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Abstract

Recent developments in data acquisition technology allow us to collect 3D
texture meshes quickly. Those can help us understand and analyse the
urban environment, and as a consequence are useful for several applications
like spatial analysis and urban planning. Semantic segmentation of texture
meshes through deep learning methods can enhance this understanding, but
it requires a lot of labelled data. The contributions of this work are three-
fold: (1) a new benchmark dataset of semantic urban meshes, (2) a novel
semi-automatic annotation framework, and (3) an annotation tool for 3D
meshes. In particular, our dataset covers about 4 km2 in Helsinki (Finland),
with six classes, and we estimate that we save about 600 hours of labelling
work using our annotation framework, which includes initial segmentation and
interactive refinement. We also compare the performance of several state-of-the-
art 3D semantic segmentation methods on the new benchmark dataset. Other
researchers can use our results to train their networks: the dataset is publicly
available, and the annotation tool is released as open-source.

Keywords: Texture meshes; Urban scene understanding; Mesh annotation;
Semantic segmentation; Over-segmentation; Benchmark dataset

1. Introduction

Understanding the urban environment from 3D data (e.g. point clouds
and 3D meshes) is a long-standing goal in photogrammetry and computer
vision [1, 2]. The fast recent developments in data acquisition technologies
and processing pipelines have allowed us to collect a great number of datasets
on our 3D urban environments. Prominent examples are Google Earth [3],
texture meshes covering entire cities (e.g. Helsinki [4]), or point clouds covering
entire countries (e.g., the Netherlands AHN [5]). These datasets have attracted
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interest because of their potential in several applications, for instance, urban
planning [6, 7], positioning and navigation [8, 9, 10], spatial analysis [11],
environmental analysis [12], and urban fluid simulation [13].

To effectively understand the urban phenomena behind the data, a large
amount of ground truth is typically required, especially when applying
supervised learning-based techniques, such as a deep Convolutional Neural
Network (CNN). The recent development of machine learning (especially deep
learning) techniques has demonstrated promising performance in semantic
segmentation of 3D point clouds [14, 15, 16]. Compared to point clouds, a
surface representation (in the form of a 3D mesh, often with textures, see
Figure 1 and 2 for an example) of the urban scene has multiple advantages:
easy to acquire, compact storage, accurate, and with well-defined topological
structures.

Figure 1: Part of the semantic urban mesh benchmark dataset shown as a texture mesh.
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Figure 2: Part of the semantic urban mesh benchmark dataset, showing the semantic classes
(unclassified regions are in black).

This means that 3D meshes have the potential to serve as input for scene
understanding. As a consequence, there is an urgent demand for large-scale
urban mesh datasets that can be used as ground truth for both training and
evaluating the 3D semantic segmentation workflows.

In this paper, we aim to establish a benchmark dataset of large-scale
urban meshes reconstructed from aerial oblique images. To achieve this goal,
we propose a semi-automatic mesh annotation framework that includes two
components: (1) an automatic process to generate intermediate labels from
the raw 3D mesh; (2) manual semantic refinement of those labels. For
the intermediate label generation step, we have developed a semantic mesh
segmentation method that classifies each triangle into a pre-defined object class.
This semantic initialization allows us to achieve an overall accuracy of 93.0% in
the classification of the triangle faces in our dataset, saving significant efforts for
manually labelling. Then, in the semantic refinement step, a mesh annotation
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tool (which we have developed) is used to refine the semantic labels of the
pre-labelled data (at the triangle and segment levels).

We have used our proposed framework to generate a semantic-rich urban
mesh dataset consisting of 19 million triangles and covering about 4 km2 with
six object classes commonly found in an urban environment: terrain, high-
vegetation, building, water, vehicle, and boat (Figure 2 shows an example from
our dataset). With our semi-automatic annotation framework, generating the
ground truth took only about 400 hours; we estimate that manually labelling
the triangles would have taken more than 1000 hours. The contributions of our
work are:

• a semantic-rich urban mesh dataset of six classes of common urban objects
with texture information;

• a semi-automatic mesh annotation framework consisting of two parts:
a pipeline for semantic mesh segmentation and an annotation tool for
semantic refinement;

• a comprehensive evaluation and comparison of the state-of-the-art
semantic segmentation methods on the new dataset.

The benchmark dataset is freely available, and the semantic mesh segmentation
methods and the annotation software for 3D meshes are released as open-
source1.

2. Related Work

Urban datasets can be captured with different sensors and be reconstructed
with different methods, and the resulting datasets will have different properties.
Most benchmark urban datasets focus on point clouds, whereas our semantic
urban benchmark dataset is based on textured triangular meshes.

The input of the semantic labelling process can be raw or pre-labelled urban
datasets such as the automatically generated results from over-segmentation
or semantic segmentation (see Section 3.3). Regardless of the input data, it
still needs to be manually checked and annotated with a labelling tool, which
involves selecting a correct semantic label from a predefined list for each triangle
(or point, depending on the dataset) by users. In addition, some interactive
approaches can make the labelling process semi-manual. However, unlike our
proposed approach, the labelling work of most of the 3D benchmark data does
not take full advantage of over-segmentation and semantic segmentation on 3D
data, and interactive annotation in the 3D space.

We present in this section an overview of the publicly available semantic 3D
urban benchmark datasets categorised by sensors and reconstruction types (see
Table 1). More specifically, we elaborate on the quality, scale, and labelling
strategy of the existing urban datasets regarding semantic segmentation.

1https://3d.bk.tudelft.nl/projects/meshannotation/
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2.1. Photogrammetric Products

2.1.1. Dense Point Clouds

The Campus3D [29] is to our knowledge the first aerial point cloud
benchmark. The coarse labelling is conducted in 2D projected images with three
views, and the grained labels are refined in 3D with user-defined rotation angles.
The dataset covers only the campus of the National University of Singapore and
is thus not representative of a typical urban scene.

SensatUrban [30] is another example of the photogrammetric point clouds
covering various urban landscapes in two cities of the UK. The semantic points
are manually annotated via the off-the-shelf software tool CloudCompare [34],
and the overall annotation is reported to have taken around 600 hours. The
dataset also contains several areas without points, especially for water surfaces
and regions with dense objects. The leading causes are the Lambertion surface
assumption during the image matching and the inadequate image overlapping
rate during the flight.

Similarly, the Swiss3DCities [31] was recently released that covers three
cities in Zurich but twice smaller than the SensatUrban. The annotation work
was conducted on a simplified mesh in the software Blender [35], and then the
semantics were transferred to the mesh vertices, which are regarded as point
clouds, via the nearest neighbour search. The mesh simplification may result
in the loss of small-scale objects such as building dormers and chimneys, and
the automatic transfer of the labels could have introduced errors in the ground
truth.

2.1.2. Triangle Meshes

To the best of our knowledge, the ETHZ RueMonge 2014 [28] is the first
urban-related benchmark dataset available as surface meshes. The label for each
triangle is obtained from projecting selected images that are manually labelled
from over-segmented image sequences [27]. In fact, due to the error of multi-
view optimisation and the ambiguous object boundary within triangle faces, the
datasets contain many misclassified labels, making them unsuitable for training
and evaluating supervised-learning algorithms.

Hessigheim 3D [32, 33] is a small-scale semantic urban dataset consisting
of highly dense LiDAR point clouds and high resolution texture meshes.
Particularly, the mesh is generated from both LiDAR point cloud and oblique
aerial images in a hybrid way. The labels of point clouds are manually annotated
in CloudCompare [34], and the labels of the mesh are transferred from the
point clouds by computing the majority votes per triangle. However, if the
mesh triangle has no corresponding points, some faces may remain unlabelled
which resulted in about 40% unlabelled area. In addition, this dataset contains
non-manifold vertices, which makes it difficult to use directly.

2.2. LiDAR Point Clouds

Unlike photogrammetric point clouds, LiDAR point clouds usually do not
contain colour information. To annotate them properly, additional information
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is often required, e.g. images or 2D maps. LiDAR point cloud benchmark
datasets are more common than photogrammetric ones.

2.2.1. Street-view Datasets

The Oakland 3D [17] is one of the earliest mobile laser scanning (MLS) point
cloud datasets, which was designed for the classification of outdoor scenes. It has
five hand-labelled classes with 44 sub-classes, but without colour information
and semantic categories like roof, canopy, or interior building block, which are
typical for all street-view captured datasets.

Compared to Oakland 3D, Paris-rue-Madame [18] is a relatively smaller
dataset which used the 2D semantic segmentation results for 3D annotation.
Specifically, the point clouds were projected onto images to extract the
objects hierarchically with several unsupervised segmentation and classification
algorithms.

Although the 2D pre-labelled generation is fully automatic, different
semantic categories require different segmentation algorithms resulting in
difficulties in the classification of multiple classes.

The iQmulus dataset [19] is a 10 km street dataset annotated based on
projected images in the 2D space. Specifically, the user first needs to extract
objects by editing the image with a polyline tool and then assigns labels to
the extracted object regions. Some automatic functions are made for polyline
editing in this framework, but the entire annotation pipeline is still complicated.

Unlike other street view datasets, Semantic3D [2] is a dataset consisting of
terrestrial laser scanning (TLS) point clouds (the scanner is not moving and
scans are made from only a few viewpoints). It has eight classes and colours
were obtained by projecting the points onto the original images. There are
two annotation methods: (1) annotating in 3D with an iterative model-fitting
approach on manually selected points; (2) annotating in a 2D view by separate
background from a drawn polygon in CloudCompare [34]. Although it covers
many urban scenes and includes RGB information, the acquired objects are
incomplete because of the limited viewpoints and occlusions.

The other three typical MLS point cloud datasets that were manually
labelled are Paris-Lille-3D [20], SemanticKITTI [21], and Toronto-3D [22].

2.2.2. Aerial-view Datasets

As for ALS benchmark point clouds, representative datasets are ISPRS [23],
DublinCity [24], and LASDU [26] covering various scales of city landscapes and
were annotated manually with off-the-shelf software. Instead of fully manual
annotation, the Dayton Annotated LiDAR Earth Scan (DALES) [25] used
digital elevation models (DEM) to distinguish ground points with a certain
threshold, the estimated normal to label the building points roughly, and
satellite images to provide contextual information as references for annotators
to check and label the rest of data. Similarly, the AHN3 dataset [5] was semi-
manually labelled by different companies with off-the-shelf software. Besides,
since the ALS measurement is conducted in the top view direction, unlike
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oblique aerial cameras, the obtained point clouds often miss facade information
to a certain degree.

3. The Semantic Urban Mesh Dataset

3.1. Dataset Specification

We have used Helsinki’s 3D texture meshes as input and annotated them
as a benchmark dataset of semantic urban meshes. The Helsinki’s raw dataset
covers about 12 km2, and it was generated in 2017 from oblique aerial images
that have about a 7.5 cm ground sampling distance (GSD) using an off-the-
shelf commercial software namely ContextCapture [36]. The source images
have three colour channels (i.e., red, green, and blue) and are collected from
an airplane with five cameras that have 80% length coverage and 60% side
coverage. To recover the 3D water bodies that do not fulfil the Lambertian
hypothesis, 2D vector maps and ortho-photos are used when performing the
surface reconstruction. Furthermore, processing like aerial triangulation, dense
image matching, and mesh surface reconstruction were all performed with
ContextCapture. It should be noticed that the entire region of Helsinki is split
into tiles, and each of them covers about 250 m2 [37]. As shown in Figure 3, we
have selected the central region of Helsinki as the study area, which includes 64
tiles and covers about 4 km2 map area (8 km2 surface area) in total.

3.2. Object Classes

We define the semantic categories for urban meshes by the most common
objects in the urban environment with unambiguous geometry and texture
appearance. Moreover, each triangle face is assigned to a label of one of the
six semantic classes. Ambiguous regions (which account for about 2.6% of the
total mesh surface area), such as shadowed regions or distorted surfaces, are
labelled as unclassified (see Figure 4). The object classes we consider in the
benchmark dataset are:

• terrain: roads, bridges, grass fields, and impervious surfaces;

• building: houses,high-rises, monuments, and security booths;

• high vegetation: trees, shrubs, and bushes;

• water: rivers, sea, and pools;

• vehicle: cars, buses, and lorries;

• boat: boats, ships, freighters, and sailboats;

• unclassified: incomplete objects like buses and trains, distorted surfaces
like tables, tents and facades, construction sites, underground walls.
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Figure 3: Overview of the semantic urban mesh benchmark. Left: the texture meshes
covering about 4 km2 map area. Right: the ground truth meshes. More views of the same
scene (with different visualization styles) are shown in Figures 1 and 2.

(a) (b)

(c) (d)

Figure 4: Ambiguous regions are labelled as unclassified (in black). (a) Shadow region with
texture. (b) Shadow region with semantic colour. (c) Distorted region with texture. (d)
Distorted region with semantic colour.

3.3. Semi-automatic Mesh Annotation

Rather than manually labelling each triangle face of the raw meshes, we
design a semi-automatic mesh labelling framework to accelerate the labelling
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Figure 5: The pipeline of the labelling workflow.

process. Figure 5 shows the overall pipeline of our labelling workflow.
Given the fact that urban environments consist of a large number of planar

regions in the data, we opt to label the data at the segment level instead
of individual triangle faces. Specifically, we over-segment the input meshes
into a set of planar segments. These segments can enrich local contextual
information for feature extraction and serve as the basic annotation unit to
improve annotation efficiency.

Instead of randomly choosing a mesh tile as input for annotation and
refinement, which is insufficient for manual annotation progress, we favour
picking a mesh tile that is more difficult to classify. Similar to active learning, we
first compute the feature diversity (see Equation 1) to optimally select a mesh
tile containing a variety of classes and objects at different scales and complexity.
The feature diversity Fm of tile m is computed as

Fm =

∑Nf

i=1

(
fi − f̄

)2
Nf

(1)

where fi represents each handcrafted feature which describe in Section 3.3.1,
and f̄ is mean value of a Nf dimensional feature vector. To acquire the first
ground truth data, we manually annotate the mesh (with segments) that is
selected with the highest feature diversity. Then, we add the first labelled mesh
into the training dataset for the supervised classification. Specifically, we use
the segment-based features as input for the classifier, and the output is a pre-
labelled mesh dataset. Next, we use the mesh annotation tool to manually
refine the pre-labelled mesh according to the feature diversity. Finally, the new
refined mesh will be added to the training dataset to improve the automatic
classification accuracy incrementally.
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3.3.1. Initial Segmentation

To avoid redundant computations of numerous triangles, we first apply mesh
over-segmentation (i.e., linear least-squares fitting of planes) based on region
growing on the input data to group triangle faces into homogeneous regions [38].
Such grouped regions are beneficial for computing local contextual features. We
then extract both geometric and radiometric features from those mesh segments
as follows:

• Eigen-based features are computed from the covariance matrix of the
triangle vertices with respect to the average centre within each segment,
which is beneficial for identifying urban objects with various surface
distributions. The linearity = (λ1 − λ2)/λ1, sphericity = λ3/λ1 and
change of curvature = λ3/(λ1 + λ2 + λ3) are computed based on the
three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0. The local eigenvectors ni and
the unit normal vector nz along Z-axis are used to compute the verticality
= 1−|ni · nz| [39]. Note that many eigen-based features have been studied
in literature [39, 40, 41], and some of them were designed for and tested
on LiDAR point clouds. These eigen-based features are mostly computed
per point based on its spherical neighbourhood, which often contains noise
and does not form a surface. Our chosen eigen-based features are defined
on a segment representing the surface of a mesh, and thus they can capture
non-local geometric properties of an object. Additionally, in this work,
we have tested all eigen-based features from the literature [39], and we
only present the ones that are effective for texture meshes.

• Elevation is divided into absolute elevation za, relative elevation zr and
multiscale elevations zm. Where za is the average elevation of the segment;
the relative elevation is computed as zr = za − zrmin

; the multiscale

elevation [42, 43] zm =
√

za−zmin

zmax−zmin
. And zrmin

denotes the lowest

elevation of the local largest ground segment computed within a cylindrical
neighbourhood with 30 meters radius around the segment centre. zmin

and zmax represent the local minimum and maximum elevation values of
a cylindrical neighbourhood within the scale of 10 meters, 20 meters, and
40 meters. Such large cylindrical neighbourhoods allow to find the local
ground considering the resilience to hilly environments, and the square
root ensures that small relative height values (i.e., values smaller than 1
m) get a larger elevation attribute to enlarge elevation differences between
small objects and the local ground (e.g., cars against the ground, boats
against the water surfaces). More importantly, due to the influence of
terrain fluctuations and various scales of urban objects, the elevation of
these three categories can complement each other.

• Segment area is computed as area(Sk) =
∑N

i=1 area(fi), where fi denotes
a triangle of the segment Sk, and N denotes the total number of triangles
in Sk.
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• Triangle density is defined as density(Sk) = N
area(Sk)

, which reveals the

object complexity, especially for adaptive urban meshes.

• Interior radius of 3D medial axis transform (InMAT) [44, 45] of a segment

Sk is formulated as rk =
∑M

i=1 ri
M , where M denotes the total number of

triangle vertices of Sk, and ri denotes the interior radius of the shrinking
ball that touches the vertex vi within the segment Sk. It is designed to
distinguish objects with different scales.

• HSV colour-based features are derived from the RGB channel of the entire
texture map. We use the HSV colour space since it can better differentiate
different objects than RGB. We compute the average colour, the variance
of the colour distribution of all pixels within each segment, and we further
discretize it into a histogram that consists of 15 bins of the hue channel,
five bins of the saturation channel, and five bins of the value channel.

• Greenness ag is used to classify objects that are similar to green
vegetation. Specifically, it is computed according to the averaged RGB
colour of each segment via ag = G− 0.39 ·R− 0.61 ·B [46].

All the above features are concatenated into a 44-dimensional feature vector
used by our random forest (RF) classifier in the initial segmentation.

3.3.2. Annotation Tool for Refinement

Because of the under-segmentation errors and the imperfect results of the
semantic mesh segmentation process, we design a mesh annotation tool (see
Figure 6) to manually correct the labelling errors. Our mesh annotation tool is
developed based on the labelling tool of CGAL [47].

As shown in Table 2, it consists of three operation categories: view, selection,
and annotation. The view operations provide essential functions for the user to
manipulate the scene camera, such as translate, rotate, zoom, or set the new
pivot for the scene. In addition, to use textures as a reference for labelling,
we map texture and face colour with a certain degree of transparency, and we
visualize the segment border to differentiate each segment.

The selection operations allow the user to select or deselect either triangle
faces (see Figure 7) or segments (see Figure 8) freely via a brush or a lasso.
Specifically, the face selection operation is used to fix the under-segmentation
errors and generate new segments, and the segment selection operation is to fix
incorrect segment labels.

We also allow the user to edit the selection of each individual segment with
splitting functions (see Figure 9) and automatic extraction of the most planar
region (see Figure 10). As for splitting, we first detect the potential planar and
non-planar segments marked by user strokes, and then the non-planar one is
split according to the vertex-to-plane distance. It allows generating candidate
non-planar regions (with respect to the detected planar segment) for the user
to edit, and it is useful to split a segment that covers large non-planar regions
or contains more than one dominant planar area. To extract the most planar

12



Figure 6: The interface of our annotation tool for 3D texture meshes.

Categories Operations Objects

View

Translate Camera
Rotate Camera

Zoom in / out Camera
Set pivot Camera

Selection

Multi-selection / Lasso Triangles / Segments
Expand / Reduce Triangles / Segments
Semantic selection Segments

Split region Segments
Planar region extraction Triangles

Split mesh Triangles

Annotation

Probability slider Segments
Segment area slider Segments

Progress bar Triangles
Switch semantic view Triangles

Labelling Triangles / Segments

Table 2: Basic operations in our annotation tool.

region, we apply the region growing algorithm [38] within the selected segment to
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(a) (b) (c)

Figure 7: An example of labelling by selecting triangles using the lasso tool (blue edges:
segment boundaries). (a) Before selection. (b) Lasso selection result (in red). (c) The correct
label has been assigned to the selected region. In this example, the label of the selected region
has been changed from ‘ground’ to ‘vehicle’.

(a) (b) (c)

Figure 8: An example of segment labelling. (a) Part of a wall of the building was previously
labelled as ‘high vegetation’ (in green). (b) Segment selection result (in red). (c) The label of
the selected segment has been corrected with the new label ‘building’.

(a) (b)

Figure 9: An example splitting planar and non-planar regions. (a) The user draws a stroke
(in red) across the border of the non-planar segment and the planar segment. (b) The detected
non-planar segment has been split into two parts (i.e., a non-planar region shown in red and
a planar segment shown in green).

automatically generate the candidate triangle faces with user-defined thresholds
(i.e., the maximum distance to the plane, the maximum accepted angle, and the
minimum region size). Such an operation allows the user to filter out some small
bumpy regions of the selected segment.

Besides, probability and area-based sliders and a progress bar are provided
in the annotation panel to improve annotation efficiency and experience,

14



(a) (b)

Figure 10: Editing an individual segment. (a) A segment is selected (highlighted in green)
for splitting. (b) Automatic extraction of the most planar region (shown in red) within the
selected segment according to user-defined thresholds.

respectively. Specifically, the probability slider is introduced for the user to
visually inspect the segments that are most likely misclassified. Moreover,
the user can further use it to inspect a specific class by switching the view to
highlight a specific semantic class. The segment area slider is used to identify
isolated tiny segments, which commonly appear as errors. The progress bar is
used to indicate the estimated labelling progress during the annotation. After
performing the selection, the user can easily assign the corresponding label to
the selected area.

4. Experiments

4.1. Data Split

To perform the semantic segmentation task, we randomly select 40 tiles
from the annotated 64 tiles of Helsinki as training data, 12 tiles as test data,
and 12 tiles as validation data (see Figure 11 (a)). For each of the six semantic
categories, we compute the total area in the training and test dataset to show
the class distribution. As shown in Figure 11 (b), some classes, like vehicles
and boats, only account for less than 5% of the total area, while the building
and terrain together comprise more than 70%. The unbalanced classes impose
significant challenges for semantic segmentation based on supervised learning.

4.2. Evaluation Metric

Since the triangle faces in the meshes have different sizes, we compute the
surface area for semantic evaluation instead of using the number of triangles.
The performance of semantic mesh segmentation is measured in precision, recall,
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(a) (b)

Figure 11: Overview of the data used in our experiment. (a) The distribution of the training,
test, and validation dataset. (b) Semantic categories of training (including validation dataset)
and test dataset.

F1 score, and intersection over union (IoU) for each object class. The evaluation
of the whole test area is applied with overall accuracy (OA), mean per-class
accuracy (mAcc), and mean per-class intersection over union (mIoU).

4.3. Evaluation of Initial Segmentation

We have implemented the semantic mesh segmentation and annotation tool
in C++ using the open-source libraries include CGAL [47], Easy3D [48], and
ETHZ random forest [49].

Our proposed pipeline for initial segmentation only takes a few input
parameters, which are shown in Table 3. The over-segmentation is intended
to find all planar regions in the model, for which we set the distance threshold
to 0.5 meters. This threshold value specifies the minimum geometric features
we would like the over-segmentation method to identify. In other words, the
region growing-based over-segmentation method will not be able to distinguish
two parallel planes with a distance smaller than this threshold. We set the
angle threshold to 90 degrees, which is large enough to cope with high levels
of noise (e.g., the distance value is small, but the angle between the triangle
normal and the plane normal is large). Moreover, the minimum area is set to
zero to allow planar segments of any arbitrary size. As for the random forest
classifier, we set the parameters initially to those of Rouhani et al. [43] followed
by fine-tuning using the validation data. Specifically, using 100 trees is sufficient
to guarantee the stability of the model, and using the depth of 30 is adequate
to avoid over-fitting and under-fitting for training.
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Method Parameters Value

Region Growing

Minimum area 0 m2

Distance to plane 0.5 m
Accepted angle 90◦

Random Forest
Number of trees 100
Maximum depth 30

Table 3: Parameters used in our approach.

Rather than classifying about 19 million triangle faces (i.e., the entire
dataset), we use 515,176 segments that are clustered during over-segmentation.
Although both semantic segmentation and labelling refinement can benefit from
mesh over-segmentation, the degree of the under-segmentation error cannot be
avoided. Since our mesh over-segmentation does not intend to retrieve the
individual objects and the purpose is to perform semantic segmentation, we
measure the maximum achievable performance by calculating the IoU instead
of using under-segmentation errors to evaluate it. The upper bound IoU of each
class we could achieve for semantic segmentation is presented in Table 4, and
the upper bound mean IoU (mIoU) over all classes is about 90.9% as shown
in Table 5. In addition, the results of our experiment in Tables 4 and 5 are
reported based on the average performance of ten times experiments with the
same configuration.

Class Precision (%) Recall (%) F1 scores (%) IoU (%)
Upper

bound IoU
(%)

Terrain 87.7 94.3 90.9 83.3 93.9
High Vegetation 96.3 93.8 95.0 90.5 96.2

Building 94.6 97.7 96.1 92.5 99.0
Water 97.0 88.3 92.5 86.0 92.7
Vehicle 77.9 41.7 54.4 37.3 73.2
Boat 77.9 7.5 13.7 7.4 90.5

Table 4: Overall evaluation of our method. The Upper bound IoU refers to the maximum
achievable IoU in theory.

For semantic segmentation, a detailed evaluation of each class is listed in
Table 4, and we achieve about 93.0% overall accuracy and 66.2% mIoU as
shown in Table 5. The qualitative evaluation of it is shown in Figure 12. As
shown in Figure 12 (e), most of the prediction errors occur at small-scale objects
such as vehicles and boats due to fewer training samples and errors from over-
segmentation.
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Model OA (%) mAcc (%) mIoU (%) ∆mIoU (%)

Upper bound (Perfect) 98.1 91.6 90.9 ——
Ours (best) 93.0 70.6 66.2 0.0

Without sphericity 93.0 70.5 66.1 -0.1
Without segment area 92.9 70.5 66.0 -0.2

Without triangle density 92.9 70.4 66.0 -0.3
Without variance HSV 92.9 70.3 65.9 -0.3

Without absolute elevation 93.0 70.2 65.9 -0.3
Without relative elevation 92.9 70.3 65.8 -0.4

Without curvature 92.9 70.2 65.8 -0.4
Without multiscale elevations 92.8 69.8 65.1 -1.1

Without linearity 91.8 66.6 62.0 -4.2
Without greenness 91.9 66.6 61.9 -4.3

Without InMat 91.6 66.4 61.6 -4.6
Without average HSV 91.7 66.1 61.4 -4.8

Without verticality 91.4 66.1 61.3 -4.9
Without HSV histogram bins 91.5 66.0 61.1 -5.1

Table 5: Ablation study of the features in our approach. The Upper bound (Perfect) refers
to the maximum achievable performance in theory.

To better understand the relevance of the features, we measure the feature
importance and perform ablation studies (see Table 5). We can observe that
the radiometric features (which account for 62.8%) are more important than
geometric ones (which account for 37.2%). Moreover, after removing individual
feature vectors, the performance will decline, indicating each feature contributes
to the best results.
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(a) Original (b) Segments (c) Predictions (d) Truth (e) Error maps

Figure 12: Part of our semantic segmentation results. The first column shows the input
texture meshes; the second column shows the over-segmentation results; the third column
shows the predicted semantic meshes; the fourth column shows the ground truth meshes; the
last column shows the error maps (red: errors; green: correct labels).
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(a) Texture mesh (b) Wireframe (c) Sampled point cloud

Figure 13: Sampling point cloud from texture meshes. Our sampled points preserve both
geometric and radiometric information of the original mesh.

4.4. Evaluation of Competition Methods

To the best of our knowledge, none of the state-of-the-art deep learning
frameworks of 3D semantic segmentation can directly be used on large-scale
texture meshes. Additionally, although the data structures of point clouds and
meshes are different, the inherent properties of geometry in the 3D space of
the urban environment are nearly identical. In other words, they can share
the feature vectors within the same scenes. Consequently, we sample the mesh
into coloured point clouds (see Figure 13) with a density of about 10 pts/m2 as
input for the competing deep learning methods. In particular, we use Montecarlo
sampling [50] to generate randomly uniform dense samples, and we further prune
these samples according to Poisson distributions [51] and assign the colour via
searching the nearest neighbour from the textures.

To evaluate and compare with the current state-of-the-art 3D deep learning
methods that can be applied to a large-scale urban dataset, we select five
representative approaches (i.e., PointNet [14], PointNet++ [52], SPG [15],
KPConv [16], and RandLA-Net [53]). We perform all the experiments on an
NVIDIA GEFORCE GTX 1080Ti GPU. Note that these deep learning-based
methods downsample the input point clouds significantly as a pre-processing
step. In our experiments, the point sampling density is limited by the GPU
memory, and increasing or decreasing the sampling density within a reasonable
range may lead to slightly different performance. It should be noted that no
matter how dense the input point clouds are, almost all state-of-the-art deep
learning architectures (such as PointNet, PointNet++, RandLaNet, KPConv,
and SPG, etc.) downsample the input point clouds significantly, and they are
still able to learn effective features for classification. Besides, different deep
learning-based point cloud classification frameworks exploit different strategies
for downsampling the input points. In addition, we also compare with the
joint RF-MRF [43], which is the only competition method that directly takes
the mesh as input and without using GPU for computation.

The hyper-parameters of all the competing methods are tuned according to
the validation data to achieve the best results we could acquire. Besides, the
results of each competitive method (see Table 6) are demonstrated in average
performance based on ten times experiments with the same setting. From the
comparison results, as shown in Table 6, we found that our baseline method
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Terrain
High

Vegeta-
tion

Building Water Vehicle Boat mIoU OA mAcc mF1 ttrain

PointNet [14] 56.3 14.9 66.7 83.8 0.0 0.0 36.9 ± 2.3 71.4 ± 2.1 46.1 ± 2.6 44.6 ± 3.2 1.8
RandLaNet [53] 38.9 59.6 81.5 27.7 22.0 2.1 38.6 ± 4.6 74.9 ± 3.2 53.3 ± 5.1 49.9 ± 4.8 10.8

SPG [15] 56.4 61.8 87.4 36.5 34.4 6.2 47.1 ± 2.4 79.0 ± 2.8 64.8 ± 1.2 59.6 ± 1.9 17.8
PointNet++ [52] 68.0 73.1 84.2 69.9 0.5 1.6 49.5 ± 2.1 85.5 ± 0.9 57.8 ± 1.8 57.1 ± 1.7 2.8

RF-MRF [43] 77.4 87.5 91.3 83.7 23.8 1.7 60.9 ± 0.0 91.2 ± 0.0 65.9 ± 0.0 68.1 ± 0.0 1.1
KPConv [16] 86.5 88.4 92.7 77.7 54.3 13.3 68.8 ± 5.7 93.3 ± 1.5 73.7 ± 5.4 76.7 ± 5.8 23.5

Baseline 83.3 90.5 92.5 86.0 37.3 7.4 66.2 ± 0.0 93.0 ± 0.0 70.6 ± 0.0 73.8 ± 0.0 1.2

Table 6: Comparison of various semantic segmentation methods on the new benchmark
dataset. The results reported in this table are per-class IoU (%), mean IoU (mIoU, %) ±
standard deviation, Overall Accuracy (OA, %) ± standard deviation, mean class Accuracy
(mAcc, %) ± standard deviation, mean F1 score (mF1, %) ± standard deviation, and the time
cost of training (ttrain, hours). The running times of SPG include both feature computation
and graph construction, and RF-MRF and our baseline method include feature computation.
We repeated the same experiment ten times and presented the mean performance.

outperforms other methods except for KPConv. Specifically, our approach
outperforms RF-MRF with a margin of 5.3% mIoU, and deep learning methods
(not including KPConv) from 16.7% to 29.3% mIoU. Compared with the
KPConv, the performance of our method is much more robust, which can be
observed from Table 6 that the standard deviation of our method is close to
zero (i.e., the standard deviation of mIoU of our method is about 0.024%).
The reason is that in our method, we set 100 trees in the random forest to
ensure the stability of the model, but in KPConv, the kernel point initialization
strategy may not be able to select some parts of the point cloud, which leads
to the instability of the results. Furthermore, compared with all deep learning
pipelines, our method is conducted on a CPU and uses much less time for
training (including feature computation). This can be explained by the fact that
we have fewer input data (triangles versus points), and the time complexity of
our handcrafted features computation is much lower than the features learned
from deep learning.

4.5. Evaluation of Annotation Refinement

Following the proposed framework, a total of 19,080,325 triangle faces have
been labelled, which took around 400 working hours. Compared with a triangle-
based manual approach, we estimate that our framework saved us more than
600 hours of manual labour. Specifically, we have measured the labelling speed
with these two different approaches on the same mesh tile consisting of 309,445
triangle faces and 8,033 segments. It took around 17 hours for manual labelling
based on triangle faces, while with our segment-based semi-automatic approach,
it took only 6.5 hours.

We also evaluate the performance of semantic segmentation with different
amounts of input training data on our baseline approach with the intention of
understanding the required amount of data to obtain decent results. Specifically,
we use ten sets of different training areas with ten times experiments with the
same configuration of each set, and we linearly interpolate the results as shown
in Figure 14. From Figures 14a, 14b, and 14c, we can observe that our initial
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(a) mIoU (b) OA (c) Standard deviation

Figure 14: Effect of the amount of training data on the performance of the initial
segmentation method used in the semi-automatic annotation. We repeated the same
experiment ten times for each set of training areas and presented the mean performance.

segmentation method only requires about 10% (equal to about 0.325 km2) of
the total training area to achieve acceptable and stable results. In other words,
using a small amount of ground truth data, our framework can provide robust
pre-labelled results and significantly reduce the manually labelling efforts.

5. Conclusion

We have developed a semi-automatic mesh annotation framework to generate
a large-scale semantic urban mesh benchmark dataset covering about 4 km2.
In particular, we have first used a set of handcrafted features and a random
forest classifier to generate the pre-labelled dataset, which saved us around 600
hours of manual labour. Then we have developed a mesh labelling tool that
allows the users to interactively refining the labels at both the triangle face
and the segment levels. We have further evaluated the current state-of-the-art
semantic segmentation methods that can be applied to large-scale urban meshes,
and as a result, we have found that our classification based on handcrafted
features achieves 93.0% overall accuracy and 66.2% of mIoU. This outperforms
the state-of-the-art machine learning and most deep learning-based methods
that use point clouds as input. Despite this, there is still room for improvement,
especially on the issues of imbalanced classes and object scalability. For future
work, we plan to label more urban meshes of different cities and extend our
Helsinki dataset to include parts of urban objects (such as roof, chimney, dormer,
and facade). We will also investigate smart annotation operators (such as
automatic boundary refinement and structure extraction), which involve more
user interactivity and may help reduce further the manual labelling task.
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