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A B S T R A C T

While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applica-
tions, obtaining a compact representation of buildings remains an open problem. In this paper, we present a
novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our
framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that
provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural
network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract
the outer surface of a building via combinatorial optimization. We evaluate and compare our method with
state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and
primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that,
with our neural-guided strategy, high-quality building models can be obtained with significant advantages in
fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient
measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code
of this work is freely available at https://github.com/chenzhaiyu/points2poly.
1. Introduction

Three-dimensional (3D) building models have been playing an in-
creasingly important role in various applications, such as urban plan-
ning (Herbert and Chen, 2015), solar potential analysis (Machete et al.,
2018), noise pollution assessment (Stoter et al., 2020; Biljecki et al.,
2015). Recently, with the development of augmented and virtual reality
applications, the demand for high-quality 3D models of buildings has
grown even faster (Blut and Blankenbach, 2021).

Most existing generic 3D reconstruction methods are dedicated to
smooth surfaces represented as dense triangles, irrespective of piece-
wise planarity exhibited in the urban environment (Kazhdan et al.,
2006; Erler et al., 2020). Compared to the dense triangle mesh repre-
sentation, a compact surface model has a significantly low number of
faces yet can still sufficiently describe the geometry of a building. Fig. 1
illustrates a building described as a smooth surface and piecewise-
planar ones, where an arbitrary-sided polygonal surface exhibits the
highest compactness. Although some works claim the possibility of
reconstructing compact surface models from point clouds (Boulch et al.,
2014; Mura et al., 2016; Li et al., 2016b; Nan and Wonka, 2017) or
from dense triangle meshes (Bouzas et al., 2020; Li and Nan, 2021),
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they suffer from serious scalability issues. In this paper, we aim at a
robust reconstruction of compact building surfaces directly from point
clouds.

We exploit the fact that 3D shapes are not confined to explicit repre-
sentations (e.g., point cloud, surface mesh, voxels), but can be encoded
implicitly in a function space. For example, implicit fields are widely
used to characterize 3D shapes, where the surface of a shape is implic-
itly interpreted as a zero-set of the signed distance field (SDF) (Kazhdan
et al., 2006). A learnable indicator function of the SDF takes as input
a query point and yields an indication of whether the point lies inside
or outside the object. Then explicit geometry is often extracted from
the field via computationally expensive iso-surfacing (Mescheder et al.,
2019). Compared with explicit expressions that are heterogeneously
distributed, the homogeneous functional representation is particularly
favorable for geometric machine learning. Recently, Park et al. (2019)
introduced a learning-based scheme with the use of the function space
in 3D geometric modeling. An implicit field can be directly learned
from the input point cloud and used to extract a smooth surface model
of the object. However, extracting a compact polygonal model from the
implicit field remains an open problem.
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Fig. 1. A building in three different surface representations.
In this paper, we propose a novel framework for reconstructing
compact, watertight, polygonal building meshes from point clouds by
incorporating learnable implicit surface representation into explicit
geometry construction. The explicit geometry provides a polyhedral
embedding as the candidate set, from which the building surface can
be obtained from an implicit field learned using a deep neural network
(i.e., neural-guided). We formulate the surface extraction problem as
a Markov random field (MRF), which can handle varying surface
complexity. Through combinatorial optimization, the occupancy of a
building inferred from a deep implicit field is further regularized by
penalizing its surface complexity. Our reconstruction framework inher-
its the high efficiency and robustness in the inference of deep implicit
fields, and the high fidelity of primitive assembly-based reconstruction
approaches.

With our neural-guided framework, we demonstrate that high-
quality building models can be obtained with significant advantages in
terms of fidelity, compactness, and computational efficiency compared
to state-of-the-art methods. The main contributions of this paper are as
follows:

(i) A learning-based framework for compact building model recon-
struction from point clouds. To the best of our knowledge, this
is the first work where a deep implicit field is used for building
reconstruction. Our method shows significant performance and
quality advantage over state-of-the-art methods, especially for
complex building models.

(ii) An MRF formulation for surface extraction from the occupancy
learned by a neural network. Our formulation allows complexity
control and favors compactness in the final reconstruction, and
is far more efficient than the existing integer programming
formulation.

(iii) The first point cloud dataset of synthetic buildings (with their
corresponding surface models) for cultivating learning-based
building reconstruction methods. The dataset contains 768 build-
ings with varying complexity and styles. Noise and scanning
artifacts (e.g., occlusion) are simulated and added to the point
clouds.

2. Related work

There is a large volume of literature on shape reconstruction from
point clouds. In this section, we mainly review approaches aiming at
obtaining compact polygonal models, namely model-based reconstruc-
tion, geometric simplification, and primitive assembly. We also discuss
recent development in deep implicit fields, since it is one of the key
components in our learning-based reconstruction framework.

2.1. Model-based reconstruction

Urban buildings typically demonstrate specific types of structures,
such as roofs, walls, and dormers, which allows the use of strong shape
priors and generic templates of such structures to ease the reconstruc-
tion. This type of approach is commonly referred to as model-based
reconstruction.

The Manhattan-world assumption (Coughlan and Yuille, 2000) re-
stricts the orientation of faces in only three orthogonal directions and
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represents the 3D scene with axis-aligned non-uniform polycubes (Ike-
hata et al., 2015; Li et al., 2016c,a). This simplification drastically
reduces the geometric complexity and the solution space to explore.
Another common assumption is restricting the output surface to specific
disk topologies. The 2.5D view-dependent representation (Zhou and
Neumann, 2010) can generate arbitrarily shaped roofs with vertical
walls connecting them, from airborne light detection and ranging (Li-
DAR) measurements. Xiong et al. (2014, 2015) exploit roof topology
graphs for reconstructing LoD2 buildings. Similarly, Li et al. (2016b)
present a workflow to reconstruct building roofs for urban scenes. Kelly
et al. (2017) formulate a global optimization to produce structured ur-
ban reconstruction from street-level imagery, GIS footprint, and coarse
3D mesh. The model-based approaches can maintain the uniformity
of the reconstruction and is thus efficient to implement. However,
they only apply to specific domains as a limited variety of the models
constrains the generalization of these methods. Our reconstruction
method, instead, imposes no geometric assumption except for piecewise
planarity, thus remaining generic.

2.2. Geometric simplification

This type of method obtains compact surface models by the sim-
plification of given dense triangle meshes. Dense triangle meshes can
be obtained from point clouds with generic surface reconstruction
techniques such as the Poisson reconstructions (Kazhdan et al., 2006;
Kazhdan and Hoppe, 2013), which address the problem by establishing
an indicator function underpinned by the points with their oriented
normals. The output surface is acquired by extracting an iso-surface of
this function. We refer to Berger et al. (2017) for a survey of generic
surface reconstruction algorithms.

Dense triangles on a smooth surface can be simplified into concise
polygons via various approaches. Garland and Heckbert (1997) pro-
pose to iteratively contract vertex pairs under quadric error metrics
(QEM), such that the number of faces is reduced to an expected
number. To preserve the piecewise-planar structure during contrac-
tion, Salinas et al. (2015) propose structure-aware mesh decimation
(SAMD), which incorporates the planar proxies detected from pre-
processing analysis into an adjacency graph and then approximates
the mesh as well as the proxies. However, these contraction opera-
tors are inclined to more triangles than desired for piecewise-planar
building representation. Alternatively, variational shape approximation
(VSA) proposed by Cohen-Steiner et al. (2004) approaches the approx-
imation through repeatedly partitioning based on an error tolerance.
Furthermore, Verdie et al. (2015) propose an approach for reconstruct-
ing urban scenes with various LoD configurations from dense meshes
through classification, abstraction, and reconstruction. Similarly, Zhu
et al. (2018) present a simplification framework for urban scene mod-
eling at different LODs, which is subsequently extended by Han et al.
(2021) to more general scenes. Bouzas et al. (2020) incorporates struc-
ture awareness with the recovery and preservation of the initial mesh
primitives and their adjacencies. Li and Nan (2021) further exploit
the preservation of piecewise-planar structures and sharp features.
These methods demand the input smooth surface be accurate in both
geometry and topology for a faithful surface approximation. However,
the requirement is rarely satisfied for real-world measurements. In
contrast, our proposed reconstruction method can directly output a
concise polygonal mesh without approximating an intermediate.
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2.3. Primitive assembly

This type of method reconstructs compact building models by pur-
suing the optimal assembly of a set of basic geometric primitives
(e.g., polygons, boxes).

Connectivity-based methods address the primitive assembly by ex-
tracting proper geometric primitives from an adjacency graph built on
planar shapes (Chen and Chen, 2008; Schindler et al., 2011; Van Krev-
eld et al., 2011). Though the graph analysis can be efficiently executed,
these methods are sensitive to the quality of the adjacency graph.
Incorrect connectivity contaminated by linkage errors is prone to an
incomplete reconstruction. Arikan et al. (2013) propose an interac-
tive solution that enables the user to complete the surface through
an optimization-based snapping, which requires laborious human in-
terventions for complex scenes. Labatut et al. (2009), Lafarge and
Alliez (2013) propose a mixed strategy where the confident areas are
represented by polygonal shapes and the complex regions by dense
triangles.

Slicing-based methods show stronger robustness to imperfect data
with the divide-and-conquer strategy (Chauve et al., 2010; Mura et al.,
2016; Nan and Wonka, 2017). They partition the 3D space into polyhe-
dral cells using the supporting planes of the detected planar primitives,
where the polyhedral cells consist of polygonal faces. The reconstruc-
tion is therefore transformed into a labeling problem where the poly-
hedral cells are labeled as either inside or outside the shape or equiv-
alently with labeling other primitives. The main limitation of slicing-
based methods is the scalability of their data structure. Specifically, the
pairwise intersection of supporting planes results in an over-complex
tessellation, which is computationally expensive to compute, commonly
via a binary tree updated upon each primitive’s insertion (Murali and
Funkhouser, 1997). When many planar primitives contribute to the
intersection, the resulting tessellation may hamper the surface extrac-
tion. Moreover, since many anisotropic cells are generated regardless
of their spatial hierarchy, the resulting surface is inclined to geometric
artifacts. For instance, PolyFit (Nan and Wonka, 2017) formulates
polygonal surface reconstruction as a binary integer program with hard
constraints ensuring the generated surface is watertight and manifold.
However, it suffers from scalability issues due to unnecessary pairwise
intersections, and it thus can only process simple models with limited
complexity. In this work, we address the computation bottleneck by
exploiting an adaptive space partitioning strategy, which significantly
reduces the algorithmic complexity. Our adaptive strategy is similar
to the kinetic data structure in KSR (Bauchet and Lafarge, 2020) that
creates a partition by growing planar primitives at a constant speed
until they collide and form polyhedra, avoiding exhaustive partitioning
of the space. Instead of relying on a sophisticated kinetic data structure,
our method only requires a simple data structure that stems from binary
space partitioning (BSP). Moreover, our occupancy indicator does not
rely on normal information that is required by KSR, which enables a
broader spectrum of inputs.

Recently, Li and Wu (2021) extend PolyFit to further exploit the
inter-relation of the primitives into procedural modeling for building
reconstruction in the CityGML format. Similarly, Xie et al. (2021)
propose to combine the rule-based and the hypothesis-based strate-
gies for efficient building reconstruction. Fang and Lafarge (2020)
introduce a hybrid approach for reconstructing 3D objects by succes-
sively connecting and slicing planes detected from 3D data. In contrast
to these works that use hand-crafted features, our method exploits
automatically learned deep features.

2.4. Deep implicit field

Recent advances in deep implicit fields have revealed their potential
for 3D reconstruction. The crux of these methods is to learn a mapping
from the input (e.g., a point cloud) to a continuous scalar field. Then,
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the surface of the object can be extracted via iso-surfacing techniques
such as Marching Cubes (Lorensen and Cline, 1987). Iso-surfacing
is powerful in extracting smooth surfaces but has the limitation of
preserving sharp features. Inevitably, it introduces discretization errors.
Deep implicit fields are thus not natively suitable for reconstructing
compact polygonal models.

By incorporating constructed solid geometry (CSG), Chen et al.
(2020) introduce an end-to-end neural network, BSP-Net, to reconstruct
a shape from a set of convexes obtained via binary space partitioning.
Similarly, Deng et al. (2020) propose an architecture to represent a
low-dimensional family of convexes. These two methods both learn to
divide and conquer the 3D space with implicit fields. However, the
inputs to these two neural networks are either images or voxels, instead
of point clouds that our work aims to address.

The single latent feature vector used by most deep implicit fields
methods implies strong priors dependent on the training data. While
this allows plausible surface reconstruction even with highly contam-
inated data, it significantly limits the generalization ability of these
methods. With one feature vector encoding the whole shape, the feature
space inevitably overfits the shapes in the training set, which may
fail for shapes from unseen categories. Erler et al. (2020) propose
the Points2Surf architecture to estimate an SDF with both local and
global feature vectors, which has shown great generalization capabili-
ties in implicit field learning. In this work, we utilize the Points2Surf
architecture as an initialization step for 3D reconstruction.

2.5. Summary

Table 1 summarizes the existing works related to ours, including
generic reconstruction methods (Kazhdan et al., 2006; Erler et al.,
2020), model-based approaches (Zhou and Neumann, 2010; Li et al.,
2016c), geometry simplification methods (Garland and Heckbert, 1997;
Cohen-Steiner et al., 2004; Salinas et al., 2015), and primitive assem-
bly (Nan and Wonka, 2017; Bauchet and Lafarge, 2020). Verdicts are
based on whether each method can produce compact and watertight
surfaces, whether it consumes unorganized points as input (i.e., without
normal information and geometric approximation or reconstruction),
whether it applies to generic 3D objects, and its scalability. Among
these competitors, PolyFit and KSR are both capable of reconstruct-
ing compact, watertight, generic surfaces from point clouds and thus
are considered the closest to ours. Our learning-based reconstruction
framework combines the strengths of primitive assembly and deep
implicit fields. It not only inherits the theoretical guarantee of primitive
assembly to obtain compact building models but also integrates the
data-driven features of deep implicit fields such that various types of
buildings can be represented with strong robustness.

3. Methodology

3.1. Overview

Our neural-guided approach for building reconstruction from point
clouds utilizes the learned implicit representation as an occupancy
indicator for extracting the final surface model. The indicator can
be intuitively interpreted as a shape-conditioned binary classifier for
which the decision boundary represents the outer surface of a building.
With the learned implicit field, a compact surface model is extracted
using an MRF formulation that accounts for reconstruction fidelity and
compactness. Fig. 2 demonstrates the workflow of our neural-guided
reconstruction framework that consists of three steps:

• Adaptive space partitioning. We partition the ambient 3D space
to generate a linear cell complex that complies with planar prim-
itives detected from the point cloud. The partitioning is spatially
adaptive therefore being efficient and respective to the building’s
geometry. The non-overlapping cells in the complex serve as the

candidates whose outer shell constitutes the final surface.
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Table 1
Overview of the most related works. GR, MR, GS, and PA stand for generic reconstruction, model-based reconstruction,
geometry simplification, and primitive assembly, respectively. All the listed works are compared with our method in the
experiments.
Related work Characteristics Scalable

Category Compact Watertight Raw Generic

Poisson (Kazhdan et al., 2006) GR ✗ ✗ ✗ ✓ ✓

Points2Surf (Erler et al., 2020) GR ✗ ✗ ✓ ✓ ✗

2.5D DC (Zhou and Neumann, 2010) MR ✗ ✓ ✓ ✗ ✓

Manhattan-world (Li et al., 2016c) MR ✓ ✓ ✗ ✗ ✓

QEM (Garland and Heckbert, 1997) GS ✓ ✗ ✗ ✓ ✗

VSA (Cohen-Steiner et al., 2004) GS ✓ ✗ ✗ ✓ ✗

SAMD (Salinas et al., 2015) GS ✓ ✗ ✗ ✓ ✗

FPS (Li and Nan, 2021) GS ✓ ✗ ✗ ✓ ✗

PolyFit (Nan and Wonka, 2017) PA ✓ ✓ ✓ ✓ ✗

KSR (Bauchet and Lafarge, 2020) PA ✓ ✓ ✗ ✓ ✓

Ours PA ✓ ✓ ✓ ✓ ✓
Fig. 2. Overview of our framework. The framework comprises three functional blocks: within the explicit block (in blue), a linear cell complex is generated from a point cloud
by adaptive space partitioning; within the implicit block (in red), a neural implicit field is learned to indicate spatial occupancy of the building; within the optimization block
(in green), an MRF is formulated to extract the final surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
• Occupancy learning. We utilize a deep neural network to learn
a shape-conditioned implicit field that characterizes the building
object represented by the point cloud. The implicit field describes
the spatial occupancy of the object given any query point in the
3D space.

• Surface extraction. This step takes the learned implicit field as
an occupancy indicator and outputs the boundary representation
of the building’s surface. We formulate surface extraction as a
binary classification problem and solve it using MRF optimization
that encourages compactness and guarantees the final model to be
watertight.

3.2. Adaptive space partitioning

We introduce an adaptive partitioning algorithm that adaptively
subdivides the 3D space into a set of cells (i.e., a linear cell complex),
where each cell is a convex polyhedron. Our algorithm partitions the
space by extracting planes from the point cloud followed by BSP using
61
the refined planar primitives. Specifically, we apply the RANSAC algo-
rithm of Schnabel et al. (2007) to detect planes. Considering noise and
outliers in the data, we perform a refinement procedure that iteratively
merges planes under specific proximity conditions (see Algorithm 3.1).
During the partitioning, a binary tree structure is dynamically and
locally updated upon insertion of a primitive, and the cell adjacency in-
formation is maintained. A typical space partitioning step is illustrated
in Fig. 3.

To avoid redundant partitioning, our adaptive strategy only allows
intersecting spatially correlated primitives, as illustrated in Fig. 4(b).
We describe the spatial correlation by intersection test between the
axis-aligned bounding box (AABB) of a primitive and the cells in
the leaf nodes of the BSP tree. Compared to exhaustive partitioning
strategies (e.g., the pairwise intersection of planar primitives in Nan
and Wonka (2017)), our adaptive partitioning can avoid unnecessary
intersections between primitives and generate fewer yet more mean-
ingful cells, which would otherwise result in computational overhead
or potential artifacts in the final model. Fig. 4 shows an illustrative
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Fig. 3. An illustration of one step in space partition. After inserting a planar primitive 𝑃1, cell 𝐶 is split into two cells 𝐷 and 𝐸.
1

1

Fig. 4. Comparison of the exhaustive and adaptive partitioning strategies (a 2D
example). Note the difference in the numbers of the resulted cells.

comparison of the exhaustive and our adaptive partitioning strategies.
It is worth noting that in the 3D space, our adaptive space partitioning
can significantly reduce the number of cells, allowing an efficient
process in the subsequent steps.

During the partitioning, the BSP tree structure and adjacency in-
formation of the cells are incrementally obtained, as shown in Fig. 3.
Thus the partitioning result depends highly on the order of inserting
the planes. To this end, we prioritize the partitioning process such that
planes conforming to building structural priors play dominant roles in
partitioning the space. Considering that buildings typically demonstrate
vertical walls, our space partitioning algorithm gives vertical planes a
higher priority to be involved in partitioning. We define the verticality
of a plane as  = 1 − |𝑛𝑧|, where 𝑛𝑧 denotes the 𝑧 coordinate of the
plane’s normal vector. A zero verticality value indicates a perfectly hor-
izontal plane and a value of 1 indicates a perfectly vertical plane. Note
that the verticality priority is only applied to planes whose verticality
is greater than a threshold value (0.9 in our work). For the remaining
planes, the priority is determined by the number of points in each plane
because a larger number of points often implies a higher confidence
value. The verticality priority ensures that vertically oriented planes
partition the space before other planes do, which has an advantage in
handling partially occluded facades. Fig. 5(b) shows such an example.

3.3. Occupancy learning

From the cell complex (denoted by 𝐶) obtained from adaptive
binary space partitioning, we would like to extract a subset of the cells,
i.e., a subcomplex 𝐿 ∈ 𝐶, such that its occupancy 𝑂𝐿 indicates the
interior space enclosed by the outer surface of the building. To this end,
we learn the occupancy of the building as a signed distance field (SDF),
where the value is the distance 𝑑 from a point 𝐱 to the building surface
62
Algorithm 3.1: Plane refinement ()
Input: Raw planar segments , angle tolerance 𝜃 and distance

tolerance 𝜖
Output: Refined planar segments ̃

1  ← initialize priority queue;
2 for (𝑖, 𝑗) ∈  do
3 𝛼𝑖,𝑗 ← compute angle between 𝑖 and 𝑗 ;
4  ← push (𝛼𝑖,𝑗 , 𝑖, 𝑗) ordered by 𝛼𝑖,𝑗 ;
5 while  not empty do
6 (𝛼𝑖,𝑗 , 𝑖, 𝑗) ← pop from  with the smallest 𝛼𝑖,𝑗 ;
7 𝑑𝑖,𝑗 ← compute distance between 𝑖 and 𝑗 ;
8 if 𝛼𝑖,𝑗 < 𝜃 and 𝑑𝑖,𝑗 < 𝜖 then
9 𝑚 ← merge 𝑖 and 𝑗 with new plane parameters by

PCA;
10 𝛼𝑚,𝐧 ← compute angle between 𝑚 and every plane 𝐧 in

;
11  ← push (𝛼𝑚,𝐧, 𝑚,𝐧) ordered by 𝛼𝑚,𝐧;
2 else
13 ̃ ← extract planar segments from ;
14 break;
5 return ̃

and its sign indicates whether the point lies inside (with a positive sign)
or outside (with a negative sign) the outer surface of the building:

𝑆𝐷𝐹 (𝐱) = 𝑑 ∶ 𝐱 ∈ R3, 𝑑 ∈ R. (1)

Fig. 6 illustrates an example of the signed distance field at a series of
cross-sections of a 3D building model.

Inspired by the work of Erler et al. (2020), we exploit a deep
learning-based approach to learn a signed distance field from a point
cloud. Specifically, we train a neural network that can predict the
signed distance value for any point 𝐱 ∈ R3, i.e.,

𝑓 (𝐱) ≈ 𝑓 (𝐱) = 𝑠𝜃(𝐱 ∣ 𝐳), with 𝐳 = 𝑒𝜙(𝑃 ), (2)

where 𝐳 is a latent representation of the building surface encoded
from the input point cloud 𝑃 by an encoder 𝑒, and 𝑠 represents the
neural network. The encoder 𝑒 and neural network 𝑠 are parameterized
by 𝜃 and 𝜙, respectively. Following the neural network architecture
of Erler et al. (2020), we decompose the signed distance field into two
components: the absolute distance 𝑓 𝑑 and its sign 𝑓 𝑠.

• The absolute distance value. The estimated absolute distance
𝑓 𝑑 (𝐱) can be determined from only the neighborhood of the query
point:

̃𝑑 𝑑 ( 𝑑) 𝑑 𝑑 ( 𝑑)
𝑓 (𝐱) = 𝑠𝜃 𝐱 ∣ 𝐳𝐱 , with 𝐳𝐱 = 𝑒𝜙 𝐩𝐱 (3)
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Fig. 5. An illustration of the effect of the verticality priority in space partitioning. (a) Incomplete input. (b) Without the verticality priority. Inserting the planar primitive denoted
by the red line results in a missing wall in the upper-right part of the building. (c) With the verticality priority. By first inserting the vertical planar primitive (in red), a plausible
vertical wall is inferred. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. An example of a signed distance field defined on a cross-section of a building
model. (a) A visualization of the signed distance field, where the red color indicates
the building’s interior and the blue color indicates its exterior. (b) The signs of the
signed distance field at a set of point samples. The color intensity reflects the distance
values at a few discrete levels. (c) The 3D surface model. The cutting plane indicates
where the signed distance field is defined. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

where 𝐩𝑑𝐱 ∈ 𝑃 is a set of neighboring points around query point
𝐱.

• The sign. To estimate the sign 𝑓 𝑠(𝐱) at 𝐱, local sampling does
not suffice because the occupancy information cannot be reliably
estimated from the local neighborhood only. Therefore, a global
uniform sub-sample 𝐩𝑠𝐱 ∈ 𝑃 is taken as input:

𝑓 𝑠(𝐱) = sgn (�̃�𝑠(𝐱)) = sgn
(

𝑠𝑠𝜃
(

𝐱 ∣ 𝐳𝑠𝐱
))

, with 𝐳𝑠𝐱 = 𝑒𝑠𝜓
(

𝐩𝑠𝐱
)

(4)

where 𝜓 parameterizes the encoder, and �̃�𝑠(𝐱) is a logit that
expresses the confidence of 𝐱 having a positive distance to the
surface.

The two latent descriptions 𝐳𝑠𝐱 and 𝐳𝑑𝐱 share information, resulting
in the formulation for signed distance learning, i.e.,
(

𝑓 𝑑 (𝐱), �̃�𝑠(𝐱)
)

= 𝑠𝜃
(

𝐱 ∣ 𝐳𝑑𝐱 , 𝐳
𝑠
𝐱
)

, with 𝐳𝑑𝐱 = 𝑒𝑑𝜙
(

𝐩𝑑𝐱
)

and 𝐳𝑠𝐱 = 𝑒𝑠𝜓
(

𝐩𝑠𝐱
)

(5)

Fig. 7 illustrates a series of cross-sections of the signed distance
field predicted by the neural network for the 3D model shown in
Fig. 6. With the learned signed distance field, instead of performing
Marching Cubes, we assign each cell 𝑐𝑖 ∈ 𝐶 a signed distance value at
its centroid. This sparse query can significantly reduce the computation
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for occupancy evaluation.
3.4. Surface extraction

With the cell complex and the occupancy of its cells obtained in the
previous steps, surface reconstruction can be addressed by obtaining a
consistent classification of the cells into interior and exterior categories,
followed by an outer shell extraction step, as shown in Fig. 8. We
address the interior/exterior cell classification using a Markov Random
Field (MRF) formulation.

Given the cell complex 𝐶 = {𝑐𝑖}, we denote the binary label to be
assigned to a cell 𝑐𝑖 by 𝑥𝑖 ∈ {𝑖𝑛, 𝑜𝑢𝑡}. Our energy function is written as
the weighted sum of two energy terms, i.e.,

𝐸(𝑥) = 𝐷(𝑥) + 𝜆𝑉 (𝑥) (6)

where 𝐷(𝑥) and 𝑉 (𝑥) denote the data cost term and the smoothness cost
term, respectively, and 𝜆 is the weight that balances the two terms.

• Data cost. We define the data cost term in a way such that
it reflects the confidence of the classification. Specifically, it is
defined to measure how much the classification differs from the
previously estimated occupancy of the cells in the cell complex,
i.e.,

𝐷(𝑋) = 1
|𝐶|

∑

𝑐𝑖∈𝐶

|

|

𝑥𝑖 − 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑐𝑖)|| , (7)

where 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑐𝑖) denotes the learned occupancy of cell 𝑐𝑖,
which can be computed as

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑐𝑖) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝐷𝐹 (𝑐𝑖) ⋅ 𝑣𝑜𝑙𝑢𝑚𝑒(𝑐𝑖)), (8)

where 𝑆𝐷𝐹 (𝑐𝑖) is the signed distance value of the query point at
the centroid of 𝑐𝑖, predicted by the neural network, and 𝑣𝑜𝑙𝑢𝑚𝑒(𝑐𝑖)
is the volume of 𝑐𝑖. Intuitively, a cell with a larger volume
should weigh higher regardless of its predicated signed distance.
The sigmoid function 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1

1+𝑒−𝑥 normalizes the signed
distance to the range (0, 1).

• Smoothness cost. This energy term encourages assigning similar
labels to the adjacent cells. We design this term in a way such that
it penalizes the complexity of the output building surface model.
Since the final surface will be eventually extracted as the outer
shell of the interior cells, lowering its complexity is equivalent to
limiting its surface area. Thus, our smoothness cost is defined as

𝑉 (𝑋) = 1
𝐴

∑

{𝑐𝑖 ,𝑐𝑗}∈𝐶
𝑎𝑖𝑗 ⋅ 1(𝑐𝑖, 𝑐𝑗 ), (9)

where {𝑐𝑖, 𝑐𝑗} ∈ 𝐶 represents a pair of adjacent cells in the
complex. 𝑎𝑖𝑗 denotes the surface area of the common face of
the two cells. 𝐴 is a normalization factor that is chosen as the
maximum area of all faces in the cell complex. 1(𝑐 , 𝑐 ) is an
𝑖 𝑗



ISPRS Journal of Photogrammetry and Remote Sensing 194 (2022) 58–73Z. Chen et al.
Fig. 7. A series of cross-sections of a signed distance field learned for the building shown in Fig. 6. (a) Volume rendering of the signed distance field. (b)–(f) are a few cross-sections
of (a) where the percentages represent relatively where the sections are taken. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 8. An illustration of the surface extraction step. (a) The cell complex with the learned occupancy (the red and blue colors indicate interior and exterior, respectively). (b)
The union of the interior cells. (c) The surface model was obtained by extracting the outer shell of the union of the interior cells. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
indicator function, which has the value of 1 if 𝑐𝑖 and 𝑐𝑗 receive
different labels, i.e,

1(𝑐𝑖, 𝑐𝑗 ) =

{

0, 𝑥𝑖 = 𝑥𝑗
1, 𝑥𝑖 ≠ 𝑥𝑗

(10)

Intuitively, the smoothness cost serves as a regularization term
that penalizes zigzag artifacts on the final surface model, whose
effect is illustrated in Fig. 9.

By minimizing the energy function given in Eq. (6) using the graph
cut algorithm (Boykov and Funka-Lea, 2006), the interior cells can
be obtained, as shown in Fig. 8(b). The final surface model is then
obtained by extracting the outer surface of the union of the interior
cells, which is illustrated in Fig. 8(c). As our adaptive binary space
partitioning produces a valid polyhedral embedding, the surface is
inherently guaranteed to be watertight.

4. Datasets

Sufficient high-quality point clouds and the corresponding surface
models of real-world buildings are necessary for training and evaluating
learning-based reconstruction methods. Due to the lack of such data,
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we have created a synthetic dataset on which we train our neural
network for occupancy learning. We then evaluate the performance of
the proposed method on both the synthetic dataset and a real-world
dataset.

4.1. Synthetic dataset

To create the synthetic dataset for training our neural network
and further evaluating our reconstruction method, we have created
a synthetic dataset by simulating the scanning process based on the
Helsinki LoD2 CityGML models (City of Helsinki, 2021). Specifically,
we pick 678 watertight building meshes for training, 45 for validation,
and another 45 for testing. Because of our patch-based architecture for
occupancy learning, a large number of diverse patches are produced
from each mesh as training samples.

The point clouds are generated by simulated scanning on the build-
ing mesh models. In pre-processing, the building meshes are translated
to the origin and scaled uniformly to a unit length. To simulate the
acquisition of a point cloud 𝑃 on a building 𝑆, a LiDAR sensor is
configured from random perspectives. We use Blensor (Gschwandtner
et al., 2011) to simulate the scanning, intentionally with various levels
of Gaussian noise and artifacts such as occlusions and light reflections.
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Fig. 9. An illustration of the effect of the smoothness cost energy term. (a) and (b) Interior–exterior classification result without the smoothness cost energy term. (c) Interior–exterior
classification result with the smoothness cost energy term. The smoothness cost energy term penalizes zigzag artifacts and encourages a compact surface model.
Fig. 10. Simulation of point cloud acquisition. (a) A LiDAR scanner rotates on a sphere around the building mesh to generate a full-view point cloud. (b) The scanner’s position
is constrained on the upper half of the sphere to simulate real-world scanning where the bottom of a building will not be captured.
To handle noise, we created multiple versions of the Helsinki dataset
with different levels of noise, which is achieved by intentionally adding
artificial Gaussian noise to the depth values during the virtual scanning
process to augment the training data. For the training of the neural
network, we obtain point clouds with Gaussian noise whose standard
deviation is randomly chosen from the range 𝑈 [0, 0.005𝑅], where 𝑅
is the largest side of the building’s bounding box, and 𝑈 stands for
uniform distribution. We also create multiple versions of point clouds
for the same building sets, where the Gaussian noise is set to four
different levels {0, 0.001𝑅, 0.005𝑅, 0.010𝑅, 0.050𝑅}, for evaluating the
robustness of the proposed method and its competitors. In addition
to the simulated point clouds, the training set also contains a set of
query points 𝑋𝑆 for each building. The query points are pre-sampled
with known signed distance to the building’s surfaces. Since query
points with smaller absolute distances are of higher importance for
detailed surface reconstruction, we randomly sample 1000 points on
the surface and then apply perturbation in their normal direction by a
random displacement in 𝑈 [−0.02𝑅, 0.02𝑅]. In addition, we sample 1000
query points randomly distributed in the bounding box of the building,
mounting up to 2000 query points in total per building. To enhance the
robustness of the learned SDF, we randomly drop out 1000 query points
and use the other 1000 samples for training. We denote this full-view
dataset as Helsinki full-view.

To mimic the real-world scanning process and simulate occlusions
in the dataset, we also constrain the scanner’s position such that no
bottom view is used (see Fig. 10(b)), to create another set of point
clouds, denoted as Helsinki no-bottom. Similar to Helsinki full-view, we
generate the point clouds with various Gaussian noise along with the
query points for training, and a series of point clouds with fixed noise
levels for evaluation.

4.2. Real-world dataset

Besides the synthetic data, we further evaluate our method on the
real-world dataset consisting of photogrammetric point clouds of six
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buildings (Xie et al., 2021). These point clouds are obtained from
aerial images using multi-view stereo techniques. The original images
were captured by Unmanned Aerial Vehicles (UAV) from top and
lateral perspectives. The main bodies of buildings are visible with well-
captured roof structures, while the facades of the buildings are only
partially visible with missing areas due to occlusions and poor lighting
conditions in the lower part of the buildings. The point clouds in this
dataset are demonstrated in the first column of Fig. 13.

4.3. Summary

Table 2 summarizes the characteristics of the datasets used for
evaluation. Since global shape priors are dataset-dependent, the neural
network trained on one dataset may not capture the characteristics of
another. To this end, we train our neural network for SDF estimation on
the Helsinki full-view dataset and Helsinki no-bottom dataset with various
levels of noise, respectively. The trained model on the former is used for
evaluation on the full-view set, while that of the latter on the no-bottom
set.

5. Results and analysis

5.1. Reconstruction results

With the neural network trained on the Helsinki full-view point
clouds, the proposed method can reconstruct buildings of various ar-
chitectural styles. Fig. 11 presents the reconstruction results of eight
buildings from the Helsinki full-view set. The SDF can accurately de-
scribe the occupancy of the buildings even though their styles may
be distinct from the data on which the neural network was trained.
The errors occur only when subtle structures exist, which is due to
the uncertainty in planar primitive detection and the regularization
imposed to surface extraction. Nonetheless, all building surfaces can be
effectively retrieved from the point clouds with plausible visual quality
and symmetric mean Hausdorff (SMH) distance of less than 0.3%.
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Table 2
Datasets overview.

Name Type Perspective Quantity Usage

Top Bottom Lateral

Helsinki full-view Simulated LiDAR ✓ ✓ ✓ 768 Training + evaluation
Helsinki no-bottom Simulated LiDAR ✓ ✗ ✓ 768 Training + evaluation
Shenzhen Real-world MVS ✓ ✗ ✓ 6 Evaluation
Fig. 11. Reconstruction results on the Helsinki full-view point clouds. From left to right: input point cloud (colored randomly per planar primitive), wireframe of the cell complex,
volume rendering of the SDF, reconstructed building model, and error map. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
We additionally train the neural network and evaluate it on the
Helsinki no-bottom point clouds. As shown in Fig. 12, our method can
still correctly infer the occupancy of the entire buildings regardless of
the missing ground planes, resulting in complete reconstruction results.
Unlike PolyFit (Nan and Wonka, 2017) that relies on a complete set of
planes, our method can make use of the additional faces of the AABB
of the point clouds, which guarantees to complete the missing surface
models.2 Besides, with the learned SDF, facades with few supporting
points can be reliably reconstructed.

2 This is specially designed for point clouds where no ground is captured.
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Since local features are used for occupancy estimation, and the
training data is augmented with intentionally added noise and oc-
clusions, our reconstruction can reasonably generalize from synthetic
data to real-world point clouds. Fig. 13 shows the reconstruction re-
sults on the Shenzhen point clouds directly using the neural network
trained on the Helsinki no-bottom dataset. The inferred distance fields
still conform to the real-world buildings with styles unseen by the
network during training. Though lower parts of the buildings are
insufficiently measured, our method can still successfully reconstruct
complete buildings. For the test on the Shenzhen dataset, since no
ground truth surface models are available for quantitative evaluation
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Fig. 12. Surface reconstruction from incomplete point clouds. Our method can reconstruct complete building models even if the input point clouds have missing regions on the
bottom or facades. From top to bottom: input point clouds colored with the extracted planar primitives, reconstructed models, and an overlay of the two. The left two buildings
are from Helinki no-bottom, and the right two are from Shenzhen. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 13. Reconstruction results on the Shenzhen point clouds. From left to right: input point cloud (colored randomly per planar primitive), wireframe of the cell complex, volume
rendering of the SDF, reconstructed building model, and error map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
of the reconstruction, we quantify reconstruction accuracy by mea-
suring the Hausdorff distances from the reconstructed surfaces to the
corresponding input point clouds. It is worth noting that the most
prominent error seen from each error map lies in where the measure-
ment is missing (i.e., some lower parts of the building were occluded in
data acquisition). In addition, the complex roof structures occasionally
introduce tangible errors when approximated with piecewise-planar
abstraction. Fig. 13(d) shows such an example, where the protuberance
on top of the building is approximated with a superfluous prism.
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5.2. Evaluation

5.2.1. Fidelity and complexity
We have compared our method with various generic reconstruc-

tion, model-based approaches, geometry simplification, and primitive
assembly methods.

Fig. 14 demonstrates the comparison with two generic reconstruc-
tion methods, namely Poisson surface reconstruction (Kazhdan et al.,
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Fig. 14. Comparison between our method and two generic reconstruction methods, namely, Poisson surface reconstruction (Kazhdan et al., 2006) and Points2Surf (Erler et al.,
2020). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Comparison between our method and two model-based methods, namely, Manhattan-world building reconstruction (Li et al., 2016c) and 2.5D Dual Contouring (Zhou
and Neumann, 2010), and two primitive assembly based methods PolyFit (Nan and Wonka, 2017) and KSR (Bauchet and Lafarge, 2020). The building in the top row is from the
Helsinki full-view dataset and the one in the bottom row is from the Shenzhen dataset. Two sets of face numbers (∙∕∙) are given, which are the as-is face number from the algorithm
and the face number after merging coplanar faces, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
2006) and the learning-based method Points2Surf (Erler et al., 2020).
Both methods produce surface models with a massive number of trian-
gle faces and chamfered edges, which not only leads to extra memory
consumption but also potentially artifacts such as bumps and holes. In
contrast, our approach describes the building geometry as a lightweight
watertight polyhedron with sharp edges.

In Fig. 15, we demonstrate the comparison of our results with
two model-based building reconstruction methods, namely, Manhattan-
world reconstruction (Li et al., 2016c) and 2.5D Dual Contouring (Zhou
and Neumann, 2010), and two primitive assembly methods Poly-
Fit (Nan and Wonka, 2017) and KSR (Bauchet and Lafarge, 2020),
on two buildings from the Helsinki full-view and Shenzhen datasets,
respectively. From the results, we can see that neither Manhattan-
world reconstruction nor 2.5D Dual Contouring can deliver visually
plausible building models. The former constrains faces to be axis-
aligned, and it thus cannot faithfully recover planar faces of arbitrary
orientation, while the latter produces a prohibitive number of faces
that do not properly address the piecewise planarity of urban buildings
but with undesirable discontinuity. Among these methods, the results
from PolyFit and KSR are most comparable with ours in terms of
compactness. PolyFit, KSR, and our method fall in the hypothesizing-and-
selection strategy. Specifically, the three methods tessellate the ambient
space into a candidate set with detected planar primitives and then seek
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a proper arrangement of the candidates with combinatorial analysis.
The optimization goal in PolyFit is hard coded by the weights for data
fitting, surface coverage, and model complexity objectives. In contrast,
our optimization is essentially guided by the implicit field estimated
from the input point cloud using the neural network and further regu-
larized by the MRF in surface extraction. KSR’s voting scheme requires
the input point cloud to have high-quality normals associated, while
our neural-guided approach enables directly consuming unorganized
point clouds, which improves robustness on noisy or incomplete data.

On Helsinki fullview, the quantitative analysis presented in Table 3
reveals a marginal fidelity advantage of our method while using much
fewer faces to represent the buildings. Also, our method can scale to
buildings with higher complexity (for those PolyFit fails).

Compared with the exhaustive partitioning strategy adopted by
PolyFit, our adaptive space partitioning can produce building models
with lower complexity. This can be concluded by comparing the num-
ber of faces in the reconstructed surface models from these methods.
In fact, the many polygonal faces originating from the same plane can
be merged into a single face by a post-processing step but we did not
do so in our paper. It is also worth noting that our adaptive space
partitioning cannot be plugged into PolyFit because it would otherwise
break PolyFit’s pre-condition that every edge is shared by four can-
didate faces (except for border edges). Nevertheless, PolyFit performs
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Table 3
Quantitative evaluation among Poisson (Kazhdan et al., 2006), PolyFit (Nan and Wonka, 2017), KSR (Bauchet and Lafarge, 2020), and ours. (∙, ∙) denotes (Hausdorff distance,
number of faces of a model from each original algorithm). ‘‘-’’ indicates failure in obtaining the result within 3-hour running of an algorithm.

Index Poisson PolyFit KSR Ours Index Poisson PolyFit KSR Ours

1 (0.1992, 417546) (0.2004, 33) (0.2007, 60) (0.2013, 23) 24 (0.1022, 245028) – (0.1056, 1382) (0.0714, 458)
2 (0.0433, 63440) (0.0433, 269) (0.0435, 408) (0.0433, 145) 25 (0.0263, 67000) (0.0167, 54) (0.0167, 64) (0.0180, 41)
3 (0.0173, 178608) (0.0165, 42) (0.0168, 60) (0.0177, 32) 26 (0.1247, 216590) (0.1247, 45) (0.1246, 62) (0.1247, 26)
4 (0.0481, 226278) (0.2130, 60) (0.0483, 74) (0.0478, 37) 27 (0.0828, 300112) (0.0829, 68) (0.0830, 68) (0.0829, 51)
5 (0.0573, 163084) (0.0422, 231) (0.0463, 180) (0.0420, 75) 28 (0.0938, 215042) – (0.0933, 610) (0.1105, 304)
6 (0.1518, 405996) – (0.1464, 832) (0.2179, 249) 29 (0.0797, 234884) (0.1024, 56) (0.0795, 74) (0.2099, 53)
7 (0.1184, 302234) (0.1252, 442) (0.2016, 270) (0.1367, 336) 30 (0.1564, 174826) (0.1573, 25) (0.1574, 38) (0.1574, 14)
8 (0.0889, 133070) (0.0887, 318) (0.0888, 208) (0.0890, 164) 31 (0.0454, 176860) (0.0454, 127) (0.0464, 136) (0.0452, 53)
9 (0.0746, 277654) (0.1563, 643) (0.2468, 358) (0.0457, 148) 32 (0.0396, 140286) (0.0484, 220) (0.0410, 174) (0.0952, 64)
10 (0.0611, 198032) – (0.0601, 1088) (0.0635, 349) 33 (0.0267, 252528) (0.0518, 344) (0.0520, 232) (0.1956, 141)
11 (0.0390, 116550) – (0.1846, 442) (0.0370, 137) 34 (0.2245, 287140) (0.2287, 180) (0.2220, 322) (0.2203, 127)
12 (0.0622, 214442) (0.0601, 816) (0.1899, 340) (0.0599, 186) 35 (0.0153, 155978) (0.0306, 283) (0.0297, 210) (0.0302, 110)
13 (0.0167, 107360) (0.0183, 66) (0.0170, 88) (0.0167, 46) 36 (0.0472, 458574) (0.0461, 37) (0.0460, 50) (0.0457, 35)
14 (0.1307, 398462) (0.1313, 311) (0.1316, 474) (0.1434, 124) 37 (0.0152, 145496) – (0.0610, 6218) (0.0970, 918)
15 (0.0702, 181472) – (0.0714, 828) (0.0697, 294) 38 (0.2209, 143716) (0.2222, 271) (0.2220, 222) (0.2218, 105)
16 (0.0491, 96932) – (0.0499, 706) (0.0486, 329) 39 (0.1427, 126976) – (0.1402, 848) (0.1445, 315)
17 (0.0723, 124446) (0.0668, 58) (0.0673, 104) (0.0676, 48) 40 (0.0828, 129036) (0.0718, 548) (0.0748, 362) (0.1849, 99)
18 (0.0937, 118946) (0.0935, 25) (0.0933, 40) (0.0934, 20) 41 (0.0325, 339120) (0.0285, 71) (0.0297, 284) (0.0280, 36)
19 (0.0166, 157064) (0.0277, 90) (0.0286, 124) (0.0278, 84) 42 (0.0654, 78496) – (0.0662, 626) (0.0731, 308)
20 (0.0845, 148874) – (0.0822, 300) (0.0821, 157) 43 (0.0787, 107480) (0.0785, 64) (0.0800, 64) (0.0780, 35)
21 (0.0196, 93014) (0.0688, 76) (0.0172, 104) (0.1456, 44) 44 (0.0164, 168376) (0.1454, 65) (0.0187, 64) (0.1631, 37)
22 (0.0193, 245844) (0.0216, 852) (0.0254, 576) (0.0213, 228) 45 (0.0432, 104310) (0.0449, 158) (0.0453, 150) (0.0457, 47)
23 (0.1023, 160638) – (0.1019, 888) (0.1025, 292)
Fig. 16. Comparison between PolyFit (Nan and Wonka, 2017) and our method on a building that demonstrates a non-manifold structure. Our method faithfully reconstructs the
surface, while PolyFit impertinently enforces manifoldness, resulting in incorrect reconstruction.
pairwise intersection of all input planes and thus the partitioning by the
vertical plane is always guaranteed because every pair of the support
planes will intersect and result in four candidate faces. In this sense,
verticality is not a concern for PolyFit.

Our experiments reveal that introducing the vertical priority leads
to slightly higher accuracy, i.e., 0.9% less Hausdorff distance on aver-
age. We would like to point out that this priority has not been exploited
in the previous work. We have also observed in our experiments that
non-manifold structures can significantly affect surface reconstruction,
as exemplified by Fig. 16. Since our method constrains only water
tightness, the reconstructed surface respects faithfully the geometry of
the point cloud that exhibits a non-manifold structure, which PolyFit
fails due to its manifoldness hard constraint.

In addition to the methods from the reconstruction category, we fur-
ther compared our method with a few commonly used shape simplifica-
tion methods, namely, QEM (Garland and Heckbert, 1997), SAMD (Sali-
nas et al., 2015), VSA (Cohen-Steiner et al., 2004), and FPS (Li and Nan,
2021). For these methods, we set their expected number of vertices to
be comparable to the models generated by our method, which ensures
that the quality of the generated building models is compared at the
same complexity level. Notice that, however, the resulting number
of faces is not guaranteed to be identical to ours because no such
constraints can be asserted with the three surface approximation meth-
ods. As can be seen from Fig. 17, VSA produces surfaces with the
worst quality given the same complexity. SAMD, though claiming to be
structure-aware, fails to deliver surfaces with compact planes, partially
because of its strong compliance to the detected primitives, which on
the contrary limits its compactness when the primitives are of low
quality. QEM generates fractured surfaces because its quadric error
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metric contracts edges without attention to the piecewise planarity
of the buildings. Nevertheless, the results from QEM are more plau-
sible than VSA and SAMD. FPS generates the most visually pleasing
results among the four methods because of its capability of preserving
piecewise-planar structures and sharp features. However, the results are
not as regular as ours. In contrast, our method produces surface models
directly from point clouds, which recovers stronger piecewise planarity
and meanwhile preserves sharp features.

5.2.2. Computational efficiency
Our adaptive space partitioning can significantly reduce the com-

putations for cell complex creation, compared to an exhaustive par-
titioning strategy. With exhaustive partitioning, a massive number of
candidate polyhedra are produced and the running time increases
accordingly. A comparison between our adaptive space partitioning and
the exhaustive partitioning in terms of the number of resulting cells and
the running time is presented in Fig. 18. The excessive number of cells
not only hinders computation but also inclines to defective surfaces on
subtle structures where inaccurate labels are more likely to be assigned.
Instead, the adaptive strategy avoids redundant partitioning and thus
produces compact surfaces efficiently.

We further compared our method with PolyFit (Nan and Wonka,
2017) and KSR (Bauchet and Lafarge, 2020) in terms of scalability.
The results are shown in Fig. 19. PolyFit is based on the exhaustive
partitioning strategy. Specifically, with pairwise intersection from the
initial set of planar primitives, PolyFit generates a prohibitively large
number of candidate faces, from which an optimal subset of the faces is
to be selected using optimization based on its linear integer program-
ming. In our experiments, PolyFit failed to reconstruct the surface when
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Fig. 17. Comparison between the results of our method and three geometry simplification methods, namely, QEM (Garland and Heckbert, 1997), SAMD (Salinas et al., 2015),
VSA (Cohen-Steiner et al., 2004), and FPS (Li and Nan, 2021). Note that QEM, SAMD, VSA, and FPS all output triangle surfaces while our results are arbitrary-sided polygonal
surfaces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. Comparison between our adaptive space partitioning and exhaustive partitioning in terms of the number of resulting cells (a) and the running time for partitioning (b).
the number of planar primitives exceeds 100. In contrast, our adaptive
binary space partitioning resulted in a significantly smaller number of
cells given the same number of input planar primitives, which allows
our method to process input point clouds with more than one thousand
planar primitives. For this building with 260 detected primitives, Poly-
Fit generated 762,439 candidate faces from the planar primitives and
failed to solve the resulted large linear integer program. In contrast, our
method successfully produced a high-quality surface model in 150 s, of
which the combinatorial optimization takes only 0.13 s. KSR has higher
efficiency than ours when the number of input primitives is smaller
than 150. When scaling to inputs of higher complexity, our method
excels since the employed adaptive strategy implies a strong locality,
as opposed to the globally kinetic structure in KSR. It is also worth
noting the potential implementation-wise performance gap, to which
the computation overhead may be ascribed especially with a lower
number of input primitives.3

5.2.3. Robustness to noise and incomplete input
To cope with noisy data, our network was trained on the synthetic

point clouds with intentionally added different levels of noise. To
evaluate the robustness of our method against noise, we tested our
method on point clouds with increasing levels of Gaussian noise. Fig. 20
demonstrates such an example. Though our method was trained on
point clouds with low noise levels in the range [0, 0.005𝑅], it produced
reliable reconstruction for point clouds with surprisingly higher levels
of noise (i.e., until 0.05𝑅, which is equivalent to measurement errors of
as high as 5 meters for a 100 meter-sided building).

3 KSR and PolyFit are implemented in C++, while ours is in Python.
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Since our neural network takes the global subsample of the point
cloud into account in occupancy learning, it captures the global struc-
tures of the buildings, making it robust to incomplete input. Examples
of such reconstruction on the Helsinki no-bottom point clouds are shown
in Fig. 12 and on the Shenzhen point clouds shown in Fig. 13. In these
examples, the ground planes in the input point clouds are completely
missing, and the lower parts of some buildings in the Shenzhen dataset
are also occluded. With such incomplete input, our method successfully
produced complete 3D models.

5.2.4. Effect of parameter 𝜆
The parameter 𝜆 in Eq. (6) weights the complexity term formulated

in the MRF for surface extraction from the cell complex, which controls
the complexity of the final surface model. Specifically, increasing 𝜆
leads to a more compact surface with fewer faces, while too large values
of 𝜆 may result in over-simplified surface models. Fig. 21 demonstrates
the effect of 𝜆 on the final reconstruction. In all other experiments, 𝜆
was set to 0.001, which was chosen by trial and error.

5.3. Limitations

Similar to existing piecewise-planar object reconstruction methods
such as PolyFit (Nan and Wonka, 2017), our work focuses on assem-
bling the initially detected planar primitives into compact polygonal
building models, rather than on detecting the planar primitives. We
thus have assumed that dominant planes (e.g., walls and roofs) can be
detected from input point clouds. However, this is not always possible
for noisy or incomplete scans. In our work, though a few steps are
designed to mitigate the inaccuracy from primitive detection, including
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Fig. 19. Scalability comparison between our method, PolyFit (Nan and Wonka, 2017), and KSR (Bauchet and Lafarge, 2020).
Fig. 20. Robustness to noise. Note that our neural network was trained on point clouds with different levels of noise in the range [0, 0.005𝑅], where 𝑅 denotes the radius of the
bounding sphere of the input point cloud.
primitive refinement and the complexity term in the MRF formulation,
it may still fail when the provided primitives are not complete or have
large errors. Fig. 22 shows an example of how the quality of planar
primitives impacts the reconstruction.

6. Conclusion

We have presented a novel efficient method for urban building
reconstruction by exploiting the learned implicit representation as an
occupancy indicator for explicit geometry extraction. With our occu-
pancy learning strategy and the MRF formulation, we demonstrate
that high-quality building models can be reconstructed with significant
advantages in terms of fidelity, compactness, and computational effi-
ciency. To the best of our knowledge, this is the first work where a
deep implicit field is explored for building reconstruction.
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In future work, we would like to extend the current method to
an end-to-end pipeline by incorporating the construction of explicit
geometry into a neural network. In addition, our MRF-based surface
extraction is efficient enough to allow interactive editing. We plan to
integrate user interactions into the reconstruction pipeline to further
improve the usability of the method for challenging reconstruction
scenarios.
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Fig. 21. The effect of parameter 𝜆 on the final reconstruction. Increasing 𝜆 leads to more compact surface models with fewer faces but potentially larger geometric errors.
Fig. 22. The impact of the quality of detected planar primitives on the final reconstruction. Left: given accurately detected planar primitives, our method reconstructs high-quality
building models. Right: the reconstruction result from inaccurately detected planar primitives.
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