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Automatic Constraint Detection for 2D Layout
Regularization

Haiyong Jiang, Liangliang Nan, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, Peter Wonka

Abstract—In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of
two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans
or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings
and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and
distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming
problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed
framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior
performance to the state of the art.

Index Terms—layout regularization, constraint detection, constraint analysis, linear integer programming.
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1 INTRODUCTION

We propose an algorithm for the regularization of layout-
s. In this paper, a layout refers to a two-dimensional arrange-
ment of objects. Layouts arise in a variety of applications.
For example, they can come from digitized architectural
floor plans, digitized facade images, image and text layouts
on slides, line drawings, and graph drawings. In practice,
when a layout is designed or digitized from another source
(e.g., images), it is inevitable that noise will occur via im-
precise user input. Elements in an idealized layout exhibit
some regularities, e.g., they are aligned, of the same size, or
uniformly distributed along a specific direction. However, in
the aforementioned applications, these regularities typically
disappear due to approximate user input. In this work, we
seek to detect and restore these regularities by eliminating
the noise that occurs during the layout design or digitization
stage.

We offer three reasons for why this is an important
problem. First, high-level shape analysis is a popular topic
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in computer graphics. Many available methods rely on
correctly extracted relationships to analyze a scene [1]. Even
if the input and output of our regularization look similar,
it is important that correct relationships are extracted. Our
motivation for this paper is to build datasets for machine
learning techniques for layout synthesis. Second, a regu-
larized layout compresses better than a noisy one. Regu-
larization is thus important to the efficient representation
of layouts. Third, in most cases, the visual differences are
noticeable and the regularized layout looks better than the
original one.

Regularization of layouts is challenging because of the
complexity of constraints. Here discuss a few such con-
straints: 1) Elements can be partially aligned (e.g., elements
are bottom aligned, but not top aligned). 2) Large elements
can be aligned with multiple objects (e.g., top aligned with
one and bottom aligned with another). 3) Elements can be
missing from a regular pattern. 4) The spacing between
rows and/or columns can be irregular. Fig. 1 shows the
complexity of possible constraints in an example layout.

A key ingredient in regularization is the design of the
layout model. A simple layout model has only a few pa-
rameters and therefore the fitting process is fairly robust.
These simple models, e.g., a set of regular grids, are popular
for automatic pattern analysis in images [2] and three-
dimensional (3D) shapes [3], [4]. Unfortunately, this simple
data model is limited in its applicability to a large class of
layouts, e.g., the layout shown in Fig. 1. A complex model
typically has many parameters and can fit a large number of
layouts. However, such a model is not very robust to noise.

An initial framework for regularization was presented
by Pavlidis and Van Wyk [5]. They propose a simple greedy
algorithm to detect constraints from a layout. By constrast,
we use an optimization approach based on four steps.
First, we extract constraint candidates. Second, we score the
likelihood of constraints based on energy functions. Third,
we use global optimization using linear integer program-
ming to select a subset of the constraint candidates that
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Fig. 1 Complexity and multiformity of constraints in a
facade layout. Elements B and C are partially aligned
(top aligned, but not bottom aligned). The large element
B is aligned with different objects at the top (C ... F ) and
bottom (L). Elements are missing from a regular pattern
consisting of A,D,E, and F . The spacing between same-
sized elements H, I, J,K is irregular.

work well together. Fourth, we regularize the layout by
transforming the contents of the layout such that the change
in both element locations and sizes is minimal while the
selected constraints are also respected. Our formulation for
layout regularization minimizes energy expenditure from
quadratic programming.

In our results, we show that our algorithm performs
better than [5] and also better than the independently de-
veloped algorithm in [6]. Further, our framework considers
more types of constraints than have been considered in
previous work. The constraints we consider include the size,
spacing, and alignment of layout elements.

We make the following contributions:

• A formulation of the layout regularization problem
that performs better than previous work, as evalu-
ated on a test dataset consisting of layouts from a
variety of applications.

• An extension of previous work with a larger variety
of constraints that can be detected and considered in
the layout optimization.

2 RELATED WORK

The layout problem can be roughly classified into two major
categories, seamless layouts without gaps and layouts with
gaps between elements. Our work focuses on the latter
category of layout problem. We review related work in
image structure analysis, geometry structure analysis, and
layout enhancement.

2.1 Image structure analysis

There is a large literature that addresses different aspects of
image structure analysis. A common interest in computer
graphics and computer vision is facade layout analysis
in urban modeling [7]. The image labeling problem has
been addressed by considering both visual evidence and
architectural principles [8]. Based on a perceptual grouping
approach, translational symmetry is exploited for single
view image recognition [9]. A similar approach that uses
repeated information for facade image reconstruction is
proposed by Wu et al. [10]. To understand the structure

of a facade, a set of facade images are first recursively split
and labeled for training, and then the features are extracted
from the segmented facades and used to guide the labeling.
Riemenschneider et al. [11] combine both low-level and
mid-level classifiers for irregular facade parsing. Yang et
al. [12] use a binary split grammar to parse facade images.
Teboul et al. [13] parse facade layouts by using reinforce-
ment learning. Wu et al. [1] extract grammars from labeled
facade layouts and generate large scale variations by editing
the grammars. Shen et al. [14] adaptively partition urban
facades into hierarchical structures based on concatenated
and interlaced grids. Musialski et al. [15] developed an
interactive tool for facade image segmentation that requires
significant amount of user interaction. While most of these
analyses of facade layouts use a hierarchical representation,
Zhang et al. [16] propose modeling layouts using layered
grids with irregular spacing. In our work, we also use grids
with irregular spacing, but we can avoid the complexity of
the layered structure.

2.2 Geometry structure analysis

Quite a few papers focus on discovering regular patterns for
geometry structure analysis in the 3D space. Mitra et al. [17]
propose a pair-matching based approach to detect partial
and approximate symmetry in 3D shapes. Pauly et al. [3]
further introduce a framework for detecting translational,
scaling and rotational patterns in 3D shapes. Tevs et al. [18]
build a connection among similar shapes via geometric sym-
metries and regularities. These approaches have inspired
many applications in shape analysis, reconstruction, and
synthesis. For example, Li et al. [19] propose reconstructing
3D shapes from noisy and incomplete point cloud data that
simultaneously detects surface primitives and their mutual
relationships. This approach involves both local and global
shape analysis. A recent survey paper [20] presents more
related

2.3 Layout enhancement

The layout enhancement (regularization and beautification)
has been studied in different areas, e.g., object alignment
[21], handwriting and drawing beautification [22], [23], [24],
sketch and drawing beautification [5], [6], [25], [26], and 3D
shape symmetrization [27]. Nan et al. [28] exploit and model
conjoining Gestalt rules for grouping and summarization
of facade elements. AlHalawani et al. [29] analysze and
edit the facade images with (semi-)regular grid structures.
Huang et al. [30] combine patchbased image completion and
translational symmetry detection to fill in the missing part of
an incomplete planar structure. More recently, Xu et al. [31]
propose a command-based arrangement tool for 2D layouts.

Pavlidis and Van Wyk [5] beautify drawings using a
clustering method, while Xu et al. [6] interactively enhance
the global beautification with user guidance. We compare
our approach to these two methods in Section 6.

In this work, we are interested in processing digitized
two-dimensional (2D) images and drawings. By abstracting
each layout as a set of rectangles, our goal is to regularize
the layout such that the regularities of the elements in the
layout are enforced.
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(a) (b) (c) (d) 

Fig. 2 An overview of our layout regularization approach. Given an input image or drawing (a), we first obtain the initial
layout by manually marking and labeling the elements in a pre-processing step (b). Then, appropriate constraints are
automatically selected (c) and are used to generate the regularized layout (d).

3 OVERVIEW

Given an image or drawing I, that is characterized by a
set of rectangles, the layout L = {e1, ...en} of I can be
simply described as the locations and sizes of the elements
in I. Here, an element, ei, is defined by a label, li, and its
bounding box, bi = {xi, yi, wi, hi} depicting its bottom-
left corner (xi, yi) and the size (wi, hi) (see Fig. 4). We
seek to regularize the layout of the elements such that the
regularities of these elements are enforced.

Our proposed solution to the layout regularization prob-
lem uses both discrete and continuous optimization. Fig. 2
shows an overview of our layout regularization method.
Our method consists of the following three steps.

3.1 Preprocessing

To digitize the layout of a given image, the user manually
marks and labels the elements in the input image. The
output of the preprocessing step is the initial layout that
will be regularized in the next steps. Alternatively, the input
can be user-generated drawings or slide layouts.

3.2 Constraint selection

We first detect a larger set of candidate constraints from
the initial layout using a simple thresholding-based method.
Then, we score each constraint using an energy function.
Finally, we select a set of constraints from the candidates
using global optimization (linear integer programming).
Details on constraint selection are presented in Section 4.

3.3 Layout regularization

To regularize the input layout, we transform the contents of
the layout such that changes in both the element locations
and sizes are minimal while selected constraints are respect-
ed. We use quadratic programming to minimize energy use
in layout regularization (Section 5).

4 CONSTRAINTS SELECTION

Given user-marked elements in a layout, our layout reg-
ularization method tries to detect and enforce three type-
s of constraints: alignment, same-size, and same-spacing
constraints. This problem is challenging in the following
ways. First, we have to detect reasonable constraints con-
necting elements in the layout. Second, there may exist
potential conflicts among these constraints. To address these
problems, we introduce an optimization-based constraint
selection algorithm. The selected constraints are then used
in a quadratic programming formulation to regularize the
layout (see Section 5).

(a) Left alignment  (b) Same size (c)  Same horizontal spacing

Fig. 3 A subset of constraints in the example layout in Fig. 1.
Colors indicate different constraint groups in this figure.

4.1 Constraint Definitions
We consider the following relationships between elements
as potential regularity constraints: alignment constraints,
same-size constraints, and same-spacing constraints (see
Fig. 3 and Fig. 4).

4.1.1 Alignment constraints
Two elements, ei and ej can have one or multiple of the
following alignment constraints: top alignment, middle-
Y alignment, bottom alignment, left alignment, middle-X
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e1

same horizontal spacing

e2 e3

same sizebottom alignment

(x1,y1)

w1

h1

(x2,y2) (x3,y3)

Fig. 4 Illustration of three types of constraints. The bottom
alignment of elements e1 and e2 can be formulated as
y1 − y2 = 0. For the same-size constraint of element pair
(e2, e3), we have w2−w3 = 0 and h2−h3 = 0. The horizon-
tal same-spacing constraint on element pairs {e1, e2} and
{e2, e3} turns out to be x2−(x1+w1)−(x3−(x2+w2)) = 0.

alignment, and right alignment. For example, a bottom
alignment between ei and ej can be formulated as

yi − yj = 0. (1)

Other alignment relations are defined in a similar way.

4.1.2 Same-size constraints
Two elements, ei and ej , may be linked by a same-width
constraint or a same-height constraint or both. Elements
with the same label are always considered to hold same-size
constraints. Same-size constraints can be formulated as:

wi − wj = 0,

hi − hj = 0.
(2)

4.1.3 Same-spacing constraints
Same-spacing constraints are defined on two-element pairs
and can be either in the horizontal or vertical direction. Cur-
rently, we only consider same-spacing constraints between
elements with the same labels. For example, assume the
element pairs (ei, ej) and (em, en) should have the same
spacing in the horizontal direction. The equations for same-
spacing constraints depend on the relative position of the
elements. For the given example, assuming xi < xj and
xm < xn would lead to

xi + wi − xj − (xm + wm − xn) = 0. (3)

4.2 Candidate Group Generation

The candidate group generation step computes a set of
candidate groups {gi}, where each group, gi, is a set of ele-
ments that share an alignment, same-size, or same-spacing
constraint. In this step, we use a threshold, ta, to limit the
candidate groups to a reasonably small set. Note that the
threshold, ta, is a global control mechanism for the number
of candidate groups being generated. This threshold is set
high enough so that all reasonable candidates are generated.
Note that ta is only used for generating the candidate con-
straints, while the actual constraints are selected using the
linear integer programming formulation described later. We
describe the candidate group generation for each constraint
type in the following.

4.2.1 Alignment constraints

We use top-alignment as an example. We sort all the ele-
ments in the input layout according to the y value of their
top edge. Let {p1, ...pn} denote the top positions of the
sorted elements. We generate a set of potential groups such
that the difference in the top positions of every pair of the
elements in each group is less than the threshold, ta.

4.2.2 Same-Size constraints

For same-size constraints, we first group all elements ac-
cording to their label because we assume that elements with
the same label have the same size. Then, we compute the
average element size for each label and use this element size
to define a distance between labels using the l1 norm. For
each label we find the k-nearest neighboring labels, where
k iterates from 1 to the number of labels. This yields an
initial set of candidate groups. Then, we filter out candidate
groups in which there exist two elements with a size differ-
ence larger than the threshold, ta.

4.2.3 Same-Spacing constraints

We take horizontal same-spacing as an example. We sort
all the element pairs in the input layout according to their
horizontal intervals. Then, the same-spacing constrained
groups are generated by combining element pairs so that
each group satisfies the following two conditions: 1) The
difference in the interval of every element pair is less than
the threshold, ta; 2) The elements overlap in the vertical
direction.

4.3 Energy Functions

We now describe how to assign energy values to candidate
groups such that groups with lower energies are more
likely to be selected. We first describe a set of auxiliary
heuristic functions that will then be combined to obtain
various energy functions. In the optimization, we will use
a linear combination of the described energy functions as
the objective function. A constraint group, gi, is composed
of a set of elements, {e1, ..., en} (two-element pairs for same-
spacing). We define the following functions on gi:

4.3.1 Standard deviation

The function stdvar(gi) measures the standard deviation
of positions (for alignment constraints), sizes (for same-size
constraints), or spacings (for same-spacing constraints). For
example, if gi is a group of top-aligned elements, stdvar(gi)
is the standard deviation of the top positions of all elements
in group gi.

4.3.2 Maximal element distance

The function maxDist(gi) computes the maximal distance
between positions, sizes, or spacings. For example, for a
group of top-aligned elements, maxDist(gi) is defined as
the difference between the maximal and the minimal top
position in the group.
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4.3.3 Group scale
The function scale(gi) is an intuitive measure for the scale
of group gi in the relevant direction (x or y). This function
is evaluated differently for alignment, same-size, and same-
spacing constraints. For example, for a group, gi, with hori-
zontal alignment, scale(gi) is equal to the minimal height of
elements in group gi. For same-size constraints, scale(gi) is
the maximum of the minimal width and minimal height of
the elements in group gi. For same-spacing constraints, we
define scale(gi) as the minimum spacing between element
pairs in gi.

To measure the quality of a constraint group, we consid-
er the following energy terms.

4.3.4 Intra-group distance
In our analysis, a good group should have a small variance
and a small maximal element distance. Further, these values
should be normalized by scale:

Ed(gi) =
max(0, stdvar(gi) +maxDist(gi)− ε)

scale(gi)
, (4)

where ε is the maximal allowed tolerance value so that
distances smaller than ε will be ignored. We set ε to 3 pixels
based on our experiments.

4.3.5 Aspect ratio variance
For same-size constraints, the aspect ratio plays an impor-
tant role. Thus, we use an energy term, Ea(gi), that captures
the standard deviation of the aspect ratio of all elements in
group gi. Here, the aspect ratio of an element is defined as
w
h , where w and h are the width and height of the element.

4.4 Constraint Selection
We employ linear integer programming to select a set of
constraint groups among the candidate groups. There are
multiple goals: First, the energy values of the selected
groups should be low. Second, the complexity of the overall
model measured by the number of constraint groups used
should also be low. This motivates the use of an additional
sparsity term. In our formulation, each constraint type uses
a different energy function.

Given an input layout, L, consisting of n elements and
the candidate constraint groups, G = {g1, ..., gN}, generat-
ed from L, our task is to choose a subset of these candidate
groups as constraints for the following layout regularization
step. Let C = Ca

⋃
Css

⋃
Csp denote all the constraint

types, whereCa, Css, andCsp are alignment, same-size, and
same-spacing types, respectively. Z = {z1, ...zN} denotes
the binary label for each candidate group (1 for chosen
and 0 for not chosen). We split Z into three subvectors,
Za, Zss, and Zsp, representing the labels for each type of
constraint groups. Then, the energy functions for these types
of constraint group are defined as follows:

4.4.1 Alignment constraints
E(Za) =

∑
cj∈Ca

∑
gi∈G

Ed(gi) · zi · δ(gi, cj) +wa · ‖Za‖0, (5)

where ‖ · ‖0 denotes the `0-norm, which counts the number
of nonzero entries in a vector. We add this term to encour-
age fewer and larger groups (i.e., groups that have more

elements). Because zi ∈ {0, 1} in our problem, ‖ · ‖0 can be
simplified to the sum of all the entries in the vector. δ(gi, cj)
is an indicator function that has value 1 if gi is a candidate
group of constraint type cj ; otherwise it is zero. wa is a
weight that balances the two terms.

4.4.2 Same-Size constraints.
The energy function for same-size constraints is similar to
that for alignment constraints. To account for aspect ratio of
an element in the layout, we also involve the aspect ratio
variance Ea into the formulation:

E(Zss) =
∑

cj∈Css

∑
gi∈G

(Ed(gi) + wa · Ea(gi)) · zi · δ(gi, cj)

+ wss · ‖Zss‖0,
(6)

4.4.3 Same-Spacing constraints.
For same-spacing constraints, the energy function is similar
to that of alignment constraints:

E(Zsp) =
∑

cj∈Csp

∑
gi∈G

Ed(gi) · zi · δ(gi, cj) + wsp · ‖Zsp‖0,

(7)
Afterwards, proper constraint groups are selected by

minimizing the following constrained objective function:

minimize
X

E(Za) + E(Zss) + E(Zsp)

subject to
N∑
i=1

‖gi‖ · zi · δ(gi, cj) = n, cj ∈ C

zi + zj ≤ 1, ∀gi
⋂
gj 6= ∅, 1 ≤ i, j ≤ N

zi ∈ {0, 1}, 1 ≤ i ≤ N,
(8)

where the constraints
∑N

i=1 ‖gi‖ · zi · δ(gi, cj) = n ensure
that every element in the layout is assigned to a constraint
group of type cj . The second group of constraints, zi + zj ≤
1, ensure that groups do not have overlapping elements if
gi and gj are of the same constraint type.

The optimization problem above is a linear integer pro-
gram that can be efficiently solved using various open
source solvers, e.g., [32], [33], [34]. The solution is a set
of constraint groups. Each group gives rise to a set of
linear equations that serve as constraints during the layout
regularization step. For example, for an alignment group
gi = {ei1, ..., eiN}, we combine adjacent elements to for-
m the constraint pairs, namely, (ei1, ei2), ..., (ei(n−1), eiN ).
Then, we generate one linear equation per constraint pair.

5 LAYOUT REGULARIZATION

With the optimal constraints detected and filtered from
the constraint selection step, our final goal is to regular-
ize the layout under these constraints. Our regularization
process has a similar format as the methods presented in
[35] and [36]. These works emphasize the facade structure
using a hierarchical layout, while ours deals with a layout
of rectangles. We address this regularization problem by
transforming the contents of the layout from the input
layout, L, to a regularized layout, L∗, such that the change
to element locations CL and element sizes CS is minimal
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(a) (b) (c) (d)

Fig. 5 Four different layouts are regularized using our method. Each column (from top to bottom) shows the input floor
plan, zoom in views of the marked region in the initial layout, and our regularized layout.

while respecting the constraints. The star (∗ in L∗) indicates
the regularized layout.

To facilitate user preferences, we use a weight, ω (we set
it to 2.5 for our preference for position changes), to balance
between the two terms above. Then, the layout regulariza-
tion is formulated as an energy minimization problem as
below:

L∗ = argmin (CL + ω · CS), (9)

where

CL =

n∑
i=1

(x∗i +
w∗i
2
− xi −

wi

2
)2 + (y∗i +

h∗i
2
− yi −

hi
2

)2

CS =

n∑
i=1

(w∗i − wi)
2 + (h∗i − hi)2.

In addition to the aforementioned constraints selected in
Section 4, we add additional constraints to Equation 9 to
ensure the validity of the optimized layout. In our formula-
tion, we include lower bound constraints and upper bound
constraints for the variables and sequential constraints for
the relative positions of the elements. These constraints are
as follows:

• Lower and upper bound constraints. These con-
straints restrict changes in elements in reasonable
ranges. Let (wb, hb) denote the size of the bound-
ing box of the layout. We add additional positional
constraints, 0 ≤ x∗i ≤ wb and 0 ≤ y∗i ≤ hb.
Further, to prevent the size of the elements from
being changed too much, we also add upper bound
constraints on their sizes. Let’s take the width bound
as an example, it is defined proportionally to the
widths of all elements that have the same label, `.
In our implementation, the maximal allowed width
change for an element, ei, is defined as max(0.5 ·
∆w`, 0.15 · wi), where ∆w` is the maximal difference
in width for elements that have the same label, and
wi is the width of ei. The size constraints on element
height are defined similarly.

• Sequential constraints. These constraints specify the
relative positions of pairs of elements. With these

constraints, we expect that the original layout of the
elements will not be greatly altered by the regu-
larization. Our experiments show that this type of
constraint is crucial to layout regularization. Given
two X-ordered (ascending order) elements, ei and ej ,
the constraints are x∗i +w∗i−x∗j ≤ 0 if xi+wi−xj ≤ 0.
The same goes for the vertical direction.

By solving the quadratic programming problem defined
in Equation 9, we obtain the regularized layout. In our im-
plementation, we add the constraints sequentially to avoid
potential conflicts. If any conflict is detected during the op-
timization, we simply remove the current constraint. How-
ever, the sequence of constraints will affect the results. To
incorporate our preferences for different constraints, we sort
all constraints according to their energy function, stdvar(gi)
(see Eq. 4), and then we add them to the constraint set
according to this order.

6 RESULTS AND DISCUSSION

6.1 Test Database

Our experiments are conducted on a database of 32 digitized
layouts from various applications. Our data set contains ex-
amples covering facades, slide designs, web designs, indoor
scenes, and other graphical layouts. In Figures 5, 6, and 7,
we show a set of different layouts regularized using our
method. In the supplemental materials, we provide more
results showing detected relations and regularized layouts.
From these applications, we can see that our method en-
forces the regularity constraints, while preserving high-level
relations, such as symmetries and repetitive patterns.

6.2 Evaluation Metrics

To evaluate the effectiveness of our framework, we design
an interactive program to specify the ground truth rela-
tionships for each layout. We use the marked relations to
compute precision (P), recall (R), and F-measure (F), defined
as follows:
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(a) (b) (c)

Fig. 6 Layout regularization for a set of urban facade images. The top row shows the input facade images. The middle and
the bottom rows show the zoom in views of the highlighted regions and the regularized results with abstract boxes.

P =

∑
i∈Gg

∑
j∈Gd

num(gi
⋂
gj)∑

j∈Gd

num(gj)
,

R =

∑
i∈Gg

∑
j∈Gd

num(gi
⋂
gj)∑

i∈Gg

num(gi)
,

F =
2 · P · R
P +R

,

(10)

where Gg is the set of constraint groups in the ground
truth, Gd is the set of constraint groups in the detected
result, and num(·) is the number of constraints in a con-
straint group. The term gi

⋂
gj denotes the intersection

of two constraint groups. It is empty if gi and gj are
different types of constraint. For alignment and same-size
constraints, an n−element constraint group will contribute
n − 1 constraint pairs, while an n−pair spacing group
will contribute n − 1 constraint pairs (see Section. 4.1).
Thus, we define the number of constraints of a constraint
group as the number of constraint pairs it yields. For ex-
ample, consider that we have the top alignment of elements
G = {e1, e2, e3, e4, e5} as ground truth, but the algorithm
detects only elements D = {e1, e2, e3, e5} as top aligned.
Then, we have num(D) = 4 − 1, num(G) = 5 − 1, and
num(G

⋂
D) = 4− 1.

6.3 Comparison
We made comparisons with the methods of Xu et al. [6]
and Pavlidis et al. [5]. Pavlidis et al. [5] propose to use
a clustering method to detect the constraints. Xu et al. [6]
employ the RANSAC method to get alignment constraints,
and a clustering method for same-spacing detection. We first

conduct a test of the alignment constraints. Fig. 8 shows the
precision, recall, and F-measure for every layout in our test
database. As we can see, our algorithm has similar precision
to previous work, but it has higher recall for most layouts.
This leads to the highest F-measure results on 93.8% of
layouts in the database. The comparison is also summarized
in Table 1. In the next test, we compare the same-spacing
constraints. In Table 1, we present a comparison of the
average values for precision, recall and F-measure. From
this comparison, we see that the same-spacing constraint
is more difficult to detect than is the alignment constraint.
Additionally, it is very difficult to define a ground truth for
this constraint. From the above comparison, we can see that
the precision of the same-spacing detection benefits from the
label information. However, our method works better than
others even without the label information. In Fig. 9, we also
show an illustrative example of a case where our method
is more successful than Xu et al.’s [6]. We can see that Xu
et al. can not handle layouts in which elements overlap
with each other. Their method cannot align the elements
properly. In addition, we compare the performance of these
three methods by measuring the average computation time
for the examples in our dataset. The method in [5] detected
the constraints in 0.001s because of the simplicity of the
method. Xu et al.’s method [6] needs 0.898s, while ours
needs about 0.914s.

6.4 Running Time
We implement the proposed method in C++. All the experi-
ments are performed on a PC with two 2.70GHz Intel Xeon
E5-2680 processors. We find that the running time depends
on the number of elements and the number of relations
in the input layout. On average, the constraint selection
step takes 0.70s, and the regularization step takes 3.59s.
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(a) Initial  design (b) Initial  layout (c) Regularized  layout (d) Regularized  design 

Fig. 7 Slide design beautified using our approach. From left to right: (a) the initial design, (b) the bounding boxes of the
elements in the design as input layout, (c) regularized layout, and (d) the final design.
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Fig. 8 The comparison of precision (left), recall (middle), and F-measure (right) of our method with Pav85 [5] and Xu2014
[6] on the alignment constraints.

TABLE 1 Comparisons with [5] and [6] on alignment and
same-spacing constraints. Our method is evaluated with
and without labels. We show the average precision (P), recall
(R), and F-measure (F) for all layouts in the test dataset.

Method Alignment Same-spacing
P R F P R F

Pav85 [5] 0.927 0.726 0.804 0.782 0.366 0.453
Xu2014 [6] 0.920 0.832 0.868 0.732 0.498 0.540

Ours (no label) 0.911 0.959 0.936 0.750 0.706 0.710
Ours 0.911 0.959 0.936 0.916 0.613 0.696

The maximum times for these steps were 3.71s and 15.78s,
respectively.

6.5 Robustness and Scalability

We evaluate the robustness and scalability of our algorithm
on synthesized examples. We first generate a regular grid
of elements of two different sizes with 8 columns and 5

rows. We then perturb the corners of the elements with
an increasing amount of Gaussian noise (measured relative
to the element sizes). The performance of our method is
demonstrated in Table 2. We can see that our method works
well if the noise is less than 10% of the element size.
To evaluate the scalability, we use Gaussian noise with a
variance of 0.02 and measure the running time for grids with
a different number of elements. In Table 3, we present the
results of this test. We can see that the accuracy decreases
with larger grids. The reason for these decrease is mainly
that some of the same-spacing constraints are not detected
due to outliers.

6.6 Parameters.

Our method includes multiple parameters. One parameter is
the threshold, ta, that is used to generate candidate groups.
To verify the influence of this parameter on the results, we
evaluate our method with different values of the threshold,
ta, on the alignment constraints (see Fig. 10). Our method
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TABLE 2 Performance of our algorithm on a data set with
increasing amount of Gaussian noise relative to the element
size. #C is the number of detected constraints.

Level of noise #C P R F
0.00 321 1.000 1.000 1.000
0.02 321 1.000 1.000 1.000
0.04 319 1.000 0.993 0.996
0.06 297 1.000 0.915 0.956
0.08 290 1.000 0.894 0.944
0.10 263 1.000 0.795 0.886

TABLE 3 Performance of our algorithm on a data set with an
increasing of number of rows and columns. Note that all the
grid elements are perturbed by 2% Gaussian noise (relative
to the element sizes).

Grid size #C P R F Time(s)
5× 8 321 1 1 1 2.245
10× 8 678 0.987 0.983 0.985 6.428
5× 16 676 0.975 0.986 0.981 6.996
10× 16 1420 0.964 0.971 0.967 25.789
20× 16 2940 0.947 0.964 0.955 121.822

(a) Input layout (b) Xu et al. (c) Ours

Fig. 9 A comparison of Xu et al. [6] (b) and our method (c).
The yellow circles indicate the differences.

can generate high-quality results after a value of 0.2 times
the average element size, which makes our method reliable
even without user intervention. Another important param-
eter is the weight of the sparsity term. Here, we evaluate
the performance with respect to the sparsity term wa as
shown in Fig. 11. The sparsity term plays an important role
in selecting the trade off between precision and recall.

6.7 Applications.
Our method is designed for general 2D layouts. One ap-
plication is the regularization of digitized layouts, e.g., the
facade layouts shown in Fig. 6. Another application is the
beautification of user-drawn layouts, e.g., slide design (see
Fig. 7), poster design, and other graphical designs (see
Fig. 5).

6.8 Extensions.
Our current implementation is developed for axis-aligned
layouts, but we can extend our framework to consider
more types of constraints and elements enclosed in oriented
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Fig. 10 The robustness of our method with respect to the
threshold, ta. We show the change in average precision,
recall, and F-measure for the alignment threshold uniformly
sampled in the range [0.05, 0.3].
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Fig. 11 The robustness of our method with respect to the
sparsity term, wa.

bounding boxes. In Fig. 12, the elements are distributed on
circles. For this example, we introduce two new types of
constraints that consider spacing and alignment in radial
layouts. Our algorithm can be directly used for these con-
straints with a polar coordinate system.

(a) Initial design (b) Initial layout (c) Regularized layout

Fig. 12 An extension of our algorithm. In this example,
elements (i.e., chairs or the tableware) are expected to be
placed along concentric circles with same included angles.
The black dot in (b) indicates the center of circles. (c) shows
the result of our algorithm applied to this case by using
a simple coordinate system conversion (from the Cartesian
coordinate system to the polar coordinate system).

Another type of useful constraint is the same-arc-length
distance constraint. The same-arc-length constraint enforces
a constant arc length along a curve between two adjacent
points that are sampled on this curve. In Fig. 13(a), we show
a set of markers (the yellow squares) that are placed along



JOURNAL OF TVCG 2015 10

the centerline of the road (in yellow). We can see that some
adjacent markers exhibit the same-arc-length constraint.
Directly fulfilling this constraint is difficult, considering
that we do not know the curve function. We construct a
map from a parameter vector to the points by a B-spline
interpolation with chord length parameterization. Thus,
every parameter corresponds to a point, and the interval
between two parameters is equivalent to the chord length
of two adjacent points. Then, we achieve the same arc-
length by accomplishing the same spacing constraint on the
parametric vectors. In Fig. 13(c), we show the result of this
regularization. Another example is given in Fig. 6 of the
supplemental materials.

(a) Initial design (b) Initial layout (c) Regularized layout

Fig. 13 The same-arc-length distance constraint on points
(yellow squares). Our method successfully detects two kind-
s of arc-length in this example and regularizes the curve
points. Our framework can be applied to such input by
constructing a parameterization of the points.

Our method does not fully explore the hierarchical struc-
turing of constraints. However, we are able to consider
a case in which a given hierarchy defines the grouping
information of elements (see Fig. 14). The regularization is
achieved by applying our method from bottom to top.

6.9 Limitations and future work.

Although our algorithm works well on most cases, we
notice that in some cases the result could be further im-
proved with the availability of semantic information. For
example, if there is an ornament on top of a window we can
assume that there is a high probability that the two shapes
are center aligned (see Fig. 15). Not using domain-specific
semantic priors is one limitation of our algorithm. Another
limitation is that possible constraints need to be known in
advance. when these is a large number of complex patterns,
e.g., a set of elements aligned along a spiral with regularly
decreasing spacing, it is unclear how our framework would
perform if we would extend it using a large number of
different complex constraint types. We consider this a very
interesting avenue of future work. Further, we also plan to
involve users in the layout optimization stage to provide
more control over the regularization process.

7 CONCLUSIONS

We have presented an optimization-based approach for
regularizing general layouts. Our method takes as input a
general layout represented as a set of labeled rectangles,

(a) Initial design (b)  Initial layout (c) Regularized layout

Fig. 15 A failure case of our algorithm. In this example, the
user marks a wrong left edge of the ornaments below the
windows in the highlighted region due to occlusions caused
by perspective projection. Semantic prior information (e.g.,
an ornament and window are more likely to be center
aligned) is necessary to correct this error.

and detects regularity constraints based on a linear inte-
ger programming formulation. The layout is regularized
by minimizing the deformation of the initial layout while
respecting the detected constraints. We have evaluated our
method using various input layouts. Experimental results
show that our method enforces the regularities in the layout
and that it is superior to alternative approaches in the
literature. We have also shown the usefulness of our method
in various applications.
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