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Abstract: We present a fully automatic approach for reconstructing compact 3D building models from 
large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR 
point clouds lies in that the vertical walls are typically missing. Based on the observation that urban 
buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an 
approach to infer the vertical walls directly from the data. With the planar segments of both roofs and 
walls, we hypothesize the faces of the building surface, and the final model is obtained by using an 
extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically, 
we introduce a new energy term to encourage roof preferences and two additional hard constraints 
into the optimization step to ensure correct topology and enhance detail recovery. Experiments on 
various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to 
the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we 
have generated a new dataset with our method consisting of the point clouds and 3D models of 20k 
real-world buildings. We believe this dataset can stimulate research in urban reconstruction from 
airborne LiDAR point clouds and the use of 3D city models in urban applications. Our source code is 
available at: https://github.com/yidahuang/City3D

Keywords: building reconstruction; LiDAR; point clouds; integer programming

1. Introduction

Digitizing urban scenes is an important research problem in computer vision, com-
puter graphics, and photogrammetry communities. Three-dimensional models of urban
buildings have become the infrastructure for a variety of real-world applications such
as visualization [1], simulation [2–4], navigation [5], and entertainment [6]. These appli-
cations typically require high-accuracy and compact 3D building models of large-scale
urban environments.

Existing urban building reconstruction methods strive to bring in a great level of detail
and automate the process for large-scale urban environments. Interactive reconstruction
techniques are successful in reconstructing accurate 3D building models with great de-
tail [7,8], but they require either high-quality laser scans as input or considerable amounts
of user interaction. These methods can thus hardly be applied to large-scale urban scenes.
To facilitate practical applications that require large-scale 3D building models, researchers
have attempted to address the reconstruction challenge using various data sources [9–16].
Existing methods based on aerial images [10,12,13] and dense triangle meshes [11] typically
require good coverage of the buildings, which imposes challenges in data acquisition [17].
Approaches based on airborne LiDAR point clouds alleviate data acquisition issues. How-
ever, the accuracy and geometric details are usually compromised [9,14–16]. Following
previous works using widely available airborne LiDAR point clouds, we strive to recover
desired geometric details of real-world buildings while ensuring topological correctness,
reconstruction accuracy, and good efficiency.
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The challenges for large-scale urban reconstruction from airborne LiDAR point
clouds include:

• Building instance segmentation. Urban scenes are populated with diverse objects, such
as buildings, trees, city furniture, and dynamic objects (e.g., vehicles and pedestrians).
The cluttered nature of urban scenes poses a severe challenge to the identification and
separation of individual buildings from the massive point clouds. This has drawn
considerable attention in recent years [18,19].

• Incomplete data. Some important structures (e.g., vertical walls) of buildings are
typically not captured in airborne LiDAR point clouds due to the restricted positioning
and moving trajectories of airborne scanners.

• Complex structures. Real-world buildings demonstrate complex structures with
varying styles. However, limited cues about structure can be extracted from the
sparse and noisy point clouds, which further introduces ambiguities in obtaining
topologically correct surface models.

In this work, we address the above challenges with the following strategies. Firstly, we
address the building instance segmentation challenge by separating individual buildings
using increasingly-available vectorized building footprint data. Secondly, we exploit prior
knowledge about the structures of buildings to infer their vertical planes. Based on the
fact that vertical planes in airborne LiDAR point clouds are typically walls connecting
the piecewise planar roofs to the ground, we propose an algorithm to infer the vertical
planes from incomplete point clouds. Our method has the option to extrude outer walls
directly from the given building footprint. Finally, we approach surface reconstruction
by introducing the inferred vertical planes as constraints into an existing hypothesis-and-
selection-based polygonal surface reconstruction framework [20], which favors good fitting
to the input point cloud, encourages compactness, and enforces manifoldness of the final
model (see Figure 1 for an example of the reconstruction results). The main contributions
of this work include:

• A robust framework for fully automatic reconstruction of large-scale urban buildings
from airborne LiDAR point clouds.

• An extension of an existing hypothesis-and-selection-based surface reconstruction
method for buildings, which is achieved by introducing a new energy term to encour-
age roof preferences and two additional hard constraints to ensure correct topology
and enhance detail recovery.

• A novel approach for inferring vertical planes of buildings from airborne LiDAR point
clouds, for which we introduce an optimal-transport method to extract polylines from
2D bounding contours.

• A new dataset consisting of the point clouds and reconstructed surface models of 20 k
real-world buildings.

(a) Input airborne LiDAR point cloud.
Figure 1. Cont.
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(b) Our reconstruction result
Figure 1. The automatic reconstruction result of all the buildings in a large scene from the AHN3
dataset [21].

2. Related Work

A large volume of methods for urban building reconstruction has been proposed.
In this section, we mainly review the techniques relevant to the key components of our
method. Since our method relies on footprint data for extracting building instances from
the massive point clouds of large scenes, and it can also be used for footprint extraction, we
also discuss related techniques in footprint extraction.

Roof primitive extraction. The commonly used method for extracting basic primitives
(e.g., planes and cylinders) from point clouds is random sample consensus (RANSAC) [22]
and its variants [23,24], which are robust against noise and outliers. Another group of
widely used methods is based on region growing [25–27], which assumes roofs are piece-
wise planar and iteratively propagates planar regions by advancing the boundaries. The
main difference between existing region growing methods lies in the generation of seed
points and the criteria for region expansion. In this paper, we utilize an existing region
growing method to extract roof primitives given its simplicity and robustness, which is
detailed in Rabbani et al. [25].

Footprint extraction. Footprints are 2D outlines of buildings, capturing the geometry
of outer walls projected onto the ground plane. Methods for footprint extraction commonly
project the points to a 2D grid and analyze their distributions [28]. Chen et al. [27] detect
rooftop boundaries and cluster them by taking into account topological consistency between
the contours. To obtain simplified footprints, polyline simplification methods such as
the Douglas-Peucker algorithm [29] are commonly used to reduce the complexity of the
extracted contours [12,30,31]. To favor structural regularities, Zhou and Neumann [32]
compute the principal directions of a building and regularize the roof boundary polylines
along with these directions. Following these works, we infer the vertical planes of a
building by detecting its contours from a heightmap generated from a 2D projection of the
input points. The contour polylines are then regularized by orientation-based clustering
followed by an adjustment step.

Building surface reconstruction. This type of methods aims at obtaining a simplified
surface representation of buildings by exploiting geometric cues, e.g., planar primitives
and their boundaries [15,32–36]. Zhou and Neumann [37] approached this by simplifying
the 2.5D TIN (triangulated irregular network) of buildings, which may result in artifacts in
building contours due to its limited capability in capturing complex topology. To address
this issue, the authors proposed an extended 2.5D contouring method with improved
topology control [38]. To cope with missing walls, Chauve et al. [39] also incorporated
additional primitives inferred from the point clouds. Another group of building surface
reconstruction methods involves predefined building parts, commonly known as model-
driven approaches [40,41]. These methods rely on templates of known roof structures and
deform-to-fit the templates to the input points. Therefore, the results are usually limited
to the predefined shape templates, regardless of the diverse and complex nature of roof
structures or high intraclass variations. Given the fact that buildings demonstrate mainly
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piecewise planar regions, methods have also been proposed to obtain an arrangement of
extracted planar primitives to represent the building geometry [20,42–44]. These methods
first detect a set of planar primitives from the input point clouds and then hypothesize a set
of polyhedral cells or polygonal faces using the supporting planes of the extracted planar
primitives. Finally, a compact polygonal mesh is extracted from the hypothesized cells or
faces. These methods focus on the assembly of planar primitives, for which obtaining a
complete set of planar primitives from airborne LiDAR point clouds is still a challenge.

In this work, we extend an existing hypothesis-and-selection-based general polygonal
surface reconstruction method [20] to reconstruct buildings that consist of piecewise planar
roofs connected to the ground by vertical walls. We approach this by introducing a novel
energy term and a few hard constraints specially designed for buildings to ensure correct
topology and decent details.

3. Methodology
3.1. Overview

The proposed approach takes as input a raw airborne LiDAR point cloud of a large
urban scene and the corresponding building footprints, and it outputs 2-manifold and
watertight 3D polygonal models of the buildings in the scene. Figure 2 shows the pipeline of
the proposed method. It first extracts the point clouds of individual buildings by projecting
all points onto the ground plane and collecting the points lying inside the footprint polygon
of each building. Then, we reconstruct a compact polygonal model from the point cloud of
each building.
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Figure 2. The pipeline of the proposed method (only one building is selected to illustrate the
workflow). (a) Input point cloud and corresponding footprint data. (b) A building extracted from the
input point cloud using its footprint polygon. (c) Planar segments extracted from the point cloud.
(d) The heightmap (right) generated from the TIN (left, colored as a height field). (e) The polylines
extracted from the heightmap. (f) The vertical planes obtained by extruding the inferred polylines.
(g) The hypothesized building faces generated using both the extracted planes and inferred vertical
planes. (h) The final model obtained through optimization.

Our reconstruction of a single building is based on the hypothesis-and-selection-based
framework of PolyFit [20], which is for reconstructing general piecewise-planar objects
from a set of planar segments extracted from the point cloud. Our method exploits not only
the planar segments directly extracted from the point cloud but also the vertical planes
inferred from the point cloud. From these two types of planar primitives, we hypothesize
the faces of the building. The final model is then obtained by choosing the optimal subset
of the faces through optimization.

The differences between our method and PolyFit are: (1) our method is dedicated to
reconstructing urban buildings, and it makes use of vertical planes as hard constraints, for
which we propose a novel algorithm for inferring the vertical planes of buildings that are
commonly missing in airborne LiDAR point clouds. (2) We introduce a new roof preference
energy term and two additional hard constraints into the optimization to ensure correct
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topology and enhance detail recovery. In the following sections, we detail the key steps of
our method with an emphasis on the processes that differ from PolyFit [20].

3.2. Inferring Vertical Planes

With airborne LiDAR point clouds, important structures like vertical walls of a build-
ing are commonly missed due to the restricted positioning and moving trajectories of the
scanner. In contrast, the roof surfaces are usually well captured. This inspired us to infer the
missing walls from the available points containing the roof surfaces. We infer the vertical
planes representing not only the outer walls but also the vertical walls within the footprint
of a building. We achieve this by generating a 2D rasterized height map from its 3D points
and looking for the contours that demonstrate considerable variations in the height values.
To this end, an optimal-transport method is proposed to extract closed polylines from the
contours. The polylines are then extruded to obtain the vertical walls. The process for
inferring the vertical planes is outlined in Figure 2d–f.

Specifically, after obtaining the point cloud of a building, we project the points onto
the ground plane, from which we create a height map. To cope with the non-uniform
distribution of the points (e.g., some regions have holes while others may have repeating
points), we construct a Triangulated Irregular Network (TIN) model using 2D Delaunay
triangulation. The TIN model is a continuous surface and naturally completes the missing
regions. Then, a height map is generated by rasterizing the TIN model with a specified
resolution r. The issue of small holes in the height maps (due to uneven distribution of roof
points) is further alleviated by image morphological operators while preserving the shape
and size of the building [45]. After that, a set of contours are extracted from the height
map using the Canny detector [46], which serves as the initial estimation of the vertical
planes. We propose an optimal-transport method to extract polylines from the initial set
of contours.

Optimal-transport method for polyline extraction. The initial set of contours are
discrete pixels, denoted as S, from which we would like to extract simplified polylines that
best describe the 2D geometry of S. Our optimal-transport method for extracting polylines
from S works as follows. First, a 2D Delaunay triangulation T0 is constructed from the
discrete points in S. Then, the initial triangulation T0 is simplified through iterative edge
collapse and vertex removal operations. In each iteration, the most suitable vertex to be
removed is determined in a way such that the following conditions are met:

• The maximum Hausdorff distance from the simplified mesh T0 to S is less than a
distance threshold εd.

• The increase of the total transport cost [47] between S and T0 is kept at a minimum.

In each iteration, a vertex satisfying the above conditions is removed from T0 by edge
collapse, and the overall transportation cost is updated.

As the iterative simplification process continues, the overall transportation cost will
increase. The edge collapse operation stops until no vertex can be further removed, or the
overall transportation cost has increased above a user-specified tolerance εc. After that, we
apply an edge filtering step [47] to eliminate small groups of undesirable edges caused by
noise and outliers. Finally, the polylines are derived from the remaining vertices and edges
of the simplified triangulation using the procedure described in [47]. Compared to [47],
our method not only minimizes the total transport cost but also provides control over local
geometry, ensuring that the distance between every vertex in the final polylines and the
initial contours is smaller than the specified distance threshold εd.

Regularity enhancement. Due to noise and uneven point density in the point cloud,
the polylines generated by the optimal-transport algorithm are unavoidably inaccurate
and irregular (see Figure 3a), which often leads to artifacts in the final reconstruction. We
alleviate these artifacts by enforcing structure regularities that commonly dominate urban
buildings. We consider the structure regularities, namely parallelism, collinearity, and
orthogonality, defined by [48]. Please note that since all the lines will be extruded vertically
to obtain the vertical planes, the verticality regularity will inherently be satisfied. We
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propose a clustering-based method to identify the groups of line segments that potentially
satisfy these regularities. Our method achieves structure regularization in two steps:
clustering and adjustment.

(a) Before (28 segments) (b) After (22 segments)
Figure 3. The effect of the clustering-based regularity enhancement on the polylines inferring the
vertical walls. (a) Before regularity enhancement. (b) After regularity enhancement.

Clustering. In this work, we cluster the line segments of the polylines generated by the
optimal-transport algorithm based on their orientation and pairwise Euclidean distance [49].
The pairwise Euclidean distance is measured by the minimum distance between a line
segment and the supporting line of the other line segment.

Adjustment. For each cluster that contains multiple line segments, we compute its
average direction. Then each line segment in the cluster is adjusted to align with the
average direction. In case the building footprint is provided, the structure regularity
can be further improved by aligning the segments with the edges in the footprint. After
average adjustment, the near-collinear and near-orthogonal line segments are adjusted to
be perfectly collinear and orthogonal, respectively (we use an angle threshold of 20°).

After regularity enhancement, the vertical planes of the building can be obtained by
vertical extrusion of the regularized polylines. The effect of the regularity enhancement is
demonstrated in Figure 3, from which we can see that it significantly improves structure
regularity and reduces the complexity of the building outlines.

3.3. Reconstruction

Our surface reconstruction involves two types of planar primitives, i.e., vertical planes
inferred in the previous step (see Section 3.2) and roof planes directly extracted from the
point cloud. Unlike PolyFit [20] that hypothesizes faces by computing pairwise intersections
using all planar primitives, we compute pairwise intersections using only the roof planes,
and then the resulted faces are cropped with the outer vertical planes (see Figure 2g). This
process ensures that the roof boundaries of the reconstructed building can be precisely
connected with the inferred vertical walls. Additionally, since the object to be reconstructed
is a real-world building, we introduce a roof preference energy term and a set of new hard
constraints specially designed for buildings into the original formulation. Specifically, our
objective for obtaining the model faces F∗ can be written as

F∗ = arg min
X

λdEd + λcEc + λrEr, (1)

where X = {xi|xi ∈ {0, 1}} denotes the binary variables for the faces (1 for selected and 0
otherwise). Ed is the data fitting term that encourages selecting faces supported by more
points, and Ec is the model complexity term that favors simple planar structures. For
more details about the data fitting term and the model complexity term, please refer to the
original paper of PolyFit [20]. In the following part, we elaborate on the new energy term
and hard constraints.
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New energy term: roof preference. We have observed in rare cases that a building in
aerial point clouds may demonstrate more than one layer of roofs, e.g., semi-transparent or
overhung roofs. In such a case, we assume a higher roof face is always preferable to the
ones underneath. We formulate this preference as an additional energy term called roof
preference, which is defined as

Er =
1
|F|

|F|

∑
i=1

xi ·
zmax − zi

zmax − zmin
(2)

where zi denotes the Z coordinate of the centroid of a hypothsized face fi. zmax and zmin
are, respectively, the highest and lowest Z coordinates of the building points. |F| denotes
the total number of hypothesized faces.

New hard constraints. We impose two hard constraints to enhance the topological
correctness of the final reconstruction.

• Single-layer roof. This constraint ensures that the reconstructed 3D model of a real-
world building has a single layer of roofs, which can be written as,

∑
k∈V( fi)

xk = 1,(1 ≤ i ≤ |F|)

where V( fi) denotes the set of hypothesized faces that have overlap with face fi ∈ F
in the vertical direction.

• Face prior. This constraint enforces that for all the derived faces from the same planar
segment, the one with the highest confidence value is always selected as a prior. Here,
the confidence of a face is measured by the number of its supporting points. This
constraint can be simply written as

xl = 1,

where xl is the variable whose value denotes the status of the most confident face fl of
a planar segment. This constraint resolves ambiguities if two hypothesized faces are
near coplanar and close to each other, which preserves finer geometric details. The
effect of this constraint is demonstrated in Figure 4.
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(b)
Figure 4. The effect of the face prior constraint. The insets illustrate the assembly of the hypothesized
faces in the corresponding marked regions (each line segment denotes a hypothesized face, and line
segments of the same color represent faces derived from the same planar primitive). (a) Reconstruction
without the face prior constraint. (b) Reconstruction with the face prior constraint, for which faces 1
and 4 both satisfy the face prior constraint. The numbers 1–7 denote the 7 candidate faces.
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The final surface model of the building can be obtained by solving the optimization
problem given in Equation (A4), subject to the single-layer roof and face prior hard constraints.

4. Results and Evaluation

Our method is implemented in C++ using CGAL [50]. All experiments were conducted
on a desktop PC with a 3.5 GHz AMD Ryzen Threadripper 1920X and 64 GB RAM.

4.1. Test Datasets

We have tested our method on three datasets of large-scale urban point clouds includ-
ing more than 20 k buildings.

• AHN3 [21]. An openly available country-wide airborne LiDAR point cloud dataset
covering the entire Netherlands, with an average point density of 8 points/m2. The
corresponding footprints of the buildings are obtained from the Register of Buildings
and Addresses (BAG) [51]. The geometry of footprint is acquired from aerial photos
and terrestrial measurements with an accuracy of 0.3 m. The polygons in the BAG
represent the outlines of buildings as their outer walls seen from above, which are
slightly different from footprints. We still use ‘footprint’ in this paper.

• DALES [52]. A large-scale aerial point cloud dataset consisting of forty scenes span-
ning an area of 10 km2, with instance labels of 6 k buildings. The data was collected
using a Riegl Q1560 dual-channel system with a flight altitude of 1300 m above ground
and a speed of 72 m/s. Each area was collected by a minimum of 5 laser pulses per me-
ter in four directions. The LiDAR swaths were calibrated using the BayesStripAlign 2.0
software and registered, taking both relative and absolute errors into account and cor-
recting for altitude and positional errors. The average point density is 50 points/m2.
No footprint data is available in this dataset.

• Vaihingen [53]. An airborne LiDAR point cloud dataset published by ISPRS, which
has been widely used in semantic segmentation and reconstruction of urban scenes.
The data were obtained using a Leica ALS50 system with 45° field of view and a
mean flying height above ground of 500 m. The average strip overlap is 30% and
multiple pulses were recorded. The point cloud was pre-processed to compensate for
systematic offsets between the strips. We use in our experiments a training set that
contains footprint information and covers an area of 399 m × 421 m with 753 k points.
The average point density is 4 points/m2.

4.2. Reconstruction Results

Visual results. We have used our method to reconstruct more than 20 k buildings
from the aforementioned three datasets. For the AHN3 [21] and Vaihingen [53] datasets,
the provided footprints were used for both building instance segmentation and extrusion
of the outer walls. Our inferred vertical planes were used to complete the missed inner
walls. For the DALES [52] dataset, we used the provided instance labels to extract building
instances, and we used our inferred vertical walls for the reconstruction.

Figures 1 and 5 show the 3D reconstruction of all buildings in two large scenes from
the AHN3 dataset [21]. For the buildings reconstructed in Figure 1, their models are
simplified polygonal meshes with an average face count of 34. To better reveal the quality
of our reconstructed building models, we demonstrate in Figure 6 a set of individual
buildings reconstructed from the three test datasets. From these visual results, we can
see that although the buildings have diverse structures of different styles, and the input
point clouds have varying densities and different levels of noise, outliers, and missing
data, our method succeeded in obtaining visually plausible reconstruction results. These
experiments also indicate that our approach is successful in inferring the vertical planes of
buildings from airborne LiDAR point clouds and it is effective to include these planes in
the 3D reconstruction of urban buildings.
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Figure 5. Reconstruction of a large scene from the AHN3 dataset [21].
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Figure 6. The reconstruction results of a set of buildings from various dataset. (1–14) are from
the AHN3 dataset [21], (15–22) are from the DALES dataset [52], (23–28) are from the Vaihingen
dataset [53].

Quantitative results. We have also evaluated the reconstruction results quantitatively.
Since ground-truth reconstruction is not available for all buildings in the three datasets, we
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chose to use the commonly used accuracy measure, Root Mean Square Error (RMSE), to
quantify the quality of each reconstructed model. In the context of surface reconstruction,
RMSE is defined as the square root of the average of squared Euclidean distances from the
points to the reconstructed model. In Table 1, we report the statistics of our quantitative
results on the buildings shown in Figure 6. We can see that our method has obtained good
reconstruction accuracy, i.e., the RMSE for all buildings is between 0.04 m to 0.26 m, which
is quite promising for 3D reconstruction of real-world buildings from noisy and sparse
airborne LiDAR point clouds. As observed from the number of faces column of Table 1, our
results are simplified polygonal models and are more compact than those obtained from
commonly used approaches such as the Poisson surface reconstruction method [54] (that
produces dense triangles). Table 1 also shows that the running times for most buildings are
less than 30 s. The reconstruction of the large complex building shown in Figure 6 (12) took
42 min. This long reconstruction time is due to that our method computes the pairwise
intersection of the detected planar primitives and inferred vertical planes, and it generates
a large number of candidate faces and results in a large optimization problem [20] (see also
Section 4.7). The running time with respect to the number of detected planar segments for
the reconstruction of more buildings is reported in Figure 7.

Table 1. Statistics on the reconstructed buildings shown in Figure 6. For each building, the number of
points in the input, number of faces in the reconstructed model, fitting error (i.e., RMSE in meters),
and running time (in seconds) are reported.

Dataset Model #Points #Faces RMSE
(m)

Time
(s)

AHN3

(1) 732 23 0.07 3

(2) 532 42 0.12 4

(3) 1165 31 0.04 3

(4) 20,365 127 0.15 62

(5) 1371 48 0.04 5

(6) 1611 45 0.06 4

(7) 3636 68 0.21 18

(8) 2545 52 0.04 8

(9) 15,022 63 0.11 28

(10) 23,654 262 0.26 115

(11) 13,269 102 0.11 34

(12) 155,360 1520 0.09 2520

(13) 24,027 176 0.24 141

(14) 28,522 227 0.15 78

DALES

(15) 8662 39 0.04 11

(16) 11,830 73 0.1 8

(17) 10,673 47 0.07 7

(18) 7594 33 0.07 14

(19) 13,060 278 0.05 145

(20) 11,114 55 0.06 24

(21) 8589 51 0.06 15

(22) 18,909 282 0.08 86
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Table 1. Cont.

Dataset Model #Points #Faces RMSE
(m)

Time
(s)

Vaihingen

(23) 7701 51 0.24 25

(24) 6845 99 0.12 8

(25) 1007 24 0.11 2

(26) 11,591 206 0.17 10

(27) 4026 42 0.26 6

(28) 5059 61 0.22 9

Figure 7. The running time of our method with respect to the number of the detected planar segments.
These statistics are obtained by testing on the AHN3 dataset.

New dataset. Our method has been applied to city-scale building reconstruction. The
results are released as a new dataset consisting of 20 k buildings (including the reconstructed
3D models and the corresponding airborne LiDAR point clouds). We believe this dataset
can stimulate research in urban reconstruction from airborne LiDAR point clouds and the
use of 3D city models in urban applications.

4.3. Parameters

Our method involves a few parameters that are empirically set to fixed values for
all experiments, i.e., the distance threshold εd = 0.25 and the tolerance for overall trans-
portation cost εc = 2.0. The resolution r for the rasterization of the TIN model to generate
heightmaps is dataset dependent due to the difference in point density. It is set to 0.20 m
from AHN3, 0.15 m for DALES, and 0.25 m for Vaihingen. The weight of the roof preference
energy term λr = 0.04 (while the weights for the data fitting and model complexity terms
are set to λd = 0.34 and λc = 0.62, respectively).

4.4. Comparisons

We have compared our method with two successful open-source methods, i.e., 2.5D
Dual Contouring (dedicated for urban buildings) [37] and PolyFit (for general piecewise-
planar objects) [20], on the AHN3 [21], DALES [52], and Vaihingen [53] datasets. The city
block from the AHN3 dataset [21] is sparse and contains only 80,447 points for 160 buildings
(i.e., on average 503 points per building). The city region from DALES is denser and contains
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214,601 points for 41 buildings (i.e., on average 5234 points per building). The city area from
the Vaihingen dataset contains 69,254 points for 57 buildings (i.e., on average 1215 points
per building). The walls of all the point clouds are severely occluded. Figure 8 shows the
visual comparison of one of the buildings. PolyFit assumes a complete set of input planar
primitives, which is not the case for airborne LiDAR point clouds because the vertical walls
are often missing. For PolyFit to be effective, we added our inferred vertical planes to its
initial set of planar primitives. From the result, we can observe that both PolyFit and our
method can generate compact building models, and the number of faces in the result is
an order of magnitude less than that of the 2.5D Dual Contouring method. It is worth
noting that even with the additional planes, PolyFit still failed to reconstruct some walls
and performed poorly in recovering geometric details. In contrast, our method produces
the most plausible 3D models. By inferring missing vertical planes, our method can recover
inner walls, which further split the roof planes and bring in more geometric details into the
final reconstruction. Table 2 reports the statistics of the comparison, from which we can
see that the reconstructed building models from our method have the highest accuracy. In
terms of running time, our method is slower than the other two, but it is still acceptable in
practical applications (on average 4.9 s per building).

(a) Input point cloud (b) 2.5DC (296 faces) (c) PolyFit (58 faces) (d) Ours (86 faces)
Figure 8. Comparison with 2.5D Dual Contouring (2.5DC) [37] and PolyFit [20] on a single building
from the AHN3 dataset [21].

Table 2. Statistics on the comparison of 2.5D Dual Contouring [37], PolyFit [20], and our method on
the reconstruction from the AHN3 [21], DALES [52], and Vaihingen [53] datasets. Total face numbers,
running times, and average errors are reported.

Dataset Method #Faces RMSE (m) Time (s)

AHN3

2.5D DC [37] 12,781 0.213 13

PolyFit [20] 1848 0.242 160

Ours 2453 0.128 380

DALES

2.5D DC [37] 2297 0.204 10

PolyFit [20] 444 0.287 230

Ours 583 0.184 670

Vaihingen

2.5D DC [37] 2695 0.168 6

PolyFit [20] 647 0.275 102

Ours 798 0.157 212

We also performed an extensive quantitative comparison with the 3D building models
from the BAG3D [55], which is a public 3D city platform that provides 3D models of urban
buildings at the LoD2 level. For this comparison, we picked four different regions consisting
of 1113 buildings in total from the BAG3D. In Figure 9, we demonstrate a visual comparison,
from which we can see that our models demonstrate more regularity. The quantitive result
is reported in Table 3, from which we can see that our results have higher accuracy.
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(a) Result from BAG3D

(b) Ours result
Figure 9. A visual comparison with BAG3D [55]. A building from Table 3 (b) is shown.

Table 3. Quantitative comparison with the BAG3D [55] on four urban scenes (a)–(d). Both BAG3D
and our method used the point clouds from the AHN3 dataset [21] as input. The bold font indicates
smaller RMSE values.

Region #Points #Building RMSE (m)
BAG3D

RMSE (m)
Ours

(a) 1,694,247 198 0.088 0.079

(b) 329,593 387 0.139 0.138

(c) 224,970 368 0.140 0.132

(d) 80,447 160 0.146 0.128

4.5. With vs. Without Footprint

Our method can infer the vertical planes of a building from its roof points, and then
the outer walls are completed using the vertical planes. It also has the option to directly
use given footprint data for reconstruction. With a given footprint, vertically planes are
firstly obtained by extruding the footprint polygons. Then these planes and those extracted
from the point clouds are intersected to hypothesize the model faces, followed by the
optimization step to obtain the final reconstruction. Figure 10 shows such a comparison on
two buildings.

4.6. Reconstruction Using Point Clouds with Vertical Planes

The methodology presented in our paper only focuses on airborne LiDAR point clouds,
in which vertical walls of buildings are typically missing. In practice, our method can be
easily adapted to work with other types of point clouds that contain points of vertical walls,
e.g., point clouds reconstructed from drone images. For such point clouds, our method can
still be effective by replacing the inferred vertical planes with those directly detected from
the point clouds. Figure 11 shows two such examples.
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Figure 10. Comparison between the reconstruction with (b) and without (c) footprint data on two
buildings (a) from the AHN3 dataset [21]. The number below each model denotes the root mean
square error (RMSE). Using the inferred vertical planes slightly increases reconstruction errors.

Figure 11. Reconstruction from aerial point clouds. In these point clouds, the vertical walls can
be extracted from the point clouds and directly used in reconstruction, and thus the vertical plane
inference step was skipped. The dataset is obtained from Can et al. [56].

4.7. Limitations

Our method can infer the missing vertical planes of buildings, from which the outer
vertical planes serve as outer walls in the reconstruction. Since the vertical planes are
inferred from the 3D points of rooftops, the walls in the final models may not perfectly
align with the ground-truth footprints (see the figure below). Thus, we recommend the
use of high-quality footprint data whenever it is available. Besides, our method extends
the hypothesis-and-selection-based surface reconstruction framework of PolyFit [20] by
introducing new energy terms and hard constraints. It naturally inherits the limitation
of PolyFit, i.e., it may encounter computation bottlenecks for buildings with complex
structures (e.g., buildings with more than 100 planar regions). An example has already
been shown in Figure 6 (12).
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5. Conclusions and Future Work

We have presented a fully automatic approach for large-scale 3D reconstruction of
urban buildings from airborne LiDAR point clouds. We propose to infer the vertical planes
of buildings that are commonly missing from airborne LiDAR point clouds. The inferred
vertical planes play two different roles during the reconstruction. The outer vertical planes
directly become part of the exterior walls of the building, and the inner vertical planes
enrich building details by splitting the roof planes at proper locations and forming the
necessary inner walls in final models. Our method can also incorporate given building
footprints for reconstruction. In case footprints are used, they are extruded to serve the
exterior walls of the models, and the inferred inner planes enrich building details. Extensive
experiments on different datasets have demonstrated that inferring vertical planes is an
effective strategy for building reconstruction from airborne LiDAR point clouds, and the
proposed roof preference energy term and the novel hard constraints ensure topologically
correct and accurate reconstruction.

Our current framework uses only planar primitives and it is sufficient for reconstruct-
ing most urban buildings. In the real world, there still exist buildings with curved surfaces,
which our current implementation could not handle. However, our hypothesize-and-
selection strategy is general and can be extended to process different types of primitives.
As a future work direction, our method can be extended to incorporate other geometric
primitives, such as spheres, cylinders, or even parametric surfaces. With such an extension,
buildings with curved surfaces can also be reconstructed.
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Appendix A. The Complete Formulation

Our reconstruction is obtained by finding the optimal subset of the hypothesized faces.
We formulate this as an optimization problem, with an objective function consisting of
three energy terms: data fitting, model complexity, and roof preference. The first two terms are
the same as in [20]. In the following, we briefly introduce all these terms and provide the
final complete formulation.

• Data fitting. It is defined to measure how well the final model (i.e., the assembly of
the chosen faces) fits to the input point cloud,

Ed = 1− 1
|P|

|F|

∑
i=1

xi · support( fi), (A1)

https://github.com/yidahuang/City3D
https://github.com/yidahuang/City3D
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where |P| is the number of points in the point cloud. support( fi) measures the num-
ber of points that are ε-close to a face fi ∈ F, and xi ∈ {0, 1} denotes the binary
status of the face fi (1 for selected and 0 otherwise). |F| denotes the total number of
hypothesized faces.

• Model complexity. To avoid defects introduced by noise and outliers, this term is
introduced to encourage large planar structures,

Ec =
1
|E|

|E|

∑
i=1

corner(ei), (A2)

where |E| denotes the total number of pairwise intersections in the hypothesized face
set. corner(ei) is an indicator function denoting if choosing two faces connected by an
edge ei results in a sharp edge in the final model (1 for sharp and 0 otherwise).

• Roof preference. We have observed in rare cases that a building in aerial point clouds
may demonstrate more than one layer of roofs, e.g., semi-transparent or overhung
roofs. In such a case, we assume a higher roof face is preferable to the ones underneath.
We formulate this preference as an additional roof preference energy term,

Er =
1
|F|

|F|

∑
i=1

xi ·
zmax − zi

zmax − zmin
(A3)

where zi denotes the Z coordinate of the centroid of a face fi. zmax and zmin are,
respectively, the highest and lowest Z coordinates of the building points.

With all the constraints, the complete optimization problem is written as

min
X

λdEd + λcEc + λrEr

s.t.



∑
k∈V( fi)

xk = 1, (1 ≤ i ≤ |F|)

∑
j∈N(ei)

xj = 0 or 2, (1 ≤ j ≤ |E|)

xl = 1,
xi ∈ {0, 1}, ∀i ∈ N

(A4)

where the first constraint is call single roof, which ensures that the reconstructed building
model has a single layer of roofs. The second constraint enforces that in the final model an
edge is associated with two adjacent faces, ensuring the final model to be watertight and
manifold. The third constraint is call face prior, which ensures that, for the faces derived
from the same planar segment, the one with the highest confidence value is selected as
a prior.

By solving the above optimization problem, the set of selected faces { fi|xi = 1} forms
the final surface model of a building.
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