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Abstract

Feedforward fully convolutional neural networks cur-
rently dominate in semantic segmentation of 3D point
clouds. Despite their great success, they suffer from the
loss of local information at low-level layers, posing signifi-
cant challenges to accurate scene segmentation and precise
object boundary delineation. Prior works either address
this issue by post-processing or jointly learn object bound-
aries to implicitly improve feature encoding of the networks.
These approaches often require additional modules which
are difficult to integrate into the original architecture.

To improve the segmentation near object boundaries,
we propose a boundary-aware feature propagation mech-
anism. This mechanism is achieved by exploiting a multi-
task learning framework that aims to explicitly guide the
boundaries to their original locations. With one shared en-
coder, our network outputs (i) boundary localization, (ii)
prediction of directions pointing to the object interior, and
(iii) semantic segmentation, in three parallel streams. The
predicted boundaries and directions are fused to propagate
the learned features to refine the segmentation. We con-
duct extensive experiments on the S3DIS and SensatUrban
datasets against various baseline methods, demonstrating
that our proposed approach yields consistent improvements
by reducing boundary errors.

1. Introduction

Semantic segmentation of 3D point clouds aims to as-
sign each point a semantic category (e.g., building, tree,
window), which is a fundamental yet challenging task in
3D computer vision. Successful interpretation of seman-
tics from 3D point clouds serves as a crucial prerequisite
for various applications, such as autonomous driving [42],
robotics [5], and urban environment modeling [3].

Driven by the success of deep learning and Fully Convo-
lutional Networks (FCNs) in 2D image recognition, many

Figure 1: Comparison between the segmentation results
from the previous FCN-based network [32] and ours on
both indoor (top) and outdoor (bottom) scenes. Left: stan-
dard FCNs lose boundary details at the object level. Right:
our approach refined the segmentation at object boundaries.

works have been proposed for semantic segmentation of 3D
point clouds by transforming points into regular grids or
voxels as input to standard FCNs [9, 20, 25, 27, 35, 38].
Such methods introduce extra computational costs and in-
formation loss which leads to suboptimal performance. To
avoid that, the seminal PointNet [23] directly consumes
point clouds and extracts point features through a sequence
of shared Multi-Layer Perceptrons (MLPs). Following
PointNet, a number of point-based deep learning frame-
works have been introduced [12, 17, 18, 32, 34]. De-
spite their strong performances in the semantic segmenta-
tion task, they suffer from an often-overlooked limitation in
feature propagation: the loss of local information in decod-
ing. Specifically, since most existing networks adopt FCN-
like architectures with the encoding-decoding strategy, the
existence of pooling layers in the encoder can capture hi-
erarchical semantic features with increased receptive fields.
Though beneficial for object-level recognition, it leads to
coarse feature maps at lower resolutions. In the decoder,
these coarse features are then propagated back to the orig-

Our code is available at
     https://github.com/shenglandu/PushBoundary

https://github.com/shenglandu/PushBoundary


inal resolution via nearest-neighbor upsampling, which ig-
nores point-level variations among different semantic cat-
egories. As a result, networks lose object boundary details
and fail to generate accurate predictions. Figure 1 illustrates
the segmentation outputs with blurred object boundaries.

Several works have made fruitful attempts to address se-
mantic segmentation in both 2D and 3D domains. One at-
tempt is to construct contextual affinity through graphical
models such as Markov Random Fields (MRFs) and Condi-
tional Random Fields (CRFs) [4, 45]. However, these meth-
ods introduce MRFs and CRFs as additional modules that
are challenging to be integrated into the networks. Con-
sidering that boundaries play an important role in seman-
tic segmentation, as they naturally indicate the transition
between objects of different semantic categories, another
line of methods exploits boundary information in the net-
works [6, 7, 10, 13, 44]. Most of these methods incorpo-
rate boundary detection as an auxiliary branch for semantic
segmentation. With one shared encoder, the two tasks im-
plicitly improve each other. However, such methods do not
seek to explicitly tackle semantic segmentation. Another
drawback is that extra encoding layers are needed to merge
features from the two tasks, which is more challenging for
the network to optimize as more parameters are involved.

Contrary to existing works, our work is mainly motivated
by the attempt to refine semantic segmentation by explic-
itly pushing the boundary towards desired directions. Pre-
dicting a direction scheme to refine semantic segmentation
has been recently studied in 2D image recognition [21, 41],
although in these works directions mainly serve as post-
processing tools to refine generated semantic labels. To
overcome such limitations, we propose a novel end-to-end
framework for joint boundary detection, direction predic-
tion, and semantic segmentation. The proposed network has
one FCN feature encoder while jointly giving three streams
of point-wise predictions: (i) a boundary label (i.e., binary
prediction), (ii) a direction vector that originates from the
closest boundary and points to the object’s interior, and (iii)
a semantic class label. We demonstrate that even though
the FCN architecture is primarily optimized for semantic
segmentation, it does provide discriminative features for the
two tasks of boundary detection and direction prediction.

The key to our framework is a lightweight guiding mech-
anism that effectively fuses the boundary and direction in-
formation to refine the segmentation. Our motivation is
to reduce the loss of local information in the decoder of
the framework. Within decoding layers, we propose to
guide the feature propagation using the predicted direction
(i.e., pointing from boundary to interior) near object bound-
aries. In such a way, feature mixture from different seman-
tic classes is prevented while semantic boundaries are ex-
plicitly pushed along the desired direction. Our contribu-
tions can be summarized in two folds:

• To the best of our knowledge, the proposed network
is the first end-to-end framework for joint semantic
segmentation, boundary detection, and direction pre-
diction in the 3D domain. The tasks of boundary de-
tection and direction prediction can appropriately im-
prove segmentation output.

• We introduce a novel boundary-aware feature upsam-
pling strategy to guide feature propagation towards the
predicted directions near object boundaries, which can
be easily plugged into existing frameworks.

2. Related Work
2.1. Point Cloud Semantic Segmentation

Several methods have been proposed for semantic seg-
mentation of point clouds. They can be roughly divided into
projection-based, voxel-based, and point-based methods.

Projection-based methods first project points onto spec-
ified 2D planes and then apply 2D FCNs to recognize 3D
objects [9, 27, 38, 39]. These methods do not fully utilize
the data due to the loss of information in the zth dimension
in 2D projection, limiting their ability to analyze complex
3D objects in 3D scenes.

Voxel-based methods discretize point clouds over a volu-
metric 3D grid for shape classification and semantic seg-
mentation using standard 3D FCNs [20, 25, 35]. Such
methods require data transformation, which introduces ex-
tra computational costs and information loss due to the lim-
ited resolution of the grid structure. Besides, the voxel rep-
resentation also has a high demand for GPU memory, lim-
iting its application to single objects and small scenes.

Compared with the above two types of methods, point-
based methods directly take point clouds as input to the net-
works and have demonstrated promising performances on
various datasets. PointNet [23] is the first successful at-
tempt in this direction, which adopts a sequence of MLPs
and max-pooling operators to learn global features that can
be used for 3D shape classification and scene segmenta-
tion. PoinNet++ [24] recursively applies PointNet over a
nested partitioning of the points to learn fine-grained details
of local geometrical structures. Besides MLPs, a number of
works [14, 18, 32, 34] explore 3D convolutional operators
on point clouds. Another line of works have also exploited
Graph Convolutional Networks (GCNs) and self-attention
mechanisms for gaining contextual knowledge of the points
from local neighborhood graph patches [15, 17, 26, 33, 43].
Our work is built upon FCN-like architectures such as
PointNet++ [24] and KP-Conv [32], aiming to tackle the
loss of local boundary details in these networks.

2.2. Boundary-aware Segmentation

Standard FCN-like networks for semantic segmentation
fail to model point-level accurate object boundaries, mainly
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Figure 2: An overview of the network architecture. Our network can adopt various FCN-like feature encoders (e.g., KP-
Conv [32], PointNet++ [24]) for learning point features. N denotes the number of input points, F the input feature dimension,
K the output category numbers, and GT the ground truth. LB , LD, and LS are the network losses for the boundary, direction,
and segmentation streams, respectively. In the guided feature propagation, a positive connection means the vector of the point
pair has a positive cosine angle with the predicted direction, while a negative connection means a negative cosine angle.

due to the significant loss of low-level features both in the
feature encoding and decoding layers. Many works have
been introduced to sharpen the object boundaries.

In 2D image recognition, Boundary Neural Field [2] for-
malizes a global energy model to enhance semantic seg-
ment coherence with predicted boundary cues. Other works
combine the semantic segmentation task and the boundary
detection task into one network [6, 10, 19, 28, 29, 40], in
which the two tasks share a common feature encoder and
are expected to mutually improve each other.

In the 3D domain, boundary-aware strategies have also
been adopted by a few works. JSENet [44] employs ex-
tra feature enhancement modules that require a curricu-
lum learning strategy for good segmentation performance.
CBL [30] introduces additional loss terms to contrast the
features across the scene boundaries. Contrary to them, our
work focuses on interior information passage in network
decoding. We show that the guided feature propagation
naturally recovers information near boundaries, which does
not require exterior constraints or additional training mod-
ules. Several works [7, 36] address 3D boundary detection
by adaptive methods or pre-process modules. Instead, our
method does not treat boundaries as intermediate results. It
jointly learns boundary cues for guiding the feature propa-
gation, which can be easily plugged into existing networks.

2.3. Graphical Models for Segmentation

In the 2D domain, some works have proposed to inte-
grate graphical models, such as MRFs and CRFs, into the
networks for segmentation refinement [4, 16, 45]. Based on

the fact that pixels presenting similar features tend to have
the same semantic labels, this line of work formulates seg-
mentation as a probabilistic inference problem using graph-
ical models. While these methods can sharpen the segmen-
tation mask near object boundaries, integrating additional
MRFs and CRFs into the networks is still challenging. Be-
sides, this strategy requires extra computational costs and is
therefore slow in speed.

3. Methodology
Our network consists of one FCN feature encoder fol-

lowed by branches of three task streams: (i) boundary detec-
tion, (ii) direction prediction (i.e., for each point, we predict
a direction vector from its closest boundary to the object in-
terior), and (iii) semantic segmentation. The outputs of (i)
and (ii) are then fused to guide the feature propagation in a
boundary-aware manner. Figure 2 overviews our architec-
ture. In the following, we explain each part in detail.

3.1. Architecture

We use KP-Conv [32] as our backbone network, which
directly applies fully convolutional layers over 3D point
clouds using kernel-point convolution. In Section 4.1, we
also provide segmentation experiments adopting other base-
line networks as backbones, such as PointNet++ [24].

Boundary detection stream. For the input point cloud
P ∈ RN×F , where N is the number of points and F is the
input feature dimension, this stream predicts a binary map
B ∈ RN×2, with 1 for the points on boundaries and 0 for
interior points. Note that we refer to semantic boundaries



(i.e., boundaries between different semantic categories) in
this task. Due to that boundary points only account for a
small portion of the whole point set, we use the weighted
binary cross-entropy loss to supervise this task.

Direction prediction stream. Predicting a direction
scheme to refine semantic segmentation has been recently
studied [21, 41] in the 2D domain. These works require
separate learning for direction vectors, which then serve as
a post-processing technique to refine the segmentation out-
put. In this work, we extend the direction scheme to the
3D domain and learn it in an end-to-end manner. The di-
rection stream predicts a direction map D ∈ RN×3, with
each row (dx, dy, dz) giving a unit direction vector pointing
from the closest boundary to the object interior. Designed
in this way, the learned D generates for each point a pointer
towards its homogeneous region interior. We consider di-
rection prediction as a regression task and thus adopt Mean
Squared Error loss for supervision. The predicted directions
are further fused with boundary predictions to guide the fea-
ture propagation in the semantic segmentation task stream.

Semantic segmentation stream. Given a point cloud
P ∈ RN×F , the semantic segmentation branch outputs a
semantic mask S ∈ RN×K , where K is the total number
of semantic categories. This stream predicts a probability
distribution for each point over K categories. We supervise
this task using the standard cross-entropy loss.

3.2. Boundary-aware Feature Propagation

FCNs adopt pooling layers that progressively sub-
sample points and obtain high-level semantic features in
the latent space. In the subsequent decoding stage, fea-
tures are propagated from sub-sampled points to the orig-
inal points. A common propagation strategy is based on in-
verse distance interpolation in a local k-Nearest Neighbor-
hood (kNN). For example, PointNet++ [24] uses k = 3 for
feature propagation, while KP-Conv [32] uses k = 1 that
reduces to the nearest neighbor feature upsampling. Stan-
dard feature propagation assumes that spatially close points
also share the semantic affinity. However, it ignores dras-
tic semantic transitions across object boundaries. Points at
the boundary can inherit information from different objects,
thus resulting in blurred feature representation, which is not
favorable for the final segmentation.

We use the predicted boundaries and directions to guide
the feature propagation in decoding layers, where features
are encouraged to pass along the desired direction for gen-
erating purified feature maps. The guided feature propaga-
tion is illustrated in Figure 3. In the FCN decoder, features
are up-sampled from sparser points in high layers to denser
points in low layers. We propagate features of points xj in
lth layer to points xi in l − 1th layer. The feature propaga-

tion is performed by

f l−1(xi) = σ(Φ(

∑k
j=1 w(xj)f

l(xj)∑k
j=1 w(xj)

)⊕ f l−1
skip(xi)), (1)

where x ∈ R3 denotes a 3D point and k is the total num-
ber of neighboring points. The decoder features f l(xj) of
neighboring points xj at lth layer are first interpolated based
on corresponding weights w, and then concatenated with
skip-linked encoder features that will pass through a MLP
layer and a Relu activation function to obtain the new fea-
tures f l−1(xi) for xi. fskip denotes the skip-linked fea-
tures, Φ(·) a MLP operator, and σ(·) the ReLU activation
function. We compute an adaptive weight term w to guide
the feature propagation process,

w(xj) =max(0, ws(xj,xi) + αwc(xj,xi)), (2)

ws(xj,xi) = exp
−||xj − xi||2

r
,

wc(xj,xi) = exp(Pb(xi)− 1) cos(xj − xi,di),

where we linearly combine the spatial similarity ws and co-
sine similarity wc between xj and xi. Pb(xi) is the pre-
dicted boundary probability of point xi, di the predicted
direction of xi, and cos(·) the cosine angle of two vectors.
max(·) is used for eliminating negative weights generated
in the computation. The constant coefficients r and α are
used to balance the two terms. The computed weights are
further normalized, i.e.,

w(xj) =
w(xj)∑k
j=1 w(xj)

. (3)

Our propagation strategy favors semantic segmentation
in three folds. (i) For points near boundaries (i.e., with
Pb ≈ 1), we assign significant importance to the neighbors
aligned with the direction while eliminating the influence
of opposed neighbors, encouraging the features to propa-
gate along the desired direction. (ii) For interior points (i.e.,
with Pb ≈ 0), the second cosine term is largely reduced. All
neighbors majorly contribute to feature propagation accord-
ing to their distances to the center. Therefore, we facilitate
smooth segmentation in the object interior. (iii) Our de-
signed weight term is a continuous function over B and D,
which helps the gradient backpropagation of the network.
In Section 4.3, we conduct ablation studies to further verify
the effectiveness of the proposed boundary-aware feature
propagation mechanism.

3.3. Network Supervision

Our network involves three tasks (see Figure 2), which
are supervised using the three loss terms, respectively.

Boundary detection loss. Boundary detection is a bi-
nary classification task. Due to the sparsity of boundary
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Figure 3: Feature propagation near object boundaries. Left: drastic semantic transitions happen across the object boundaries
within a small local neighborhood. Right: two ways of feature propagation. We propagate features from neighboring points
xj in the higher layer to the center xi in the lower layer. Standard feature propagation ignores object boundaries (red dots),
which leads to the mixed feature representation of xi. In contrast, our proposed strategy uses the predicted direction vector
di to guide the feature propagation. Features from neighboring xj aligned with di are encouraged to propagate to the center
xi (green dashed lines), while feature propagation from the opposed neighbors is constrained (grey dashed lines).

points in the dataset, we adopt the weighted binary cross
entropy loss to supervise this task,

LB = −
N∑
i=1

[βb̂i log bi+(1−β)(1− b̂i) log(1− bi)], (4)

where b̂i denotes the GT binary label, i.e., 1 for boundary
points and 0 for interior points. bi is the network softmax
output of the ith point. We use a coefficient β to balance the
boundary class and the object interior class.

Direction prediction loss. Unlike previous work of 2D
image segmentation [41] that predicts discrete directions by
evenly dividing the entire direction into a set of ranges, we
perform continuous prediction in the whole space. There-
fore, our predictions are more adaptable for complex 3D
scenes. Specifically, we tackle direction prediction as a re-
gression task and adopt MSE loss for supervision, i.e.,

LD =

N∑
i=1

∥di − d̂i∥22, (5)

where di ∈ R3 is the predicted direction, and d̂i ∈ R3

is the GT direction (both directions have a unit magnitude).
We also tested with the dot product loss of di and d̂i, while
our experiments suggested that the MSE loss gives robust
direction predictions that are less variant to dataset scales.

Semantic segmentation loss. We use the standard cross
entropy loss to supervise the semantic segmentation stream,

LS = −
N∑
i=1

ysi log p
s(xi), (6)

where ysi ∈ RK denotes the one-hot vector of the
Ground Truth (GT) semantic label s of the ith point. ps(xi)
is the predicted probability of the ith point over the GT cat-
egory obtained from the network softmax layer.

Accordingly, the total network loss is given by

L = LS + λ1LB + λ2LD, (7)

where we use λ1 and λ2 to balance between different losses.

3.4. Implementation Details and Parameters

Our method is implemented in Pytorch [22]. Regarding
the hyperparameters, we set α = 1.0 and r = 0.125 for the
guided feature propagation in Equation 2. For supervising
the boundary stream in Equation 4, we set β = 0.6. For the
weights in Equation 7, we set λ1 = 3.0 and λ2 = 0.3.

4. Experiments
Evaluation setup. We evaluate the effectiveness of our

approach in semantic segmentation of 3D point clouds us-
ing two state-of-the-art network architectures as our back-
bone: PointNet++ [24] and KP-Conv [32]. Pointnet++ re-
cursively applies point-wise MLP operators over a nested
partitioning of the point clouds to obtain hierarchical point
features. In contrast, KP-Conv explores point convolution
in 3D Euclidean space. Both approaches employ FCN-like
architectures with the encoding-decoding strategy.

Our experiments are carried out on datasets of both in-
door and outdoor scenes. We use standard metrics includ-
ing Overall Accuracy (OA), mean Intersection over Union
(mIoU), and per-category IoU scores for the evaluation. To
achieve a fair per-category comparison, we use the standard
unweighted cross-entropy loss for all the experiments, and
we adopt the same experimental settings as in the original
corresponding baseline approaches.

Ground-truth boundary maps and direction maps.
Both GT boundary maps and direction maps are directly de-
rived from the raw dataset. To generate GT boundary maps,
we use kNN search for each point in the dataset (we empir-
ically set k = 4). If its semantic label differs from any of its
neighbors, we recognize it as a boundary point. To generate



Method OA(%) mIoU(%) ceiling floor wall beam col. window door table chair sofa book. board clutter

PointNet++ [37] (w/o N) 83.5 53.6 89.6 97.6 74.6 0.0 4.7 55.1 19.9 78.2 68.9 66.3 41.7 55.6 44.2
+ Ours 83.6 53.9 89.7 97.2 75.4 0.0 7.4 60.8 14.1 79.0 69.5 65.8 42.1 57.0 42.6

PointNet++ [37] (w/ N) 83.9 53.9 91.4 96.6 76.0 0.0 8.0 53.7 16.9 81.8 70.5 63.8 48.9 49.4 43.6
+ Ours 84.3 55.1 91.5 97.2 76.0 0.0 13.8 53.4 19.1 83.6 70.4 65.4 49.6 50.3 45.4

KP-Conv rigid [32] (w/o N) - 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 80.2 90.1 66.4 74.6 63.7 58.1
+ Ours 89.7 67.1 94.0 97.9 82.6 0.0 23.3 56.6 75.4 80.1 91.1 75.7 74.4 62.3 59.1

KP-Conv rigid [32] (w/ N) 89.2 65.6 94.0 97.9 81.6 0.0 20.0 54.5 64.4 80.1 91.6 77.4 73.8 59.2 59.0
+ Ours 89.6 67.2 93.9 97.9 82.7 0.2 23.8 55.0 73.7 80.5 91.8 77.7 74.1 63.2 59.0

Table 1: Semantic segmentation results achieved on the S3DIS dataset [1], following instructions of the officially released
code of each method. These methods are trained using either 3D coordinates and color information (w/o N) or with additional
normal information (w/ N). We adopt unweighted cross-entropy loss for all the segmentation experiments to achieve a fair
comparison. Overall Accuracy (OA, %), mean Intersection over Union (mIoU, %), and per-category IoU scores are reported.
We report averaged scores over five training runs for PointNet++ [37] based networks due to performance variations.

GT direction maps, we search the closest boundary point
for each point, and the direction is assigned as the direc-
tion pointing from the closest boundary point to the current
point. We use the normalized direction vectors (i.e., with a
length of 1) as our GT for training.

4.1. Semantic Segmentation on Indoor Scenes

For indoor scenes, we use the challenging Stanford
Large-Scale 3D Indoor Spaces (S3DIS) dataset [1] for eval-
uation. S3DIS is a large-scale dataset for semantic indoor
scene parsing. Each point is annotated with a semantic la-
bel from 13 categories (e.g., ceiling, table, window). Since
the S3DIS dataset contains massive points that are impracti-
cal to be directly segmented, both the two baseline methods
were intentionally designed to train and test on downsam-
pled data. We follow the same data sampling strategies as
the baseline networks. Furthermore, to align with the pre-
vious works [17, 23, 32, 43], we also use Area 5 for testing
and the rest areas for training.

In Table 1, we report the performance comparison be-
tween the two baselines and our corresponding networks.
These methods are either trained using only 3D coordi-
nates and color information (w/o N), or using 3D coordi-
nates, color information, and normals (w/ N). We consider
training the networks using normal information as they help
discriminate between boundary and non-boundary points.
Compared to the baselines, our boundary-aware feature
propagation mechanism achieves consistent improvements
in terms of both OA and mIoU scores. Trained using only
3D coordinates and color information, our method obtains
mIoU gains of 0.3% and 1.7% with the backbones Point-
Net++ and KP-Conv, respectively. When trained using 3D
coordinates, color information, and normals, our method
obtains mIoU gains of 1.2% and 1.6% with the backbones
PointNet++ and KP-Conv, respectively. Specifically, we ob-
serve significant improvements in categories such as col-
umn, window, door, and board, for which accurate bound-
ary delineation is difficult to achieve in the baseline meth-

ods. In some scenarios our method can also propagate seg-
mentation errors to a larger extent, leading to a decrease
in mIoU scores of certain categories (e.g., board). Never-
theless, the qualitative results show that our segmentation
outputs more regularized shapes (Section 4.4). In Supple-
mentary Material, we present more comparisons with other
state-of-the-art works in the S3DIS benchmark.

4.2. Semantic Segmentation on Outdoor Scenes

For outdoor scenes, we use the most recent SensatUr-
ban dataset [11] for evaluation. SensatUrban is a large-
scale UAV photogrammetry point cloud dataset, consisting
of nearly three billion points with fine-grained semantic la-
bels (e.g., building, high vegetation, rail) collected from
three UK cities. Following the SensatUrban benchmark,
we use the Birmingham block 1 and 5, and the Cambridge
block 7 and 10 for validation. We use the Birmingham block
2 and 8, and the Cambridge block 15, 16, 22, and 27 for test-
ing. The rest tiles are used for training. We experiment on
SensatUrban using KP-Conv [32] as our backbone.

In Table 2, we present the performance of our ap-
proach in comparison with KP-Conv and other state-of-the-
art methods. Our method has achieved an OA of 93.9% and
an mIoU of 59.7%, which outperforms all the seminal com-
petitors on this benchmark. The results demonstrate the ca-
pability of our approach to generalize to large-scale outdoor
urban scenes. Compared to the state-of-the-art baseline KP-
Conv [32], using our boundary-aware feature propagation
strategy improves its mIoU by a margin of 2.1%. Regarding
per category performance, improvements in most categories
can also be observed, especially in the categories that ex-
hibit distinct geometric boundaries, such as bridges, roads,
and footpaths. The minority categories such as rail and bike
cannot be successfully recognized by most methods listed
in the table, which is due to the class imbalance in the Sen-
satUrban dataset. We also observe a performance drop in
the water category (20.8% IoU compared to baseline). This
is attributed to the fact that water in urban scenes often has



Method OA(%) mIoU(%) ground veg. building wall bridge parking rail traffic. street. car footpath bike water

PointNet [23] 80.8 23.7 68.0 89.5 80.1 0.0 0.0 4.0 0.0 32.0 0.0 35.1 0.0 0.0 0.0
PointNet++ [24] 84.3 32.9 72.5 94.2 84.8 2.7 2.1 25.8 0.0 31.5 11.4 38.8 7.1 0.0 56.9
TangentConv [31] 77.0 33.3 71.5 91.4 75.9 35.2 0.0 45.3 0.0 26.7 19.2 67.6 0.0 0.0 0.0
SPGraph [17] 85.3 37.3 69.9 94.6 88.9 32.8 12.6 15.8 15.5 30.6 23.0 56.4 0.5 0.0 44.2
SparseConv [8] 88.7 42.7 74.1 97.9 94.2 63.3 7.5 24.2 0.0 30.1 34.0 74.4 0.0 0.0 54.8
RandlaNet [12] 89.8 52.7 80.1 98.1 91.6 49.0 40.8 51.6 0.0 56.7 33.2 80.1 32.6 0.0 71.3
KP-Conv [32] 93.2 57.6 87.1 98.9 95.3 74.4 28.7 41.4 0.0 56.0 54.4 85.7 40.4 0.0 86.3
Ours 93.8 59.7 85.8 98.9 96.8 79.3 49.7 52.4 0.0 62.1 57.5 86.8 42.0 0.0 65.5

Table 2: Semantic segmentation results achieved on SensatUban dataset [11], evaluated on the Birmingham block 2, 8, and
the Cambridge block 15, 16, 22, and 27. Overall Accuracy (OA, %), mean Intersection over Union (mIoU, %), and per-
category IoU scores are reported. The results of the seven competing networks are from the original SensatUrban benchmark
paper [11]. To achieve a fair comparison, we train our method using only the 3D coordinates and color information.

irregular geometrical boundaries, which leads to noisy esti-
mates in both boundary detection and direction prediction,
yielding less accurate segmentation.

4.3. Ablation Study

In this section, we present ablation studies to support our
contributions in detail. We use the S3DIS dataset as we
can access the GT semantic labels of all the points. We
conduct our ablation studies adopting KP-Conv [32] as our
backbone network. Same as in the previous works [17, 23,
32, 43], we use Area 5 for testing and the rest areas for
training. All the experiments are conducted under the same
hyperparameter settings as in Section 4.1.

Table 3 presents the results of the ablation experiments.
From this table, we observe that adding the boundary stream
to the baseline improves mIoU by 1.0% and OA by 0.1%.
Adding the direction stream to the baseline improves mIoU
by 0.8% but slightly decreases the OA (0.1%), and combin-
ing the three streams with the standard feature propagation
achieves a 0.2% gain in OA and 0.7% gain in mIoU over the
baseline. Compared to adding only the boundary stream,
adding both the boundary stream and the direction stream
to the network shows a decrease of 0.3% in mIoU. Even
though, the direction stream brings important information
for segmentation refinement in the next step. Using the pro-
posed boundary-aware feature propagation mechanism, we
observe an increase in both metrics, i.e., 0.4% in OA and
1.6% in mIoU. This reveals that more effective features are
inherited to produce purified feature maps.

4.4. Qualitative Evaluation

In this section, we present qualitative results of semantic
scene segmentation achieved on both S3DIS [1] and Sen-
satUrban [11] datasets.

Figure 4 presents the segmentation results on the in-
door dataset S3DIS. Our joint learning and boundary-aware
feature propagation strategy effectively reduce segmenta-
tion errors near boundaries for several object categories,
such as window, column, and board. To further understand

Method OA(%) mIoU(%)

(1) Baseline network 89.2 65.6
(2) Baseline + Boundary Stream 89.3 66.6
(3) Baseline + Direction Stream 89.1 66.2
(4) Full network with SFP 89.4 66.3
(5) Full network with GFP 89.6 67.2

Table 3: mIoU scores of the ablated networks from (1) to
(5). SFP denotes standard feature propagation and GFP de-
notes guided feature propagation. All networks are trained
using 3D coordinates, color information, and normals.

why simply guiding the feature propagation with the pre-
dicted directions significantly improves the performance,
we go beyond numbers by visualizing what is learned in
the boundary detection and the direction prediction streams.
The visualization results reveal that even though the pre-
dicted boundaries and directions do not completely match
the ground truth, they still provide informative guidance for
feature propagation in the decoding layers.

Figure 5 demonstrates the segmentation results on the
SensatUrban dataset, where the ground-truth labels are not
presented since we do not have access to the true labels in
the test set. However, the comparison with baseline results
still shows that our method achieves better boundary local-
ization for minor categories such as parking and footpath.

4.5. Limitations

Our proposed approach jointly performs boundary pre-
diction, direction prediction, and semantic segmentation.
By adopting a lightweight guiding mechanism for feature
propagation, our approach can produce sharp feature maps
that effectively reduce segmentation errors in boundary re-
gions. However, it has several limitations. First, feature
propagation is performed within a neighborhood, which im-
proves the feature consistency of object interiors on a local
level. Nevertheless, it cannot guarantee global-level feature
consistency within a long range. Second, since our work
focuses on guiding the features to recover boundary infor-
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ceiling floor wall beam column window door chair table bookcase sofa board clutter

Figure 4: Qualitative results on the S3DIS dataset [1]. KP-Conv [32] is used as our backbone, trained using 3D coordinates,
colors and normals. In the third column, the predicted boundary points are rendered in red. In the fourth column, we visualize
the Z-component (i.e., vertical direction) of the predicted vectors, where blue indicates -1 (down) and red indicates +1 (up).

mation in the decoding layers, it naturally cannot cope with
the information loss in the feature encoding layers. Last,
our approach requires extra pre-processing steps (i.e., gen-
erating GT boundary maps and direction maps for training).

5. Conclusion

We have presented a novel boundary-aware feature prop-
agation mechanism to improve semantic segmentation of
3D point clouds, in a way such that the boundaries are
pushed to the desired locations. Our network jointly learns
boundary maps, direction maps, and point-wise semantic
labels end-to-end. Extensive studies on the S3DIS and Sen-
satUrban datasets have demonstrated the effectiveness of
our approach. Our experiments and analysis reveal two fac-
tors that contribute to the improvements in semantic seg-
mentation. First, the joint learning of the three tasks mutu-
ally improves the shared feature encoder. Second, the pre-
dicted boundaries and directions are effective in guiding the
points to inherit features from more homogeneous regions,
which compensates for the loss of local boundary informa-
tion in the decoding layers of FCNs. Our approach is partic-
ularly effective for objects with clear geometric boundaries
such as doors, windows, and street paths.

Nevertheless, the achieved improvements are still lim-
ited because the locally-performed feature propagation can-
not optimize the segmentation output on a global scale. Be-
sides, since the three downstream tasks have different levels
of complexity, combining them into a single network lim-

Input point clouds Baseline results Our results

ground high vegetation building wall

bridge

parking

rail traffic road street furniture car

footpath

bike water

Figure 5: Qualitative results of semantic segmentation on
the SensatUrban dataset [11], trained using 3D coordinates
and colors.

its the capability of the shared feature encoder to learn dis-
criminative features for all the tasks. In the future, we will
explore the adaptive boundary detection method [36] to im-
prove semantic segmentation. We would also like to extend
our boundary-aware feature propagation mechanism using
self-supervised learning techniques.
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— Supplementary Material —
Push-the-Boundary: Boundary-aware Feature Propagation for Semantic

Segmentation of 3D Point Clouds

In this document, we provide more details on network
implementation, additional ablation studies on the guided
feature propagation, the comparison with baselines in terms
of complexity and runtime, and the comparison with more
state-of-the-art works on and S3DIS benchmark. In the end,
we present more qualitative results.

A. Details in Implementation
Data sampling. Both S3DIS and SensatUrban are large

datasets of 3D scenes, which are too big for the baseline
networks to directly process. To handle such data, Poinet-
Net++ randomly samples a fixed number of points (i.e.,
4096) in each scene for network training. KP-Conv first
uses grid sampling to reduce the number of input points.
For training, it randomly samples 3D spheres in the scenes
as inputs for network batches. For testing, spheres are sam-
pled regularly with a potential term to ensure that points
can be seen by the network multiple times from different
sphere locations. In the end, semantic predictions on grid-
sampled clouds are transferred to the original clouds. We
follow the same data sampling strategies as the baseline net-
works, which are further detailed in Table 1.

Network training. We keep all training settings the
same as the baseline networks, such as the momentum for
gradient descent optimization, base learning rate, and learn-
ing rate schedule. This is detailed in Table 1.

B. Additional Ablation Studies on Guided Fea-
ture Propagation

In this section, we further investigate the effectiveness
of our proposed feature propagation mechanism applied to
various decoding layers.

Figure 1 shows a detailed illustration of the network ar-
chitecture using KP-Conv as the backbone. Note that only
the semantic segmentation stream is visualized for clarity.
In the decoder, features are up-sampled four times, i.e.,
from the 5th layer to the 4th layer, from the 4th layer to the
3rd layer, etc. In the upsampling, we replace the Standard
Feature Propagation (SFP) with Guided Feature Propaga-
tion (GFP) to evaluate the network performance.

Settings
PointNet++ KP-Conv

S3DIS S3DIS SensatUrban

Data

sampling strategy random grid + sphere

points per scene 4096 - -

grid size - 5cm 20cm

sphere radius - 1.5m 9.0m

Training

base learning rate 0.001 0.01 0.01

scheduler 70% per 10 epochs 98% per 1 epoch

momentum - 0.98 0.98

batch size 16 6 6

steps per epoch 2973 300 600

epochs 32 500 550

Table 1: Details of data pre-processing and network train-
ing.

Feature propagation details. We propagate features of
neighboring points xj in the lth layer to points xi in the
l−1th layer. For GFP, the features are propagated using the
weighting functions introduced in the Methodology section
of the paper (see Equation (2) in Section 3.2). For SFP, we
use the inverse distance weighting in a local neighborhood,
i.e.,

w(xj) =
1

||xj − xi||2 + ε
, (1)

where ε denotes a threshold that prevents the denominator
to be 0.

Neighborhood size. For SFP, we use a fixed radius to
search for the local neighbors since it is more robust to vary-
ing point densities compared to kNN. The base radius in the
1st layer is set to 6.25cm and increases two times in every
next layer. For GFP, as the predicted directions and bound-
aries naturally help to reduce outlier influences, we use kNN
instead. We empirically use k = 8.

Table 2 presents the segmentation scores obtained by
applying GFP in different feature upsampling layers. By
adopting GFP for the 1st upsampling layer and SFP for the
rest layers, we achieve the highest mIoU score, which has
already been reported in the paper. When replacing SFP
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Figure 1: Network architecture details, adopting KP-Conv as the backbone. Only the segmentation stream is visualized for
clarity. Conv denotes the convolutional-like operation for feature aggregation. Up denotes the feature upsampling process.
FC denotes the fully connected layer. The grey dashed lines denote the skipped links. N is the number of points, F the
dimension of the input feature, K the number of categories in the output, and Ni the number of points in each layer. Note
that N1 = N .

GFP layers SFP layers OA(%) mIoU(%)

- up1, up2, up3, up4 89.4 66.3
up1 up2, up3, up4 89.6 67.2
up1, up2 up3, up4 89.7 66.9
up1, up2, up3 up4 89.6 66.6
up1, up2, up3, up4 - 89.4 66.0

Table 2: OA and mIoU scores of the ablated networks
adopting GFP in various decoding layers. SFP: standard
feature propagation. GFP: our guided feature propagation.
The experiments are conducted on the S3DIS dataset using
KP-Conv as the backbone, trained using 3D coordinates,
color information and normals.

with GFP in higher layers, we observe a slight drop in the
performance. When adopting GFP for all the upsampling
layers, the performance reaches its lowest. Our insights into
this behavior is that, GFP is designed for recovering local
boundary details, which explains its effectiveness when ap-
plied to the low-level upsampling layers. While in high lay-
ers, SFP is more effective because it well preserves global
features in the feature propagation process.

C. Convergence and Efficiency

We compare the convergence and efficiency of our net-
work with the baseline. The results are reported in Table 3.

Our networks have a significantly larger number of pa-
rameters compared to the baselines since we have separate
decoders for the three downstream tasks. Thus, it is slower
in both training and testing. Compared to PointNet++, the
increase in training time and inference time are 23% and
15%, respectively. Compared to KP-Conv, we notice an
average increase of 55% on training time and 33% on infer-
ence time.

Though with the higher complexity, we have observed a
faster convergence of our network. This is demonstrated in

PointNet++ KP-Conv

S3DIS S3DIS SensatUrban

#Params Baseline 0.97 24.38 24.38

(M) Ours 2.19 32.78 32.78

Training time Baseline 0.52 0.09 0.13

(sec./batch) Ours 0.64 0.14 0.20

Inference time Baseline 0.71 0.05 0.08

(sec./batch) Ours 0.82 0.07 0.10

Table 3: Comparison of running time against the baseline on
the S3DIS and SensatUrban datasets. The total number of
learnable parameters is the indicator of model complexity.
We use the average running time per batch as the efficiency
indicator. All experiments are conducted with an NVIDIA
RTX2080Ti GPU.

Figure 2, where we visualize the segmentation loss and val-
idation curve of the networks. We can see that our network
converges slightly faster than the baseline (i.e., 300 epochs
VS. 400 epochs).

D. More Comparisons on S3DIS Benchmark
Table 4 presents the performance comparison with more

state-of-the-art works on the S3DIS benchmark. Although
our performance is not the best compared to Point Trans-
former [43], our work helps to gain insights into feature
propagation in the decoding to improve commonly used net-
works. Our experiments and comparison have validated the
effectiveness of the proposed feature propagation strategy.

E. More Qualitative Results
In this section, we present more qualitative results on

both indoor and outdoor scenes. Figure 3 shows the visual
results achieved on the SensatUrban dataset. Figure 4 and
Figure 5 demonstrate the results of qualitative comparison
on the S3DIS dataset adopting KP-Conv and PointNet++ as

2
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Figure 2: Comparison of network convergence. The horizontal axes denote the number of training epochs. The statistics are
obtained on the S3DIS dataset using KP-Conv as the backbone, trained using 3D coordinates, color information and normals.

Method OA(%) mIoU(%)

PointNet [23] - 41.1
TangentConv [31] 82.5 52.8

SPGraph [17] 86.4 58.0
BGENet [7] - 61.4

RandLA-Net [12] 87.2 62.4
IAFNet [36] 88.4 64.6
JSENet [13] - 67.7

Point Transformer [43] 90.8 70.4

PointNet++ [37] (w/o N) 83.5 53.6
+ ours 83.6 53.9

PointNet++ [37] (w/ N) 83.9 53.9
+ ours 84.3 55.1

KP-Conv rigid [32] (w/o N) - 65.4
+ ours 89.7 67.1

KP-Conv rigid [32] (w/o N) 89.2 65.6
+ ours 89.6 67.2

Table 4: Semantic segmentation performance comparison
with other state-of-the-art works on the S3DIS dataset.
BGENet, IAFNet, and JSENet also consider boundaries.
The results of RandLA-Net are from CBL paper [30].

the backbone, respectively. In all these comparisons, our
guided feature propagation mechanism demonstrates con-
sistent improvement in semantic segmentation.

Input point clouds Baseline results Our results

ground high vegetation building wall

bridge

parking

rail traffic road street furniture car

footpath

bike water

Figure 3: Qualitative results of semantic segmentation on
the SensatUrban dataset, trained using 3D coordinates and
colors. Our approach obtains more accurate boundaries (the
1st and 2nd rows). It also performs better in recognizing
minor classes with distinct geometric boundaries such as
footpaths (the 3rd and 4th rows).
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Figure 4: Qualitative results on the S3DIS dataset using KP-Conv as the backbone, trained using 3D coordinates, colors and
normals. The binary boundary labels are visualized.

Input point clouds GT labels Boundary maps Predicted directions (z) Baseline results Our results

ceiling floor wall beam column window door chair table bookcase sofa board clutter

Figure 5: Qualitative results on the S3DIS dataset using PointNet++ as the backbone, trained using 3D coordinates, colors
and normals. The boundary probability maps instead of binary labels are visualized: blue for low, and red for high.
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