODUCTION

ONE of the key research problems for robotics and com-
puter vision is accurate Visual Localization (VL), i.e., to

localize a robot in a map using as input only an image from
the robot’s camera [1]. Various parallel research directions
have emerged within VL. A top-level distinction can be made
between purely image-based approaches and 3D structure-
based approaches. The former are simple and efficient but
have lower localization accuracy, while the latter are more
accurate at the cost of increased computation complexity and
maintenance effort [2]. Purely image-based approaches could
be further divided into Visual Place Recognition (VPR) [3],
Absolute Pose Regression (APR) [4], and Relative Pose Esti-
mation (RPE) [5]. Given their efficiency and scalability, VPR
techniques are often used in robotics for loop closure detection
or 3D reconstruction. However improving their performance
remains an ongoing research challenge [6] [7].

In VPR the task is to find for a query image the best
matching reference image from a set of pre-recorded geo-
tagged reference images (i.e., the reference map) [8]. Each
reference image is considered a ‘place’, and the geo-location
of the best-matched reference is then the estimated location
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(‘place’) of the query image. Whereas VPR relies on image-
retrieval, in APR a neural network directly regresses the global
coordinates for a query image, and the map is implicitly
represented by the network weights. However, such APR
methods do not generalize across viewpoints, as has been
studied by Sattler et al. [9]. RPE on the other hand operates
on two images with assumed nearby viewpoints, and estimates
from the overlapping image contents the relative translation
and orientation between their corresponding camera coordinate
frames. Since VPR performs coarse global localization, and
RPE performs fine-grained localization by assuming coarse
localization is solved, both techniques are often combined
in the multi-stage approach, referred to as Coarse-to-Fine
localization (CtF) [5] [10] [11]. RPE is therefore not an
alternative to VPR, but a refinement step that is only successful
if VPR was able to retrieve a nearby reference.

VPR remains less accurate than structure-based and CtF
approaches [12], with a crucial reason being the discrete
nature of the reference map in VPR. When a query image
appears between two anchor locations in the reference map,
a VPR system could at best only match this to the nearest
spatial anchor location, incurring some minimal Euclidean
distance error. This can become worse when query images
and existing reference images span the same area but at
offsets of parallel lines, as shown in Fig. 1. Therefore, we
seek to add more references to the map (such as the blue
poses in Fig. 1), a notion referred to as map densification.
A trivial but often impractical solution to densification is by
collecting more reference images. Alternatively, densification
could be achieved by creating a 3D model of the environment
and rendering images at novel poses. However, creating and
maintaining up-to-date 3D models is computationally and
storage-wise expensive, and the resulting images are not photo-
realistic [9], [13].

Since the VPR reference maps comprise compact feature
descriptors of images, we suggest performing map densi-
fication in the feature space rather than the image space.
We propose Continuous Place-descriptor Regression (CoPR)
in feature space for VPR map densification1. Since in CtF
the RPE step assumes the initial VPR step was performed
correctly, we note that improving VPR could also address CtF
errors that cannot be corrected by RPE, as we will also show
in this work.

We argue for two requirements to benefit from such map
densification: 1) a method of regressing meaningful feature
descriptors for VPR at novel target viewpoints given anchor

1This discrete nature of reference map is also problematic for APR as
reported by [9]. We hypothesize that APR could also benefit from map
densification via descriptor regression, but this aspect is not explored in this
work and we limit its scope to VPR.
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Fig. 1. The discrete treatment of VPR that leads to lower localization accuracy. Provided that only the yellow anchor reference poses are available in the map,
the black query images could only be matched as close as possible to the base error. Regressing descriptors for the blue target viewpoints using interpolation
or extrapolation given anchor reference descriptors could lead to improved localization accuracy for query images in VPR and thus reduce the base error. The
scene shown in this figure is taken from the work of Sattler et al. [9].

point feature descriptors, 2) an image-retrieval system that
is viewpoint-variant and therefore could utilize the regressed
descriptors at target viewpoints. Furthermore, the model for
descriptor regression should only need existing anchor de-
scriptors and relative poses between anchor locations and
target viewpoints, at its input, and it should not require
images of the scene from target viewpoints or expensive scene
reconstruction [9].

To study the problem of descriptor regression, we further
consider two possible schemes: interpolation and extrapola-
tion. Both of these are relevant for map densification, where
interpolation (Fig. 1a) refers to interpolating to an intermediate
location between some anchor points on the reference trajec-
tory, while extrapolation (Fig. 1b) refers to regressing descrip-
tors around a given anchor reference pose. Since interpolation
could even be performed using averaging of the nearest anchor
points along the trajectory, i.e., by simply following the trend
in the local feature space, we expect it to be an easier problem
to solve than extrapolation. Extrapolation, on the other hand, is
a more important requirement for map densification, because
it enables us to potentially regress descriptors at or close to the
query. Interpolation can at best only densify within an existing
reference trajectory.

Finally, for a VPR system to benefit from map densification,
it needs to retrieve the Euclidean closest match in the physical
space as the best match in the feature space. This is not
enforced in VPR techniques trained with triplet-loss [3],
classification-loss [14] and ranking-based-loss [15], where the
correct/incorrect ground-truth match is discrete (leading to
viewpoint invariance), instead of the continuous ground-truth
in distance-based loss [16]. If a VPR technique is viewpoint-
invariant, both the blue trajectories in Fig. 1b would be
incorrectly considered equally valid. Thus, we hypothesize
that map densification and viewpoint variance should work
hand in hand to make VPR-based localization more accurate.
We show that a highly viewpoint-variant VPR technique in

a densified reference map leads to the highest localization
accuracy, amongst all the combinations originating from the
different feature encoders and levels of map densification.

In summary, our contributions are as follows:
1) We investigate Continuous Place-descriptor Regression

(CoPR) to densify a sparse VPR map through either
interpolation or extrapolation of the feature descriptors
to target poses, without requiring any new measurements
(i.e., reference images).

2) We propose linear regression based techniques and a
non-linear deep neural network for map densification
and demonstrate the improvement in localization accu-
racy on three existing public datasets.

3) We report that different feature encoders can benefit
from map densification and the best performance is
achieved by using the most viewpoint-variant descriptors
in a densified map.

4) We discuss the VPR failure cases where RPE cannot
recover the correct pose without CoPR, highlighting the
complementarity of these approaches for improving VL
accuracy. We demonstrate the existence of such cases
with real-world data.

II. RELATED WORK

In this section, we expand on the existing body of literature
for Visual Localization, as reviewed in [2]: a system that
consists of retrieving the pose (position + orientation) of a
visual query material within a known space representation.
Such systems are further classified into direct and indirect
methods. The direct methods consist of Absolute Pose Re-
gression (APR), structure-based localization, and Coarse-to-
Fine localization (CtF). The indirect methods are: Visual Place
Recognition (VPR) approaches, which is a robotics problem,
and image-retrieval, which is a computer vision problem. Both
of these mostly represent the same formulation but with a



few differences regarding evaluation metrics and experimental
setup as discussed in [7]. In this research, our scope is
limited to VPR-based localization and its limitations, however,
to understand these limitations and due to the significant
overlap between various fields of VL and the collective benefit
from map densification, we expand on all these fields in the
following.

Structure-based approaches: These approaches use 2D-
3D matching given 2D pixels and 3D scene coordinates to
yield highly accurate pose estimates. Recent benchmarks [12],
[17], [9] have shown that such structure-based approaches are
state-of-the-art when it comes to accurate localization. The
work of Li et al. [18] is seminal in this field that shows
large-scale structure-based localization by proposing a co-
occurrence prior to RANSAC and bidirectional matching of
image features with 3D points. Efficiency is of importance and
Liu et al. [19] propose the use of global contextual information
derived from the co-visibility of 3D points for 2D-3D match-
ing. InLoc [20] presents a formulation for structure-based
localization in indoor environments by using dense feature
matching for texture-less indoor scenes and view synthesis
for verification. Active-Search [21] uses 2D-to-3D and 3D-to-
2D matching for pose regression and candidate filtering, while
DSAC++ [22] uses learnt scene-coordinate regression building
upon DSAC [23]. Both of these techniques form the state-
of-the-art for structure-based 6-DoF camera localization [9].
While structure-based approaches are highly accurate, they
require significant computations and have limited scalability,
and maintaining and updating the corresponding potentially
large-scale 3D models is challenging.

Absolute Pose Regression: APR started from the seminal
works of PoseNet [4] and the incremental build-up by authors
in [24] and [25], and has since seen many different variants
of it e.g., the works in [26], [27], [28], [29]. The objective of
APR approaches is to memorize an environment given a set
of images and their corresponding ground-truth poses, such
that given a new image, the network can generalize from the
poses seen at training time and directly regress the new pose.
In [30], an encoder-decoder architecture is employed with a
final regressor network to regress camera pose. Radwan et
al. [31] present a multi-task learning framework for visual-
semantic APR and odometry. While APR methods are simple
and efficient, they have been shown to suffer from degeneral-
ization across viewpoints and appearances, and are unable to
extrapolate to parallel trajectories [9].

Coarse-to-Fine localization: Another approach to the prob-
lem of accurate localization is a two-staged Coarse-to-Fine
formulation, where the first stage is VPR and the second
stage is Relative Pose Estimation (RPE). This need for CtF
approaches arises because the query trajectories and reference
trajectories are usually far apart, and the coarse VPR stage can
only at best retrieve the closest pose on the reference trajectory.
Thus, there is always a base error in the coarse VPR stage,
which is then reduced by the RPE module for fine-grained
localization. Authors in [5] propose a CtF approach by using
a Siamese network architecture for RPE. RelocNet [10] uses
camera frustum overlap information at training time, while
CamNet [11] models the CtF localization approach in three

separate modules with increasing fineness. The work of [32]
models pose estimation by discovering and computing relative
poses between pre-defined anchor locations in the map. Most
of these CtF approaches model RPE as a pose regression
problem given global descriptors leading to a lack of scene
generalization. Thus authors in PixLoc [33] instead learn local
features useful for geometric 2D-3D matching which can
generalize to new scenes. SANet [34] also models the CtF
localization pipeline using 2D-to-3D matching by learning
scene coordinate regression and generalizes to new scenes.
However, both of these approaches require a coarse 3D model
of the environment at their inputs.

VPR and image-retrieval: VPR and image-retrieval in
essence represent the same problem: i.e., given a query image
and a map of reference images, retrieve the Nearest Neighbor
(NN) reference matches for that query image. Depending
on whether the closest match is required (VPR) or all of
the possible matches need to be retrieved (image-retrieval),
the problem favours loop-closure or 3D modelling, as dis-
cussed in [7]. In this work, we use the two terminologies
interchangeably to refer to the same problem. Both these
tasks are usually treated as viewpoint-invariant and trained
with losses such as triplet-loss [3], [35], [36], classification-
loss [14] and ranking-based-loss [15]. These losses aim to
align the feature representation for viewpoint-varied images of
the same place, which explicitly favours viewpoint-invariance.
On the other hand, more recent distance-based loss functions
explicitly force the network to encode geometric information
within the feature descriptors, such that the top-most retrieved
images are also the geometrically-closest images [16] [37].
For our work, such a distance-based loss is highly relevant,
since map densification could offer more benefit to VPR-based
localization using viewpoint-variant feature descriptors than
viewpoint-invariant descriptors.

Before dedicated datasets were developed for VPR, off-
the-shelf Convolutional Neural Network (CNN) features were
utilised, Chen et al.[38] used features from the Overfeat Net-
work [39] and combined them with the spatial filtering scheme
of Seq-SLAM. The use of off-the-shelf features of AlexNet
trained on ImageNet for VPR was studied by Sunderhauf et
al. [40], who found that some layers were most robust to
conditional variations than others. Chen et al. [14] proposed
two neural networks, namely AMOSNet and HybridNet, which
were trained specifically for VPR on the Specific Places
Dataset (SPED).

Recently, contrastive learning has been the dominant trend
in VPR, as shown in [3] [36] but which classifies a place as
the same or different in a hard (0/1) manner i.e., an image
is considered as either the same place or a different place.
But with multiple viewpoint-varied images of the same place,
such a hard distinction is not possible and a soft distinction
is required. For this purpose, the authors in [41] present the
concept of generalised contrastive loss based on image-content
overlap. Previously discussed distance-based loss functions
can also be classified as soft losses since they can distinguish
between multiple viewpoint-varied images of the same place.
Other than this, VPR literature includes the use of ensembles
of VPR techniques to reject false positives [42], [43].



Implicit scene representations: In addition to the concept
of explicit 3D models for structure-based approaches, implicit
scene representation has been more popular recently, where the
structure is stored within the parameters of a neural network.
Such implicit scene representation could come from neural
implicit representations [44] [45], differentiable volumetric
rendering [46] or the more recent trends in Neural Radi-
ance Fields (NeRF) [47]. If the structure is known, whether
implicitly or explicitly, it is possible to synthesize images
at new viewpoints of the scene. These synthesized images
could be directly used for map densification in a VPR-based
localization system [48], for pose verification in a Coarse-to-
Fine localization system [49] or for creating more training data
for absolute pose regression approaches [13]. Authors in [50]
invert the NeRF process to refine the camera pose estimate
given an initial coarse estimate. However, implicit scene
representation approaches offer similar challenges as structure-
based approaches for localization regarding maintaining and
updating the scene representations. They also suffer from
scalability and artifacts created in the image space, as reported
in [13].

In summary, VPR is an efficient and easy-to-maintain
localization method compared to structure-based approaches,
it is more generalizable than APR techniques and simpler
than multi-staged CtF approaches; however, it remains less
accurate than CtF and structure-based approaches, where this
accuracy is related to the sparseness of the reference map at
creation and viewpoint-variance of the feature encoder. One
possibility to increase this localization accuracy as surveyed
here is to use the CtF approaches in a retrieval-followed-by-
regression manner, however, this itself depends on the quality
of the initial coarse retrieval stage, i.e., VPR, such that an
incorrectly retrieved coarse estimate leads to a definite failure
of the complete CtF pipeline.

Therefore, we instead look in a different direction than
CtF and explore some of the fundamental reasons for the
inaccuracy of VPR. We investigate whether it is possible
to increase VPR-based localization accuracy even without
relying on RPE as a second stage and without requiring any
additional measurements of the scene. For this, we look into
densifying the map of descriptors and the benefits of such map
densification for different types of VPR feature encoders.

III. METHODOLOGY

In this section, we first provide an overview of our problem
statement. We then dedicate sub-sections to introduce the
concept of map densification (CoPR), the descriptor regression
strategies for CoPR, and the different feature encoders for
VPR. Lastly, we discuss the relationship between CoPR and
RPE.

A. Problem statement

Given a set of reference images with known poses, VPR
constructs a map M = (R,P ), where R is a set of reference
descriptors, such that fi ∈ R is an N -dimensional feature
descriptor with a corresponding pose pi ∈ P . Each feature
descriptor fi = G(Ii) is obtained from a reference image Ii

using an already trained and fixed feature extractor G, typically
a neural network. The pose pi is a 6 degree-of-freedom pose
that specifies the location as a translation vector ti = (x, y, z),
and a quaternion vector oi specifying the 3D orientation.

At test time, the objective is to find the pose pq of a query
image Iq , for which the query descriptor fq = G(Iq) is
computed. The descriptor fq is matched to all the reference
descriptors in the set R, and the Nearest Neighbor (NN)
match rnn = argminr∈R ||fr − fq||2 is retrieved. The pose
of the query image is then considered the same as that of
the retrieved reference descriptor, i.e., pq = pnn. Ideally,
the feature descriptors are constructed such that the resulting
Euclidean translation error e = ||tq−tnn||2 is minimal. Hence,
the assumption pq = pnn is essentially an approximation
pq ≈ pnn, and would only be true in the unlikely event that
the query is collected at the same pose as that of the retrieved
reference in the map. Thus, the expected error E[e] is a non-
zero base error of a VPR system. This base error is directly
affected by the sparseness in the reference map: the further
apart the reference samples are, the higher the base error could
be2. Therefore, this work proposes to apply map densification
for VPR as shown in Fig. 1.

B. Map densification

To reduce the base error, we seek to extend the number of
descriptors and poses in a given sparse map Msparse. Since
collecting more reference images is not always possible, we
aim to perform densification using only existing reference
descriptors in Msparse without the need to collect more
images at novel viewpoints. Such densification in feature space
also has computational benefits since image-description is
more computationally expensive than descriptor-regression, as
shown later in sub-section IV-H. Concretely, we propose to
densify a sparse map Msparse = (R,P ) by defining a set of
target poses P ′ for which the corresponding descriptors R′ are
predicted via Continuous Place Descriptor Regression (CoPR)
using one or more existing reference descriptors in R which
we will refer to as anchor descriptors. The resulting densified
map Mdense = (R∪R′, P ∪P ′) thus extends the original map
Msparse with the newly regressed target references.

Different strategies could be employed to define (a) which
set of target poses P ′ to regress to, and (b) how to regress
the descriptors for a target pose using the available anchor de-
scriptors. We here explore two specific strategies for defining
the set P ′, namely (1) interpolating between the anchor points
on the reference trajectory. and (2) extrapolating to nearby
poses of an anchor pose that do not necessarily lie along the
reference trajectory. Regression approaches will be discussed
later in sub-section III-C.

The interpolation scheme assumes that the references in
the sparse map are obtained in a sequence. Additional poses
P ′ can be selected along the trajectory in between the poses
available in P . Hence, any two subsequent references a1 ∈ R

2Clearly, if the query images appear at the exact same spot as that of the
reference trajectory, map densification would not help. This however is highly
unlikely and unrealistic in real-world situations as evident in existing VPR
datasets. [7]



and a2 ∈ R can be selected as anchors, and one or more new
target poses pnew can be selected on the path between the
anchor poses pa1 and pa2.

In the extrapolation scheme the set of target extrapolation
poses P ′ are selected in the vicinity of the poses in P , but
not necessarily on a path between them. One possibility is to
generate these target poses in a uniform grid within a certain
distance threshold around each anchor. Another possibility is
to define a single global uniform grid, and only evaluate grid
points using the nearest anchor points (within some distance
threshold) similar to [9]. The former approach leads to a denser
grid, although it is globally non-uniform.

Fig. 2. The test setup for the interpolation and extrapolation experiments on
the Heads scene of the 7-scenes dataset in 2D. The anchor reference points
are to be used by regression techniques to interpolate/extrapolate descriptors
at target poses. Since in the case of extrapolation we do not sub-sample along
the reference trajectory as in interpolation, there are non-anchor reference
points in the extrapolation experiment but not in the interpolation experiment.

Examples of the reference, query, and target poses are
shown in Fig. 2 to illustrate interpolation and extrapolation
for map densification on the 7-scenes dataset [51].

C. Descriptor regression strategies

We consider several strategies to predict a new descriptor
fnew ∈ R′ for a given target pose pnew ∈ P ′ and the
sparse reference map Msparse, which could be applied to
the extrapolation and/or interpolation tasks. In principle, a
regression method fits a model to express the dependent
variable(s) as a function of the independent variables, thereby
capturing the local trend in the space around the fitted samples.
For feature descriptor regression, our objective is to express
the feature space as a function of the pose. Since this feature
space is latent, it is unclear to what extent we can assume it
to be globally or locally linear for changing pose, hence we
consider both linear and non-linear regression techniques for
CoPR, as follows.

1) Linear interpolation: The simplest strategy only applies
to interpolation, where we only use the translation and not the
orientation of each pose. We aim to predict the descriptor for
an intermediate translation between two known translations.
The target descriptor in this case is a linear weighted combi-
nation of its two anchors,

fnew = (1− αa1)× fa1 + (1− αa2)× fa2, (1)
αa1 = β1 / (β1 + β2), (2)
αa2 = β2 / (β1 + β2), (3)

where β1 = ||tnew− ta1||2, β2 = ||tnew− ta2||2, and fa1, fa2
are the two anchor feature descriptors.

2) Linear Regression using local plane fit: As a sec-
ond approach, we investigate a local plane fit to consider
more anchors and allow extrapolation too. This also only
uses the translation and not the complete pose. Given the
target translation tnew, the O Nearest Neighbor anchor points
from Msparse in terms of Euclidean translation distance are
selected. For each descriptor dimension, a linear plane is least-
squares fitted on the anchor values, and the plane is evaluated
at the translations of the target tnew to regress fnew. This linear
regression is abstractly depicted in Fig. 3 for a single feature
dimension (f ) in a two-dimensional pose space (x and y). Note
that a more complex polynomial or spline regression could be
used too, but we limit our approach to linear regression here as
the most canonical implementation of this general approach.

3) Non-linear regression network: In this strategy, we
directly regress fnew = H(fa,∆p) from a single anchor de-
scriptor fa, and the relative pose ∆p specifying the translation
difference and the quaternion rotation between the anchor pose
pa and the target pose pnew. As non-linear descriptor regressor
H , we use a fully-connected deep neural network consisting
of 7 hidden layers with a GeLU [52] activation. The input to
the network is the N dimensional anchor feature descriptor fa
and the relative pose ∆p stacked together, while the output is
the N dimensional target feature descriptor fnew at the pose
pnew. The dimensionality of the input layer and hidden layers
is the same, i.e., N + 7, as the relative pose vector ∆p has
a length of 7, while the output layer has only N dimensions.
This network is shown in Fig. 4. In preliminary experiments on
Microsoft 7-scenes (see sub-section IV-A) we explored other
activations and using fewer or more layers. We found GeLU



Fig. 3. A locally-fit plane given three anchor points in a two-dimensional
world. Note that this plane is for a single feature dimension, so in practice
there will be N such planes.

works best, and that the network can overfit with more than 7
layers.

Given a pre-trained and fixed encoder G for computing
feature descriptors, the non-linear regression network is trained
on available descriptor pairs (e.g., an anchor descriptor fa and
a ground-truth target descriptor fgt) with known relative pose
∆p between them, and a mean-squared error loss,

LMSE = ||H(fa,∆p)− fgt||2. (4)

∆p

fa
FC fnew

[1 × 512]
[1 × 519]

fgt

LMSE

Concat

[1 × 7]

GeLU

[1 × 519] ×7
[1 × 512]

Fig. 4. The non-linear deep learning based model H that we train to regress
the descriptor fnew at a target location. The input is an anchor reference
descriptor fa and the relative pose ∆p between the anchor location pa and
the target location pnew .

D. Losses for the feature encoder

Next, we discuss the choice for the training loss of the
feature encoder G, since the feature space is key for the

general localization quality, and also defines the complexity of
the regression task that map densification should solve. The
feature encoder G takes as input an image I and computes
its N dimensional feature descriptor fI . We will compare
three different training strategies, namely training with a triplet
loss [3], an RPE loss [5], and a distance-based loss [16], which
are shortly summarized here.

For training with a triplet loss, the network computes N
dimensional feature descriptors {fq, fp, fn} for three images
{Iq, Ip, In}: a query Iq , a positive match Ip with varied
viewpoint and a negative match In that represent a different
scene/place. Each of these three N dimensional feature de-
scriptors is then normalized and penalized with a triplet loss.
The triplet loss is the same as that of [3] which penalizes
the network given a Euclidean distance function df (f1, f2) =
||f1 − f2||2 and a margin m with a triplet loss,

Ltriplet = max{df (fq, fp)− df (fq, fn) +m, 0}. (5)

For the RPE loss [5], fq and fp are stacked together and
passed through a relative-pose regressor consisting of fully-
connected layers to output the estimated 6-DoF relative pose
∆pest between the two input images. The network is trained
with a mean-squared error loss, i.e.

Lrelative = ||∆pest −∆pgt||2, (6)

given the ground-truth relative pose ∆pgt. This is the same
network as that of Laskar et al. [5]. To regress the relative
pose ∆pest correctly, the network has to encode viewpoint
information in the feature descriptors {fq, fp}. Nevertheless,
this relative pose-based loss does not explicitly force the
network to encode representations that encourage the closest
descriptor in 3D physical space to be the closest in feature
space.

Therefore, the third loss is the distance-based loss Ldistance

as introduced in the work of Thoma et al. [16],

Ldistance = ||∆f −∆t||2. (7)

This loss explicitly penalizes the network based on the Eu-
clidean distance ∆f between feature descriptors {fq, fp} and
the Euclidean distance between their corresponding ground-
truth translation poses ∆t.

E. Relating CoPR to Relative Pose Estimation

Our main focus is the task of VPR for VL. Nevertheless,
map densification can also improve the accuracy of Coarse-
to-Fine localization, i.e., VPR plus RPE [5]. This sub-section
expands on the methodological relation between CoPR and
RPE.

Formally, given two feature descriptors f1 and f2 and the
relative pose between their corresponding locations ∆p, a
CoPR strategy as in sub-section III-C3 models a function
f2 = H(f1,∆p). In contrast, RPE aims to learn a func-
tion ∆p = L(f1, f2). While these two functions H and L
appear similar, these approaches have different benefits. A
useful property of CoPR is that it can be done offline, thus
localization reduces to a single-stage image-retrieval problem



Query 𝐼𝑞 in room A Reference 𝐼𝐵 in room B Reference 𝐼𝐴 in room A

𝑝𝐴

𝑝𝐴′
𝑝𝑞

CoPR
𝑝𝐵

𝑝𝐵 + Δ𝑝𝑞𝐵 RPE
Room A Room B𝑥

𝑦

Mismatch 
without CoPR

Good match 
with CoPR

Fig. 5. Perceptual aliasing of rooms A and B: query Iq in room A appears
more similar to reference IB in room B than to reference IA in correct room
A. If VPR retrieves the wrong reference fB for fq , RPE between fB and
fq cannot correct this: the ‘apparent’ difference between the query pose pq
and reference pose pB is nearly zero. CoPR therefore aims to improve VPR
instead by adding references for more diverse poses to the map, e.g. fA′ for
pA′ .

at runtime, while RPE is performed online and thus leads to
a multi-stage CtF formulation.

A more crucial difference is that RPE assumes its two input
images represent the same scene, and thus must rely on the
accuracy of the preceding image-retrieval step. Consider a
query Iq taken in a scene A, e.g., a room in an office, and
a sparse reference map containing various visually similar
scenes, e.g., other rooms in the same office (see Fig. 5).
The image-retrieval system might fail and retrieve a reference
fB from an arbitrarily distant scene (‘room’) B instead of
any nearby reference fA from the actual scene A, i.e. when
||fB − fq||2 < ||fA − fq||2. We refer to the inability to
distinguish such similar scenes as perceptual aliasing [53].
These scenes should ideally all be represented as nearby
references in the feature space, but in a sparse reference map
some scenes could be underrepresented, and retrieving the best
(or even top-k) matches for a query might never include the
correct scene. RPE cannot correct such retrieval failures. For
instance, a pose difference between correct reference IA and
query Iq (both at room A) could limit the visual overlap
between their images, making their descriptors fA and fq
dissimilar. If the visual content of Ib and Iq appear more
similar, their pose difference would appear relatively small,
even though these are at completely different scenes. Since
∆pqB = L(fq, fB) will just estimate the small apparent pose
offset, RPE results in an incorrect final pose estimate for the
query, pB + ∆pqB .

By densifying the reference map, we can instead extend
the references in room A to represent more diverse poses.
A regressed descriptor fA′ at a new pose pA′ closer to the
query than the original reference pA can improve the best
match, ||fA′ − fq||2 < ||fB − fq||2, resulting in a good VPR
localization estimate pq ≈ pA′ . We demonstrate the existence
of this effect using constructed failure cases in our experiments

of sub-section IV-G. In CtF localization, RPE afterward still
reduces this gap further by estimating ∆pqA′ = L(fq, fA′),
such that pq = pA′ + ∆pqA′ . CoPR and RPE are therefore
complementary techniques.

IV. EXPERIMENTS

In this section, we present our experimental setup in detail,
including the datasets, baselines, and evaluation metrics. First,
we validate using the encoder Gdistance as our primary
encoder. We then present our results of using descriptor
regression for interpolation and extrapolation experiments. We
show how different feature encoders can benefit from CoPR
and the effect of map density on localization performance. We
also show the relation between CoPR and CtF localization, and
finally provide the computational details of our work.

A. Experimental setup

Here we explain the datasets, evaluation metrics and the
various parametric choices used in our experiments.

1) Datasets: We use three datasets for evaluation, Mi-
crosoft 7-scenes, the Synthetic Shop Facade, and the Station
Escalator dataset. Our choice of these datasets is based on
their wide adoption for evaluating VL in existing literature as
reviewed previously and their complementary nature: indoor
vs outdoor, different levels of spatial coverage and different
types (parallel vs intersecting) of traversals. We discuss each
dataset in turn.

Microsoft 7-scenes dataset [51] has been a long-standing
public benchmark for 6-DoF indoor localization [5], [9], [54].
This dataset consists of seven different indoor scenes collected
using a Kinect RGB-D camera and provides accurate 6-
DoF ground-truth poses computed using a KinectFusion [55]
baseline. Each scene spans an area of a few square meters
and contains multiple sequences/traverses (viewpoint-varied)
within a scene. Each sequence itself then contains between
500 to 1000 images, where each image has a 640×480 pixels
resolution. There are separate query and reference sequences
which contain novel viewpoints of the same scene. The images
and poses in the query trajectory act as our training set
for training both the feature encoder G and the non-linear
descriptor regressor H . The reference trajectory is further
divided into two splits: validation and test sets, with 40%
images in the validation set and 60% images in the test set. The
validation set is used for validating the encoder G and the non-
linear regression network H at training time. This reference
trajectory is then used for the interpolation and extrapolation
experiments.

The Synthetic Shop Facade dataset proposed by [9]
represents images and poses regressed from a 3D model of a
real-world outdoor shopping street [4] and consists of multiple
sequences/traverses of a single scene. It contains about 9500
images at novel viewpoints with an image resolution of
455 × 256 pixels. There are separate splits for query and
reference sequences that contain different viewpoints. The
training, validation and test sets follow the same strategy as
that of the 7-scenes dataset.



The Station Escalator dataset proposed by [9] contains
two parallel trajectories through a station and is hence use-
ful for studying extrapolation benefits across parallel lanes.
The dataset contains 330 query images and 330 reference
images with an image resolution of 1557 × 642 pixels and
6-DoF accurate poses. For this dataset, we intend to regress
descriptors from one trajectory (say A) to its parallel trajectory
(say B), thus the non-linear regression network H needs to
be trained with such relative pose change between A and
B. Therefore, given the two original parallel trajectories, we
divide both into three parts: training, validation and test sets.
The training images are selected as every 50th image in both
trajectories, while the remaining images are equally divided
between the validation and test sets. The training images
from both traverses are used to train the descriptor regression
models. For experiments, the validation and test images from
trajectory A combined together act as our query images. The
validation and test images from trajectory B in addition to the
training images from trajectory A act as the reference images.

2) Evaluation metrics: The evaluation metric is the Median
Translation Error (MTE) in meters and the Median Rotation
Error (MRE) in degrees over all the estimated query images’
poses, as commonly used in existing literature [5] [9] [54]. The
median is normally preferred over the mean since outliers can
skew the latter by any amount. The translation error is the
Euclidean distance between the query image’s translation and
the best-matched reference image’s translation. The rotation
error is the angular difference between the quaternion vectors
of a query image and its best-matched reference image, as
used in the reviewed literature.

3) Training details and parametric choices: We use the out-
put of the final global average pooling layer of a ResNet34 [56]
backbone feature encoder, and thus a feature descriptor size
of N = 512 is used throughout this work. The feature
encoder G and the non-linear descriptor regressor H are
trained separately. For training all the three feature encoders
Gtriplet, Grelative and Gdistance and for non-linear regression
network H , we use the Adam optimizer for model optimiza-
tion with learning rates of 1e−5, 1e−4, 5e−5 and 5e−4 for
Gtriplet, Grelative, Gdistance and H , respectively. The weights
of the ResNet34 backbone are initialized via pretraining on
ImageNet-1K and fine-tuned on the datasets used in this work,
while the non-linear regression network H is trained from
scratch for each dataset.

For training the encoder Gtriplet, images from the training
sets of different scenes of the 7-scenes dataset are chosen
randomly to act as negatives, while images from the same
scene with varied viewpoints are chosen as positives. We use
a margin of m = 0.3 for the triplet loss, same as [3]. The
feature encoder G is trained jointly on the training pairs of all
the seven scenes in the 7-scenes dataset. The encoders trained
using triplet loss (Gtriplet) and RPE loss (Grelative) are only
trained on the 7-scenes dataset and used for experiments on
all the datasets, while the model trained using distance-based
loss (Gdistance) is trained separately for each dataset. We later
show the reasons behind this separate training for distance-
based loss in sub-section IV-B.

A dedicated non-linear regression model H is trained for

each of the three datasets. The non-linear regression model
H trained for one dataset is used for both the interpolation
and extrapolation experiments of that dataset. For the least-
squares plane fit to linearly regress each feature dimension,
O=4 is chosen as the number of NN anchors, which is the
minimum number needed to fit a plane in 4D (i.e., 3D world
plus 1D feature).

B. Encoder loss function and localization accuracy

Here we intend to understand the first part of the two
potential requirements for accurate VPR-based localization:
viewpoint variance. The encoder training objectives favouring
viewpoint variance can have a considerable effect on the VPR-
based localization error. The change in localization error for
Gtriplet, Grelative and Gdistance is shown in Fig. 6 for the
7-scenes dataset, where a distance-based loss leads to the
lowest localization error. This localization error is without
map densification and is purely the effect of different training
objectives for the encoder G.
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Fig. 6. The MTE of the three encoders when used for performing VPR-
based localization on all the scenes of the 7-scenes dataset. Training with
distance-based loss leads to lower MTE than other losses.

Moreover in Fig. 7, we observe the (de)generalization of
these feature encoders from one dataset to the other. This is
done by evaluating the VPR-based localization performance of
a given encoder on datasets other than the training dataset for
a given model. We note that the network Gdistance trained on
the 7-scenes dataset does not perform well on the Shop Facade
dataset and is outperformed by Gtriplet and Grelative trained
on the 7-scenes dataset, which suggests that Gdistance is less
generalizable. We therefore train Gdistance on the Shop Facade
dataset, after which it outperforms the other networks. This
degeneralization of distance-based loss has also been reported
by [16] and an intuitive explanation could be that distance-
based losses are more sensitive to structural changes between
different domains and the change in scene appearance with
changing scene depth.

Since distance-based loss leads to the lowest localization
error, we only use Gdistance as our backbone encoder for
the experiments in sub-sections IV-C and IV-D. However, we
later show in sub-section IV-E that all the encoders (Gtriplet,
Grelative and Gdistance) can benefit from CoPR, albeit at
varying levels of accuracy.
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Fig. 7. The MTE of the three encoders used for testing VPR-based localization
on the Synthetic Shop Facade dataset, when trained on the same and
different dataset. Notably, Gtriplet and Grelative trained on the 7-scenes can
outperform Gdistance trained on the 7-scenes dataset. However, Gdistance

when trained and tested on the Synthetic Shop Facade dataset performs the
best. Since the Shop Facade dataset contains images of only one scene, unlike
the 7-scenes dataset, we could not select proper negative images in this dataset
and do not train Gtriplet on this dataset.

C. Extrapolation experiments

We first explain the setup used for extrapolation experi-
ments, followed by the extrapolation methods and baselines,
and then the corresponding results and discussion.

1) Extrapolation setup: We use all three datasets to exam-
ine the effects of extrapolation. All of these three datasets have
properties useful for our CoPR analysis. Thus, we first explain
the setup for extrapolation on these three datasets, as follows.

The extrapolation experiments are performed on all scenes
of the 7-scenes dataset. For each scene in the 7-scenes dataset,
there are multiple reference sequences, thus we take one
of the reference traverses/sequences as our anchor reference
trajectory. We then discard the remaining reference sequences3

to get the original sparse map Msparse. Then on the selected
reference sequence, we select every Kth sample (where K =
50) as our anchor point. Then for each anchor point, we sample
target points uniformly in the x and y direction keeping the
viewing direction and z fixed to get the dense extrapolated
map Mdense. The sampling of target points is done with a
fixed step size estep and a maximum spatial span espan for
extrapolation. We use a step size of estep = 0.05 meters for
all seven scenes and the spatial span espan is set to cover the
complete area of the scene. Examples of this extrapolation are
shown in Fig. 2 for the 7-scenes dataset.

The Synthetic Shop Facade dataset provides a query
sequence, a single anchor reference sequence and multiple
target reference points sampled uniformly over a fixed grid
across this anchor reference sequence. We use this already

3If we do not discard other reference sequences during extrapolation
experiment, they overlap with target extrapolated/regressed descriptors and
make the experimental setup less challenging.

provided distinction to get Msparse and Mdense. The query,
anchor and target extrapolated points contain novel viewpoints
of the same scene and we refer the reader to the author’s [9]
figure here4 for visualization of the scene and target point
distribution.

In the case of the Station Escalator dataset, the anchor
reference images act as the sparse reference map Msparse.
Extrapolation on the Station Escalator dataset is straightfor-
ward: all images on the reference trajectory act as our anchor
points and we regress a target descriptor using each anchor
at an offset of 1.8 meters on the x-axis from the anchor
reference pose. Then, the target descriptors combined with
Msparse descriptors act as our extrapolated map Mdense.

2) Extrapolation methods: Two descriptor regression meth-
ods are compared for extrapolation. Linear Regression (Lin.
Reg.) is the local plane fit method introduced in sub-
section III-C2. For the 7-scenes and the Shop Facade dataset,
the O NN anchor points are selected from the reference
trajectory, and for the Station Escalator dataset, we select two
NN anchor points from each of the two parallel trajectories A
and B.

Non-linear Regression Network (Non-lin. Reg.) is the
neural network regression approach from sub-section III-C3.

3) Extrapolation baselines: Sparse Map: The primary
baseline for extrapolation is the sparse map Msparse, where
feature descriptors are only available at sparse poses P .

3D model: As mentioned in sub-section IV-A, the Shop
Facade dataset already provides distinct anchor reference
points and target extrapolation points. Since the images for
these target extrapolation points are already available, their
corresponding feature descriptors at all poses in the extrapo-
lated map can also be computed. We refer to this method as
3D Model in our results, where the feature descriptors at all
locations (anchor and non-anchor) in Mdense are computed
using Gdistance and no descriptor is regressed. This baseline
of [9] helps us to understand how well our extrapolation
performs in comparison to having the ground-truth images at
all locations in the extrapolated map.

Oracle retrieval: We also show the minimum possible
translation error and the corresponding rotation error obtained
by an oracle retrieval method, which always retrieves the
ground-truth 3D Euclidean closest match in the extrapolated
map Mdense. These errors indicate the VPR base errors for
the used queries, and would only be zero if the query poses
coincide with the reference poses in the map.

4) Extrapolation results: We report the extrapolation results
in Table I for the originally sparse, linearly extrapolated, and
non-linearly extrapolated maps for all the seven scenes in
the 7-scenes dataset. The matches between the query and
the reference trajectories for the extrapolation experiment are
shown in Fig. 8 for the Stairs scene of the 7-scenes dataset
as an example. It can be seen that extrapolation leads to
significant performance improvement over no extrapolation in
terms of translation error. By using extrapolation we match
descriptors closer to the query trajectory. We also note that
the non-linear regression model H performs better than the

4https://github.com/tsattler/understanding apr

https://github.com/tsattler/understanding_apr


TABLE I
THE EXTRAPOLATION EXPERIMENTS ON THE 7-SCENES DATASET. THE MTE AND MRE ARE REPORTED. THE ORACLE RETRIEVAL SHOWS THE MINIMUM

ACHIEVABLE MTE AND THE CORRESPONDING MRE. BEST IN BOLD.

Metric Map Densification Retrieval Chess Fire Heads Office Pumpkin Redkitchen Stairs Avg.
MTE (m) Mdense - Oracle 0.083 0.070 0.030 0.072 0.077 0.216 0.119 0.095
MTE (m) Msparse - VPR 0.318 0.348 0.158 0.383 0.589 0.567 0.600 0.423
MTE (m) Mdense Lin. Reg. VPR 0.245 0.310 0.163 0.338 0.426 0.444 0.532 0.351
MTE (m) Mdense Non-lin. Reg. VPR 0.167 0.279 0.159 0.264 0.346 0.427 0.430 0.296
MRE (◦) Mdense - Oracle 28.44 25.56 21.25 58.37 56.33 35.97 23.85 35.68
MRE (◦) Msparse - VPR 22.54 20.88 16.49 38.89 44.89 34.65 24.32 28.95
MRE (◦) Mdense Lin. Reg. VPR 29.04 18.49 16.62 39.10 61.96 33.00 25.41 31.95
MRE (◦) Mdense Non-lin. Reg. VPR 26.87 22.02 16.54 47.95 58.90 36.33 21.29 32.84

Fig. 8. Extrapolation experiments on the Office scene of the 7-scenes dataset. (a) The matches between the query and the reference points for the sparse
map Msparse, (b) the poses in the densified map Mdense, (c) the matches in map densified using Lin. Reg., (d) the matches in map densified using Non-lin.
Reg.. All matches are color-coded as green, orange, and red with increasing 3D Euclidean distance in the physical space. The reference poses in (c) and (d)
are the same as in (b) and thus are not shown to avoid cluttering. The non-linearly densified map (d) clearly leads to better performance than other maps,
albeit with some failure cases towards the bottom-left of the plot.

linear regression model, indicating that extrapolating across
the trajectory requires a non-linear approach to handle the
complexity of the feature space. We do not see performance
improvement in translation error due to extrapolation on the
Heads scene, where the query and the reference trajectories
are already relatively close to each other compared to the
other scenes. Moreover, we observe that with the current map
densification setup, we cannot improve angular estimation.
However, it is important to notice that even retrieving the
Euclidean closest match in physical space leads to an increase
in rotation error, as shown by Oracle retrieval in Tables I
and II. We further discuss this increase in rotation error and
the reasons behind it in Section V.

The same findings are extended to the Synthetic Shop
Facade dataset as reported in Table II. We see performance
improvement thanks to extrapolation and the non-linear regres-
sion model H outperforms linear regression. We also observe
that the VPR performance of the non-linearly extrapolated
map (Non-lin. Reg.) is similar to the map densified using
3D modelling, which suggests that the trained non-linear
regression model H closely regresses the original descriptors,
without access to the images at the target poses.

The results on the Station Escalator dataset also support
the motivation of this work, since we are able to significantly
improve the localization accuracy, as reported in Table II.
We also show the qualitative results on the Station Escalator
dataset in Fig. 9. These results highlight the utility of descrip-
tor regression in cases where parallel traverses are common,
such as highway lanes, train tracks, escalators, and many such
laterally viewpoint-varied paths.

We observe more benefits of non-linear descriptor regres-
sion on the Station Escalator dataset than on other datasets.
Linear regression does not work well on this dataset; the
selected anchor poses are too distant from the query trajectory.
Recall that for this dataset the training pairs include sparse
samples (every K-th image) from both the query and reference
traverses to increase the variance in the training data, as
there are only two traverses in total in this dataset. Still, our
extrapolation experiments do not extrapolate to the exact query
locations but to close-by locations. We observe that training
with similar relative pose differences as those observed at test
time leads to performance benefits. In a real-world application,
if only sparsely sampled images are collected for parallel
trajectories, the pose differences are representative to train



a regression model and densify the trajectories for improved
localization accuracy.

D. Interpolation experiments

We now explain the setup used for interpolation experi-
ments, followed by the methods and baselines, and then the
corresponding results and discussion.

1) Interpolation setup: We perform the interpolation exper-
iments on all the scenes in the 7-scenes dataset. Similar to the
extrapolation setup, interpolation uses the same concept of a
sparse map Msparse and a dense map Mdense, though for the
interpolation experiments these maps are defined differently
than for the extrapolation experiments. For interpolation, the
full reference trajectory of a scene is used as the ground-
truth dense map Mdense. We then sub-sample the reference
trajectories by a factor of K = 50, such that the consecutive
images in a trajectory still contain visual content overlap. This
reduced set of references is used as the sparse map Msparse.
The ground-truth dense map serves as a baseline that can
assess the performance of VPR if densely sampled reference
images would be available, while the sub-sampled version
shows the performance when only a sparse set of reference
images are available. Examples of this sub-sampling are shown
in Fig. 2. For CoPR, the poses in P from the sparse map
act as our anchor poses, while the additional poses P ′ found
in the ground-truth dense map act as the target poses. All
feature descriptors in Msparse and the query descriptors are
computed using the feature encoder Gdistance explained in
sub-section III-D.

2) Interpolation methods: The compared descriptor regres-
sion methods are the simple Linear Interpolation (Lin.
Interp.) from sub-section III-C1; the Linear Regression (Lin.
Reg.,) from sub-section III-C2; and the Non-linear Regres-
sion Network (Non-lin. Reg.) from sub-section III-C3.

3) Interpolation baselines: Sparse map: The primary base-
line for interpolation is the sparse map Msparse, where feature
descriptors are only available at sparse poses P .

Ground-truth dense map: Unlike the extrapolation exper-
iments where we do not have true images (and hence de-
scriptors) available at target poses, in the case of interpolation
experiments we do have these true images. Thus, this Ground-
Truth (GT) dense map Mdense is a baseline that serves the true
descriptors for the target poses.

Oracle retrieval: We also show again the minimum possi-
ble translation error and the corresponding rotation error from
the oracle retrieval method, as defined in sub-section IV-C3.

4) Interpolation results: The results for all the methods
and baselines for the interpolation experiment on the 7-scenes
dataset are reported in Table III for all the seven scenes. The
VPR matches between the query and reference trajectories for
the Heads scene are shown in Fig. 10. We can see a general
decrease in localization error when moving from the sparse
map Msparse to the GT dense map Mdense. Interestingly,
we also see that even simple linear regression (Lin. Reg. and
Lin. Interp.) can solve this problem well and is often the
best-performing technique. Note though that linear regression
is done using multiple anchor points which constraints the

problem setting, while the non-linear regression network H
only uses one anchor point. Nevertheless, this experiment
shows that map densification even via interpolating along
the trajectory is helpful, although has lesser benefits than
extrapolation across the trajectory.

We will discuss the observed differences between the inter-
polation and extrapolation experiments in more detail in the
Discussion, Section V.

E. Map densification with different feature encoders

Next, we test that using the non-linear regression model
H for extrapolating across anchor points is beneficial for
all discussed feature encoders. This is reported in Table IV.
However, the corresponding localization accuracy is limited by
the localization performance of the respective feature encoder.
The MTE is reported for all three types of feature encoders
on the sparse map Msparse and the non-linearly regressed
(Non-lin. Reg.) map Mdense for the 7-scenes dataset and the
Synthetic Shop Facade dataset. Such a generic boost of perfor-
mance using map densification supports that CoPR can utilize
inherent benefits of different types of feature encoders, for
example, the domain generalization of Gtriplet and Grelative,
and the viewpoint variance of Gdistance.

F. Map-density vs localization accuracy

The motivation presented in this work suggests that the
denser the reference map, the lesser will be the localization
error of a VPR-based localization system. In our work, this
map density is modelled with the step size estep. Therefore,
in this sub-section, we show the effect of increasing map
density on the localization error by using extrapolation with
non-linear regression model H and feature encoder Gdistance

for the 7-scenes dataset. This direct relation between the step
size estep and the MTE is presented in Fig. 11. Decreasing
the step size leads to denser extrapolated maps which then
leads to a decrease in MTE for the non-linearly extrapolated
(Non. Lin. Reg.) map Mdense. The performance benefits for
the scenes depend on the underlying scene geometry and the
quality of descriptor regression. For example, in the case of
Heads scene, the query poses and the sparse reference poses
in Msparse are already close to each other, thus we do not see
any performance benefits due to densification. While in other
scenes, we see that map densification is helpful and is related
to the level of map densification modelled with the step size
estep.

G. Benefits of CoPR for RPE

In this section, we look into the relation of CoPR with RPE
and hence CtF localization, as discussed in sub-section III-E.
In this experiment, we make this argument concrete by il-
lustrating that situations exist where a sparse map leads to
incorrect coarse retrieval of a visually similar image descriptor
taken at an arbitrarily far location, which can in turn lead
to the failure of CtF approaches. We argue that this error
source is fundamentally due to the retrieval step, not due to the
subsequent RPE step, and demonstrate that map densification
could tackle this error source in some cases.



TABLE II
THE EXTRAPOLATION EXPERIMENTS ON THE SYNTHETIC SHOP FACADE AND THE STATION ESCALATOR DATASETS. THE MTE AND MRE ARE

REPORTED. THE ORACLE RETRIEVAL SHOWS THE MINIMUM ACHIEVABLE MTE AND THE CORRESPONDING MRE. BEST IN BOLD.

Metric Map Densification Retrieval Shop Facade Station Escalator
MTE (m) Mdense - Oracle 0.188 0.26
MTE (m) Msparse - VPR 0.705 2.17
MTE (m) Mdense 3D Model [9] VPR 0.335 NA
MTE (m) Mdense Lin. Reg. VPR 0.541 2.10
MTE (m) Mdense Non-lin. Reg. VPR 0.344 0.94
MRE (◦) Mdense - Oracle 11.25 9.45
MRE (◦) Msparse - VPR 10.99 8.54
MRE (◦) Mdense 3D Model [9] VPR 11.13 NA
MRE (◦) Mdense Lin. Reg. VPR 10.99 8.60
MRE (◦) Mdense Non-lin. Reg. VPR 11.13 8.99

Fig. 9. Extrapolation experiments on the Station Escalator dataset. (a) Exemplar query and reference images. Then the matches between the query and the
reference points for the (b) original sparse map Msparse, (c) linearly regressed (Lin. Reg.) map Mdense and (d) non-linearly regressed (Non-lin. Reg.) map
Mdense. These matches are color-coded as green, orange, and red with increasing 3D Euclidean distance in the physical space. Extrapolation with non-linear
regression network H is done using only the points on the anchor reference trajectory in yellow on the right, whereas the sparse anchor points in yellow on
the query trajectory are only used at training time.

TABLE III
THE INTERPOLATION EXPERIMENTS FOR THE 7-SCENES DATASET AT K=50. THE MTE AND MRE ARE REPORTED. THE ORACLE RETRIEVAL SHOWS THE

MINIMUM ACHIEVABLE MTE AND THE CORRESPONDING MRE. BEST IS IN BOLD.

Metric Map Densification Retrieval Chess Fire Heads Office Pumpkin Redkitchen Stairs Avg.
MTE (m) Mdense - Oracle 0.109 0.183 0.097 0.117 0.115 0.129 0.132 0.126
MTE (m) Mdense GT Map VPR 0.165 0.255 0.158 0.207 0.242 0.219 0.261 0.215
MTE (m) Msparse - VPR 0.210 0.322 0.212 0.237 0.250 0.271 0.263 0.252
MTE (m) Mdense Lin. Interp. VPR 0.170 0.277 0.202 0.211 0.257 0.220 0.257 0.227
MTE (m) Mdense Lin. Reg. VPR 0.169 0.257 0.165 0.216 0.214 0.224 0.262 0.215
MTE (m) Mdense Non-lin. Reg. VPR 0.178 0.264 0.184 0.221 0.259 0.260 0.278 0.234
MRE (◦) Mdense - Oracle 22.81 26.65 20.91 43.56 37.58 31.31 29.71 30.36
MRE (◦) Mdense GT Map VPR 17.69 19.71 16.49 32.13 36.24 22.49 19.55 23.47
MRE (◦) Msparse - VPR 20.75 19.15 19.34 35.01 33.96 27.27 19.16 24.94
MRE (◦) Mdense Lin. Interp. VPR 21.73 20.65 17.93 34.65 39.15 26.27 19.92 25.75
MRE (◦) Mdense Lin. Reg. VPR 20.09 20.00 17.20 35.63 34.00 24.16 19.72 24.40
MRE (◦) Mdense Non-lin. Reg. VPR 22.09 19.45 20.13 39.73 39.03 27.17 20.25 26.83



Fig. 10. Interpolation experiments on the Heads scene of the 7-scenes dataset. The matches between the query and the reference trajectories in (a) the GT
dense map Mdense, (b) the sparse map Msparse, (c) the linearly regressed (Lin. Reg.) map Mdense, (d) the linearly interpolated (Lin. Interp.) map Mdense

and (e) the non-linearly regressed (Non-lin. Reg.) map Mdense given K=50. The matches are color-coded as green, orange, and red with increasing 3D
Euclidean distance in the physical space.

TABLE IV
THE EFFECT OF COPR ON DIFFERENT FEATURE ENCODERS ON ALL SCENES FROM THE 7-SCENES DATASET, AND ON THE SYNTHETIC SHOP FACADE

DATASET. IN THE CASE OF Gtriplet , WE USE THE TRIPLET LOSS AS MOTIVATED BY THE AUTHORS [3] BUT DO NOT USE THE VLAD DESCRIPTOR
MODULE TO KEEP THE BACKBONE THE SAME FOR A FAIR COMPARISON ACROSS ALL ENCODERS.

Feature Encoder Gtriplet Grelative Gdistance

Reference Map Msparse Mdense Msparse Mdense Msparse Mdense
7-scenes - Chess 0.600 0.450 0.379 0.260 0.318 0.167
7-scenes - Fire 0.612 0.542 0.414 0.296 0.348 0.279

7-scenes - Heads 0.227 0.215 0.166 0.147 0.158 0.159
7-scenes - Office 0.680 0.589 0.455 0.246 0.383 0.264

7-scenes - Pumpkin 1.306 1.208 0.720 0.479 0.589 0.346
7-scenes - Redkitchen 0.960 0.783 0.691 0.451 0.567 0.427

7-scenes - Stairs 0.699 0.780 0.673 0.374 0.600 0.430
Synthetic Shop Facade 2.234 1.419 2.219 1.641 0.705 0.344

Average 0.915 0.748 0.715 0.487 0.458 0.302

Fig. 11. The increase in MTE by increasing the step size estep for all
scenes of the 7-scenes dataset. A larger step size leads to sparser maps which
increases the translation error, while a smaller step size leads to denser maps
which are useful for accurate localization.

We create exemplar cases in the 7-scenes dataset where such
an effect can be easily observed. A reference database of four
sparsely sampled reference images around a query image is
created for a given scene and a fifth stray reference image
is added to this reference database. This stray image is taken
from a completely different scene that has no real physical
overlap with the query image. We use the feature encoder
Grelative for image-retrieval and the non-linear descriptor
regression network H to regress the expected descriptor at the
query location given the nearest anchor reference descriptor.
This regressed descriptor acts as the descriptor for a hypothet-
ical 6th image in the reference database at the query location.

The objective of this experiment is to show that in the
absence of the regressed descriptor, the stray image is selected
as the best match for the query image, while in the presence of
the regressed descriptor, the stray image is pushed downwards
in the list of retrieved images ranked by their matching scores.
Please note that in the case where the stray image is chosen as
the best match, the localization error can be arbitrarily large, as
a different scene can be quite far. We show four such example
cases in Fig. 12 from the 7-scenes dataset, where we can
observe that in the absence of the regressed descriptor, the
stray image is chosen as the best match by the image-retrieval
system. Since such stray cases are shown to exist in multiple



scenes of the 7-scenes dataset, which is a small-scale dataset,
this effect would amplify even further in spatially larger scenes
due to the increased chances of perceptual aliasing.

Thus, without CoPR, sparse reference maps could lead
to incorrect coarse retrieval, where the coarse pose estimate
can be arbitrarily far-away and hence cannot be corrected
by CtF approaches. By using CoPR, reference descriptors of
the correct scene now appear close to the query descriptor.
Finding all references near the query in the feature space
thus identifies similar scenes, allowing to at least represent
localization ambiguity and ideally obtain a correct best match.
Without CoPR only the incorrect scene would have matched
the query. Better retrieval also benefits CtF approaches, since
the RPE step is only valid if the retrieved reference pose
represents the correct scene. These constructed cases illustrate
that CoPR and CtF are complementary approaches to improve
VPR-based localization accuracy. Please note that this analysis
does not demonstrate that CoPR prevents false positives as a
general rule, but that it is possible to construct cases where
the complementarity of CoPR and CtF can be observed. Future
works may investigate this further.

H. Computational details

Finally, we report the sizes of the sparse and dense maps,
the time spent tdense on creating the dense maps Mdense using
H , and the training times ttrain of model H for all the datasets
in Table V. For the 7-scenes dataset, the results are reported
for the Office scene. The retrieval time tretr in VPR is the
sum of the time tenc required to encode a query image into
a feature descriptor and the time tmatch spent to find the NN
match of this descriptor in the map. Since the encoding time is
several times higher than the efficient NN search, the retrieval
time is not too affected by map densification. Please note that
the timings are not comparable between the datasets due to
differences in map content (i.e., descriptors).

TABLE V
THE COMPUTATIONAL FOOTPRINT OF COPR, PLEASE SEE

ACCOMPANYING TEXT FOR DETAILS.

Map 7-scenes Shop Fac. Stat. Esc.
ttrain(sec) - 510 540 960

tdense(msec) - 12.8 2.241 0.32
tenc(msec) - 6.16 8.39 5.88

tmatch(msec)
Msparse 0.02 0.1 0.02
Mdense 0.05 0.32 0.08

tretr(msec)
Msparse 6.18 8.49 5.90
Mdense 6.21 8.71 5.96

Map Size (#) Msparse 1000 231 337
Mdense 13000 2531 667

V. DISCUSSION

In this section, we identify the major limitations of our work
and areas that need further investigation.

Angular error: In both the interpolation and extrapolation
experiments, it is clear that our approach does not improve
angular localization accuracy, as reported in Tables I, II and III.
However, it is also important to note that retrieving the ground-
truth Euclidean closest match in the physical space also leads

to an increase in angular error (MRE). This is because the
nearest match in terms of translation may not have the same
3D orientation. Thus, we attribute the increase in rotation error
using CoPR to two reasons: firstly, during interpolation and
extrapolation experiments, we do not change the angular pose
but only the translation pose, given the anchor points, for the
target points, and secondly, the encoder Gdistance does not
optimize for angular localization error in its training objective.
Thus, reducing both the translation and angular error requires
that the Euclidean closest match in the physical space has the
closest angular orientation to the query image. Future works
could look into the benefits of using distance+orientation based
encoder loss along with map densification in a 6-DoF setting.

Ground-truth closest matches: Our results on extrapo-
lation show that map densification can lead to a significant
decrease in localization error. Moreover, the extrapolation
experiments on the Shop Facade dataset also show that the lo-
calization performance on the non-linearly extrapolated (Non-
lin. Reg.) map Mdense is close to the localization performance
on a ground-truth (obtained using 3D modelling) dense map
Mdense. However, the localization error given the encoder
Gdistance and the non-linear regression network H is still
higher than the minimum possible localization error. We
have reported the minimum possible translation error (Oracle
Retrieval) in Mdense in Tables I, II and III. We further show
qualitatively in Fig. 13, the performance that could be achieved
by an oracle VPR system that always retrieves the Euclidean
closest match in the physical space as the best match in
a dense map. This gap in performance presents room for
future research in this area. Furthermore, our results only
show the generalization of non-linear data-driven regression
model H across viewpoints within the same scene, however,
generalization across scenes could be the new frontier for
CoPR.

Interpolation vs extrapolation: From our results of the
two experiments, it can be noted that the absolute decrease in
localization error from interpolation is less than the decrease
in localization error from extrapolation. We hypothesize two
reasons for this: 1) the query trajectory has larger relative
pose distance to the extrapolated poses than to the inter-
polated poses, 2) the viewpoint variance vs invariance of
VPR encoders (as explained in sub-section III-D) acts as a
bottleneck, since the VPR system does not necessarily match
to the ground-truth Euclidean closest match in the physical
space but to one of the closest matches. We expect that major
performance benefits, given these experiments, require models
that have even better viewpoint variance than the feature
encoder Gdistance. This motivates viewpoint-variant VPR for
high accuracy, in addition to the existing trends for viewpoint-
invariant VPR [57].

Generally, we find that extrapolation is more useful than
interpolation when a repeated traversal could occur at a later-
ally offset-ed path. Such trajectories are common to observe
in real-world, for example, parallel traverses in outdoor scenes
(Shop Facade dataset) and parallel traverses in indoor scenes
(Station Escalator dataset). Other examples include lanes on a
highway and parallel paths in corridors. However, our results
do show that both interpolating and extrapolating descriptors
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Fig. 12. The exemplar cases where image-retrieval fails to retrieve useful coarse estimates for RPE in a sparse reference map. By regressing the expected
descriptor at the query pose, we show that map densification could lead to robustness against such failure cases. The grayscale image in the reference set
is only added for the reader’s reference and represents only a hypothetical image for the regressed descriptor at the query pose since we do not synthesize
images but only regress image descriptors. The green bounding box represents a correct match and the red bounding box represents an incorrect match.



Fig. 13. The VPR matches (top) and ground-truth 3D Euclidean closest
matches in the physical space (bottom) between the query and the reference
trajectories in the Fire scene of the 7-scenes dataset for the non-linearly
extrapolated (Non-lin. Reg.) map Mdense. The matches are color-coded as
orange and green with increasing 3D Euclidean distance. Although non-
linearly regressed target poses (in blue) are matched to by VPR, these are
not always the Euclidean closest matches in the physical space. Hence there
is still room for improvement.

generally give better localization accuracy than using sparser
reference maps, which suggests that map densification (CoPR)
along the trajectory and/or across the anchor points can be
useful for VPR.

VI. CONCLUSIONS

In this paper, we investigated the discrete treatment of
places in a VPR map. We have shown that map densification
whether using interpolation or extrapolation is helpful to
reduce translation error. Our results for the 7-scenes dataset
suggest that interpolating along the trajectory is an easier
problem and can be solved with simple linear regression
in the local neighborhood, however, extrapolation benefits
from a non-linear treatment. Moreover, our proposed non-
linear regression network only uses a single anchor point for
regression, while our linear regression method uses multiple
anchor points. We validated that map densification is helpful
for feature encoders trained with the three different types of
losses, and that the highest accuracy is achieved when using

a distance-based loss. Moreover, the benefit of map densifi-
cation is shown for three datasets: 7-scenes, Synthetic Shop
Facade, and Station Escalator, where each of them represents a
different type of problem setting. We also discussed that RPE
and CoPR address related but complementary problems. We
demonstrated through several constructed cases that in a sparse
map localization might fail due to perceptual aliasing. RPE
cannot recover the true location from a retrieved wrong place.
CoPR helps retrieve the correct place, thus solving errors that
RPE cannot.

While the distance-based loss function helps to retain view-
point information among descriptors, we observed that there
is still room for improvement in comparison to retrieving
the ground-truth Euclidean closest reference descriptors in the
physical space. Future works could investigate architectures
and loss functions that further enforce the network to learn
feature representations useful for retrieving the 3D Euclidean
closest match. As shown in this work, anchor selection and
descriptor extrapolation are two separate steps for map densi-
fication. In the future a separate treatment of both, i.e., learning
good anchors and extrapolating well using multiple anchors,
could lead to better map densification. We hope that this work
helps to identify the important problem of map densification
through Continuous Place-descriptor Regression (CoPR) for
VPR and its relation to viewpoint variance, and motivates fur-
ther research on improving VPR-based localization accuracy
through CoPR.
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