
PolyFit: Polygonal Surface Reconstruction from Point Clouds

Liangliang Nan
Visual Computing Center, KAUST

liangliang.nan@gmail.com

Peter Wonka
Visual Computing Center, KAUST

pwonka@gmail.com

Abstract

We propose a novel framework for reconstructing
lightweight polygonal surfaces from point clouds1. Unlike
traditional methods that focus on either extracting good
geometric primitives or obtaining proper arrangements of
primitives, the emphasis of this work lies in intersecting
the primitives (planes only) and seeking for an appropriate
combination of them to obtain a manifold polygonal
surface model without boundary.

We show that reconstruction from point clouds can be
cast as a binary labeling problem. Our method is based on
a hypothesizing and selection strategy. We first generate a
reasonably large set of face candidates by intersecting the
extracted planar primitives. Then an optimal subset of the
candidate faces is selected through optimization. Our opti-
mization is based on a binary linear programming formula-
tion under hard constraints that enforce the final polygonal
surface model to be manifold and watertight. Experiments
on point clouds from various sources demonstrate that our
method can generate lightweight polygonal surface models
of arbitrary piecewise planar objects. Besides, our method
is capable of recovering sharp features and is robust to
noise, outliers, and missing data.

1. Introduction
Reconstructing 3D models from sampled points has been

a major problem in both computer vision and computer
graphics. Although it has been extensively researched in
the past few decades [8, 13, 22, 11, 3, 17, 27, 25, 12, 2, 15,
20, 26, 16], obtaining faithful reconstructions of real-world
objects from unavoidable noisy and possibly incomplete
point clouds remains an open problem.

In this work, we focus on reconstructing piecewise
planar objects (i.e., man-made objects such as buildings).
Our inputs are point clouds sampled from real-world objects
that could be captured by various means (e.g., drones, hand-
held scanners, and depth cameras). Our goal is to achieve

1The source code of PolyFit is available under https://github.
com/LiangliangNan/PolyFit.

lightweight polygonal surface models of the objects.
We consider a method to be effective to this problem if it

meets the following requirements. First, the reconstructed
model should be an oriented 2-manifold and watertight,
ensuring physically valid models. This is essential for many
applications, e.g., simulation and fabrication. Second, it
should be able to recover sharp features of the objects.
Third, the method should not closely follow surface details
due to imperfections (i.e., noise, outliers, and missing data).
Instead, a lightweight representation is more preferred and
beneficial for many applications (e.g., Augmented Real-
ity/Virtual Reality) that may involve many objects and
large scenes. Besides, it is also helpful to provide a way
to control the detail levels of the reconstructed models
within the reconstruction pipeline. We proposed a novel
reconstruction framework that all the above requirements
are satisfied in a single optimization process.

Instead of fitting dense smooth polygonal surfaces [8, 13,
22, 11], we seek for a more compact representation (i.e.,
simple polygonal surfaces) for piecewise planar objects.
Our method is based on a hypothesizing and selection
strategy. Specifically, we chose an optimal set of faces from
a large number of candidate faces to assemble a compact
polygonal surface model. The optimal set of faces is select-
ed through optimization that encourages good point support
and compactness of the final model. The manifold and
watertight requirements are enforced as hard constraints.
Figure 1 shows an example of our reconstruction. Our work
makes the following contributions:

• we cast polygonal surface reconstruction from point
clouds as a binary labeling problem based on a hypoth-
esizing and selection strategy.

• a surface reconstruction framework that is dedicated to
reconstructing piecewise planar objects.

• a binary linear programming formulation for face se-
lection that guarantees lightweight, manifold, and wa-
tertight reconstructions and meanwhile recovers sharp
features of the objects.

1

https://github.com/LiangliangNan/PolyFit
https://github.com/LiangliangNan/PolyFit
liang
Highlight

Figure 1. Pipeline. (a) Input point cloud. (b) Planar segments. (c) Supporting planes of the initial planar segments. (d) Supporting planes
of the refined planar segments. (e) Candidate faces. (f) Reconstructed model. All planar segments and faces are randomly colored.

2. Related Work
In literature, a large body of research on polygonal

surface reconstruction from point clouds aim at obtaining
dense polygonal surfaces [8, 13, 22, 11]. In the last decades,
extracting geometric primitives and identifying their com-
bination to infer higher-level structures have become the
most popular technique for reconstructing piecewise planar
objects. In this section, we mainly review approaches that
focus on primitive extraction, primitive regularization, and
primitive- and hypothesis-based reconstruction.

Primitive extraction. Researches falling in this cate-
gory aim at extracting high-quality instances of basic geo-
metric primitives (e.g., plane, cylinder) from point clouds
corrupted by noise and outliers. The common practice
for this particular task is the Random Sample Consensus
(RANSAC) algorithm [6] and its variants [28, 24, 14].
These methods are reliable when the input data is contam-
inated by noise and outliers. So in our work, we use an
efficient implementation of the RANSAC algorithm [24] to
extract initial planar primitives.

Primitive regularization. By exploiting the prior
knowledge about the structure of an object, researchers
further regularize the extracted primitives. Li et.al. [17]
discover global mutual relations between basic primitives
and use such information as constraints to refine the
initial primitives base on local fitting and constrained
optimization. Monszpart et. al. [19] further exploit this idea
to extract regular arrangements of planes. These methods
focus on inferring and regularizing potential relationship
between structures. However, obtaining manifold and
watertight surface models from the regularized primitives
remains unsolved. In our work, we provide a promising
framework to this challenging problem based on a
hypothesizing and selection strategy.

Primitive-based reconstruction. In contrast with ap-
proaches that focus on obtaining dense polygonal sur-
faces, exploiting high-level primitives for man-made ob-
jects became popular in the last years [25, 12, 15, 20,
26, 16]. Arikan et al. [1] proposed an optimization-based
interactive tool that can reconstruct architectural models

from a sparse point cloud. Lin et al. [18] reconstruct
coarse building models by decomposing and fitting a set
of piecewise building blocks to the point clouds. By
structuring and resampling planar primitives, Lafarge and
Alliez [12] consolidate the point clouds and then obtain
surface models by solving a graph-cut problem. Using
a min-cut formulation, Verdie et. al. [26] reconstruct
watertight buildings from an initial arrangement of planar
segments. These approaches specialize in reconstructing
urban buildings. Thus, they may not be suitable to handle
general piecewise planar objects. Based on space parti-
tioning and volumetric presentations, [3] and [2] obtain
piecewise planar reconstruction by determining if cells are
occupied or not. These two techniques require visibility
information from the acquisition process as input while our
approach does not require this information.

Hypothesis-based reconstruction. By making stronger
assumptions on the objects, researchers further regularize
the reconstruction problem and fit compound shapes (i.e.,
a combination of multiple basic primitives) to the point
clouds [9, 16]. In Li et.al. [16], a set of axis-aligned boxes is
assembled to approximate the geometry of a building. Their
strategy is generating a non-uniform grid and then selecting
a subset of its cells that have good data support and are
smooth. In our work, we generalize this idea to reconstruct
general piecewise planar objects, and our reconstruction is
based on optimization under hard constraints that guarantee
manifold and watertight polygonal surface models.

3. Overview
Our method takes as input a point cloud (possibly noisy,

incomplete, and with outliers) of a piecewise planar object
and outputs a lightweight polygonal surface model. Our
method consists of two main parts (see Figure 1):

Candidate face generation. We first extract a set of
planar segments from the point cloud using RANSAC [24].
Considering the detected planar segments may contain
undesired elements due to noise, outliers, and missing data,
we refine these planar segments by iteratively merging
plane pairs and fitting new planes. We then clip these

Figure 2. Two planes intersect with each other resulting in four parts (a). (b) to (g) show all possible combinations to ensure a 2-manifold
surface. The edge in (b) and (c) connects two co-planar parts, while in (d) to (g) it introduces sharp edges in the final model.

planes by an enlarged bounding box of the point cloud
and compute pairwise intersections of the clipped planes to
hypothesize of the object’s faces.

Face selection. We choose an optimal subset of the
candidate faces to assemble a manifold and watertight
polygonal surface model. To do so, we formulate the face
selection as a binary linear programming problem. Our
objective function combines three terms that favor data
fitting, point coverage, and model complexity, respectively.
We also formulate hard constraints that ensure the final
model is manifold and watertight.

4. Candidate Face Generation
The input to this step is a point cloud P of a piecewise

planar object, and the goal is to generate a reasonably large
number of candidate faces.

Plane extraction. We use the RANSAC-based primitive
detection method proposed by Schnabel et al. [24] to detect
a set of initial planar segments S = {si} from the point
cloud P . Here si is a set of points whose distances are
smaller than a threshold ε to a plane and each points can be
assigned to no more than one plane. This plane is denoted
as the supporting plane of si.

Plane refinement. Due to the presence of noise and
outliers (especially for point clouds computed from Multi-
view Stereo), RANSAC may produce a few undesired
planar segments. We observed that the undesired planar
segments usually have arbitrary orientations and poor point
support. Although the later optimization-based face se-
lection procedure is designed to be capable of handling
such outliers, there may still cause problems. First, these
arbitrarily oriented planes may result in long but very
thin faces and small bumps in the final model. In some
extreme cases, it may also introduce degenerate faces due
to the limit of floating point precision. This degeneracy
usually makes the manifold and watertight hard constraints
(see Section 5.2) impossible to be satisfied. Second, the
undesired candidate faces results in a larger optimization
problem that is more expensive to be solved.

To tackle this issue, we iteratively refine the initial planar
segments using an improved plane refinement algorithm
proposed in [15]. Specifically, we first compute the angle

of the supporting planes for each pair of planar segments.
Then, starting from the pair (si, sj) with the smallest angle,
we test if the following two conditions are met. First, the
angle between the two planes is lower than a threshold,
i.e., angle(si, sj) < θt. Second, more than a specified
number (denoted as Nt) of points lie on the supporting
planes of both segments. If both conditions are satisfied,
we merge the two planar segments and fit a new supporting
plane using PCA [10]. We iterate this process until no more
segment pair can be merged. In our experiments, we choose
θt = 10◦ and Nt = min(|si|, |sj |)/5, where |si| denotes
the number of supporting points of si. Figure 1 (c) and
(d) show the extracted planes before and after refinement
respectively. It should be noted that an alternative approach,
e.g., [17], can also be used to extract planar segments.

Pairwise intersecting. To hypothesize the object’s
faces, we crop the supporting planes of all planar segments
by the bounding box of the point cloud. Then, the candidate
faces (i.e., a superset of the faces of the object) can be
obtained by intersecting the cropped planes. For simplicity,
we compute pairwise intersections of the cropped planes
(see Figure 1 (e)). It should be noted that pairwise inter-
sections introduce redundant candidate faces. Since most
of the redundant faces do not represent actual structures of
an object, they are supported by no or very few (due to noise
and outliers) point samples. The subsequent optimization-
based face selection is designed to favor choosing the most
confident faces while satisfying certain constraints.

The pairwise intersections maintain incidence informa-
tion of the faces and edges. Each edge of a candidate face
is either connecting four neighboring candidate faces or
representing a boundary. For example in Figure 2 (a), edge e
connects four faces while others are boundaries. We rely on
such incidence information to formulate our manifold and
watertight constraints for face selection (see Section 5.2).

5. Face Selection
Given N candidate faces F = {fi|1 ≤ i ≤ N}

generated in the previous step, we select a subset of these
candidate faces that can best describe the geometry of the
object and ensure that the chosen faces form a manifold and
watertight polygonal surface. This is achieved through op-

timization. We define multiple energy terms that constitute
our objective function.

5.1. Energy terms

Let variable xi encode if a candidate face fi is chosen
(i.e., xi = 1) or not chosen (i.e., xi = 0), our objective
function consists of three energy terms: data-fitting, model
complexity, and point coverage.

Data-fitting. This term is intended to evaluate the fitting
quality of the faces to the point cloud while accounting for
an appropriate notion of confidence [21]. It is defined to
measure a confidence-weighted percentage of points that do
not contribute to the final reconstruction

Ef = 1− 1

|P |

N∑
i=1

xi · support(fi), (1)

where |P | is the total number of points in P . support(fi)
accounts for a notion of confidence and is defined at each
point considering its local neighborhood

support(f) =
∑

p,f |dist(p,f)<ε

(1− dist(p, f)

ε
) · conf(p),

(2)
where dist(p, f) measures the Euclidean distance between
a point p and a face f . We consider only points that are
ε-close to f , i.e., points p satisfying dist(p, f) < ε. The
confidence term conf(p) measures the local quality of the
point cloud at a point p. It is computed by examining the
local covariance matrices defined at p, as in [23]. In this
work, we compute for p the covariance matrices of its local
neighbors at three static scales (i.e., different neighborhood
sizes). Then, conf(p) is defined as

conf(p) =
1

3

3∑
i=1

(1− 3λ1i
λ1i + λ2i + λ3i

) · λ
2
i

λ3i
, (3)

where λ1i ≤ λ2i ≤ λ3i are the three eigenvalues of the
covariance matrix at scale i. conf(p) encode two geometric
properties of the point samples near point p. The first
property 1 − 3λ1/(λ1 + λ2 + λ3) evaluates the quality of
fitting a local tangent plane at p, whose value of 0 indicates
the worst point distribution and value of 1 indicates a
perfectly fitted plane. The second property λ2/λ3 evaluates
the local sampling uniformity. Each eigenvalue ratio takes
on a value in the range [0, 1] with boundary values 0 and 1
corresponding to a perfect line distribution and a uniform
disc distribution correspondingly.

Intuitively, the data-fitting term favors choosing faces
that are close to the input points and are supported by
densely sampled uniform regions. This term has a value
in the range [0, 1] where a value of 1 indicates a noise-free
and outlier-free input data.

Figure 3. Two examples of point coverage. The α-shape meshes
are in yellow and the candidate faces are in purple. The value
below each figure indicates the coverage ratio of each face.

Model complexity. Given incomplete point clouds
due to occlusions, the data-fitting term defined in Equa-
tion 1 tends to stubbornly comply with the incomplete
data, resulting in gaps in the final model. Besides, noise
and outliers also tend to introduce gaps and protrusions
in the reconstructed models. To avoid these defects, we
introduce a model complexity term to encourage simple
structures (i.e., large planar regions). Considering gaps and
protrusions result in additional sharp edges, we define the
model complexity term as the ratio of sharp edges in the
model

Em =
1

|E|

|E|∑
i=1

corner(ei), (4)

where |E| denotes the total number of pairwise intersections
in the candidate face set. corner(ei) is an indicator function
whose value is determined by the configuration of the two
selected faces connected by an edge ei. The intersecting
edges can be either planar or sharp. For example, the
intersecting edges e in Figure 2 (b) and (c) are planar edges
yielding larger planar polygons, but edges in (d) to (g) are
sharp edges that will introduce sharp features (if they are
selected in the final model). So corner(ei) will have a value
of 1 if the faces associated with ei introduce a sharp edge
in the final model. Otherwise, corner(ei) has a zero value
meaning the two faces are coplanar.

Point coverage. To handle missing data caused by oc-
clusions, the unsupported regions (i.e., regions not covered
by points) of the final model should be as small as possible.
To measure the coverage of a face fi, we first project all
ε-close points onto fi. We then extract a mesh Mα

i by
constructing a 2D α-shape [5] from the projected points
(see Figure 3). We use only the points whose projections
are inside fi for α-shape construction. We call Mα

i an α-
shape mesh. Intuitively, the α-shape mesh of a set of points
ensures that any three points with a circumradius rc ≤

√
α

are spanned by a triangle face. Given an appropriate value
of rc, the area of the α-shape mesh surface can provide us a
reliable measure of the coverage of a candidate face by the

input points. Thus, our point coverage energy is defined as
the ratio of the uncovered regions in the model

Ec =
1

area(M)

N∑
i=1

xi · (area(fi)− area(Mα
i)), (5)

where area(M), area(fi), and area(Mα
i) denote the

surface areas of the final model, a candidate face fi,
and the α-shape mesh Mα

i of fi, respectively. In our
implementation, we chose the radius rc to be 5·density(P),
where density(P) denotes the average spacing of all the
points to their k nearest neighbors, k being set to 6.

Using the exact model area, i.e.,
∑N
i=1 xi · area(fi), as

the denominator ensures that the value of the point coverage
term is within the range [0, 1]. However, this results in a
non-linear objective function that is difficult to optimize.
Considering the actual surface area of the final model is
comparable to the area of the point cloud’s bounding box,
we replace the exact model area with the area of the point
cloud’s bounding box, i.e., area(M) ≈ area(bbox(P)).

5.2. Optimization

With the above energy terms, the optimal set of faces can
be obtained by minimizing a weighted sum of these terms
under certain hard constraints enforcing the final model to
be manifold without boundary.

Remember that the candidate faces are obtained by the
pairwise intersection of planes. Thus an edge is connected
to either one (for boundary faces) or four faces (for inner
faces). See Figure 2 (a) for an example. It is quite obvious
that the necessary and sufficient condition for manifold
and watertight polygonal surfaces is that each edge of the
model connects only two adjacent faces. Thus, the final
formulation for face selection can be written as

min
X

λf · Ef + λm · Em + λc · Ec

s.t.


∑

j∈N (ei)

xj = 2 or 0, 1 ≤ i ≤ |E|

xi ∈ {0, 1}, 1 ≤ i ≤ N

(6)

where
∑
j∈N (ei)

xj counts the number of faces connected
by an edge ei. This value is enforced to be either 0 or 2,
meaning none or two of the faces are selected (see Figure 2
(b) - (g) for possible selections). These hard constraints
guarantee that the final model is manifold and closed.

The problem defined in Equation 6 is a binary linear
program. We solve it using the Gurobi solver [7]. After
optimization, the union of the selected faces (i.e., faces
having a corresponding variable xi = 1) comprises a
polygonal surface model approximating the object.

6. Results and Discussion
We implemented our method using C++. The α-shapes

are constructed using the CGAL library [5]. We tested

Figure 5. Reconstruction of a building with completely missing
planes (top row). By adding an extra plane, model with different
structures can be obtained (bottom row).

our method on various real-world objects of different com-
plexity. Experiments demonstrated the advantages of our
hypothesizing and selection strategy.

Reconstruction results. Our method can reconstruct
piecewise planar objects such as buildings and other man-
made objects. Figures 1 and 4 (a) - (d) show the reconstruc-
tion of five buildings of different styles. The input of these
buildings are point clouds computed from images using
Multi-View Stereo techniques. Although the point clouds
are quite noisy and contain significant amounts of outliers
and missing data, our method faithfully reconstructed these
buildings. In Figures 4 (e) and (f), two indoor scenes
consisting of multiple rooms are reconstructed. These two
scenes were captured by Google Tango tablets. Due to the
cluttered nature of indoor scenes, the datasets contains large
holes. Our hypothesizing and selection strategy fills in the
missing regions and reconstructed the permanent structures
(i.e., walls and roofs) of these scenes.

Besides the buildings, we also tested our method on
other man-made objects. In Figure 4 (g), our method took
the laser scan of a small packing foam box as input and
faithfully reconstructed all its structures with sharp features.
We consider this as the first advantage of our approach. In
(h) and (i), two sofas of different styles are reconstructed.
These pieces of furniture were scanned by PrimeSense
RGB-D cameras in the form of dense triangular meshes [4].
Our method took the vertices of the meshes as input and
produced lightweight polygonal surface models.

In rare cases where few planes are completely missing,
our method may still generate plausible reconstructions. In
Figure 5 (top), a building with its back roof completely
missing is reconstructed. It is interesting to see that by
adding few extra planes, models with distinct structures can
also be obtained (bottom row). Thanks to the manifold
and watertight constraints, our method guarantees the re-
constructed models to be manifold without boundary. We
consider this as the second advantage of our approach.

In Table 1, we give statistics of our quantitative results.

Figure 4. Reconstruction of a set of piecewise planar objects from various data sources. The input for (a) - (d) are computed from images
using Multi-View Stereo; (e) and (f) are acquired by Google Tango tablets; (g) is captured by a laser scanner [17]; (h) and (i) are acquired
by PrimeSense Carmine RGB-D cameras [4]. From left to right: input point clouds, extracted planar segments, candidate faces (randomly
colored), reconstructed models, and models overlaid with the original point clouds (rendered with a smaller point size).

Table 1. Statistics on the examples presented in Figure 4.
Model index in Figure 4 (a) (b) (c) (d) (e) (f) (g) (h) (i)
points 129 K 101 K 73 K 577 K 186 K 176 K 382 K 756 K 911 K
planar segments 36 21 22 22 28 33 52 17 19
candidate faces 6239 472 946 959 1778 2770 7540 580 523
faces of the final model 38 18 25 29 26 35 52 16 14
Primitive extraction (sec) 0.21 0.14 0.09 1.17 0.45 0.13 0.93 1.04 1.54
Candidate generation (sec) 0.05 0.01 0.01 0.02 0.01 0.02 0.06 0.02 0.03
Face selection (optimization) (sec) 2.73 1.46 1.17 8.26 2.90 3.05 7.39 13.26 16.01

Figure 6. Result without (a) and with (b) plane refinement step.
In (a), the top comprises ten faces originating from three different
planes. The red arrows indicate long but very thin polygonal faces.

As can be seen from the number of faces in the final models,
our method can produce lightweight 3D models. We
consider this as the third main advantage of our approach.

Timings. Table 1 shows the running times of each
step for the examples presented in Figure 4. We can see
that the face selection step is slower compared to primitive
extraction and candidate face generation. It should be noted
that the construction of the α-shape meshes dominated this
step. Down-sampling of input point clouds may speed up
this process.

Effect of plane refinement. We tested our algorithm
on a few data sets by omitting the refinement step. One
such example is shown in Figure 6. We can see that even
without the plane refinement step, our optimization still
recovers the main structure of this building. However,
we observe that the two models have some differences in
the details. First, the top-most face of the reconstructed
polyhedron in (a) is composed of ten candidate faces lying
on three different planes, while in (b) it comprises fewer
faces originating from the same plane. Second, some
undesired bumpy structures can be avoided with the plane
refinement step. This is because some initial faces are
quite close to each other, making the energy terms less
distinguishable. Another benefit of the plane refinement
step is the gain in efficiency. With plane refinement,
the total number of candidate faces is reduced from 1185
to 348. Accordingly, the run-time of the optimization
decreased from 1.25 seconds to 0.31 seconds, i.e., more
than four times faster.

Effect of the energy terms. The core of our reconstruc-

Figure 7. A building (a) reconstructed without (b) and with (c) the
complexity term. The red arrows indicate bumps and gaps.

tion method lies in the optimization-based face selection
that is designed to favor different aspects necessary for
high-quality reconstructions. Both data fitting and coverage
are essential requirements. We observed that having only
these two terms works perfectly for reasonably complete
datasets, but it is still not sufficient for point clouds with
significant imperfections (i.e., noise, outliers, and missing
data). Figure 7 (b) shows such an example. We can see that
the reconstructed model demonstrates some desired bumps
and gaps. In contrast, with our model complexity term, the
reconstructed model is cleaner and compact (c). To further
evaluate the behavior of the model complexity term, we
ran our face selection on a dataset by gradually increasing
the weight (see Figure 9). Not surprisingly, increasing the
influence of the model complexity term resulted in less
detailed 3D models. Thus, the model complexity term also
provides control over the model details.

Parameters. The parameters for most examples are as
follows: λf = 0.46, λc = 0.27, and λm = 0.27 (Note
that weights in a wide range can produce the same results).
Slightly different weights (λf = 0.3, λc = 0.4, and λm =
0.3) are used for the sofa example in Figure 4 (i), where the
background (ground plane) has a much higher density than
the object (sofa), thus the smaller data fitting weight.

Robustness and accuracy. We evaluated the robustness
of our approach by reconstructing from synthetic data
with an increasing amount of noise (see Figure 10). In
(c), the standard deviation of the noise distribution is
0.6 meters high, our method still obtained topologically
accurate reconstruction. However, a much higher level

Figure 8. Comparison with four state-of-the-art methods on a building dataset. (a) Input point cloud. (b) Model reconstructed by the
Poisson surface reconstruction algorithm [11]. (c) The result of the 2.5D Dual Contouring approach [27]. (d) The result of [15]. (e) The
result of [16]. (f) Our result. The number under each sub-figure indicates the total number of faces in the corresponding model.

Figure 9. Reconstruction of the building shown in Figure 5 by
gradually increasing the influence of the model complexity term.
The values are the weights used in the corresponding optimization.

Figure 10. Reconstruction from synthetic data with increasing
noise. Top: input. Middle: reconstruction. Bottom: reconstruction
error. σ indicates the standard deviation of the Gaussian noise.

of noise may further pollute the structures of the object,
resulting in large errors in the final model.

Comparison. Figure 8 shows the comparison of our
approach with four other methods on a building dataset.
We can see that both Poisson [11] and 2.5D Dual Con-
touring [27] generate dense surfaces with large numbers of
bumps. The method in [15] uses only the roof information
and also produce a 2.5D reconstruction. By making the
Manhattan-World assumption, the result of [16] is more
regularized. However, these two methods both produce
undesired structures. In contrast, our approach generates
the most compact and clean model. Besides, we can also
observe that our result is less regular than that of [16].
However, this can be improved by a post-processing step
using the coarse model optimization technique proposed
in [20].

Limitations. Our hypothesizing and selection based
reconstruction strategy is intended for reconstructing simple
polygonal surfaces. It may encounter computation bot-
tlenecks for large complex objects (e.g., urban scenes of
many buildings). Running on such objects results in a huge
number of candidate faces and the computation may not be
affordable. In our experiments, we did not encounter such
situations because we only tested our method on problems
of manageable scales.

7. Conclusions and Future Work
We introduced a novel framework that casts polygonal

surface reconstruction from point clouds as a binary label-
ing problem. Our framework is based on a hypothesizing
and selection strategy, and we proposed a novel optimiza-
tion formulation to obtain lightweight, watertight polygonal
surface models. We demonstrated the effectiveness of our
method on datasets captured by a range of devices. Since
our approach seeks to find an optimal combination of the in-
tersected planes under manifold and watertight constraints,
it is guaranteed to produce lightweight, manifold models
without boundary.

Future direction. Our current implementation exploit-
s planar primitives and it is suitable for reconstructing
piecewise planar objects. However, the hypothesizing and
selection strategy is general and has the potential to handle
various types of basic primitives. In future work, we
would like to extend our method to incorporate more types
of geometric primitives, such as cylinders and spheres.
To handle data with completely missing planes, we plan
to infer the missing planes by exploiting structural priors
(e.g., symmetry, parallelism, and orthogonality) to obtain
complete reconstructions.

Acknowledgements
We would like to thank Florent Lafarge, Michael Wim-

mer, and Pablo Speciale for providing us the data used in
Figures 4 (d), (a) , and (e)-(f), respectively. We also thank
Tina Smith for recording the voice-over for the video. This
research was supported by the KAUST Office of Sponsored
Research (award No. OCRF-2014-CGR3-62140401) and
the Visual Computing Center (VCC) at KAUST.

References
[1] M. Arikan, M. Schwärzler, S. Flöry, M. Wimmer, and

S. Maierhofer. O-snap: Optimization-based snapping for
modeling architecture. ACM Transactions on Graphics,
32:6:1–6:15, 2013.

[2] A. Boulch, M. de La Gorce, and R. Marlet. Piecewise-planar
3d reconstruction with edge and corner regularization. In
Computer Graphics Forum, volume 33, pages 55–64, 2014.

[3] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-
planar 3d reconstruction and completion from large-scale
unstructured point data. In CVPR 2010, pages 1261–1268.

[4] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset
of object scans. arXiv preprint:1602.02481, 2016.

[5] T. K. F. Da. 2D alpha shapes. In CGAL User and Reference
Manual. CGAL Editorial Board, 4.9 edition, 2016.

[6] M. A. Fischler and R. C. Bolles. Readings in computer
vision: Issues, problems, principles, and paradigms. chapter
Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated
Cartography, pages 726–740. 1987.

[7] Gurobi. Gurobi optimization. http://www.gurobi.
com/.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
In SIGGRAPH 1992, pages 71–78.

[9] H. Jiang and J. Xiao. A linear approach to matching cuboids
in rgbd images. In CVPR 2013.

[10] I. Jolliffe. Principal component analysis. Encyclopedia of
Statistics in Behavioral Science.

[11] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. Symposium on Geometry Processing 2006,
pages 61–70.

[12] F. Lafarge and P. Alliez. Surface reconstruction through
point set structuring. In Computer Graphics Forum,
volume 32, pages 225–234, 2013.

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project: 3d
scanning of large statues. In SIGGRAPH 2000, pages 131–
144.

[14] B. Li, R. Schnabel, J. Shiyao, and R. Klein. Variational
surface approximation and model selection. Computer
Graphics Forum, 28(7), 2009.

[15] M. Li, L. Nan, N. Smith, and P. Wonka. Reconstructing
building mass models from uav images. Computers &
Graphics, 54(C):84–93, 2016.

[16] M. Li, P. Wonka, and L. Nan. Manhattan-world urban
reconstruction from point clouds. In ECCV 2016, pages 54–
69.

[17] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or,
and N. J. Mitra. Globfit: Consistently fitting primitives
by discovering global relations. In SIGGRAPH 2011,
volume 30, page 52.

[18] H. Lin, J. Gao, Y. Zhou, G. Lu, M. Ye, C. Zhang, L. Liu,
and R. Yang. Semantic decomposition and reconstruction
of residential scenes from lidar data. SIGGRAPH 2013,
32(4):66.

[19] A. Monszpart, N. Mellado, G. J. Brostow, and N. J.
Mitra. Rapter: Rebuilding man-made scenes with regular
arrangements of planes. SIGGRAPH 2015, 34(4):103:1–
103:12.

[20] L. Nan, C. Jiang, B. Ghanem, and P. Wonka. Template
assembly for detailed urban reconstruction. In Computer
Graphics Forum, volume 34, pages 217–228, 2015.

[21] L. Nan, A. Sharf, H. Zhang, D. Cohen-Or, and B. Chen.
Smartboxes for interactive urban reconstruction. In
SIGGRAPH 2010, volume 29, page 93.

[22] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel.
Multi-level partition of unity implicits. In SIGGRAPH 2003,
pages 463–470.

[23] M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J.
Guibas. Example-based 3d scan completion. In Symposium
on Geometry Processing 2005, pages 23–32.

[24] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. In Computer graphics forum,
volume 26, pages 214–226, 2007.

[25] C. A. Vanegas, D. G. Aliaga, and B. Benes. Automatic
extraction of manhattan-world building masses from 3d
laser range scans. IEEE transactions on visualization and
computer graphics, 18(10):1627–1637, 2012.

[26] Y. Verdie, F. Lafarge, and P. Alliez. Lod generation for urban
scenes. ACM Transactions on Graphics, 34(3), 2015.

[27] Q.-Y. Zhou and U. Neumann. 2.5d dual contouring: A robust
approach to creating building models from aerial lidar point
clouds. In ECCV 2010, pages 115–128.

[28] M. Zuliani, C. S. Kenney, and B. Manjunath. The
multiransac algorithm and its application to detect planar
homographies. In ICIP 2005, volume 3, pages III–153.

http://www.gurobi.com/
http://www.gurobi.com/

