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3-D Instance Segmentation of MVS Buildings

Jiazhou Chen"”, Yanghui Xu, Shufang Lu

Abstract—We present a novel 3-D instance segmentation
framework for multiview stereo (MVS) buildings in urban scenes.
Unlike existing works focusing on semantic segmentation of
urban scenes, the emphasis of this work lies in detecting and
segmenting 3-D building instances even if they are attached and
embedded in a large and imprecise 3-D surface model. Multiview
red green blue (RGB) images are first enhanced to RGB height
(RGBH) images by adding a heightmap and are segmented
to obtain all roof instances using a fine-tuned 2-D instance
segmentation neural network. Instance masks from different
multiview images are then clustered into global masks. Our mask
clustering accounts for spatial occlusion and overlapping, which
can eliminate segmentation ambiguities among multiview images.
Based on these global masks, 3-D roof instances are segmented
out by mask back-projections and extended to the entire building
instances through a Markov random field optimization. A new
dataset that contains instance-level annotation for both 3-D
urban scenes (roofs and buildings) and drone images (roofs) is
provided. To the best of our knowledge, it is the first outdoor
dataset dedicated to 3-D instance segmentation with much more
annotations of attached 3-D buildings than existing datasets.!
Quantitative evaluations and ablation studies have shown the
effectiveness of all major steps and the advantages of our
multiview framework over the orthophoto-based method.

Index Terms—3-D urban scene, dataset, instance segmentation,
multiview clustering.

I. INTRODUCTION

N RECENT decades, the multiview stereo (MVS) technique

has been widely used in the geographic information system
(GIS) domain. Multiview images are captured by unmanned
aerial vehicles (UAVs) and used to automatically reconstruct
dense 3-D mesh models of large urban scenes [1], [2]. The
reconstructed 3-D mesh models provide a visually pleasing
representation of urban scenes. However, due to the lack
of semantic information, they can hardly be used directly
in various real-world applications, such as urban planning,
simulation, and solar potential estimation.

Buildings are the most important part of a city, and its
segmentation is the core of the semantic analysis of urban
scenes. Rather than semantic segmentation, we focus on the
instance segmentation of buildings, as it separates different
building instances, even if they are attached. Thus, our goal is
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Fig. 1.  Instance segmentation of 3-D buildings in a large urban scene.
The pyramids above the 3-D scene model in (a) indicate the position and
orientation of the cameras. (a) Input: 3-D model and (optional) UAV images.
(b) Output: 3-D building instances.

to segment all building instances in a large 3-D urban scene
precisely and automatically, as shown in Fig. 1.

Recent advances in deep learning have achieved great
success in image instance segmentation, but applying these
techniques to 3-D mesh models is still challenging and has
not been sufficiently explored, especially for 3-D buildings
in large-scale urban scenes. Feature extraction of 3-D data is
the key to applying deep learning to 3-D model segmenta-
tion. Volumetric-based methods [3], [4] and point cloud-based
methods [5], [6] are limited by memory and computing power,
thus are mainly used for the segmentation of relatively small
indoor scenes [7]-[12]. Besides, the lack of annotated 3-D
instance segmentation datasets for outdoor scenes also hinders
the application of deep learning on instance segmentation of
3-D urban scenes.

Instead of directly segmenting 3-D models, segmenting
images first and projecting them to the 3-D models is a
potential alternative, as it can utilize powerful neural net-
works for image segmentation. Orthophoto maps could be
the first candidate, due to their unified projection directions.
However, buildings in orthophoto maps have severe self-
occlusion, for example, walls cannot be seen. Thus, its
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segmentation inaccuracy will be conducted to the 3-D models
during the 2-D-3-D projection. For this sake, we employ a
multiview 3-D segmentation framework in this article. It first
employs existing learning-based 2-D instance segmentation to
segment roofs in drone images, back-projects roof instance
masks to the 3-D scenes considering the spatial occlusion,
and finally constructs Markov random fields to segment out
all buildings from 3-D scenes.

Such a multiview framework for 3-D semantic segmentation
tasks is straightforward, and a winner-take-all mechanism
works well for most semantic segmentation tasks. However,
a multiview framework for 3-D instance segmentation is much
more challenging, as instances have to keep separating even
if they are spatially connected. Projecting instance masks
back to the 3-D scene without correspondences will lead to
instance ambiguities, as 2-D instance masks from different
views may be inconsistent. Buildings in multiview images are
often partially occluded by attached other buildings or tall
trees, which increases ambiguities in mask correspondences.

In this article, we propose a novel instance mask clustering
method to build mask correspondences among multiview UAV
images. It solves the issue of instance ambiguities robustly,
making our multiview 3-D instance segmentation method
outperform the orthophoto-based method. To improve segmen-
tation accuracy for diversely distributed buildings, we enhance
multiview red green blue (RGB) images to RGB height
(RGBH) images by adding an extra channel encoding the
height information. To ease the spatial occlusion challenge,
we perform instance segmentation of roofs instead of entire
buildings, since roofs have higher visibility than other parts of
buildings.

Though our method incorporates existing image instance
segmentation techniques, it includes the following core
contributions.

1) A multiview instance segmentation framework that seg-
ments 3-D buildings in large urban scenes efficiently and
precisely.

2) An occlusion-aware clustering method for instance
masks, which robustly eliminates ambiguities in mask
correspondences among multiview images.

3) A benchmark dataset InstanceBuilding for instance seg-
mentation evaluation of 3-D buildings in large urban
scenes, which consists of pixel-level instance annotation
for both UAV images and 3-D urban models.

Il. RELATED WORK

There is a large volume of research in instance segmentation
for various data sources. In this section, we review the existing
work of instance segmentation for common images, aerial
images, and 3-D data.

A. Common Image Instance Segmentation

Existing instance segmentation methods for natural images
can be classified into two categories: object-detection-based
approaches and metric learning-based ones.

1) Object-Detection-Based Approaches: Object-detection-
based approaches work in a top-down manner and highly
depend on object detection or proposal. R-CNN first intro-
duces convolutional neural network (CNN) in the field of
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object detection [13]. To improve computational efficiency,
Fast R-CNN proposes an improved spatial pyramid pooling
(SPP) [14] structure named Rol pooling [15], and Faster
R-CNN uses region proposal networks instead of selective
searching to extract object candidates, which forms an efficient
end-to-end network for object detection [16].

Based on Faster R-CNN [16], Mask R-CNN combines with
feature pyramid network (FPN) [17] to detect objects with
different sizes and uses RolAlign instead of Rol pooling to
form a simple, flexible, and effective instance segmentation
network [18]. Recently, mask scoring R-CNN uses mask
scores to improve the category scores used in Mask R-
CNN [19]. Path aggregation network for instance segmentation
(PANet) uses a bottom-up annotation structure to shorten
the information path and enhances the feature pyramid with
accurate localization signals existing at low levels [20]. Hybrid
task cascade for instance segmentation (HTC) combines detec-
tion and segmentation with a multitask and multistage hybrid
cascade structure [21]. Swin Transformer [22] proposes a hier-
archical Transformer whose representation is computed with
shifted windows. Its hierarchical architecture has flexibility at
various scales and linear computational complexity concerning
image size, which helps it to achieve outstanding segmentation
performance.

2) Metric Learning-Based Approaches: Many other dense
instance segmentation methods are based on metric learn-
ing [23]. These methods work in a bottom-up manner, gen-
erate embedding features [24], [25] for each pixel and use
post-processing methods such as clustering [26], [27] or graph
theory [28] to classify these pixels. Inspired by full convolu-
tional instance-aware semantic segmentation (FCIS) [29] and
You Only Look At Coefficients (YOLACT) [30], BlendMask
uses a blender module to merge top-level coarse instance
information with lower-level fine granularities [31].

B. Aerial Image Segmentation

In the last decade, instance segmentation methods for aerial
images of urban scenes have also been proposed because of
the wide applications of aerial images. Montoya et al. use
an a-shape algorithm to calculate the boundary polygons of
building objects, which are further optimized by conditional
random field (CRF) [32]. By combining the CNN backbone
with FPN and recurrent neural network (RNN), Li et al.
propose an end-to-end deep neural network to predict polygon
outlines of buildings and road topology maps [33]. Convolu-
tional message passing neural network for structured outdoor
architecture reconstruction (Conv MPN) uses GNN (graph
neural network) [34] to reconstruct the building plan from
a single image [35]. Deep active ray network for building
segmentation (DARNet) employs a polar representation of
contours to predict contours that are free of self-intersection
and a loss function consisting of a data term, a curvature term,
and a balloon term, which not only encourages the predicted
contours to match ground-truth building boundaries but also
prefers low-curvature solutions [36].

Besides instance segmentation, many semantic segmentation
methods for aerial images have been proposed recently in
the remote-sensing domain. They are also referred to as
remote-sensing image classification. Besides single-modality
images, researchers in the remote-sensing domain are also
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interested in employing deep learning techniques in the
pixel-level classification of multimodality images, including
multispectral ones and hyperspectral ones, which are proved
to overcome the challenge of information diversity [37]. For
instance, Hong et al. introduce graph convolutional networks
into hyperspectral image classification in a minibatch fash-
ion [38] and also propose a new transform-based network that
learns locally spectral representations from multiple neigh-
boring bands instead of single bands [39]. Since multispec-
tral and hyperspectral images require expensive and heavy
spectrometers to acquire, RGB images are more common
for UAVSs. In this article, height maps are automatically gen-
erated and added to corresponding RGB images, respectively.
They cannot provide as rich information as hyperspectral
images, but this geometric information is a very impor-
tant supplement that can significantly improve segmentation
accuracy.

C. 3-D Instance Segmentation

Unlike images that inherently have a grid structure, the
vertices and faces in discrete surfaces (i.e., 3-D meshes) do not
have regular spatial structures to be directly convoluted. Volu-
metric methods ease this issue by using a 3-D grid representa-
tion, which is notoriously expensive in terms of computational
efficiency and memory consumption [4], [12], [40]-[43].

Various strategies have been proposed to address the mem-
ory issue of volumetric methods. For example, OctNet uses an
octree structure to avoid unnecessary cells [3], thus reducing
memory consumption. PointNet uses T-net and max-pooling
to achieve rotation invariance and the capability of handling
unordered 3-D point clouds. It fuses both local and global
features, making it an efficient and effective feature extractor
for point cloud data [5]. Through point grouping and multilevel
feature extraction, PointNet++ can better extract discrimina-
tive features for point clouds with uneven density [6].

Based on features extracted by PointNet, PointNet++, and
PointCNN [44], many 3-D instance segmentation methods
for point clouds have also been proposed. Similarity group
proposal network for 3-D point cloud instance segmentation
(SGPN) predicts the instances by learning the similarity matrix
between point clouds. However, the size of its similarity matrix
tends to explode as the number of points increases [8]. Genera-
tive shape proposal network for 3-D instance segmentation in
point cloud (GSPN) extends the structure of Mask R-CNN
(that was originally developed for images) to process 3-D
data [7]. Joint instance and semantic segmentation of 3-D point
clouds (JSNet) [45] and Associatively segmenting instances
and semantics in point clouds (ASIS) [10] both learn the
instance embedding space and combine semantic features and
instance features of the point clouds to jointly improve the
accuracy of semantic segmentation and instance segmentation.

Great progress has been made for instance segmentation of
indoor scenes. However, existing methods are designed for
processing point cloud data. It is still a challenge to extend
these methods to outdoor scenes without sufficient annotated
data and generalize them to handle the fast accumulation of
urban models in the form of meshes. In this work, we establish
a 3-D instance segmentation dataset for urban scenes and
propose the first framework for 3-D instance segmentation of
buildings from urban MVS meshes.
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I1l. METHODOLOGY

Compared to the lower parts of buildings that are more
likely to be occluded by the nearby buildings and trees, build-
ing roofs usually have better visibility in aerial imaging. This
observation motivates us to approach instance segmentation of
entire buildings by looking into the segmentation of building
roofs. In contrast to the previous work directly segmenting
entire buildings [46], we perform roof segmentation by using
a deep neural network. This strategy significantly improves the
accuracy of the segmentation stage and simplifies the manual
annotation in the data preparation stage.

One characteristic of our method is the hybrid process of
2-D images and the corresponding 3-D meshes, in which
spatial occlusion is fully considered in processing the two
distinctive data sources. Fig. 2 shows the proposed multiview
3-D instance segmentation framework that consists of three
major steps as follows.

1) 2-D Roof Instance Segmentation: Roofs in multiview
images are automatically segmented by an instance
segmentation neural network that is fine-tuned using our
RGBH imagery dataset.

2) Instance Mask Clustering: An occlusion-aware cluster-
ing method for roof instance masks is exploited, which
correlates instance masks from multiview images to
eliminate ambiguities. The mask clustering is the core
of our method, which projects the 3-D urban scene to
the image space to measure the spatial overlap between
arbitrary pairs of instance masks.

3) 3-D Building Instance Segmentation: The clustered
masks are projected back to the 3-D space to segment
3-D roof instances and the entire buildings are seg-
mented in the end through an Markov random field
(MRF) optimization.

In the following part of this section, we introduce these three

major steps, the benchmark dataset, and the implementation
details.

A. 2-D Roof Instance Segmentation

The challenge in building instance segmentation lies in
that the roofs of adjacent (or even attached) buildings may
have very similar appearances despite the difference in the
height of the buildings. In this work, we take advantage of
the complementary characteristics of the images and the 3-D
model of the scene by enhancing each RGB aerial image to an
RGBH image that provides additional geometric cues. Specif-
ically, we render a heightmap for each drone image using the
3-D urban models reconstructed from the drone images and
camera parameters. We add an additional channel encoding
the height information to the drone images to obtain RGBH
images, in which the height values are separately normalized
for each image. With the RGBH images, we apply Swin
Transformer [22] to segment roof instances automatically.

According to our quantitative evaluation of the benchmark
dataset, the average precision (AP) [47] of the segmentation
of roof instances on RGBH images reaches 0.582, which is
significantly higher compared to the 0.563 achieved on RGB
aerial images. This demonstrates the advantage of height infor-
mation on the roof instance segmentation. A visual comparison
is shown in Fig. 3. Ground objects like trees and vegetable
fields are successfully separated from buildings, even though
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Fig. 2. Overview of the proposed method. Our method takes a 3-D urban scene and optionally multiview UAV images as input and segments all 3-D building
instances as results. It contains three major steps: 2-D roof instance segmentation, instance mask clustering, and 3-D building instance segmentation. The
multiview images are not obligatory, as they can also be generated by the rendering of the input 3-D scene with textures (noted by the dotted arrow in the
figure). The red rectangles highlight a few global masks selected by our clustering method. The projection and back-projection operations noted by the red
arrows in the figure contribute to both instance mask clustering and the occlusion-aware 3-D roof segmentation.

\b o

@)
Fig. 3. Comparison of the segmentation results without and with height information. (a) Input test drone image. (b) Segmentation result using only the RGB

image. The rectangles highlight three misclassified regions, that is, a vegetable field (in red) and a wall (in green) of a building are segmented as roofs, and
two roofs of attached buildings (in blue) are not separated. (c) Heightmap obtained by rendering the scene using the 3-D model and the camera parameters.

©

(d) Segmentation result using both the RGB image and the heightmap, where the vegetable field, wall, and roofs are all correctly separated.

some of them have visually indistinguishable textures from
building roofs. The Swin Transformer neural network also
computes a probability for each instance mask to represent its
prediction confidence. To avoid low-confident masks, we only
use roof instance masks whose prediction confidence is higher
than 70%.

B. Instance Mask Clustering

After the roof instance segmentation, we obtain a set of
roof instance masks from multiview images, where multiple
masks may correspond to the same roof. Since roofs of
the same building in multiple views have been segmented
independently, the correspondences between roof instance
masks are not known. This results in the number of instance
masks being much larger than the number of roofs in the
scene. To establish the correspondences between the masks
from multiview images, we refer to 3-D roof instances by
back-projecting the 2-D roof masks onto the 3-D model of
the scene using the camera parameters. However, identifying
masks that correspond to the same roof is challenging due to
two main reasons. First, the 2-D instance segmentation may
have errors due to the limited capability of the neural network
and the complex structure of the building roofs, as shown

in the first row of Fig. 4. Second, the instance masks from
different views are ambiguous due to different levels of spatial
occlusion, as shown in the second row of Fig. 4.

To tackle these two challenges, we propose an instance mask
clustering method that divides instance masks into different
groups such that each group corresponds to a unique roof
instance of an individual building. Representative masks are
first selected from the segmented instance masks, and the
remaining masks are merged with them according to mask
similarity measures. For clarity, we refer to all roof instance
masks in multiview images as local masks, while the represen-
tative masks selected for clustering as global masks, as they
represent unique building roofs across different images.

We first build a similarity matrix M to measure the spatial
overlap for each pair of local masks. Based on M, a mask
with confidence value C to be selected as a global mask is
computed for each local mask. Finally, all local masks are
sorted in descending order to select reliable global masks and
are clustered into groups according to their similarities with
the global masks. Note that each mask group contains only
one global mask. We establish the mapping between all local
masks and global masks. In the following, we elaborate on
these steps in detail.
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Ambiguities in 2-D roof instance segmentation. In each row, instance masks are shown in both the drone images (in different views) and the

corresponding 3-D mesh models (in an identical view). Top row: two roofs are separated in (a) and (b) but incorrectly mixed together in (c). Bottom row:
(d) and (e) only cover a small part of the same roof, while (f) covers the entire roof. Original mask confidence values (denoted by C) and improved mask
confidence values (denoted by C*) are given in the subcaptions. The underlined numbers are the highest confidence values in each row.

1) Occlusion-Aware Mask Smilarity: To measure the spa-
tial overlap of two masks, we project 3-D mesh triangles to the
image using the camera parameters. We render a depth map
with the graphics processing unit (GPU) acceleration for each
multiview image and employ a depth test to check the visibility
for all the vertices. For the ith local mask, we record a set of
triangles § whose centers are projected within this local mask
region. A similarity matrix M n is then computed to quantify
the spatial overlap between every pair of local masks, where
n is the number of all local masks. The similarity element m;
measures the intersection over union (i.e., loU) between the
ith and the jth local masks, that is,

mi; = ASN§)/ASUS) €]

where A(S) is the surface area of the triangles in the set S.
Munxn IS @ symmetric matrix as my; = mj;.

2) Mask Confidence: Generally, an ideal global mask
should have the most overlap with local masks that correspond
to the same roof and have the least overlap with local masks
that correspond to roofs of different buildings. To select such
global masks, we estimate a confidence value C for each local
mask to evaluate the overall overlap with all other local masks
in the scene. It is calculated as the sum of similarity elements
on the ith row of the similarity matrix M

n
Ci=Pi'ZPj'mij 2
j=1

where P; is the probability value produced by the
Swin Transformer neural network, and C; sums up the
probability-weighted similarity elements of local masks.
It makes sense because local masks with higher prediction
confidences are more likely to be global masks.

However, there is still one drawback in (2): local masks
with large areas may suppress smaller ones because they
likely overlap more with other local masks, and thus they
obtain larger mask confidence values. Local masks with
larger areas are not always the ideal global masks. The top
row of Fig. 4 shows such a counter-example. To solve this

issue, we define a binary term A;; to avoid such unexpected
suppression

Aij =d(mij — p) ©))
where d(-) is the delta function
0, ifx <0
={7 = 4
ox) {1, if x > 0. @)

With this binary term, the mask confidence is updated to

n
Cr="Pi-> Aij-Pj-mi. Q)

=1

C sums up the similarity elements m;; whose values are
higher than a threshold g € [0, 1] for each local mask. When
piscloseto 0, Ajj = 1 for most cases and thus C;* degenerates
to Ci. When £ is close to 1, A;j and C;* are both close to 0,
which means that the confidence values of all local masks to
be selected as global masks are close to 0. In such a case, the
clustering cannot distinguish global masks from local masks,
resulting in false clustering in the end. In this work, we set
£ = 0.5 in all our experiments, indicating that local masks
with similarities (i.e., the ratio of the overlapping area) higher
than £ are considered in the computation of mask confidence
values. More details about the evaluation of the parameter f
can be found in the implementation details in Section IV-C.

3) Mask Clustering: One key observation of this work is
that local masks with higher confidence values are consistent
with other masks and thus should have higher priority to be
selected as global masks, as shown in Fig. 4.

Based on the mask confidence, we employ a simple yet
efficient order-based mask clustering. We first sort all local
masks according to their confidence values C* and then
traverse them in descending order to select global masks.
In the traversing loop, if a local mask has not been marked,
we mark it as a new global mask, and other nonmarked local
masks whose similarities with this global mask are higher than
p are considered consistent with this global mask, that is,
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o(mg — B) = 1, where | and g are the indices of the local
mask and this global mask, respectively. If a local mask has
been already marked, we traverse to the next local mask until
all of them are marked.

With the precomputation of mask confidence values, the
traversal is required only once. For efficiency, we establish
a mapping table M between all local masks to their corre-
sponding global masks. It is worth noting that even though
we cannot guarantee each global mask in M corresponds to
a building instance in the real scene at this stage, a few
false correspondences will not affect the final 3-D instance
segmentation. This will be explained in Section I11-C1.

C. 3-D Building Instance Segmentation

1) 3-D Roof Instance Segmentation: The existing multiview
semantic segmentation framework projects the 2-D semantic
labels back to the 3-D model with the highest probability [48],
[49]. For 3-D instance segmentation, this framework is not
suitable because the correspondences between local masks
from multiview images are unknown. Our mask clustering
establishes the correspondences between the local masks from
multiple views. We first project each vertex of the 3-D model
to all images and check its visibility using fields of view
and depth maps. Then, using its corresponding local mask
index at its projected position in the image, we retrieve its
corresponding global mask from the mask mapping table M.

For a vertex o, let MVI, denote the set of multiview image
index in which v is visible and GMI, denote the global mask
index corresponding to a multiview image p. In some cases,
a vertex o on the 3-D surface model may be projected within
multiple global masks. We denote the set of these global masks
as {GMlp|p € MVI,} and thus GMI, = —1 represents the
background. From these global masks, the one with the largest
quantity of corresponding local masks that were projected to
by this vertex is associated with this vertex

RID, = maxCount({GMlI,|p € MV1,}) (6)

where roof index (RID,) is the roof IDentity (ID) of vertex
v, and the function maxCount(S) extracts the most occurring
element in the set S. In case more than one global masks
have the maximum count in the set S, the global mask with a
smaller value of GMI will be chosen, as a smaller GMI value
corresponds to a higher confidence of the global mask.

The advantage of determining the roof IDs in this way is that
the most confident global mask can be automatically selected,
and thus a user does not have to provide a specific number
of target clusters (i.e., the number of global masks). This is
because local masks with large errors in 2-D roof segmentation
are normally divided into groups containing small numbers
of local masks. The global masks derived from these local
masks usually have wrong predictions and therefore will be
ignored in the upcoming 3-D roof segmentation step, since
only the global mask with the largest quantity of corresponding
local masks is selected. Therefore, our 3-D roof instance
segmentation achieves higher prediction precision than the
roof instance segmentation on the multiview images. Their
AP/AP50/AP75 values can be found in Section IlI-A and
Table II.

With the roof IDs for all vertices, the segmentation of the
3-D model can be easily obtained. Specifically, the roof ID of
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Fig. 5.  HOBB. The top and bottom faces of the HOBB are horizontal, and
the other four faces are oriented according to the principal component analysis
(PCA) orientation estimation.

a triangle face is determined by the majority of the vertices
that indicate the same roof ID, that is,

RID; = maxCount({RID, |v € V;}) @)

where RID; represents the roof ID of triangle t, and V,
represents the three vertices of the triangle t.

2) MRF-Based 3-D Building Segmentation: Based on 3-D
roof segmentation, the next step is to segment the entire 3-D
buildings. We first estimate a horizontally oriented bounding
box (HOBB) for each roof instance, as shown in Fig. 5.
To segment an entire building from a 3-D scene, we expand
the HOBB on its four sides by a certain offset value
(4 m in all of our experiments). The triangles within the
expanded HOBB (excluding those that have been labeled by
other roof instances) are selected as a candidate building.
We denote its triangle set as T = {tj} and its edge set as
E = {&j}, in which t; represents the ith triangle in T, and
e; represents the edge connecting t; and t;. We formulate
the building segmentation as a foreground/background labeling
process that minimizes the following energy function

p() = paaal) + Y ysmoon(li, 1)

tieT ejcE

(®)

where |; denotes the label of triangle t; given by MRF-based
segmentation. I; = 1 indicates the foreground (i.e., a building
triangle) and I; = 0 the background (i.e., a nonbuilding
triangle).

The data term wyaa(li) represents the penalty of assigning
a label I; to a triangle t;. The 3-D roof segmentation provides
us a good foreground initialization, we denote its triangle set
as Tr. We take triangles on the boundary of T as a background
initialization, denoted as T,. We further denote the set of other
triangles in T as T;. As shown in Fig. 7(a), T¢, Tp, and T, are
visualized in red, green, and gray, respectively.

For triangles in T,, our data term yaa () is defined as

QA+d)+6-A+d), iflj=1
Yaaa (i) =

1, if ; =0. ©

Before explaining the meaning of d; and 6, we define P, a
2-D polygon representing the simplified roof boundary edges,
as shown in Fig. 6. We first extract boundary edges of the
roof triangles using the Alpha Shape algorithm [50]. Then,
we reduce the dimension of these boundary edges to the
2-D horizontal plane by discarding their height and
simplifying them through a random sample consensus
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Fig. 6. Simplified roof boundary edge . The blue polygon represents the
flat boundary of the roof on the XY-plane. To make it easy to observe, we set
its Z-coordinate to be close to the height of the roof.

(RANSAC) process [51]. The RANSAC process iteratively
merges outline points of roofs to their neighbors if they are
approximately collinear. The process stops until no more
points can be merged. The simplified roof boundary edges
constitute a 2-D polygon that is referred to as the roof profile,
denoted as P. For each triangle t; € T;, we find a line segment
in P with a minimal distance to the center of t;. We denote
this minimal distance as d;, and the cosine of the horizontal
angle between the normal of tj and the direction of this line
segment as ;. §; = 0 when the normal of t; is perpendicular
to this line segment, and 6, = 1 when their horizontal angle
is 0. Then d; is normalized by the maximum distance in the
HOBB, and we sign the distance as negative if t; is inside of
‘P. To make the foreground penalty and background penalty
comparable on the roof profile (i.e., both penalties equal to
1 when di =0 and 6; = 0), we use 1+ d; instead of d.

In (9), the (1 + d;) term is a distance constraint that
guarantees only triangles close to P are taken into the building.
The 6, -(1+d;) term is an orientation constraint that guarantees
that only triangles having similar orientations with the closest
line segment are taken. The (1-+d;) multiplication is to reduce
the orientation constraint if the triangles are far away from P.

The smoothness term wsmootn (li, 1) penalizes adjacent tri-
angles t; and t; being assigned with different labels. We take
the cosine angle between normals of adjacent triangles as the
penalty for assigning different labels to the adjacent triangle
pair, that is,

i - ngll, if li #1

1
0, if 1 =1;. (10)

Wsmooth (I 7|]) = {
Using the angles between faces, wsmooth(li,j) favors seg-
mentation at sharp edges rather than at planar regions.

D. Benchmark Dataset

We have created a benchmark dataset InstanceBuilding that
contains annotation for both UAV images and 3-D urban
scenes simultaneously. To evaluate our 3-D instance segmen-
tation method, we annotated 3-D roofs and buildings for
four large 3-D urban scenes, which are reconstructed using
Bentley Acute3D ContextCapture? from UAV images. Table |
shows detailed information about these scenes, and their visu-
alization can be found in Fig. 8 and the supplementary video.
Note that the town is quite crowded, thus about two-thirds
of the buildings are attached to others, as shown in the last
column of Table I. To facilitate the 3-D annotation, we have

Zhttps://www.bentley.com/en/products/brands/contextcapture
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TABLE |
STATISTICS ON THE 3-D MODELS OF OUR InstanceBuilding DATASET

. . Area #Images #Buildings
Scene| #Vertices #Triangles o\ ocolution)  All / Attached
#1 | LI3M 226M 0076 79 (5472x3648) 185/ 145
# | 08IM  17M 0097 64 (5472x3078) 119/ 40
# | 1L14M 228M 0081 284 (1916x994) 322 /232
# | 060M  120M 0.8 240 (1536x994) 266/ 185

developed a simple but efficient brush-based annotation tool.
Similar to most 2-D annotation tools [52] which semiauto-
matically extract pixels of an object by marking the closed
boundary polygon of the object, our tool allows a user to
segment a 3-D building by casually drawing strokes on the
building boundaries.

Our InstanceBuilding dataset also contains 608 annotated
images with high resolutions. They are selected from around
20000 images acquired in more than ten different cities. Some
are directly captured by a consumer Daliang (DJI) drone Phan-
tom 4 Pro with different cameras and flight altitudes, others
are rendered by 3-D models with textures as orthophotos with
similar resolutions. There are about 16000 buildings in all
these images, and their roofs are all manually annotated for
the training of our 2-D roof instance segmentation neural
network. These annotated images are divided into two groups,
524 images for training and 84 images for validation.

For accuracy and efficiency consideration, we modified the
LabelMe [52] toolkit to visualize the corresponding heightmap
window alongside the color image window. By synchronizing
the annotation on both the image window and the heightmap
window, volunteers can freely annotate on either of them.
Based on our time recording of volunteer annotation, this
double-window strategy saves the volunteers more than half
of the time.

Our InstanceBuilding dataset contains building instance
annotation for both 3-D urban scenes and UAV images
simultaneously, which makes it unique. Most of existing
3-D datasets are designed for semantic segmentation, such as
Vaihingen3D [53], Swiss3DCities [54], Hessigheim3D [55],
and Semantic Urban Meshes (SUM) [56]. The most related
work about 3-D instance segmentation dataset is the Urban
drone dataset (UDD) [57] and UrbanScene3D [58]. UDD
evaluates their 3-D segmentation accuracy by projecting them
to drone images, thus cannot be regarded as a 3-D dataset.
UrbanScene3D does not contain corresponding UAV images,
has only 485 annotated buildings, and very few buildings are
attached to others. As shown in Table I, our InstanceBuilding
dataset has 892 annotated buildings, of which 602 are attached
to others. In such crowded urban scenes, instance segmentation
has a more significant advantage over semantic segmentation.

Compared to existing natural image datasets, such as
Microsoft Common Objects in Context (MSCOCO) [47],
Cityscapes [59], and Pattern Analysis, Statistical Modeling
and Computational Learning (PASCAL) Visual Object Classes
(VOC) [60], our annotation on UAV images focuses on roof
instances for UAV images. Compared to other remote-sensing
imagery datasets, such as SpaceNet [61] and xView [62],
our UAV images have higher resolution and more viewing
angles, thus are an important supplement to existing datasets.



5704014

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

(a) (b)

Fig. 7.

(© (d (e

3-D building segmentation based on MRF optimization. (a) Initial segmentation by the projection of the 2-D roof onto the 3-D model (foreground

in red and background in green). (b) Result of direct MRF optimization, where the initial roof segmentation misses the balcony and the gate shelter. (c) Our
segmentation result without the orientation constraint. (d) Our segmentation result without the distance constraints. () Our segmentation result using both

orientation and distance constraints.

Though there are also many drone datasets in public, such as
VisDrone [63] and dataset for object detection in aerial images
(DOTA) [64], few of them focus on instance segmentation at
the pixel level. With the increasing popularity of low-altitude
UAV capturing devices, we believe that our dataset will play
an important role in applications such as urban planning, smart
cities, and other related fields.

E. Implementation Details

1) 2-D Roof Segmentation: We use the Pytorch implemen-
tation of Swin Transformer released by [22] for roof instance
segmentation from images. The manually labeled images (see
Section 111-D) were used to fine-tune the Swin Transformer
network trained previously using the Common Objects in
Context (COCO) dataset [47]. For 3-D urban scenes that
have corresponding UAV images, we directly segment these
images. For 3-D urban scenes that do not have corresponding
UAV images, multiview images are rendered using these 3-D
scenes from a set of different viewpoints sampled randomly at
70 m higher than the average height of these scenes. At each
viewpoint, five virtual cameras facing down, front, back, left,
and right are placed.

2) MRF-Based Segmentation: With the aforementioned
MRF setting, we treat (8) as a classical max-flow/min-cut
optimization and solve it using the graph cut algorithm [65].
The MRF-based segmentation result is shown in Fig. 7(e).
To prove the validity of (9), we simply set the penalties to 1 for
both foreground and background in (9), as the triangles in T,
have no explicit foreground/background priorities. As a result,
it does not produce correct segmentation as expected, as shown
in Fig. 7 (b). Comparisons in Fig. 7(c) and (d) show that
the introduction of the orientation and the distance constraint
overcomes the interference of structural variations and noises
in the MRF optimization, thus improving the 3-D building
segmentation.

IV. RESULTS AND DISCUSSION

We have evaluated our method with both drone images and
virtually rendered images. All experiments were carried out on
a machine with an Intel Core i7 processor, 32 GB memory,
and an NVidia GeForce 1080 GPU.

A. Qualitative Results

We tested our method on four scenes (see Fig. 8), for
which the statistics are shown in Table I. Scene #1 and

Scene #2 have UAV images and the corresponding camera
parameters. Scene #3 and Scene #4 do not have UAV images,
and we rendered images from multiple viewpoints instead,
as explained in Section III-E. The roof instance segmentation
results are shown in Fig. 8 (middle column) and the 3-D
building instance segmentation results are shown in Fig. 8
(right column). We can see that our approach successfully
segmented most buildings, even if they are dense, varying in
style, and attached.

B. Ablation Analysis

We have evaluated our results on the 3-D mesh models in
the InstanceBuilding benchmark dataset. We first computed
the loUs between predictions and the ground truth based on
the area of the mesh triangles. Then we used the commonly
used instance-level evaluation metrics, namely AP, AP50, and
AP75, in all evaluations [47], where AP50/AP75 indicates the
AP when IoU threshold is set to 0.5/0.75, and AP is averaged
over ten loU thresholds of 0.5:0.05:0.95.

1) Height Information: As demonstrated in Fig. 3, using
RGBH images significantly improves the 2-D roof instance
segmentation. To understand how the height information
improves 3-D roof instance segmentation and its effects on
3-D building instance segmentation, we have conducted a
comparison on the four large 3-D scenes from InstanceBuild-
ing both with and without height information, using two
different clustering methods, that is, the spectral clustering
and our method. The results of the comparison are given in
Tables Il and Ill. These comparisons have revealed that our
method using RGBH images achieves higher accuracy than
the one without height information (i.e., using RGB images).
This is because the additional heightmaps provide spatial
information of the urban scenes to the neural network model,
which makes the roofs and buildings more distinguishable.

2) Multiview Framework: The 2-D segmentation in our
method is applied to multiview images, rather than orthophoto
maps. To understand the advantages of this multiview frame-
work, we have also implemented an orthophoto-based instance
segmentation solution for comparison. We first generated the
orthophoto maps and their corresponding heightmaps of the
same scenes through a render-to-texture technique. These two
types of maps were combined to form the orthophoto RGBH
maps, which were then used to detect the 2-D roof instances.
Since there was almost no occlusion for the roofs in the
orthophoto maps, mask clustering was not necessary and we
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Scene #2

Scene #3

Scene #4

()
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()

Fig. 8. Building instance segmentation results of four scenes. The two scenes on the top have UAV images with camera parameters, while the scenes #3 and
#4 in the bottom do not have UAV images, for which we render images from multiple viewpoints instead. (a) Initial scene models. (b) 3-D Roof segmentation
results. (c) 3-D Building segmentation results.

TABLE I

COMPARISON OF FOUR DIFFERENT CLUSTERING METHODS ON 3-D Roof INSTANCE SEGMENTATION USING SWIN TRANSFORMER

Scene Spectral with RGB (K1) | Spectral with RGBH (K1) | Spectral with RGB (K2) | Spectral with RGBH (K32) Ours with RGB Ours with RGBH
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
#1 05858 0.7841 0.5966 | 0.6551 0.8239 0.7045 |0.5989 0.7784 0.6364 | 0.6665 0.85227 0.7159 |0.6455 0.8409 0.6818 | 0.7114 0.8693 0.7727
#2 105329 0.6973 0.5502 | 0.4579 0.6446 0.4463 | 0.5436 0.7021 0.5633 | 0.5826 0.8347 0.5785 |0.5651 0.7190 0.5880 | 0.6610 0.8395 0.6707
#3 105778 0.7663 0.6095 | 0.5501 0.7284  0.6068 |0.5900 0.8162 0.6482 | 0.5966 0.8398 0.6396 | 0.6179 0.8476 0.6604 | 0.6434 0.9072 0.6618
#4 10.4447 0.7444 0.4398 | 0.4526 0.7256  0.4549 | 0.4583 0.8008 0.4323 | 0.4635 0.7820 0.4474 | 0.5011 0.8383 0.4962 | 0.5248 0.8459 0.5301

directly applied the 3-D building segmentation to produce
the final results. The statistics of the results are reported

in Table IV.

From this comparison, we can see that our multiview
method achieves higher AP than the orthophoto-based method.

There are three main reasons for this improvement. The
first advantage of using multiview images lies in the mask
clustering that integrates multiple segmentation results of the
identical roofs from different viewpoints. This mask clustering
process can be regarded as a cross-correction process, thus
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TABLE Il
COMPARISON OF FOUR DIFFERENT CLUSTERING METHODS ON 3-D Building INSTANCE SEGMENTATION USING SWIN TRANSFORMER

Scene Spectral with RGB (K1) | Spectral with RGBH (K1) | Spectral with RGB (K2) | Spectral with RGBH (K2) Ours with RGB Ours with RGBH
AP AP50  AP75 AP AP50 AP75 AP AP50  AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
#1[0.5881 0.7784 0.6054 |0.6362 0.8162 0.6973 |0.6184 0.8216 0.6270 | 0.6843 0.8703 0.7351 |0.6486 0.8324 0.6649 | 0.7130 0.8919 0.7730
#2 105311 0.7059 0.5210 | 0.4739 0.6302 0.4705 |0.5615 0.7699 0.5666 | 0.5798 0.8235 0.5798 | 0.5709 0.7479 0.5966 | 0.6655 0.8403 0.6807
#3 104373 0.6429 0.4658 | 0.5369 0.7764 0.5745 |0.5469 0.8168 0.5590 | 0.5730 0.8354 0.5994 |0.6357 0.8882 0.6925|0.6671 0.9286 0.7174
#4 105739 0.7632 0.6128 | 0.5752 0.7481 0.6090 |0.6192 0.8346 0.6504 | 0.6248 0.8459 0.6429 |0.6534 0.8571 0.6992 | 0.6726 0.8759 0.7105
eliminating most of the incorrect instance masks from individ- TABLE IV

ual multiview images. Second, it is very difficult to separate
two roofs if they are attached and have similar textures using
orthophoto maps. In contrast, our multiview framework has
much more information from building walls, thus achieving
more accurate segmentation. Finally, the original drone images
usually have high resolution without texture distortion, but
orthograph maps may have these drawbacks due to the texture
mapping and synthesis on the 3-D meshes.

3) Mask Clustering: The instance mask clustering is crucial
to overcome the ambiguities in the multiview instance masks.
Many clustering methods are available in the literature, such
as Mean-shift [66] and K-means [67], but none of them is
suitable for our multiview scenario. These clustering methods
require computing the mean of features, which heavily relies
on a good feature extractor. For example, the position, size, and
mean color of masks cannot accurately describe their features.
The other difficulty of these clustering methods is choosing
the optimal values of parameters, such as the kernel function
for Mean-shift, and the K value for K-means. Note that our
clustering method does not require specifying the number of
target clusters, which is the core advantage of our method.

What is more important is that it is still unknown how to
design comparable features for masks from different views,
especially when they have a large variation among different
viewpoints. Compared with viewpoint-variant features, the
spatial overlap between masks can be calculated accurately.
Therefore, we directly calculate a similarity matrix using the
spatial overlap between masks, rather than their features.

Based on the similarity matrix, one alternative option for
mask clustering is spectral clustering [68]. We have evaluated
it with different numbers of target clusters, noted as K, and
compared our clustering method with it. For a fair comparison,
we used two different values of K for the spectral cluster-
ing method on each scene: 1) Kj: the building number of
the annotated 3-D scene and 2) Kj;: the number of global
masks estimated by our clustering method. Note that K, is
typically larger than K, as some of the global masks did
not correspond to real 3-D roofs. A more detailed explanation
is given in Section IlI-C. Specifically, K; has a value of
185/185, 119/119, 322/322, 266,/266, and K, has a value of
385/475,202/376,872/714, 646/641 for Scene #1, #2, #3,
and #4 with RGB/RGBH images, respectively.

The advantages of our clustering method over spectral
clustering can also be concluded from Tables Il and III.
Regardless of the 3-D roof or building instance segmentation,
using Kj or Ky, with or without height information, our clus-
tering method always reaches higher precision than spectral
clustering. Visual comparison for Scene #1 is shown in Fig. 9.
From this comparison, we can observe that spectral clustering

COMPARISON BETWEEN OUR FRAMEWORK BASED ON MULTIVIEW
IMAGES AND THE ONE BASED ON ORTHOPHOTO
MAPS USING SWIN TRANSFORMER

Scene Orthophoto-based Ours (multi-view)
AP  AP50 AP75 | AP AP50 AP75
#1 0.6389 0.8432 0.6541|0.7130 0.8919 0.7730
#2 10.5975 0.7906 0.6059 | 0.6655 0.8403 0.6807
#3 10.5935 0.9006 0.6429 | 0.6671 0.9286 0.7174
#4 10.6199 0.8195 0.6391|0.6726 0.8759 0.7105

TABLE V

COMPARISON BETWEEN OUR FRAMEWORK BASED ON MULTIVIEW
IMAGES AND THE ONE BASED ON ORTHOPHOTO
MAPS USING MASK R-CNN

Scene Orthophoto-based Ours (multi-view)
AP  AP50 AP75 | AP AP50 AP75
#1 [0.6751 0.8595 0.7189 |0.7270 0.8595 0.7730
#2 10.5969 0.7176 0.5847 |0.6202 0.7227 0.6471
#3 10.5475 0.8199 0.5714|0.6270 0.8354 0.7019
#4 10.6079 0.7895 0.6278 | 0.6117 0.7895 0.6353

has the issue of under-segmentation when K = Kj. Since roof
instance masks detected from the multiview images are much
more than the ground truth and have prediction errors as well,
the spectral clustering tends to incorrectly mix some roofs of
attached buildings when K = K;. Meanwhile, the spectral
clustering has the issue of over-segmentation when K = K.
Since K is larger than the ground-truth roofs in the 3-D
scene, it lost the ability to separate the correct and incorrect
masks, leaving these masks separated. In contrast, our instance
mask clustering successfully segments roof instances precisely
without specifying the number of target roofs. More visual
comparison results can be found in the supplementary video.

It is worth pointing out that the last block named “Ours
with RGBH” of Table Il also shows that we achieve higher
AP/AP50/AP75 on the 3-D roof instance segmentation than
on the aerial images (values are shown in Section IlI-A),
because our occlusion-aware mask clustering suppresses false
prediction from individual images and thus improves the
overall segmentation precision.

4) Alternatives for Image Instance Segmentation: The core
contribution of our work is the multiview framework with a
new instance mask clustering, not the image instance segmen-
tation. Besides Swin Transformer, our framework can incor-
porate any other image instance segmentation method as well.
To demonstrate its compatibility, we have testified it with Mask
R-CNN [18], which is another widely used image instance



CHEN et al.: 3-D INSTANCE SEGMENTATION OF MVS BUILDINGS

5704014

(@)

Fig. 9.

(b)

Comparison of roof mask clustering of three methods on Scene #1. (a) Spectral clustering using the ground-truth number of roof targets K; tends

©

to under-segment (red rectangles) some roofs. (b) Spectral clustering using the number of global masks K, estimated by our method tends to over-segment
(green rectangles) some roofs. (c) Our clustering method achieves more precise roof instance segmentation without specifying the target number.

TABLE VI
COMPARISON OF USING DIFFERENT SEGMENTATION CONSTRAINTS ON 3-D Building INSTANCE SEGMENTATION USING SWIN TRANSFORMER

Scene Without the orientation constraint | Without the distance constraint With both constraints
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
#1 10.6438  0.8541 0.7189 0.6856  0.8673  0.7537 0.7130  0.8919  0.7730
#2 10.5605  0.8235 0.5966 0.6378  0.8325  0.6722 |0.6655  0.8403  0.6807
#3 104252 0.8540 0.3882 0.6177 09224  0.6770 |0.6671  0.9286 0.7174
#4 10.5289  0.8308 0.5301 0.6176  0.8722  0.6466 |0.6726  0.8759  0.7105

segmentation model. Table V shows a comparison between our
framework based on multiview images and the one based on
orthophoto maps using Mask R-CNN. Similar to using Swin
Transformer, the advantages of our multiview method over the
orthophoto-based method can also be found in this table. This
demonstrates the effectiveness of our multiview framework
regardless of the chosen image instance segmentation method.
Comparisons with the spectral clustering method and different
MRF segmentation constraints using Mask R-CNN are shown
in the supplementary document. For all these results, our
method consistently achieves the highest accuracies. It is worth
noting that most of the evaluation results for Mask R-CNN are
lower than those of the recently developed Swin Transformer.

5) MRF-Based Building Segmentation: As shown in Fig. 7,
the orientation and distance constraints are important to
achieve accurate 3-D building segmentation. We have also
evaluated the segmentation precision and recall by omitting
one of them. The results are reported in Table VI, from which
we can conclude that the distance constraint plays a more
important role than the orientation constraint, but the best
segmentation accuracy can only be achieved if they are both
employed.

C. Effects of Parameters
Our method involves a few parameters, among which g in
the mask clustering step is the only parameter that we leave
tunable for users (while all other parameters are fixed). In this
section, we discuss how this parameter affects mask clustering.
Intuitively, the meaning of the p parameter in our work
is very similar to the threshold parameter of loU in many

existing object detection works where a mask is considered to
be correctly predicted when the 1oU between the detection
mask and the ground truth is greater than this threshold.
Empirically, this threshold is initially set to 0.5. Similarly,
in our mask clustering, if the loU of the two local masks
is greater than g, they should be considered to belong to the
same group. That is, they represent the same roof instance.
In this work, we initially set # = 0.5 in all of our experiments.
To determine the optimal value for £, we experimented with
different values in all four scenes. As we can see from Fig. 10,
AP, AP50, and AP75 are always close to the highest values
when g = 0.5. Note that slightly increasing/reducing
reduces/increases the confidence values but barely affects the
ordering of the masks. This reveals that our mask clustering
is tolerant to the f parameter.

D. Running Time

The training took around 83 h with 2000 epochs. The overall
running time for segmenting a scene varied from 6 to 8 min,
depending on the scene size, image resolution, and the number
of images. The MRF optimization takes around 2.5 min on
average for each scene. The computational complexity of
multiview image generation (only for scenes without drone
images), heightmap generation, 3-D vertex projection for the
overlapping computation, and back-projection for the clustered
instance masks are O(N k), where N is the number of faces
in this 3-D urban model, and k is the number of multiview
images. N could be a large number, but these computations
are fully accelerated using the GPU, only taking less than
1 min for each urban scene. The instance mask clustering has
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Fig. 10. Evaluation of the segmentation results with different $ values using Swin Transformer. AP (left), AP50 (middle), and AP75 (right) of the segmentation

result are always close to the highest values when g = 0.5.

Fig. 11.
plane regularization. (a) Scene #1. (b) Scene #2.

Fig. 12. Two failure cases of our method. (a) Gated shelter was not segmented
as part of the roof in the image segmentation stage. (b) Tall tree was segmented
as a roof instance because it has a similar height and texture as its nearby
building.

a computational complexity of O(n), where n is the number
of instance masks, thus it takes less than 1 s in total for each
urban scene. It is much faster than many other traditional
clustering methods.

E. Discussions

1) Applications: We have implemented a simple building
simplification prototype using a RANSAC-based plane fit-
ting [51] and plane regularization. Based on our 3-D building
instance segmentation, 3-D buildings in large urban scenes
are automatically simplified, as shown in Fig. 11. In such an
application, instance segmentation is obligatory, as semantic
segmentation is insufficient to separate individual buildings.
We believe our 3-D building instance segmentation method can
benefit more smart city applications, such as urban planning.

2) Limitations: Since our approach falls into the multiview
paradigm, it relies on the quality of the 2-D instance segmen-
tation. Roof types that do not exist in the training dataset may

Automatic simplification of buildings in two large urban scenes. The results are obtained by applying RANSAC for plane extraction followed by

not be precisely segmented. Two such examples are shown
in Fig. 12. In Fig. 12(a), a gated shelter was not reliably
detected, and in Fig. 12(b), a tall tree was segmented as a
part of the nearby building. Enriching the training dataset
may partially solve this issue. In addition, developing a neural
network dedicated to separating roofs and trees may produce
more reliable instance segmentation results.

V. CONCLUSION AND FUTURE WORK

We have presented a multiview framework for instance seg-
mentation of 3-D urban buildings. Based on occlusion-aware
similarity matrices, a novel instance mask clustering method
is proposed to eliminate the mask ambiguities among multi-
view images. To further improve segmentation accuracy, roofs
(instead of buildings) are first segmented, and RGB images are
enriched with heightmaps. Our method takes full advantage of
the multiview framework to precisely segment 3-D buildings
in large urban scenes.

We have collected and annotated an RGBH drone imagery
dataset and a 3-D building instance segmentation dataset,
named InstanceBuilding. We believe that the new dataset could
benefit research in 3-D instance segmentation for various urban
applications. Since most of the state-of-the-art learning-based
3-D instance segmentation methods focus on indoor scenes,
our multiview instance segmentation framework explores a
new avenue for large outdoor scenes.

Future directions: Our work focuses on buildings because
they are the most important ingredients in the urban envi-
ronment. One future direction is to extend our multiview
3-D instance segmentation framework to other urban objects
and even indoor scenes. Drone images and the reconstructed
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3-D models may suffer from various degradation (such as
noises), so it is worth investigating the robustness of our
method in such degraded scenarios [69]. Finally, applying
our method to 3-D point clouds of urban scenes could be an
interesting future direction as well.
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