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Abstract—The point pair feature (PPF) is widely used in
manufacturing for estimating 6D poses. The key to the success
of PPF matching is to establish correct 3D correspondences
between the object and the scene, i.e., finding as many valid
similar point pairs as possible. However, efficient sampling of
point pairs has been overlooked in existing frameworks. In this
paper, we propose a revised PPF matching pipeline to improve
the efficiency of 6D pose estimation. Our basic idea is that the
valid scene reference points are lying on the object’s surface
and the previously sampled reference points can provide prior
information for locating new reference points. The novelty of
our approach is a new sampling algorithm for selecting scene
reference points based on the multi-subpopulation particle swarm
optimization (MSPSO) guided by a probability map. We also
introduce an effective pose clustering and hypotheses verification
method to obtain the optimal pose. Moreover, we optimize the
progressive sampling for multi-frame point clouds to improve
processing efficiency. The experimental results show that our
method outperforms previous methods by 6.6%, 3.9% in terms of
accuracy on the public DTU and LineMOD datasets, respectively.
We further validate our approach by applying it in a real robot
grasping task.

Index Terms—6D pose estimation, Multi-subpopulation parti-
cle swarm optimization, Point pair features, 3D point cloud

I. INTRODUCTION

Object detection and 6D pose estimation is a key compo-
nent of various applications in intelligent manufacturing and
industrial robotics. The purpose of 6D pose estimation is to
determine an object pose that is represented by a 3×3 rotation
matrix R and a 3D translation vector t. In particular, the object
pose is the transformation that converts a 3D point po in the
local object coordinate system into the corresponding 3D point
ps in the scene coordinate system, i.e., ps = Rpo+t.

Researchers in the machine vision and robotics communities
have presented many methods on 6D pose estimation. In
general, the key technologies are based on three directions:

Template matching. The template matching method con-
verts the object into a series of templates and searches the
position of each template on the entire scene to obtain the
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object pose [1]–[7]. These methods have the advantages of
strong real-time performance and easy implementation [5], [7].
However, their performance of instances detection and pose
estimation in complex scenes is compromised due to changes
in light and scene occlusion [4], [8]–[10].

Deep-learning-based methods. In recent years, deep learn-
ing has been developed rapidly in the field of image processing
and analysis [11]–[15]. Similarly, many pose estimation meth-
ods based on deep learning are proposed for point cloud [16]–
[19], RGB [7], [10], [20]–[24] or RGB-D images [25]–[32].
These methods show great potential in 6D pose estimation.
However, so far there are few methods focusing on unstruc-
tured point clouds. Hagelskjaer et al. [16] performed semantic
segmentation on the input point cloud based on PointNet,
then used traditional methods to estimate the 6D pose of
the segmented instances. The methods of [17]–[19] require
a segmented point cloud as input, which depends on the
segmentation using RGB images. Furthermore, the accuracy of
these methods is still lower than that of deep learning models
based on RGB-D images and is not yet saturated [18], [19]. On
the other hand, the combination of deep learning models and
traditional methods for 6D pose estimation has also achieved
competitive results [7], [10], [16], [31], [32].

Feature descriptor matching. Another kind of methods
mainly used local feature descriptors [33]–[35] to establish
similar point pairs between object and scene, which are used
to generate the approximate 6D poses. These methods has poor
prediction performance when the object has indistinguishable
local shape features, such as planar and regular surfaces.

Drost et al. [36] proposed a well-known 6D pose estimation
method, which uses point pair feature (PPF) to achieve global
model description and local matching. The method firstly
describes the 3D object as a PPF Hash table, then samples the
reference points in the scene and votes on them to generate
hypothetical poses by finding the similar features in the Hash
table, and finally generates the optimal pose by a clustering.
Since the method was proposed, many variants [9], [37]–[41]
have extended it to obtain better performance. In the PPF-
based approach, the voting process is the key to the success
of finding optimal poses, but this process is computationally
expensive with a complexity of O(n2) [9], [34] where n is the
number of scene points. Previous PPF-based methods usually
generate a large number of reference points by uniform or
random sampling. They do not consider the voting information
of the reference points, thus reducing the efficiency of the
entire voting process. Besides, invalid scene reference points
have a negative impact on the robustness to noise, occlusion,
and cluttered scenes, as well as increasing calculation time
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Fig. 1. Illustration of the proposed pipeline: (a) In preprocessing, the input object and scene point cloud are downsampled; (b) The model PPF hash map
is generated using the point pairs of the object; (c) We progressively sample scene reference points by the MSPSO algorithm based on a probability cloud
map, then perform PPF matching and Hough voting to generate pose hypotheses; (d) An improved pose clustering and verification is conducted to return final
poses by filtering out duplicated and invalid poses.

for pose clustering and hypotheses verification. Second, PPF-
based approaches are imperfect for multi-frame point clouds
that contain a sequence of point clouds in a time series and are
often encountered in industrial applications. The consistency
information between frames is often ignored by the previous
6D pose estimation approaches for point clouds.

In this paper, we propose a new PPF-based framework for
6D pose estimation with an emphasis on intelligent scene
reference points sampling. Our observation is based on that
a large number of votes indicates that the points around
the reference point have a high probability on the instance’s
surface, while a few votes indicate low probability. Thus the
number of votes can be used to construct a probability map
of the instance position in the scene. We propose to use
the MSPSO algorithm [42], [43] for finding valid reference
points which are located on the instance’s surface. As a result,
we propose the method which can combine MSPSO and
probability map to iteratively sample scene reference points
(see Fig. 1 (c)). In this way, we can improve the robustness of
our algorithm to occlusion and complex scenes and reduce
the computational burden. Besides, we further extend this
framework to multi-frame point clouds by considering similar
object information between adjacent scene frames. It can
utilize the prior knowledge in previous frames to improve the
matching efficiency in real industrial applications. In summary,
the main contributions of this work include:

• A novel MSPSO sampling approach based on a probabil-
ity map for progressively selecting valid scene reference
points, which can simultaneously improve the efficiency
and accuracy of 6D pose estimation.

• An effective pose clustering and hypothesis verification
strategy to improve the robustness of 6D pose estimation
of point clouds.

• A simple probability map-based approach for object de-
tection from multi-frame point clouds, which exploits the
correlation between frames and can significantly reduce
the number of invalid scene reference points, thus speed

up the matching process.

II. METHODOLOGY OVERVIEW

Our input includes an object O represented by either a
surface mesh or a point cloud, and a real-scanned scene point
cloud S . Each occurrence of the object in the scene is referred
to one of its instances I. The goal of our approach is to
correctly determine the 6D poses of all instances in the scene.
We first shortly explain the main underlying ideas and concepts
of the original Drost-PPFM method [36].

A. Pose Estimation based on Point Pair Features

Point Pair Feature is a global feature descriptor, which
describes the relative relationship between the position and
direction of the two points. Given a reference point pr and a
target point pt with normal nr and nt, respectively, the PPF
is a 4-d vector which is defined as:

PPF(pr,pt) = (||d||2,∠(nr,d),∠(nt,d),∠(nr,nt)), (1)

where d = pt−pr, ∠(a,b) denotes the angle between vectors.
Drost-PPFM detects instances and estimates their poses via
two main phases: offline global model description and online
matching. In the offline phase, the object is described by a
model PPF hash table, which is created from PPFs between
each points pair. Specifically, this method calculates the PPF
of each point pair and discretizes the distance and angle
elements in PPF with a quantization step size of ∆dist and
∆angle, respectively. Then the point pairs with equal discrete
feature vectors are recorded in the same hash node.

In the online phase, Drost-PPFM mainly performs feature
matching and pose clustering. First, the scene point cloud
is down-sampled to generate a point set S ′

, of which 1/5
points are uniformly sampled as the scene reference points.
To generate hypothetical poses, the scene PPFs, which are
calculated by each scene reference point and all other points
in S ′

, are matched by the object model PPF hash map and
the pose votes are cast by performing Hough voting. Finally,
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Fig. 2. Visual results of our generated pose estimation guided by the cloud
probability map. Left: final pose estimation where the detected objects are
highlighted in color. Right: the probability map where the warmer color
indicates a higher probability for locating the objects.

the hypothetical poses are clustered to improve robustness and
the pose in the cluster with the highest accumulated weight
is returned as the optimal pose. More details about these
procedures can be found in the original paper [36].

B. Overview of Our Approach

We present a new 6D pose estimation algorithm, called
PPFM-MSPSO, which consists of three main components (see
Fig. 1). First, we down-sample the input model and scene point
cloud, then generate a model description hash map. Second,
we generate the hypothetical poses by progressively sampling
scene reference points based on an MSPSO algorithm and
a probability map. The sampling method can exploit the
voting information of each reference point to guide the search
direction of MSPSO and significantly improve the accuracy of
pose estimation by increasing the ratio of valid scene reference
points. Finally, a pose verification operation is performed to
filter out false poses due to the interference of noise and
background and predict appropriate 6D poses of the target
object.

III. METHOD

A. Preprocessing

Generally, the input 3D object and scene point clouds have
a high density with a large number of points. The input
is usually downsampled to obtain a spare set of points to
speed up the matching process. However, traditional randomly
or uniformly downsampling methods based on voxelization
may ignore some important geometrical shape features. To
solve this problem, we adopt an adaptive multi-scale voxel
downsampling method [9], which takes the normal vectors of
the point cloud into account. Specifically, we first discretize
the point cloud by creating a multi-resolution grid structure.
Then in each voxel cell at each level (in a fine-to-coarse order),
the similar points, whose normals angle difference is less than
a threshold θ, are merged. As a result, the geometrical features
(e.g., edges or large curvature surface) are more preserved to
sample discriminative points.

B. MSPSO Voting Module

The selection of scene PPFs has a great influence on the
performance of the algorithm. With the unknown number and
locations of the object instances in the scene, a large number
of reference scene points need to be sampled to cover as
many instances as possible, leading to a high computational
cost of voting. In addition, invalid reference points generate
many invalid votes that increase the amount of calculation
for hypothetical poses clustering and verification, as well as
reduce the matching accuracy.

Instead, we present a new voting module where the scene
reference points are progressively sampled with the MSPSO
algorithm to better exploit the knowledge obtained in the
previous voting. A probability map is utilized to guide the
MSPSO sampling. Thus, the MSPSO voting process includes
three steps (see Fig. 1 (c)): the probability map initializing
and updating, MSPSO sampling, and scene PPFs voting.
We first initialize the probability map for scene sampling.
Then we search the optimal particle position based on the
probability map for each subpopulation and select the scene
point where the particle is located as a reference point for
Hough voting. In the voting process, those reference points
generate hypothetical poses by Hough voting [36] and update
the probability map with the maximum number of votes to
motivate or punish the search path of MSPSO.

We next introduce the probability map and MSPSO sam-
pling in detail.
Probability map. The probability map Pmap assigns a value
ρi to each point in the down-sampled point cloud S ′

, where
ρi indicates the probability that this point is located on one of
the real instances. Initially, each value ρi of the probability
map is set to a constant. After a selected reference scene
point sr generates votes, the probability of sr is calculated
as following:

ρsr =
Vsr − Vmin
Vmax − Vmin

, (2)

where Vsr is the maximum number of votes cast by sr, Vmax
and Vmin are the number of votes when the probability is
1 and 0 respectively. Afterwards, the probability ρi for other
point in S ′

is updated according to ρsr :

ρi =

∑Ns

j=1 ωj,sr ∗ ρj,sr∑Ns

j=1 ωj,sr
, (3)

where Ns is the number of scene reference points that have
been voted. ρj,sr is the probability obtained by voting with j-th
scene reference point. ωj,sr is determined by a Gaussian kernel
function, ωj,sr = exp(− ||pj,sr−pi||2

2∗σ2 ), where σ is the width
parameter that is set to σ = 0.25dobj (dobj is the diagonal
length of the object’s bounding box).

However, updating ρi for all points is time consuming. To
speed it up, we only update the neighboring points around sr,
i.e., the points whose distance to sr is less than rmax ∗ dobj ,
and rmax is the update radius coefficient. Several examples of
the resulting probability map are shown in Fig. 2.
MSPSO sampling. Different from Drost-PPFM, we present
a novel MSPSO sampling algorithm to increase the sampling
ratio of valid scene reference points and reduce the number

Authorized licensed use limited to: TU Delft Library. Downloaded on November 20,2021 at 20:26:32 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2021.3121721, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. PP, NO. 99, 2021 4

of sampling points. We solve this problem by iteratively
optimizing the position of the scene reference point in the
search space with regard to the above probability map.

Here we choose the MSPSO algorithm instead of the tra-
ditional particle swarm optimization (PSO) [44], [45], which
has better global search ability than PSO and is more suitable
for searching the best scene reference point on the probability
map. In MSPSO, a scene reference point is regard as a particle,
and each particle has a flying velocity, which is composed of
three parts: the upper flying velocity, the optimal historical
position of the particle and the subpopulation:

vd,t+1
sr =ω ∗ vd,tsr + c1 ∗ r1 ∗ (pbestdsr − x

d,t
sr )

+ c2 ∗ r2 ∗ (gbestds − xd,tsr ),
(4)

where vd,tsr and xd,tsr are respectively the velocity and position
value of the d-th dimension of the particle sr in the s
subpopulation in the t-th iteration time. ω is the inertia factor
between 0 and 1 (set to 0.7 by default), which controls the
trade-off between global and local experience. pbestdsr is the
d-th dimension personal best position of particle sr in s
subpopulation found, and gbestds is the d-th dimension best
position found by any particle in s subpopulation; c1 is the
cognitive acceleration constant, c2 is the social acceleration
constant, usually c1=c2=2; r1 and r2 are two random numbers
uniformly distributed in the range [0,1). Therefore, the new
position of the particle is updated by:

xd,t+1
sr = xd,tsr + vd,t+1

sr . (5)

MSPSO voting. The detailed MSPSO voting process is shown
in Algo. 1. Specifically, given the downsampled scene cloud
S ′

, we first calculate the number of subpopulation G:

G = int(ns/(tmax ∗N)) + 1, (6)

where ns = |S ′ | ∗ τ , tmax is the number of iterations, N
is the size of the subpopulation, and τ is scene reference
point sampling rate (line 2). Then we sample and vote on
each subpopulation in turn (lines 3-27). In each subpopula-
tion s, we first initialize each particle sr by the rejection
sampling algorithm based on the probability map Pmap (line
4). Then, we iteratively perform tmax times of optimization
voting, which includes three steps: sr as scene reference point
exercising PPFs Hough voting to generate hypothetical poses
(line 8), updating Pmap (line 10), and optimizing positions of
the particles (lines 12-25).

In addition, Eq. (5) cannot be directly applied to optimize
particles’ positions, because the search space of traditional
MSPSO is continuous, while the point cloud S ′

is a discrete
point set in the 3D space. In our algorithm, we first calculate
the updated position xsr of the particle sr with Eq. (4) and Eq.
(5) (lines 14-15). Then we find the nearest scene point s,r of
xsr (line 16). Finally, we judge whether s,r is the new position
of the particle sr (lines 17-20). In general, these steps can be
iterated until the particle sr is updated. To improve the global
optimization performance, we stop this iteration and sample
sr on S ′

by the rejection sampling of Pmap if the particle sr
is not updated after two iterations.

Algorithm 1 MSPSO Voting with probability map Pmap
Input: Model PPF hash table, downsampled scene could S

′
, MSPSO

iteration numbers tmax, subpopulation size N , and scene refer-
ence point sampling rate τ .

Output: a set of hypothetical poses
1: initialize Pmap;
2: ns ← |S

′
| ∗ τ ; G← int(ns/(tmax ∗N)) + 1;

3: for each subpopulation s ∈ {si|i = [1, G]} do
4: s← rejection sampling of Pmap on S

′
;

5: Initialize pbestsr and gbests;
6: for t← 1 to tmax do
7: for each particle sr ∈ s do
8: sr votes and produces hypothetical poses;
9: update pbestsr and gbests;

10: update Pmap with Eq. (2) and Eq. (3);
11: end for
12: for each particle sr ∈ s do
13: for k ← 1 to ku do
14: calculate velocity vsr with Eq. (4);
15: calculate position xsr with Eq. (5);
16: s,r ← the nearest point of xsr ;
17: r ← rand(0, 1);
18: if r < ρs,r then
19: sr ← s,r; break;
20: end if
21: end for
22: if k > ku then
23: sr ← rejection sampling of Pmap on S

′
;

24: end if
25: end for
26: end for
27: end for

C. Pose generation and verification

The above MSPSO voting scheme produces a set of pose
votes. Unfortunately, the candidate object poses contain a
significant fraction of incorrect poses, thus the hypothetical
pose with the highest vote is not necessarily the correct match.
Next, we conduct a pose verification step to search for the
optimal pose in the hypothetical poses set.
Pose clustering. The candidate object poses are redundant
because the poses of the reference points on the same in-
stance are similar. Grouping similar poses can improve the
efficiency of pose verification. To measure the similarity of
poses, we define a point triplet FPcobj , which consists of
the center point cobj = (cx, cy, cz) of the object’s bounding
box and two auxiliary points p1

aux = (cx − dobj , cy, cz) and
p2
aux = (cx, cy − dobj , cz). Specifically, the similarity of the

poses are calculated as following:

ei,j = DChebyshev((Ti ∗ FPcobj), (Tj ∗ FPcobj)). (7)

In the clustering process, we first sort the hypothetical poses
set T in descending order with respect to the number of votes.
Then we consider each pose in T and judge whether they are
similar to one of the subsequent poses. If it is true, we add
the latter pose to the group of former poses, and the votes are
accumulated. Finally, the poses in each cluster are averaged.
Hypotheses verification. After pose clustering, we obtain a
set of new pose hypotheses with voting scores. Due to sensor
noise and background clutter, the poses with the highest voting
score may not be the correct pose, therefore further verification
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is still required. Our verification indicator is the degree of
overlap between the transformed model and the scene. Specif-
ically, if one transformed model point p

′

m and its closest
scene point ps meet the condition: ||p′

m − ps||2 < εD and
∠(np′

m
,nps

) < εA, where εD is a distance threshold and εA
is an angle threshold, we call these two points are overlapping.
To recalculate the pose score, we first transform the object
model into the scene with the pose, and find the nearest point
of each model point in the scene and determine whether they
are overlapping, and finally denote the pose verification score
as the ratio of the number of overlapping points to the number
of model points. Among all pose hypotheses, the pose with
the highest verification score is the optimal matching pose.

D. Multi-instances, Multi-objects and Multi-frames Detection

To detect multiple instances in the scene, if only the top
k cluster center poses are returned, this will easily lead
to duplicate or missing poses. We apply a non-maximum
suppression (NMS) algorithm to filter out duplicate poses.
In our implementation, we return the pose with the highest
score as the first instance pose. Then we visit other poses in
descending order and calculate the Intersection over Union
(IOU) of the visited pose and the already returned instance
poses. If the IOU is smaller than a threshold (e.g., 0.4), we
accept the pose as a new instance pose, otherwise, we discard
it. We iterate this process until k instance poses are retrieved.

To solve the multiple object detection, we first vote to
generate hypothetical poses and cluster them for all objects,
then merge the hypothetical poses of all objects and sort them
by overlapping area size. Finally, we filter out inaccurate poses
based on the aforementioned NMS algorithm.

Furthermore, in most industrial applications (such as the
bin-picking task), we usually need to capture the scene and
detect objects in successive frames. Such multi-frame data
is often overlooked in previous literature. Since the object
information is similar between adjacent frames, using the prior
knowledge in previous frames can significantly reduce the
number of invalid scene reference points, thus speed up the
matching process. To make full use of such information, we
propose a strategy for initializing and updating the probability
map, which is different from the single-frame case. In the
initialization phase of the probability map, we first transform
the model point cloud into the current scene through:

Oc = Tp→c ∗Tp ∗ O, (8)

where Tp→c is the rigid transformation from the previous
frame to the current frame. Tp is the instance pose estimated in
the previous frame. Then, the probability ρi,m of scene points
that overlap with the transformed model Oc are assigned ρoi,m
(default as 0.9), and the points without overlap are assigned
ρoi,m (default as 0.1). Furthermore, we set the scene reference
point sampling rate τ to 1/80.

Finally, different from the lack of prior knowledge when we
assign the initial value of the probability map in a single frame
application, the prior knowledge obtained in the previous
frame has high credibility and is helpful for scene reference
point sampling. To exploit the prior knowledge, we merge the

initial value into the updating process of the probability map,
which is formulated as:

ρi =
ρi,m +

∑Ns

j=1 ωj,sr ∗ ρj,sr
1 +

∑Ns

j=1 ωj,sr
. (9)

E. Computational complexity

Our approach includes three stages: preprocessing, MSPSO
voting, and pose verification. The preprocessing uses the voxel
downsampling algorithm, and its time complexity is O(n)
where n is the number of points in the input point cloud. In
the MSPSO voting phase, the most complicated calculation is
the PPF Hough voting. The PPF target point sampling adopts
the smart sampling strategy of Hinterstoisser et al. [9], and the
PPF reference point is sampled by our MSPSO based on the
probability map. The time complexity of this stage is O(kns),
where k is usually at least one magnitude smaller than nS′

(please refer to [9] for details), nS′ is the number of points
in the down-sampled scene point clouds, and ns = nS′ ∗ τ .
Our experiments have suggested that the best accuracy can be
achieved when τ is set to 1/10. Finally, the time complexity
of the pose verification is O(nT ′nO′n

2
3

S′ ), where nT ′ is the
number of poses after clustering hypothetical poses, and nO′

is the number of points in the object down-sampled point
clouds. The operation at this stage is mainly to find the nearest
neighbors by using a KD-tree. In general, the scale of the
down-sampled point cloud is around 2000 or less, and the
number of hypothetical poses is about 500 or less, so the
verification can be done quite efficiently.

F. Discussion

Our work has two differences from the previous studies.
First, we present a new voting module where the scene
reference points are progressively sampled to better exploit
the knowledge obtained in the previous voting. It can increase
the inlier rate, retain more instance surface information, and
improve computational efficiency and robustness of the algo-
rithm. The sampling rate of reference points is reduced from
20% of Dorst et al. [36] to 10%, while we can still achieve
better accuracy. Note that Hinterstoisser et al. [9] proposed a
smart sampling algorithm for sampling the second point in
each point pair and achieved satisfactory results. However,
we have a different purpose, where our probability map-based
MSPSO is to effectively sample the scene reference points,
while the smart sampling algorithm aims to optimize the
sampling for the PPF target points.

Second, previous 6D pose estimation methods based on pure
point clouds have not yet considered the correlation between
frames. In our method, we novelly transfer the information
from the previous frame to the current frame with probabil-
ity, which significantly reduces the number of invalid scene
reference points and thus speeds up the matching process.
Our experiments show that under the premise of ensuring
the recognition rate, the sampling rate of the scene reference
points can be reduced to 1.25% or even lower.
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Fig. 3. Parameter analysis using a model from DTU [46]. To analyze each parameter, we set all other parameters as fixed values, which are the optimal
values selected through experiments. If not specified, all parameters of our approach are set as default values: the sampling rates τ = 1/10, the normal angle
threshold for downsampling θ = 20◦, the iteration numbers tmax = 4, the subpopulation size N = 8, the initial value of the probability map ρi = 0.1, the
number of votes with probability 1.0 (Vmax = 50), the number of votes with probability 0.0 (Vmin = 10), and the update radius coefficient rmax = 1.0.

IV. EXPERIMENTAL RESULTS

In this section, we first evaluate the proposed algorithm and
verify its effectiveness by conducting ablation studies. Then
we demonstrate the performance qualitatively and quantita-
tively through visually inspecting our results and conducting
a comparison with state-of-the-art approaches.

A. Experimental Setup

Datasets. We first carry out experiments on a real-scanning
dataset, DTU [46], in which there are many cylindrical and
flat 3D object models that are more challenging for pose
estimation. To show our application on real industrial data,
we also built a small-scale dataset, called RIPCD, which
consists of 9 objects and 100 scenes. This dataset also contains
multiple instances and multiple objects. In addition, although
our algorithm focuses on pose estimation of unorganized 3D
point clouds, we also compare with some state-of-the-art deep
learning-based methods on two RGBD datasets, including
LineMOD (LM) [2] and LineMOD Occlusion (LM-O) [47].
Evaluation metric. Given an estimated 6D object pose T̂ and
the ground-truth pose T̄, we use the average distance metric
(ADM) to measure the L2 distance between the model points
transformed by T̂ and T̄. We define the pose error eADM as:

eADM = max( avg
x1∈M

min
x2∈M

||T̄x1 − T̂x2||2, ||T̄cobj − T̂cobj ||2),

(10)
whereM is the template model of the object, and we consider
the distance between transformed object centers cobj .

We regard an estimated pose as positive if the pose error is
less than a threshold ξe. Then the performance for detecting
each object is quantitatively measured by using recognition
rate (RR) that is the ratio of the number of true positive poses
compared to the number of all its ground-truth poses. We also
calculate the Mean Recall (MR) as the mean of the per-object

recognition rates to evaluate the overall performance on one
dataset:

MR = avg
o∈O

∑
s∈S |P (o, s)|∑
s∈S |G(o, s)|

, (11)

where O and S are sets of templates and test scenes. |P (o, s)|
is the number of correctly detected poses and |G(o, s)| is the
number of ground-truth poses of object o in scene s.
Competitors. We select a commercial machine vision soft-
ware MVTec HALCON1 as a competitor because it contains
the optimized and significantly improved implementation of
the original Drost-PPFM. We denote it Drost-PPFM∗. We
also compare to an open-source method Buch-17 [34], which
presents a new pose voting and clustering method by integrat-
ing a local feature-based recognition pipeline. Here we test
several representative 3D local feature descriptors, including
PPF [35], spin images (SI) [33], FPFH [48] and SHOT [49].

B. Evaluation

Parameter settings. We conduct experiments with different
parameter settings to evaluate their influence on recognition
accuracy. In this section, we mainly analyze the eight pa-
rameters of the MSPSO sampling algorithm. The results of
detailed parameter analysis are illustrated in Fig. 3, where
we vary one parameter while all other parameters are fixed.
We also show the running times with different sampling rates
τ . From the figure, we can observe that the parameter τ
affects the performance of our method, where the recognition
rate and running efficiency are reduced when the number of
sampled scene reference points decreases. We find that when
τ = 1/10, the recognition accuracy and running time can
be well balanced. Next, we can observe that the recognition
rate has reached the best value when rmax = 1.0, and

1https://www.mvtec.com/products/halcon/
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Fig. 4. Ablation studies of five sampling configurations.

Fig. 5. Given one or more objects and a 3D point cloud scene, our method
detects all instances in the scene and estimates the 6D pose for each instance.

the running time increases with the increase of the update
radius coefficient in the early stage and remains stable in
the later stage. Similarly, parameters θ and Vmin affect our
performance, and we can achieve the best performance when
θ = 20◦ and Vmin = 10. In addition, our method is robust to
tmax, N , ρi, and Vmax.
Ablation studies. We now investigate the influence of different
components of our method. We test five configurations:
• Random sampling. We randomly sample |S ′ | ∗ τ scene

reference points in the down-sampled scene cloud S ′
.

• Uniform sampling. We uniformly sample the scene ref-
erence points, i.e., every i-th (i = 1/τ in default) scene
point is selected as a reference scene point.

• MSPSO. The scene reference points are progressively
sampled with MSPSO but without the guidance of the
probability map.

• PSO+Probability map. We replace the MSPSO with PSO.
• MSPSO+Probability map. This is our full method.
First, Fig. 4 shows the inlier ratio of these algorithms at

different sampling rates. Here the inlier ratio represents the
ratio of valid reference points on the instance’s surface to the
total scene reference points. We observe that using particle
swarm optimization (MSPSO or PSO) increases the inlier
ratio, while MSPSO+Probability map and PSO+Probability
map guided by the probability map could further improve
the performance, which is approximately 3 to 5 times that
of random and uniform sampling. In comparison, our MSPSO
is more effective than PSO.

Further, we analyze the recognition rate of these methods at
different sampling rates. The experimental results are shown
in Table I. We see that we obtain the best performance with
MSPSO+Probability map, while the performance of conven-

tional random and uniform sampling is the worst.
Multi-instance and multi-object detection. Fig. 5 verifies
the feasibility of our method for solving multi-instances and
multi-objects detection and pose estimation problem. In Fig. 5,
the input object point cloud is sampled from CAD models,
while the input scene point cloud is captured by a structured-
light scanner. If a scene consists of more than one object,
we perform the steps of MSPSO sampling, PPF voting, pose
clustering, and verification in parallel for all objects (this way
we can also distinguish different objects). Then in the final step
of returning appropriate poses, we put the pose hypotheses of
all objects together and rank them according to the overlapping
information of each pose in the scene. From Fig. 5 we see that
our method detects all of the instances for each kind of object
and returns their correct 6D poses.
Multi-frame Scenes. Finally, to demonstrate that we can
speed up the matching process using multi-frame data, we
conduct tests on the robotic-arm grasping system. For com-
parison, we also report the running time without multi-frame
data as well as the time of Drost-PPFM∗. The experimental
results are shown in Table II. In a single-threaded environment,
our method can obtain similar efficiency to Drost-PPFM∗.
Furthermore, we achieve the best performance through simple
multi-core parallel processing using the OpenMP library.

C. Comparisons

Comparison on DTU dataset. Table III shows the quantitative
comparison of the performance score and timing on DTU,
where the recognition rate of each object and each method
is reported. The DTU dataset is quite challenging because of
its high occlusion and clutter. We further avoid testing the
simple feature-rich objects and select flat, cylindrical, and thin-
edge objects without many local distinguishable features. The
results show that our algorithm outperforms other competitors
for most of the test objects. In terms of running time, the
commercial software HALCON (Drost-PPFM∗) is the fastest
because it takes advantage of the hardware and each step is
also fully optimized. Comparing to Buch-17, our method is
reasonably faster, but each step can still be further accelerated
on GPU to meet the needs of industrial applications.
Comparison on real industrial scenes. Next, we conduct a
comparison on our proposed RIPCD dataset which is collected
from real industrial scenes. Fig. 6 shows a qualitative compar-
ison using several complex scenes for a robotic gripping task.
The grasping objects involve common housings, polyhedrons,
and threaded industrial devices. Similarly, we see that Drost-
PPFM∗ and our approach achieve good performance on these
scenes, but ours is still slightly better. Table IV reports the
recognition rate on all of 9 objects in 100 scenes. This
quantitative comparison verifies that our algorithm achieves
the best-performing results on this dataset.

The surface geometric elements of industrial objects are
simple. The local features of the point cloud are less dis-
criminative. It is difficult to accurately estimate the pose for
methods based on local features. The key to the success
of Drost-PPFM∗ and our method is the excellent global
description performance of PPF. Our method optimizes the
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TABLE I
RESULTS OF ABLATION EXPERIMENTS USING TWO MODELS FROM DTU DATASET [46]. THE BEST RESULT OF EACH MEASUREMENT IS MARKED IN BOLD.

Methods DTU-13-Tape DTU-28-Angle bar
Sampling Rate 1/5 1/10 1/20 1/40 1/50 1/100 Mean 1/5 1/10 1/20 1/40 1/50 1/100 Mean

MSPSO + Probability map 85.1 85.1 83.0 85.1 83.0 81.9 83.9 58.0 55.7 53.4 52.3 51.1 35.2 51.0
PSO + Probability map 83.0 83.0 81.9 81.9 84.0 78.7 82.1 52.3 54.5 52.3 47.7 44.3 33.0 47.4

MSPSO 83.0 84.0 83.0 84.0 84.0 78.7 82.8 56.8 48.9 51.1 50.0 44.3 31.8 47.2
Random 84.0 81.9 81.9 79.7 78.7 78.7 80.8 50.0 48.9 48.9 46.6 43.2 30.7 44.7
Uniform 81.9 83.0 79.7 80.8 77.7 75.5 79.8 51.1 50.0 47.7 45.5 44.3.2 31.8 45.2

Scene Buch-17-SHOT Buch-17-PPF Drost-PPFM* Ours

Fig. 6. Qualitative comparison using five scenes from our proposed RIPCD dataset.

TABLE II
AVERAGE RUNNING TIME(S) OF GRASPING 20 OBJECTS IN THE ROBOTIC

ARM GRASPING SYSTEM. MF IS THE ABBREVIATION FOR OUR
MULTI-FRAME POINT CLOUD DETECTION ALGORITHM.

Methods

Drost-PPFM∗ 2.8 2.8 2.9 3.5

wtihout MF 5.4 21.6 19.2 26.4

wtih MF 2.1 2.8 2.2 3.9

wtih MF and parallel 1.1 1.5 1.3 1.9

algorithm for sampled scene reference points and hypothetical
poses verification, which is more robust than Drost-PPFM∗.
Comparison on LM and LM-O. Even though our method
is not specially designed for RGB-D data, we compare to
a series of state-of-the-art deep learning-based methods, in-
cluding depth-only, RGB-only, and RGB-D methods. Table V
shows the comparison results. Our method, which does not use
multi-frame information, obtains the best performance among
the methods using only depth information. It outperforms
CloudAEE+ICP [18] by 3.9% and 13.0% on LM and LM-
O, respectively. Moreover, we achieve the same performance
as PVN3D [28] on LM, which is one of state-of-the-art works
using both RGB and depth information.

The objects in LM-O [47] are heavily occluded, making

pose estimation more difficult. As expected, we observe a
significant performance drop for each method. However, our
algorithm still outperforms other competitors.

V. CONCLUSION AND FUTURE WORK

We have presented an improved approach based on Drost-
PPFM for 6D pose estimation of disordered objects in 3D point
cloud scenes. We achieved major improvements in terms of
efficiency and robustness by improving the sampling strategy
for scene reference points. A new MSPSO algorithm based
on the probability map can effectively improve the sampling
of scene reference points. At the same time, the method of
initializing the probability map with multi-frame data was also
proposed to improve the efficiency of object pose estimation.
We demonstrated our advantages by comparing it to the SOTA
methods on several datasets.

Future work will be to explore more efficient object de-
tection and pose estimation methods. A possible direction is
to design an end-to-end deep neural network based on the
middle-level structural analysis or high-level semantic infor-
mation. For example, instead of using point correspondences,
we could extract middle-level geometric primitives (such as
plane, cylinder, sphere, cone) from objects and scenes to build
feature correspondences. Besides, using object detection or
segmentation maybe also improve the estimation performance.
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TABLE III
QUANTITATIVE COMPARISON ON DTU DATASET. THE POSE ERROR THRESHOLD IS SET TO 0.1.

Methods RR2 RR4 RR10 RR12 RR13 RR14 RR15 RR16 RR17 RR20 RR28 RR31 RR37 RR41 MR Time(s)

Buch-17-PPF 67.1 71.2 62.4 59.4 11.7 48.7 73.3 14.7 85.0 15.3 19.3 76.8 62.4 29.6 55.7 1.71
Buch-17-SHOT 46.4 51.1 21.2 42.2 15.9 32.4 36.3 14.8 50.2 20.2 40.9 44.5 36.0 42.0 36.8 3.34

Buch-17-SI 64.3 72.3 46.5 48.4 3.2 39.9 62.3 21.3 75.4 18.0 45.5 61.9 61.4 43.2 51.4 1.49
Buch-17-FPFH 35.0 51.1 36.3 35.9 14.9 45.6 56.8 16.3 71.7 10.4 52.3 45.2 41.1 43.2 43.1 22.1
Drost-PPFM∗ 67.1 69.0 57.9 68.0 77.7 63.5 62.3 42.6 82.8 55.8 29.5 54.8 66.0 86.4 65.8 0.40

Ours 70.0 69.9 68.6 71.1 85.1 71.4 60.9 50.8 86.6 71.4 58.0 67.1 59.4 98.1 72.4 1.53

TABLE IV
QUANTITATIVE COMPARISON ON RIPCD DATASET. THE POSE ERROR THRESHOLD IS SET TO 0.1.

Methods RRcase1 RRcase2 RRconnector RRcube RReraser−big RReraser−small RRnameplate RRscrew−long RRscrew−short MR Time(s)

Buch-17-PPF 24.2 56.1 87.4 66.8 35.0 24.5 100.0 20.0 76.1 65.2 5.36
Buch-17-SHOT 8.1 40.4 18.0 53.1 12.5 21.3 73.3 24.0 94.4 31.8 10.40

Buch-17-SI 0.0 31.6 62.6 66.4 57.5 12.8 100.0 20.0 93.0 52.4 6.65
Buch-17-FPFH 4.0 19.3 23.3 38.9 42.5 40.4 86.7 20.0 67.6 30.7 39.83
Drost-PPFM∗ 90.9 100.0 79.9 68.7 82.5 84.0 100.0 28.0 94.4 80.3 3.25

Ours 97.0 100.0 83.7 76.8 95.0 86.2 100.0 40.0 94.4 85.1 4.13

TABLE V
QUANTITATIVE EVALUATION OF 6D POSE ON ADD(S) [50] METRIC ON THE LINEMOD [2] AND LINEMOD OCCLUSION DATASET [47]. THE BEST

RESULT OF EACH MEASUREMENT IS MARKED IN BOLD. THE NAMES OF SYMMETRIC OBJECTS ARE ALSO IN BOLD.

(a) LineMOD
Modality RGB RGBD D

Method
PoseCNN+
DeepIM

[20], [21]
PVNet CDPN

[22]
SSD-6D

+ICP [25]
PointFusion

[26] DF [27] PVN3D
[28]

CloudPose
+ICP [17]

CloudAEE
+ICP [18] Ours

ape 77.0 43.6 64.4 65.0 70.4 92.3 97.3 58.3 92.5 97.5
bvise 97.5 99.9 97.8 80.0 80.7 93.2 99.7 65.6 91.8 100
cam 93.5 86.9 91.7 78.0 60.8 94.4 99.6 43.0 88.9 99.7
can 96.5 95.5 95.9 86.0 61.1 93.1 99.5 84.7 96.4 99.7
cat 82.1 79.3 83.8 70.0 79.1 96.5 99.8 84.6 97.5 99.7

driller 95.0 96.4 96.2 73.0 47.3 87.0 99.3 83.3 99.0 99.8
duck 77.7 52.6 66.8 66.0 63.0 92.3 98.2 43.2 92.7 98.0
e.box 97.1 99.2 99.7 100 99.9 99.8 99.8 99.5 99.8 100
glue 99.4 95.7 99.6 100 99.3 100 100 98.8 99.0 100
holep 52.8 82.0 85.8 49.0 71.8 92.1 99.9 72.1 93.7 98.7
iron 98.3 98.9 97.9 78.0 83.2 97 99.7 70.3 95.9 99.4
lamp 97.5 99.3 97.9 73.0 62.3 95.3 99.8 93.2 96.6 99.3
phone 87.7 92.4 90.8 79.0 78.8 92.8 99.5 81.0 97.4 99.8

average 88.6 86.3 89.9 79.0 73.7 94.3 99.4 75.2 95.5 99.4

(b) LineMOD Occlusion

Modality Method average

RGB
PoseCNN [20] 24.9

PVNet [10] 40.8

RGBD
PoseCNN+ICP [20] 78.0

PVN3D [28] 63.2

D

CloudPose+ICP [17] 44.2

CloudAEE [18] 57.1

CloudAEE+ICP [18] 66.1

Ours 79.1

In addition, we will further improve our algorithm to adapt it
to structured RGB-D scenes.
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