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A B S T R A C T

Complexity of forest structure is an important factor contributing to uncertainty in aboveground biomass esti-
mates. In this study, we present a new method for reducing uncertainty in forest aboveground biomass (AGB) 
estimation based on plot-level terrestrial laser scanner (TLS) point clouds reconstruction. The method estimates 
the total AGB of plots with complex structures after automatically performing the steps of ground point filtering, 
single tree segmentation, and three-dimensional (3D) structure reconstruction. We used plot data from temperate 
and tropical forest ecosystems to verify the effectiveness of the method, reconstructing a 1300 m2 temperate 
plantation plot and a 5000 m2 mingled forest plot, respectively. The total biomass of 153 trees in the plantation 
plot was overestimated by 17.12 %, and the total biomass of 61 trees in the mingled forest plot was under-
estimated by 10.88 %. We found that the uncertainty of aboveground biomass estimation in tropical forests with 
more complex structures is not necessarily greater than in plantations. Therefore, in large-scale remote sensing 
observations of forest biomass, the number or area of plots can be increased to reduce the uncertainty of the 
results caused by the complex structure. The focus of this study is to explore TLS point clouds modeling methods 
to reduce the uncertainty in AGB estimation caused by the complexity of forest structures, and to provide 
reference cases for plot-level point clouds reconstruction methods. Forest ecologists can use this method to 
regularly observe forest growth and obtain indicators related to forest ecology without destroying trees.   

1. Introduction

Mastering the aboveground biomass (AGB) of plots is very important
for estimating forest productivity, carbon monitoring and understanding 
forest growth. The complexity and heterogeneity of forest structure are 
important factors for the uncertainty of forest AGB estimation. Light 
detection and ranging (LiDAR) can obtain detailed information about 
the three-dimensional structure of the forest, providing an effective 
technical means for the quantitative observation and research of the 
forest ecosystem (Calders et al., 2020; Guo et al., 2021). The AGB of 
ground samples can be used as calibration data for forest observations 
using drones or satellites, so it is necessary to obtain accurate and 

detailed plot-level biomass (Brede et al., 2019; Hu et al., 2020). Tradi-
tional methods for estimating biomass from ground samples rely on 
allometric equations, and it is difficult to overcome the uncertainty of 
the results caused by the complexity of the forest structure, which may 
exceed 30 % in some cases (Aguilar et al., 2019; Chave et al., 2014). 
Therefore, it is very important to obtain accurate and non-destructive 
ground reference data. Terrestrial laser scanning (TLS) technology can 
obtain small-scale detailed forest three-dimensional structure informa-
tion (Luck et al., 2020; Muumbe et al., 2021). The Quantitative Struc-
tural Model (QSM) based on the TLS point clouds provides a 
nondestructive method for estimating the AGB of a single tree. 
Combining the volume of a single tree reconstructed by QSM with the 
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Forest survey data 

The traditional forest survey method was used to obtain the DBH and 
height of all the (Styphnolobium japonicum) trees in the circular plot. We 
used the KTS-44R4LCN total station (Guangzhou Southern Surveying 
and Mapping Technology Co., ltd.) to measure the tree height based on 
the principle of triangulation, and the diameter at breast height (DBH) 
tape measure to measure the DBH of each tree. The DBH ranges from 5.6 
cm to 23.6 cm, and the average and standard deviation are 13.4 cm and 
4.1 cm, respectively. The tree heights range from 4.91 m to 21.86 m, and 
the average and standard deviation are 13.44 m and 3.25 m. 

Point clouds 

We collected plot point clouds of Sophora japonica using FARO 
FOCUSS150 ground laser scanner (FARO Technologies, Inc.). The hor-
izontal and vertical fields of view of the scanner are 360◦ and 300◦

respectively, and the minimum horizontal and vertical steps are 0.009◦. 
Five scanning positions are established within a radius of 20 m from the 
center of the circular plot, one scanning position is in the center, and the 
other four scanning positions are around. Distribute 12 highly reflective 
spheres of artificial targets in the whole plot and ensure that at least 
three spheres are visible at every-two continuous scanning positions 
(Fan et al., 2020). 

2.1.2. Tropical rainforest 
We used a dataset of large trees from the tropical rain forest of 

Cameroon, Africa, which included TLS point clouds and measurements 
after tree felling. This data set was contributed by Takoudjou et al. 
(2018), University of Yaounde, Cameroon, and the data is stored in a 
folder named “Tree”. The trees came from the Ndélélé district in eastern 
Cameroon, Africa (4◦02′20.77′′N, 14◦55′49.15′′E). The average annual 
precipitation in this area is between 1500 and 2000 mm, the dry season 
is obvious, the annual average temperature is 24 ◦C, and the altitude 
range is between 600 and 700 m. The data set provides TLS point clouds 
and corresponding felled measurement data of 61 trees, which were 
scanned, felled, and weighed. 

TLS point clouds 

We use the TLS point clouds of 61 trees provided in the dataset, and 
the point cloud of each tree exists independently. Leica ScanStation C10 
(Leica Geosystems Co., ltd., Switzerland) is used to scan the point clouds 
of trees. It is a time-of-flight scanner system with an operating wave-
length of 532 nm. The scanner has a wide field of view, the horizontal 
and vertical fields of view are 360◦ and 270◦, respectively. The scanning 
speed is 50,000 points/second, and the scanning resolution is set to 0.05 
m at 100 m. 

Destructive sampling data 

The trees were felled between July 2015 and August 2016, and all 
sample trees were felled after being scanned. The felled trees cover a 
wide range of tree sizes and average wood density. These trees belong to 
15 different species, with an average height of 33.72 m (±12.41) and an 
average DBH of 58.37 cm (±41.30). The data set also includes DBH and 
height measured after felling trees. Table 1 shows the detailed infor-
mation of 61 trees. 

2.2. Preprocessing 

Plantation plot 

The first step of our method is to filter the input point clouds. 
Reducing the size of point clouds can reduce the requirements of 
memory and computing time. In this work, there are two steps to pre- 
process the point clouds of the plot. The improved asymptotically 
encrypted triangulation filtering algorithm is used to classify the ground 

wood density can further estimate the aboveground biomass of a single 
tree (de Tanago et al., 2018). However, it is necessary to develop a 
method to automatically reconstruct the TLS point cloud at the plot level 
by using QSM and obtain the AGB of the plot. 

At present, most public QSM methods only support the reconstruc-
tion of a single tree, and the single tree point clouds needs to be 
manually input into the model when calculating AGB. The QSM presents 
an opportunity to reduce the uncertainty in results caused by the 
inability of traditional methods to overcome the complexity of the forest 
structure. Calders et al. used TreeQSM to estimate the tree volume of 65 
eucalyptus trees from the TLS point clouds and combined the wood 
density to infer AGB. The AGB estimates from the allometric growth 
equation have low consistency with the reference values, and the total 
AGB is underestimated by 29.85 %~36.57 % (Calders et al., 2015). 
Takoudjou et al. used SimpletTree to estimate the AGB of a single tree 
from TLS point clouds and verified the accuracy of the allometric growth 
equation using the measurement data of 61 destructive felled trees 
(Momo Takoudjou et al., 2018). 

We have developed a method named AdQSM and reconstructed 29 
trees of different species (18 species in total) scanned by TLS in three 
research locations, and validated the accuracy of AdQSM in tree 
parameter extraction (Fan et al., 2020). Most tree reconstruction 
methods are only suitable for scanning point clouds with a single tree, 
requiring manual or semi-automatic extraction of all trees from the plot- 
level point clouds. Manually extracting a single tree from a large number 
of point clouds is very time-consuming and overlapping branches of 
adjacent trees will make manual separation difficult or unreliable (Luck 
et al., 2020; de Tanago et al., 2018). Raumonen et al. proposed a method 
to automatically reconstruct the structure model of each tree in the plot 
using TLS point clouds and tested it with a British oak plot with a 
diameter of 30 m and an Australian eucalyptus plot with a diameter of 
80 m (Raumonen et al., 2015). However, reconstructing the three- 
dimensional structure of the plot can provide detailed information on 
large-scale tree growth, which is very important for forest ecology and 
management. 

This paper proposes a method that can reduce the uncertainty of 
biomass estimation of ground samples caused by the complex structure. 
After the method automatically performs the steps of ground point 
classification, single tree segmentation and structural reconstruction 
from the TLS point clouds at the plot level, the AGB of the plot can be 
automatically estimated. The traditional AGB estimation method of plot 
was limited by the type, size and area of plot. This method overcomes 
these factors and considers the AGB and spatial distribution of the 
complex branching structure of the plot. The research purposes and 
contributions of this paper are as follows: (1) Reconstruction of multiple 
tree structures from TLS point clouds at plot level; (2) Our method re-
alizes the reconstruction of plot in the research field of tree quantitative 
structure model; (3) Our method can reconstruct the branches and all 
individual leaves of a single trees in the plot; (4) Our method can be used 
as a tool for ecologists to manage and monitor forests. 

2. Materials and methods

2.1. Data description

2.1.1. Temperate plantation
The plantation is located in the Haidian District of Beijing, China 

(40◦0′N, 116◦20′E). It is a plantation planted with Chinese Sophora 
japonica, with no or only a small amount of understory grassland and 
bushes. The density of trees in the plantation is about 1,000 trees per 
hectare. The study area has an altitude of 48.7 m and a flat topography. 
It belongs to a temperate humid monsoon climate zone with four distinct 
seasons, with hot summers and cold winters with little precipitation. 
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points, and the digital terrain model is established through the irregular 
triangulation interpolation algorithm to complete the normalization of 
the plot point clouds. 

Mingled forest plot 

Since the 61 trees in the dataset are already individualized, to obtain 
a mixed forest plot that can be used to test our method, we use the open- 
source software CloudCompare to manually merge the 61 trees to 
generate the point clouds of the whole plot. The original ground points 
have been removed, and finally, a mingled forest plot has been obtained. 

2.3. Extract all trees in the plot 

The accuracy of tree segmentation will directly affect plot recon-
struction. To reconstruct the plots quickly and accurately, we design a 
voxel-based method to segment the trees in the plots from bottom to top. 

2.3.1. Single tree extraction 

Clustering and seed points 

This paper adopts a bottom-up separation strategy based on seed 
points (Wang et al., 2018). The tree cluster is divided into individual 
trees, starting with seed point identification. As the density of trunk 
point clouds is relatively high, this paper chooses 1.3 m as the initial 
seed point location. Fig. 1 describes the scene of two tree point cloud 
clusters. Cluster 1 contains one tree with overlapping point clouds, and 
cluster 2 contains two trees. Colored cells are the initial seed units of the 
two clusters. The centroid of all points within the voxel acts as the 
location of the seed point, transferring the seed label to the topmost 
neighbor. 

Tree individualization 

The three-dimensional cuboid clusters are divided into multiple tree 
clusters or a single tree cluster. Multiple-tree clusters have at least two 
potential seed points, and the minimum distance between the two seeds 
is greater than the pre-set value. Seed merging prevents a tree with a 
larger canopy from being segmented into two or more trees. Identify 
potential seed cells and merge them. Fig. 2 shows a side view of cluster 2 
with two overlapping trees, with resampling resulting in 14 vertical 

layers. The identified potential seed units were clustered and labeled S2 
and S3, with P2 and P3 being the centroids of seed points in each cluster. 
The horizontal distance between the two selected seed units is calculated 
as L23. 

In Fig. 2, L23 is the distance between two selected seeds, and LT is the 
distance threshold of two trees with two trunks. S2 and S3 remain un-
changed if the horizontal distance L23 is greater than LT. Otherwise, it 
will be merged into a new seed spot. Then recalculate the distance be-
tween seed pairs and repeat the judgment until the distance is not 
greater than LT. As shown in Fig. 3, the top neighbors of seeds S2 and S3 
in layer 2 are identified as green and red units respectively. These units 
inherit the index of the cluster and form a new seed at the 3 layers. 
Assign non-seed cells to a single tree. A given cell layer is connected to 
only one seed cell, and then these cells are assigned to the corresponding 
tree. 

The top units S′

1 and S′

2 inherit the labels of the bottom adjacent seeds 
S1 and S2. 

As shown in layer 13 (Fig. 3), first identify the boundary of two trees 
in layer 13. Unallocated cells are allocated according to the connection 

Species Number DBH/cm Tree height/m 
 

Min Max Min Max 

Annickia chlorantha (Oliv.) Setten & 
Maas 

3  10.8 35.6 12.6  35.5 

Baphia leptobotrys Harms 3  33.3 84.7 16.5  31.1 
Cylicodiscus gabunensis Harms 5  13.3 173.8 17.6  53.6 
Duboscia macrocarpa Bocq. 2  26.3 35 17  39.9 
Entandrophragma cylindricum 

(Sprague) 
2  17.2 89.8 16.9  44.7 

Eribroma oblongum (Mast.) Pierre ex A. 
Chev. 

4  17.4 105.6 22.2  46.5 

Erythrophleum suaveolens (Guill. & 
Perr.) 

5  21.9 119.6 26.4  46.9 

Macaranga barteri Müll.Arg. 2  25.3 33.7 26.6  28.4 
Mansonia altissima (A. Chev.) A. Chev. 3  24.9 60.6 22.3  42.5 
Pentachletra macrophylla Benth. 1  34.1 34.1 23.5  23.5 
Petersianthus macrocarpus (P.Beauv.) 

Liben 
6  13.4 64.6 11.1  42.7 

Pterocarpus soyauxii Taub. 6  11.1 83.2 12.4  49.4 
Pycnanthus angolensis (Welw.) Warb. 4  11.2 55.5 8.7  33.5 
Terminalia superba Engl. & Diels 9  12.5 112.6 16.2  51.4 
Triplochiton scleroxylon K.Schum. 6  25.4 186.6 27.4  52.8  

Fig. 1. Cluster potential seed points of individual trees from bottom to top. S1 is 
the potential seed of cluster 1; S2 and S3 are the potential seeds of cluster 2. 

Fig. 2. (a)Recognition and merging of seed points; (b) Inherit the label of the 
tree from the top layer. 

Table 1 
Statistics of large tropical trees from mingled forest plot.  
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factor. Set the connection coefficient of all boundary cells to 1 and 
propagate the connection coefficient to unallocated adjacent cells. As 
shown in Fig. 3, cells d, e and g are adjacent cells connected by faces, and 
f is adjacent cells of the edge of boundary cells. Obtain the boundary 
cells of the seeds S2 and S3 to calculate the adjacent coefficients of all 
unallocated cells (such as d, e, f, and g) in the same layer. The orange and 
light blue meshes are the boundary cells of seeds S2 and S3. 

2.3.2. Tree segmentation results 

Temperate Chinese Sophora japonica Plantation. 

As shown in Fig. 4, the point clouds of the Chinese Sophora japonica 
plot after preprocessing have been segmented. According to the princi-
ple of single tree segmentation, the initial value of LT was set to 50, and 
162 individual trees were obtained. The field survey showed that there 
were 153 trees in the plot. By setting LT to 65, all trees were successfully 
obtained in the plot. 

Tropical natural rainforest. 

As shown in Fig. 5, the trees of the Cameroon rainforest plot had been 
individualized. The initial value of LT set was 50, and a total of 56 tree 
examples have been obtained, and the survey results show that there are 
a total of 61 trees in the plot. By setting LT to 90, all trees in the plot are 
successfully obtained. 

Fig. 3. Cell separation based on neighborhood adjacency.  

Fig. 4. All trees in the plantation plot were individualized.  

Fig. 5. The method in this paper extracts all the trees in the plantation plot.  



5

2.6. Automatic batch extraction of tree volume and AGB from the plot 
quantitative structure model 

For plantation plot and mingled forest plot, the PlotQSM in section 
2.5 can automatically extract the volume of all trees. For the two test 
plots, we generated five plot QSMs, and made five different QSMs for 
each tree (l = 60, 70, 80, 90, 100 cm). Calculate the dry mass by 
combining the volume VQSM of the single tree extracted in batches with 
the wood density WD (Eq. (1)).

Fig. 6. The main steps of AdQSM to reconstruct a single tree from its TLS 
point clouds. 

Fig. 7. Quantitative structure model of the plantation plot in the 
temperate zone. 

Fig. 8. Quantitative structure model of tropical mingled forest plot.  

2.4. AdQSM reconstructs the 3D structure of tree branches 

AdQSM is a method that we have published, it is a new QSM (Dong 
et al., 2021). AdQSM reconstructs 3D branch geometry structure of a 
single tree from the TLS point clouds and can quantitatively calculate 
many attributes of a single tree, such as the volume (diameter, length, 
number, surface area, etc.) of the branch, clear bole height, diameter at 
breast height (DBH) and tree height. 

AdQSM reconstructs the cylindrical geometric model of a single tree 
from top to bottom and describes the geometric structure and spatial 
topological relationship of tree branches from the point clouds based on 
the tree skeleton (Fig. 6). Combined with ecological theories such as the 
law of water and nutrient transportation of trees, the tree skeleton is 
constructed from the internal spatial distribution of the input point 
clouds (Fig. 6 (a) and (b)), and the Minimum Spanning Tree (MST) al-
gorithm framework is completed to extract trees. The initial skeleton 
(Fig. 6(c)), a series of skeleton simplification algorithms and optimiza-
tion strategies such as merging redundant vertices and edges are 
designed (Fig. 6(d) and (e)). According to the growth law of trees, the 
cylindrical fitting of the geometric structure of tree branches is 
completed (Fig. 6(f) and (g)), which is a general and high-precision QSM 
method. 

2.5. Reconstruct multiple trees from the TLS point clouds at the plot level 
(PlotQSM 

First, input the point cloud of each tree into AdQSM in the computer 
memory. Then, the tree skeleton is initialized, simplified, and smoothed. 
Finally, install cylinders for the branches of each tree. Reconstruct from 
bottom to top, first the trunk, then the branches of each grade, and the 
cylinder of each branch. In the reconstruction process, the trunk point 
clouds of each tree will be evenly divided into several segments, and the 
radius of the initial column at the bottom of the trunk will be estimated. 
Figs. 7 and 8 are the QSM of reconstructed plantation plots and mingled 
forest plots respectively. 
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(1) 

For the plantation plot with 153 trees, to convert the model volume 
into the dry mass of a single tree, the dried biomass density per fresh 
volume (0.636 g/cm3) was extracted from the global wood density 
database. For the mingled forest plot with 61 trees, the wood density is 
different due to different tree species (Table 2). 

2.7. Validation of our method 

AGB of plantation from the allometric equation 

This paper uses the results calculated based on the allometric equa-
tion as a reference value. In this paper, the allometric equation of robinia 
pseudoacacia was obtained from national standards and references 
(Chen et al., 2019), including the biomass of trunks, branches and 
leaves. The allometric equation describes the estimation of AGB as for-
mula (2). 

AGB = 0.03D2H + 0.714 (2)   

AGB of mingled forest plot after harvest. 

The trees in the mingled forest plot are divided into four parts: trunk, 
branches, buttresses, and leaves (Takoudjou et al., 2018). When the 
bottom diameter of each section is less than 70 cm, directly weigh it to 
obtain its fresh weight. For parts with larger diameters, the indirect mass 
estimation method of volume combined with wood density is used. Use 
the Smalian formula to estimate the volume of each branch with a length 
of 1 m. For each wood component (trunk, branch, and stump), a 3 to 5 
cm thick round wood sample is collected at the end of one section. Its 
wood density WD (g/cm3) and moisture content are estimated in the 
laboratory after drying in the oven to constant weight. Table 3 shows the 
total biomass of trees by adding up the dry weights of all segments. For 
specific information, please refer to the paper that discloses the data. 

2.8. Evaluation 

The biomass of leaves or fruits is not considered when calculating 
AGB, which will not affect the accuracy of the test results. According to 
our statistics, the contribution rate of tropical leaves and fruits to the 
total biomass does not exceed 1.1 %. When evaluating AGB, we select 
Bias, rBias, RMSE, and rRMSE as evaluation indicators, and the calcu-
lation of each indicator is shown in formulas (3) to (6). The consistency 
correlation coefficient (CCC) of the variance component estimation 
based on the R language is used to evaluate the consistency between the 
AGB extracted from the point clouds of the plot and the reference value. 

Bias =
1
n
∑n

i=1
(yi − ydest) (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(yi − ydest)
2

n

√

(4)  

rBias% =
Bias

yr
× 100%, (5)  

rRMSE% =
RMSE

yr
× 100%, (6)  

where yi represents the estimated value of the i tree from the plot point 
clouds; ydest represents the reference value measured after felling the 
tree; y represents the average reference measurement value, and n 
represents the number of trees. 

3. Results

3.1. Plantation plot

For the plantation plot, the total AGB estimated based on the plot 
reconstruction and the allometric equation were 15889.3 kg and 
13566.4 kg. The Bias of AGB was 15.18 kg. Compared with the allo-
metric equation, the total AGB of this plot is overestimated by 17.12 %. 
Fig. 9 shows the comparison between the AGB of each tree and the 
reference value from the allometric equation. The R2 of the linear fit 
between the AGB of each tree and the reference value was 0.79, and 
there is no significant system deviation from the 1:1 line (the slope is 
0.966), The AGB from PlotQSM was evenly distributed on both sides of 
the reference value. The statistical results show that the RMSE and CV 
(RMSE) were 36.2 kg and 40.7 % respectively. At the 95 % confidence 
interval level, the CCC between the AGB and the reference value of the 
single tree automatically extracted was 0.87, and the LLCI and UICI were 
0.83 and 0.90. 

Fig. 10 shows the distribution of AGB residues. Most of the residuals 
of AGB were more evenly distributed on both sides of the y = 0 line, and 

Table 2 
Wood density of each tree in the mingled forest plot.  

Category Common Names Species wood density (g/cm3) 

1 Mubala macrophylla 0.377534167 
2 Ayous scleroxylon 0.429883333 
3 Abale macrocarpus 0.507908824 
4 Ilomba angolensis 0.337341818 
5 Frake superba 0.553499333 
6 Ayous scleroxylon 0.458812308 
… … … … 
61 Macaranga barteri 0.3666  

Table 3 
AGB of each tree in the mingled forest plot after harvest.  

Category Common Names Species Destructive AGB (Mg) 

1 Mubala macrophylla 0.3583105718 
2 Ayous scleroxylon 18.40735099 
3 Abale macrocarpus 1.226202463 
4 Ilomba angolensis 0.026284798 
5 Frake superba 15.83677709 
6 Ayous scleroxylon 37.52280806 
… … … … 
61 Macaranga barteri 0.2897169768  

Fig. 9. Comparison of the AGB of each tree extracted from the plot quantitative 
structure model with the reference value determined from the allome-
tric equation. 

AGBTLS = VQSM*WD
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most of the residuals were between − 40 kg and 40 kg. The residual value 
distribution range of AGB has no significant difference with the increase 
of reference value. 

As shown in Table 4, the accuracy of extracting AGB is based on the 
PlotQSM. The Bias and rBias of AGB calculated by the least square 
method were 15.18235 kg and 17.12 %. Among the 153 trees with the 
AGB reference value ranging from 6.4 kg to 357 kg, the trees with an 
absolute value of deviation less than 36.168 kg accounted for 73.2 % of 
the total. 

In Fig. 11, the absolute deviation of AGB was used as a function of 
DBH. The absolute deviation of AGB ranges from 0.3 kg to 100 kg. The 
figure shows that when AGB based on the allometric equation was used 
as a reference value, the absolute deviation of AGB increases with DBH. 

Both DBH and tree height can be used as predictors of AGB, but DBH 
is still the best predictor of AGB. In some cases, the accuracy of AGB 
prediction can be improved by considering tree height. Taking the ab-
solute deviation of AGB as a function of DBH and tree height, the ab-
solute deviation of AGB increases with the increase of tree height and 
DBH (Fig. 12). When the height of the tree was 15 m to 19 m and the 
DBH was 14 cm to 18 cm, the error of AGB was maximum, but DBH was 
still the best predictor of AGB. In some cases, the accuracy of AGB 
prediction can be improve by consideration of tree height. 

3.2. Mingled forest plot 

For the mingled forest plot, the total AGB values calculated based on 
point clouds and destructive sampling were 370.87735 Mg and 
416.15445 Mg, respectively. For the reference value, the total AGB was 
underestimated by 10.88 %. Fig. 13 compares the AGB of each tree with 
the reference value. The R2 of the linear fit was 0.98, and the recon-
structed AGB was evenly distributed on both sides of the reference value 
(no major system deviation from the 1:1 line). The slope was 0.93, 
indicating that the PlotQSM slightly underestimates the AGB of these 

trees. 
The statistical results show that the RMSE was 1.74727 Mg, while the 

average AGB was 6.82220 Mg, resulting in an rRMSE of 25.61 %. At the 
95 % confidence interval level, the AGB extracted by the PlotQSM has a 
high degree of consistency with the reference value. The CCC was 0.98, 
the LL CI was 0.97, and the UI CI was 0.99. The error bar was the 
standard deviation achieved by the QSM model of each tree. The red line 
represents the linear regression model fitted between the reconstructed 
AGB and the reference value, and the orange-red band represents the 95 
% confidence interval of the regression. 

Fig. 14 shows the AGB residual distribution. The residuals of most 
AGBs were more evenly distributed on both sides of the y = 0 line, and 
most of the residuals are between − 1.5 Mg and 1.5 Mg. Compared with 
the “big tree” with DBH greater than 60 cm, the reconstruction of the 
plot level shows less uncertainty and deviation from the reference value 
for the “small tree” with DBH less than 60 cm. There was no significant 

Fig. 10. Distribution of AGB residuals. (a) Scatter; (b) Histogram.  

Table 4 
Comparison of the AGB of each tree extracted from the PlotQSM and the 
reference value.  

parameter Bias rBias (%) RMSE rRMSE (%) 

AGB (kg)  15.18235  17.12  36.168  40.79  

Fig. 11. Absolute deviation of AGB as a function of DBH.  
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difference in the distribution range of the residual value with the in-
crease of the reference value. 

As shown in Table 5, the accuracy of AGB is based on the PlotQSM. 
The Bias and rBias of AGB calculated by the least square method are 
− 0.74225 Mg and − 10.88 %. Among the 61 trees whose AGB reference 
value ranges from 0.02629 Mg to 43.94535 Mg, 85.2 % of the trees 
whose absolute value of the deviation was less than 1.74727 Mg. 

4. Discussion

4.1. PlotQSM can reconstruct TLS point clouds at plot level

The complex structure of forest plots is an important factor leading to 
the uncertainty of biomass remote sensing observations. This paper 
proposes a new method (PlotQSM) to reduce the uncertainty of AGB 
estimation results based on plot-level TLS point cloud. The method es-
timates the total AGB of plots with complex structures after automati-
cally performing the steps of ground point filtering, single tree 
segmentation and 3D structure reconstruction. Except for the segmen-
tation errors of individual trees or branches, our method can correctly 
extract all the trees in the plot. A tropical mingled forest plot and a 
temperate plantation plot were used to test our method. Based on the 

volume of trees extracted in batches from the PlotQSM, combined with 
the wood density, the AGB of the two plots was estimated. 

This study can be regarded as a representative of using plot-level TLS 
point clouds reconstruction to reduce the uncertainty of AGB estimation, 
and has the potential to reconstruct a larger plot area. Compare our 
method with existing studies (Raumonen et al., 2015). Firstly, the pur-
pose of reconstructing plot level point clouds is to reduce the uncertainty 
of AGB estimation. We reconstructed a 1300 m2 temperate plantation 
plot and a 5000 m2 mingled forest plot, and more trees, a larger plot 
area, and less computation time. The modeling time was about 40 min 
and 100 min respectively (Windows 10 64-bit, Intel I7-8700 processor, 
3.20 GHz and 16 G RAM). Raumonen reconstructed the British oak plot 
with an area of 700 m2 and the Australian eucalyptus plot with an area 
of 5000 m2 respectively, and the modeling time using laptops (MATLAB, 
MacBook Pro, 2.8 GHz, 16 GB) was about 100 min and 160 min. Sec-
ondly, in the case of more complex structures and larger areas, there is 
reliable accuracy to reduce the uncertainty of the plot’s AGB estimation. 
The total biomass of 15 trees in the oak plot was overestimated by about 
17 % in Raumonen’s study, and the total biomass of 27 trees in the 
eucalypt plot was overestimated by about 8.5 %. The total biomass of 
153 trees in the plantation plot was overestimated by 17.12 %, and the 
total biomass of 61 trees in the mingled forest plot was underestimated 
by 10.88 %. This method has the potential to be applied to a larger area, 
even if the requirements for memory and calculation time may increase 
with the increase of the plot area. 

4.2. AdQSM already has the function of realistic 3D reconstruction of 
leaves and avoids some error sources 

Although mixed forest plots have more complex structures, more tree 
species and larger areas, the accuracy of reconstructing the mingled 
forest plot is slightly higher than that of the planted forest. Reference 
values for reconstructed plantation plots are derived from traditional 
allometric equation estimation methods (Olagoke et al., 2016), while 
the reference value of the reconstructed mingled forest plot comes from 
destructive sampling. The reconstruction of mingled forest plots also 
proves the effectiveness of the method proposed in this paper to 
reconstruct plot-level point clouds in the estimation of AGB in complex 
forests. 

When extracting forest AGB based on the PlotQSM, it is necessary to 
obtain the dried mass density per fresh volume from the global wood 
density database, which may cause some uncertainty when converting 
the volume of a single tree to AGB. This study did not consider leaf 
biomass, because previous studies found that it only accounts for a small 
part of the total AGB (approximately 1 % to 5 %), which will also have a 
slight impact on the accuracy calculation. We have developed a non- 
destructive method for calculating leaf biomass, and this method has 
been integrated into AdQSM, even though this is not the main purpose of 
this paper. The main processes described in Fig. 15 are as follows: (1) 
separating the branches and leaves of trees; (2) Single leaf segmentation; 
(3) Reconstructing the 3D model of all individual leaves and estimating
relevant parameters.

The total biomass of the plot based on the non-destructive estimation 
of the PlotQSM is similar to the expected. Considering uncertain factors 
such as wood density, tree species, and different forest ecosystems, the 
difference may be smaller. Overcoming these uncertainty factors in 
PlotQSM modeling may increase accuracy. The accuracy of our method 
is affected by not only the accuracy of the automatic reconstruction of 
the single tree structure but also the automatic tree segmentation 
method. The accuracy and efficiency of the PlotQSM should be 
improved as much as possible, such as improving the accuracy of the 3D 
structure of the tree reconstructed by AdQSM, ensuring the accuracy of 
single tree segmentation, and optimizing memory usage and time. At the 
same time, it may not be possible to develop a QSM that can always 
accurately reconstruct any tree. 

Fig. 12. Absolute deviation of AGB as a function of DBH and tree height.  

Fig. 13. The AGB of each tree extracted from the PlotQSM compared with the 
reference value. 
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4.3. PlotQSM has multiple functions and application potential 

When aerial remote sensing technology such as UAV is used to 
monitor forest biomass (D’hont et al., 2021; Guo et al., 2017), the “ 
PlotQSM” can be used as a source of reference values (true values) for 
calibrating aerial measurements. It provides a more flexible approach to 

ground survey methods in some cases. PlotQSM does not need any in-
formation about tree species when calculating forest stocks. With stable 
accuracy and reliability, it can be used as a ground truth test product for 
forest ecological remote sensing. 

The PlotQSM in this paper can also automatically calculate forest 
parameters such as crown density, plant number density, average stand 
height, stand average DBH, cross-sectional area per hectare, and stock 
volume. At present, mobile laser scanners or UAV laser scanners can 
quickly and comprehensively scan large areas of forest (Guo et al., 2021; 
Jurado et al., 2020). Our method is a better starting point for measuring 
forest structure from these large data sets. Based on the PlotQSM, the 
real reconstruction of tree leaves can be considered. Combining leaf 
shape and parameters, the radiation transmission and energy flow of 
forests can be studied from a three-dimensional perspective, and peo-
ple’s understanding of forest structure, function, and the ecological 
process can be enriched (Mkaouar et al., 2021, 2021; Song et al., 2021). 

5. Conclusions

We propose a reconstruction method based on plot-level TLS point
clouds to reduce the uncertainty of AGB estimation due to the complex 
forest structure. The accuracy, robustness, and efficiency of our method 
were evaluated using two different types of plots of plantation and 
mingled forests. We found that the uncertainty of aboveground biomass 
estimation in tropical forests with more complex structures is not 
necessarily greater than in plantations, and factors such as the size or 
area of ground samples may play a major role. In large-scale remote 
sensing observations of forest biomass, the number or area of plots can 
be increased to reduce the uncertainty of the results caused by the 
complex structure. In this paper, the biomass of leaves is not considered 
in the point cloud reconstruction method at the level of the sample plot. 
Although PlotQSM has been able to reconstruct all individual leaves of 
each tree in the sample plot at present, the real reconstruction of the 
point cloud at the level of the sample plot including leaves and biomass 
calculation will be considered in the future, and the method in this paper 
will be open to the public for free. In the future, we will couple leaf traits 
to adapt to changing conditions, which may contribute to further un-
derstanding of the mechanisms underlying the interplay between forest 
structural diversity, species diversity, and functional diversity. 

Fig. 14. Distribution of AGB residuals. (a) Scatter distribution of AGB residuals; (b) Histogram of AGB residuals distribution.  

Table 5 
Accuracy comparison between the AGB of each tree from the PlotQSM and the 
reference value.  

parameter Bias rBias (%) RMSE rRMSE (%) 

AGB (Mg)  − 0.74225  − 10.88  1.74727  25.61  

Fig. 15. PlotQSM will further integrate the leaf modeling process. (a)Point 
clouds of branches and leaves by elevation;(b) Separation of branches and 
leaves;(c) Leaf point clouds; (d) Single leaf segmentation;(e) All individual leaf 
reconstruction. 
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