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Figure 1: Our method can register individual scans of isolated rooms (e.g., bedrooms, bathrooms, etc.) of a building along with scans of the
building’s exterior into a single point cloud. (a) The input scans rendered with different colors. (b) Our registration result. The rooms are
rendered with distinct colors and the exterior of the building is down-sampled and rendered in a uniform gray color. (c) A top view of the
registered rooms in the first floor. (d) A cross section of the registered data in (b) at 2.0m from the ground.

Abstract

We propose a framework for global registration of building scans.
The first contribution of our work is to detect and use portals (e.g.,
doors and windows) to improve the local registration between two
scans. Our second contribution is an optimization based on a linear
integer programming formulation. We abstract each scan as a block
and model the blocks registration as an optimization problem that
aims at maximizing the overall matching score of the entire scene.
We propose an efficient solution to this optimization problem by
iteratively detecting and adding local constraints. We demonstrate
the effectiveness of the proposed method on buildings of various
styles and that our approach is superior to the current state of the
art.
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1 Introduction

Acquiring 3D buildings is an important prerequisite for applications
such as simulation, navigation, virtual reality, and entertainment.
In this work, we are interested in scanning architectural structures
at a larger scale, e.g., office buildings, sports centers, classrooms,
or complete residential buildings, including their exteriors. One
possible approach to scanning a building’s interior is to use a hand-
held scanner [Chen et al. 2013; Zhou and Koltun 2013; Choi
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Figure 2: Registration is sensitive to scanner positions. The inset
shows the 2D layout of the scene consisting of a long hallway and
a room. Scans (a), (b), and (c) are obtained at positions 1, 2, and 3,
respectively. Traditional methods can register (a) to (b) and (b) to
(c), but they cannot register (a) to (c) due to large flat regions and
insufficient features.

et al. 2015; Kahler et al. ] that can provide good results for scenes
consisting of a small set of rooms. However, since existing hand-
held scanners have narrow fields of view, many frames have to be
captured to ensure reasonable coverage even for a small scene (e.g.,
an office). This often leads to severe drift or failure in registration
of these frames. In addition, hand-held scanners have restricted
range limits. For example, the sensor range of Microsoft Kinect
is [0.6m, 4m], which is not appropriate for scanning large indoor
scenes or the exteriors of buildings. We thus use a static scanner
to scan large buildings and we optionally use hand-held scanners
to capture individual rooms. The technical problem we address in
this paper is to register a set of individual scans obtained by one or
multiple scanners.

Registration of building scans is challenging for several reasons.
Firstly, in contrast to hand-held scans in which adjacent frames
are spatially close, scans obtained by a static scanner are far
apart. Therefore, registration of these scans becomes a global
matching problem. Secondly, unlike general objects (e.g., statues,
mechanical parts) for which rich geometric features can be extract-
ed, buildings mainly consist of piecewise planar regions, which
means that fewer unique features can be extracted for registration.
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For example, in Figure 2, scan (a) cannot be registered to (c)
because the two scans can slide due to insufficient constraints.
Thirdly, sufficient overlaps required for registration [Matterport
2016] cannot always be guaranteed during scanning. It is easy to
introduce extra scanning positions to create overlaps for a building’s
interior or exterior, but extra scans may not help when registering
interior scans to exterior scans of a building (see Figure 4 (a)
for an example). Note that introducing extra scans leads to a
larger number of scans, but the extra scans usually do not provide
additional information describing the scene’s geometry. Lastly,
multiple users could be involved in performing uncoordinated
scanning in parallel of large scenes, which makes it harder to
guarantee sufficient overlap between neighboring scans.

Ideally, one option to simplify the registration problem is to
exploit high-precision positioning techniques. However, existing
positioning techniques, such as GPS, can only roughly position
individual scans of outdoor environments (with positioning errors
larger than 3.5m [GPS.gov 2015]). For indoor scanning, accuracy
becomes even more problematic due to attenuation and occlusion
of satellite signals. Other well-developed indoor positioning tech-
niques, mainly WiFi positioning systems, require a lot of additional
work to create the setup. Their accuracy depends on the number
of access points, and even the state-of-the-art accuracy is still
too low (1–5m) for registration purposes [Dardari et al. 2015].
In engineering scenarios, markers are usually required and are
carefully placed in the scene before scanning, and manual work
is required to obtain the registration. Our work aims to lower such
requirements in the scanning process. We thus assume that scans
are given without additional positioning or marker information.

We propose two novel methods to tackle the problem of global
registration of building scans. The first method improves local reg-
istration, and the second one improves global registration. Firstly,
we make use of common building characteristics and observe that
buildings usually contain quite a few portals (e.g., doors, windows)
between neighboring blocks. These portals are natural connectors
that can provide promising hints for connecting isolated scans. This
observation inspires us to use portals as additional information for
local registration, complementing traditional registration methods
based on features in overlapping regions. Experiments on large
scenes indicate that portals are valid and effective features for
registering scans without overlapping areas and scans that capture
both the exteriors and interiors of buildings.

Secondly, we observe that the registration of isolated scans is
similar to solving a jigsaw puzzle. This observation inspires us
to formulate global registration as a combinatorial optimization
problem. Unfortunately, related work on solving similar problems
indicates that exploration of the entire search space is actually
impractical [Huber 2002; Huang et al. 2006] because the problem is
NP hard. For scenes consisting of a few (e.g., 5) isolated scans, it is
possible to manually align them with reasonable accuracy, but this
strategy becomes very time-consuming if the number of isolated
scans becomes larger (e.g., 10). To tackle the global registration
problem, we propose a novel formulation based on linear integer
programming, which enables us to make use of various strategies
available in state-of-the-art solvers to prune the search space.
However, this approach is still too slow for large problems. As a
solution, we propose an acceleration strategy based on iteratively
adding constraints instead of exhaustively enumerating them at the
beginning of the optimization.

In the results, we compare our method with four competing algo-
rithms to demonstrate the effectiveness of our approach. Figure 1
shows a registration result of a two-floor residential building con-
sisting of 29 rooms captured by 37 scans.

The main contributions of our work are:

• we offer the first global registration framework that can handle
scans of isolated rooms and scans that capture both the
exteriors and interiors of buildings based on portals extracted
from scans.

• we present a novel formulation of global registration based
on constrained combinatorial optimization and an efficient
solution by iteratively adding constraints.

• we demonstrate reliable registration results for building scans
in cases where existing state-of-the-art methods fail.

2 Related Work

In this section, we review recent work on acquisition planning,
pairwise registration, global registration, and block assembly.

Acquisition planning. To ensure sufficient coverage for scanning,
various acquisition planning methods have been proposed to guide
scanning and reconstruction of physical objects [Scott et al. 2003;
Wu et al. 2014]. Recent methods [Yan et al. 2014; Xu et al. 2015]
propose modification of the environment to access occluded parts
of the scene. Acquisition planning aims at strategically positioning
the scanner to achieve improved coverage of a physical object. By
contrast, we assume multiple scans of a complex building as input,
and we focus on effectively registering them into a consistent single
scan.

Pairwise registration. Given two scans, pairwise registration
computes a rigid or non-rigid transformation between the two
input scans. Typical pairwise registration algorithms are the well-
known ICP (Iterative Closest Point) [Besl and McKay 1992] and
its variants [Rueckert et al. 1999; Rusinkiewicz and Levoy 2001;
Li et al. 2008; Segal et al. 2009]. These registration methods
rely on correspondence information of two scans (e.g., point-to-
point, point-to-surface) and thus they require that two input scans
have a large portion of overlap. Gelfand et al. [2005] extract
key points and their descriptors from the input scans. They then
establish sparse correspondences between the key points based
on their descriptors. The registration is obtained using a branch-
and-bound algorithm to find the optimal set of correspondences,
followed by an ICP refinement step. The 4PCS registration
scheme proposed by Aiger et al. [2008] is robust to noise and
outliers. However, it requires reasonable overlaps to query 4-
point-wide bases and it is computationally inefficient for scans of
large buildings. Based on pairwise registration, the KinectFusion
technique and its variants [Newcombe et al. 2011; Izadi et al. 2011;
Whelan et al. 2012; Roth and Vona 2012; Nießner et al. 2013], and
many successive techniques [Chen et al. 2013; Zhou and Koltun
2013; Choi et al. 2015; Kahler et al. ] can incrementally fuse depth
data into a single surface model. These methods are suitable for
capturing relatively small scenes, but usually fail for large scenes
where overlap and common features between individual scans
cannot be guaranteed (see Section 1). For a more comprehensive
survey of both rigid and non-rigid registration methods, please refer
to [Tam et al. 2013].

Global registration. Global registration methods, which are
usually built on top of pairwise registration algorithms, take as
input multiple point clouds and try to minimize the accumulated
matching error introduced by the pairwise registration method-
s. Brown and Rusinkiewicz [2007] generate correspondence hy-
potheses among multiple scans based on a locally weighted ICP.
They then obtain the optimal locations of the feature points by
minimizing the change in their relative distances computed in a
neighborhood. Finally, thin-plate splines are computed based on



optimized feature correspondences to warp each of the scans. To
register multiple non-rigid frames, Huang et al. [2011] focus on
the alignment order of the scans to reduce the accumulated drift
during incremental registration. They propose a graph structure
for global alignment based on frame-to-frame surface tracking for
pairwise registration. Temporally consistent registration can then
be achieved by minimizing overall non-rigid transformation based
on graph optimization. Zhou and Koltun [2013] estimate a rough
camera trajectory using RGB-D SLAM (simultaneous localization
and mapping) and detect the points of interest from a density map
of the scene. To deal with the registration error accumulated along
the scanning trajectory, they construct a pose graph with its edges
representing the relative pose for each pair of consecutive frames.
The poses of all frames are then optimized using a weighted non-
linear least squares formulation.

Block assembly. Several researchers have studied the problem
of assembling different pieces of an object [Cutler 1978; Huber
2002; Huang et al. 2006; Huang et al. 2012; Fu et al. 2015].
Cutler [1978] proposes computational assembly of interlocking
burr puzzles, which was proven to be NP hard in later work [Huber
2002]. In Cutler’s experiments, exhaustive search is employed,
but it is too slow to explore the configuration space of structures
consisting of only six pieces. By assuming continuous sharp feature
curves, Huang et al. [2012] compute an ambient vector field that
extrapolates these curved features and this field is used to guide
the alignment of two distinct parts. To register fractured object
pieces, Huang et al. [2006] first classify the object faces into
original and fractured faces by roughness analysis. Then using
patch-based surface features, they compute potential matches to
perform pairwise matching among all fractured faces. To eliminate
errors in the pairwise matching step, a multi-piece registration
is performed in a greedy manner, which incrementally merges
the pieces based on penetration and consistency checks. This
method relies heavily on the rich geometric features of the fractured
surfaces, which rarely exist between scans of different building
blocks. To register multiple point clouds, Huber and Hebert [2003]
encode pairwise matchings using a graph structure and they obtain
globally consistent registration by computing a minimum spanning
tree of the graph. Using a similar graph structure, Sharp et
al. [Sharp et al. 2004] obtain global registration by merging the
individually optimized subgraphs of neighboring scans. This
method requires that the neighborhood for each scan exists. Their
optimization of subgraphs inspires us to explore more of the local
registrations. The difference is that, instead of seeking out good
local alignments, we integrate the most unlikely local alignments
as constraints in an optimization framework, ensuring a globally
optimal alignment of all scans.

All the above registration approaches require that reasonable over-
laps exist among the input scans. Thus, they are not applicable to
indoor scenes when isolated regions are prevalent in the input, nor
to scans capturing both the interiors and exteriors of buildings. To
register such scans, we rely on portals as the connectors and we
globally register all scans based on a combinatorial optimization
formulation.

3 Overview

Given a set of separately scanned point clouds representing a
building, our goal is to register them into a consistent global
coordinate frame. Our method consists of the following parts:

Preprocessing. In the preprocessing step, we abstract each scan
as a block by detecting the largest connected component of each
scan. These blocks are the inputs to our system. However, since our
global registration framework is general, we also discuss possible

Figure 3: Three devices used for capturing the input data for our
system. From left to right, a Leica ScanStation C10 static laser
scanner, a FARO Freestyle X hand-held scanner, and a Microsoft
Kinect One depth camera.

inputs of other types (see Section 4.1).

Portal detection. We automatically extract walls and portals (i.e.,
doors, windows) from the blocks based on heuristics. We optionally
allow the user to remove and add portals to improve the automatic
results (see Section 4.2).

Graph construction. The portals and blocks are encoded using a
graph with its edges representing all potential pairwise alignments.
We assign to each edge in the connection graph a weight represent-
ing the matching score of the two portals or two blocks connected
by this edge (see Section 4.3).

Block assembly. Globally consistent registration is achieved by
solving a combinatorial optimization problem. We propose a
linear integer programming formulation that maximizes the overall
matching score among all the blocks (see Section 4.4).

Acceleration algorithm. For efficiency, we introduce an acceler-
ation algorithm based on the idea of iteratively adding constraints
starting with the most unlikely local alignments (i.e., conflicting
alignments). Instead of finding a complete set of conflicting
alignments, we detect only locally conflicting matches of very few
scans. Thus, the global registration turns out to be a constrained
linear integer programming problem that can be efficiently solved
(see Section 4.5).

4 Methodology

4.1 Input and preprocessing

We experimented with a variety of input data from a static laser
scanner (Leica ScanStation C10), a hand-held scanner (FARO
Freestyle X), and a consumer-level depth camera (Microsoft Kinect
One) (see Figure 3) with effective operating ranges of 100m, 3m,
and 1.5m, respectively. We scanned large rooms and the exteriors
of the buildings with the static scanner. The remaining interiors
were scanned with a combination of the three scanners. We used
the Kinect One sensor to scan small rooms with KinectFusion [Izadi
et al. 2011].

Due to occlusions, each point cloud from the scanners may contain
a large number of disconnected parts. Several relatively small
parts are not helpful in registration and some of the small parts are
actually outliers. Thus, we extract the most dominant parts (we
call each dominant part a block) from each point cloud. To this
end, we build a graph where pairs of points are connected by edges
if the distance between them is smaller than a threshold (20cm
in our implementation). Then, the largest connected component
is extracted as the representative block of the scan. The blocks
(optionally down sampled) of all the scans are used as the input
to our method.



4.2 Portal detection

Given that blocks may not have overlaps, we rely on portals to
build the connections between them. We consider two types of
portals: door portals and window portals. Figure 4 (a) shows
an example of door portals that we use to connect interior and
exterior scans of a building. One encouraging characteristic of
the portals is that, unlike other objects that suffer from occlusions
(such as chairs), portals reside in walls so that their shapes are
usually clearly captured by the scanner (see Figure 4 (b)), providing
promising hints for registering the interior scan to the exterior scan
of a room (see Figure 4 (c)). Given these properties of portals, we
propose a portal detection algorithm based on heuristics.

Our portal detection starts with extracting walls from the blocks.
We first extract planes from each block using RANSAC [Schnabel
et al. 2007]. Then, large vertical planes are labeled as walls. To
identify the ground, we require upright orientation of the scans,
which in principle could be automatically computed by analyzing
the data [Fu et al. 2008; Ghanem et al. 2015]. However, we mainly
use the upright orientation information provided by the scanners,
or we let the user select the ground plane to define the upright
orientation.

Next, we extract the clearly captured boundaries of the portals that
will then be used to match one block with others in the assembly
step. Without ambiguity, we optionally call these boundary points
a portal in the remainder of the paper. There are multiple ways
for extracting the boundaries from a point cloud. One idea is to
run a line-sweeping algorithm along both horizontal and vertical
directions. Then, the gradient extrema in the point distribution
along the sweeps give extracted horizontal and vertical lines, as
in [Nan et al. 2010]. This is simple and effective for detecting
rectangular-shaped boundaries from a planar point cloud. To ensure
robust matching between portals, more general shapes of portals
(e.g., a door with an arc on the top) should also be considered.
Another idea is to analyze the surface variations in the point cloud
as proposed by Pauly et al. [2003]. This works very well for
scans of free-from surfaces with a moderate level of noise, but it
is not suitable for our data as most surfaces are planar and higher-
level noise exists. Considering that portals are 2D shapes lying
on the walls, we propose to detect the boundaries by projecting
the points onto the supporting planes of the walls, followed by
sequentially applying two morphological operations for images:
dilation and erosion. After that, portals are defined as the 3D points
whose projections are within a threshold to the images boundaries
(10 pixels in our implementation). Figure 4 (b) shows the portal
detection result of the two doors.

In the unlikely cases where automatic detection fails, we allow the
user to remove and add portals to improve the automatic results. To
do a manual correction, the user needs to roughly mark only the
region containing a false positive (a non-portal detected as a portal)
or a false negative (a portal not detected). Note that we do not
require all portals to be correctly detected because the subsequent
block assembly step can tolerate some errors.

4.3 Graph construction

Once the portals are extracted from the blocks, we construct a
connection graph that encodes the possible pairwise matching of
the portals of all the blocks. Specifically, each node of the graph
represents a portal of a block, and each edge in the graph connects
a pair of portals from two different blocks. To cope with scans that
demonstrate overlap and sufficient correspondence, we also encode
all the blocks as nodes in the graph, but we connect pairs of blocks
by an edge only if they have sufficient common key points to be

Figure 4: Portal detection and matching. (a) Two individual scans
capturing the interior (purple) and exterior (blue) of a room. The
red arrow indicates two door portals, one on each side of the door.
(b) The extracted portals (red points). (c) The matching of the two
portals. Green lines indicate the correspondences of the points.

registered with each other. More details on key point extraction
and matching are described by Gelfand et al. [2005]. Note that
when constructing the graph, we connect scan pairs only if they do
not penetrate into each other (see Section 4.5). This penetration
test will prune a large number of false local registrations. After
the connection graph is constructed, we assign to each edge a
matching score (encoding a distance measure) and a transformation
(encoding the relative position and orientation) between the two
blocks. The computed transformation will then be used for aligning
the two blocks in the subsequent block assembly step.

The matching score and transformation between pairs of portals or
pairs of blocks are computed as follows:

• Pairwise portal matching. We first roughly align the
points of the two portals using PCA (Principal Component
Analysis) [Liu and Ramani 2009]. Then, we represent
the data of the two portals with Gaussian Mixture Models
(GMMs) and compute a non-linear registration by finding the
alignment between the two GMMs [Jian and Vemuri 2011].
The L2 distance between the registered GMMs gives us a
distance measure of the portal pair. Note that by computing
a non-rigid transformation, our portal matching algorithm is
robust to imperfections (i.e., noise, outliers, possible occluded
boundaries, and non-linear distortions) in the detected portals.
As can be seen in Figure 4 (c), although the upper part of
the portal in the interior scan is occluded by a curtain during
the scanning, our algorithm based on non-linear registration
successfully extracts dense correspondences between the two
portals. From these correspondences, we can compute a
unique rigid transformation (rotation and translation) as an
initial alignment of the two blocks. Since the supporting
planes (e.g., the walls where the portals reside) of the two
blocks are parallel, we compute the transformation such that
it conforms to this parallelism constraint. Specifically, the
constrained transformation can be computed by solving the
following optimization problem:

min
R,t

n∑
i=1

‖ q′
i −Rqi − (t+ twalln) ‖

2

s.t. n′ +Rn = 0

(1)

where Q = {qi} and Q′ = {q′
i} are the n pairs of corre-

sponding 3D points, n and n′ denote the normals of the two
supporting planes (see Figure 4 (b)), and R, t are the rotation
and translation to be computed, respectively. Here, we assume
that the walls of a building have a uniform thickness, twall,
that is specified by the user for both interior and exterior
walls. Our ICP-based refinement step after block assembly
will correct minor deviations from this assumption. This



is a quadratic programming problem under linear equality
constraints. We solve it using an iterative active set method
(i.e., the QP-BLEIC solver provided by [Bochkanov 2015]).

• Pairwise block matching. For a pair of blocks, we first
extract a set of key points using a variant of the Harris
key point detector [Harris and Stephens 1988] and compute
their Point Feature Histogram (PFH) descriptors at each key
point [Rusu and Cousins 2011]. Since the number of the key
points is significantly smaller than the total number of points
in a block, we can perform efficient matching between the
two blocks. To do so, we exploit a RANSAC-based alignment
of the two sets of key points followed by an ICP refinement
step. Since the scans we are dealing with contain only rigid
transformations, we randomly choose three pairs of key points
that have the same relative distances. Then, the distance
between the two blocks is defined by the average pointwise
distance between the two blocks after ICP refinement. We
then compute the transformation between the two blocks from
the corresponding key points using the method described
in [Horn 1987].

We normalize the two types of distances separately into the range
of [0, 1]. Then we assign the score si to the ith edge in the
connection graph, which is defined as si = 1 − di, where di is
the aforementioned normalized distance.

4.4 Block assembly

Now we detail our framework for the global assembly of the blocks
based on the connection graph. We first introduce the energy terms.
The objective function is a weighted sum of these terms. In the next
section, we introduce an acceleration algorithm to efficiently solve
the optimization problem.

Our block assembly algorithm is designed to choose an optimal set
of pairwise matchings representing a globally consistent alignment
of all the input blocks. As each pairwise matching is encoded as
an edge with a matching score in the connection graph, the solution
to our block assembly problem is equivalent to selecting a subset
of the edges of the graph such that the overall confidence in the
matching is as high as possible, while all the nodes in the graph
remain connected and a unique transformation of each block can
be computed with respect to an arbitrarily chosen reference block.
To this end, we formulate the block assembly as a combinatorial
optimization problem based on linear integer programming.

Let B = {b1, ..., bM} denote the M input blocks and lt X =
{x1, ..., xN} denote the binary labels for both pairwise portal
matchings and pairwise block matchings encoded in the connection
graph. Our objective function is then defined as the sum of two
energy terms: matching confidence and connectivity.

• Matching confidence. The matching confidence term,
Em(X), measures the overall alignment quality of the final
registration. It is defined as the average matching score of all
the pairwise matchings:

Em(X) =
1

N

N∑
i=1

(si · xi), (2)

where si is the matching score associated with the ith edge.
The variable xi encodes if an edge is chosen (1) or not chosen
(0). Thus, this term encourages the final alignment of all the
blocks to be tight.

• Connectivity. To favor as many as possible blocks to be
registered, we prefer that more of the edges (pairwise match-
ings) remain in the final registration. Thus, we introduce a

Figure 5: Non-conflicting local registration (a) and conflicting
local registration (b) of two scans. The blue and yellow dots
represent two scans to be registered. The red region indicates
the free space of the blue scan. In the corresponding octree
structure, the free space is shrunk by 10cm (the green region) to
tolerate noise. The magnitude of the conflict in the right example is
measured by the volume of the blue region.

connectivity term, Ec(X), that is defined as the portion of the
edges remaining for aligning pairs of portals or blocks:

Ec(X) =
1

N

N∑
i=1

xi. (3)

To ensure global consistency, we add two types of exclusiveness
constraints to the optimization problem. The first type is that
one portal in a block cannot be aligned with multiple portals.
The second type forbids points from penetrating into the free
space of other blocks, which is defined as the 3D volume visible
to the scanner. Figure 5 (a) illustrates the free space. In our
implementation, we use an octree constructed on each block to
approximate the space and to query if points are transformed into
the empty space of other blocks. To distinguish the two types of
constraints, we call the latter a conflict constraint in the remainder
of the paper. Our global registration optimization can be formulated
as

max
X

E = λmEm + λcEc

s.t.



∑
i∈N (pj)

xi ≤ 1, pj ∈ P and 1 ≤ i ≤ N

Ck = ∅, Ck ∈ P
xi ∈ {0, 1}, 1 ≤ i ≤ N,

(4)

where P denotes all the portals and i ∈ N (pj) denotes the edges
connecting portal pj with its neighboring portals in the connection
graph. Thus,

∑
i∈N (pj)

xi counts the number of portals connected
with pj . This constraint ensures that each portal is connected only
to one or zero other portals. The set P denotes the power set
of all possible alignments, which can be obtained by traversing
all the sub-graphs of the connection graph and checking if points
transformed into the free space of other blocks exist in the sub-
graph. Thus, the conflict constraint, Ck = ∅, ensures that no point
penetrates into the free space of other blocks. λm and λc are two
weights that balance between the two competing terms.

4.5 Acceleration algorithm

Theoretically, the optimal alignment of all the blocks could be
obtained by solving the constrained optimization problem defined
in Equation 4. This is a typical linear integer programming
problem that can be efficiently solved given a moderate number of
constraints. In our problem, however, enumerating the constraints
requires exploring the power set of all possible alignments of the
blocks, which is impractical for a larger number of scans [Huber
2002]. To accelerate our algorithm, we modify two aspects of
our optimization formulation. First, instead of enumerating the



extremely large number of conflicts in the full power set, we detect
local conflicts in only a small number (i.e., 4) of blocks. Second,
we introduce another energy term ‘conflict tolerance’ that encodes
the locally conflicting alignments as soft constraints. By making
these modifications to the formulation, we achieve the optimal
assembly of the blocks by iteratively adding constraints and solving
the modified optimization problem.

Constraint set. Given that the number of locally conflicting align-
ments is much smaller than that of the power set, our acceleration
relies on the fact that forbidding locally conflicting alignments can
contribute to the consistency of the final global registration. These
locally conflicting alignments will be encoded as exclusiveness
constraints to discourage these local alignments in the subsequent
optimization step.

Conflict tolerance. An exact conflict detection algorithm tends
to return erroneous results when a high-level of noise or a large
amount of outliers exists in the scans. There are two types of errors
in conflict detection. First, conflicting local alignments of a few
scans may be detected as non-conflicting. This does not affect
much of the final block assembly because these conflicting local
registrations usually have very low matching confidence. Since
we are performing a global optimization, the matching confidence
term will ensure good matchings are chosen in the final registration.
Second, good local alignments may be detected as conflicting. In
such a case, these false positive conflicting local alignments will
be forbidden in the final registration if they are encoded as hard
constraints in the optimization. To prevent good matchings from
being pruned in the final registration, we modify our objective
function to tolerate some level of conflicts caused by noise and
outliers, and we encode these conflicts as soft constraints in the
objective function. For every pairwise alignment represented by an
edge in the connection graph, we quantify its conflict as the volume
of the conflicting regions. Thus, the conflict tolerance term can be
defined as

Et(X) =
1
N

∑N
i=1 (vi · xi)

1
M

∑M
j=1 vol(bj)

, (5)

where vi is the volume of the conflicting region when aligning
two blocks connected by the ith edge in the connection graph, and
vol(bj) measures the volume of block bj . The numerator defines
the average conflicting volume, and the denominator represents the
average volume of all the input blocks. In our implementation, the
volume of a block is computed from its convex hull constructed
using a down-sampled version of the block. Figure 5 (b) illustrates
the conflicting volume.

Now the final constrained optimization formulation has the follow-
ing form:

min
X

E = λm(1− Em) + λc(1− Ec) + λtEt

s.t.


∑

i∈N (pj)

xi ≤ 1, pj ∈ P and 1 ≤ i ≤ N

xi ∈ {0, 1}, 1 ≤ i ≤ N,

(6)

where λt is the weight of the newly introduced conflict tolerance
term that penalizes the overall volume of the conflicting alignments.
Other symbols are the same as in Equation 4. Note that since
we want to favor both matching confidence (Em) and connectivity
(Ec), we subtract them from 1 so that the problem is equivalent to
the minimization of the new energy function. In our implementa-
tion, we set λm, λc, and λt to be 1, 10, and 1, respectively.

With a considerably smaller number of exclusiveness constraints,
our optimization problem defined in Equation 6 can now be solved
very efficiently (we use a solver provided by [Gurobi 2015]), which

yields a consistent alignment of most of the blocks. In the very
unlikely case where very few local alignments remain conflicting
after each optimization step, we add them back to the constraint set
and rerun the optimization. We iterate this process until a conflict-
free registration is achieved. Finally, we refine the registration using
an ICP step [Rusinkiewicz and Levoy 2001].

5 Results and Discussion

We have applied our block assembly algorithm to a variety of large
indoor scenes and entire buildings. The rooms in all the example
scenes are scanned with their doors in arbitrary positions, unless
explicitly stated otherwise. Experiments demonstrate that portals
are valid and effective features for augmenting local registrations.
By using the acceleration strategy, our method is capable of
registering a large number of scans.

Figures 1 and 6 show residential buildings with two floors. Both the
interior and exterior were scanned. The initial scans are captured
using a combination of the static Leica scanner and the FARO hand-
held scanner. The interiors of the two buildings consist of multiple
isolated rooms. We scanned these rooms with their doors closed
and thus each room is represented by a single scan. In contrast, the
scans of the exteriors of the buildings have significant overlapping
regions. Our method successfully registers the non-overlapping
scans of the rooms along with the building exterior into single
consistent point clouds covering entire buildings.

In Figure 7, 24 classrooms on the same floor are scanned using only
the static Leica scanner. In this scene, the largest classroom was
captured by two scans and the smaller classrooms were captured
by one scan each. Note that the long hallways are captured by
multiple scans with significant overlapping regions. As can be seen
from the top view, our block assembly method can obtain a globally
consistent registration of the entire floor.

Figures 8 and 9 show the global registration results of two large
sports centers. Note that the rooms in Figure 8 are positioned
along a curved hallway and some rooms in these two buildings have
curved walls. Since the curved walls are locally flat and clean, our
automatic portal detection algorithm successfully detects most of
their door portals (see Table 1). Using these portals along with
the overlapping regions in the scans of the hallways, our method
registers all the scans into a single consistent point cloud.

Figures 10 and 11 show the registration results of two relatively
small scenes. In Figure 10, the isolated rooms are scanned using the
FARO hand-held scanner and the hallways using the static Leica
scanner. Although there are no actual doors between individual
rooms, the openings connecting rooms to the hallways turn out
to be effective portals connecting the isolated rooms. The scene
consisting of 4 rooms in Figure 11 is scanned using only the Kinect
One scanner. We can see that although the initial scans are more
noisy than the data from the other two scanners, our method still
successfully extracts the portals to register the isolated rooms into a
single point cloud. Since we are seeking a rigid global registration,
the result is less accurate due to the noise and distortion (e.g., in the
walls) in the input.

Portal detection. As can be seen from Table 1, our portal detection
can automatically detect most of the portals requiring very few
manual corrections. This is because portals usually do not suffer
from occlusions and their boundaries can be clearly captured by
the scanners. The performance of our portal detection algorithm
can also be evaluated by computing precision and recall for each
example, which is plotted in Figure 12.

Effect of portals. From the percentage of edges selected by our



Figure 6: Global registration of a two-floor residential building consisting of 26 isolated rooms. (a) 3 out of the 31 input scans. (b) The
registration result (isolated rooms are in different colors and the exterior of the building is down-sampled and rendered in dark gray. (c) A
top view of the registered rooms in the first floor. (d) A cross section of the first floor at a height of 2.0m.

Figure 7: Registration of 24 classrooms and 2 long hallways (see the green arrows) lying on the same floor. (a) The registered scans rendered
with roofs. (b) The registered scene without roofs (color coded by Z-values). The inset shows the largest classroom captured by two scans.
(c) A top view of this floor with roofs. (d) A cross section of the registered scans.

Figure 8: Registration result of a sports center consisting of 8 isolated rooms positioned along a curved hallway. (a) The registered scans.
(b) A top view of the registration result. (c) A cross section of the registered scans. Individual scans are coded in different colors.

Figure 9: Registration result of another sports center consisting of 26 individual rooms. (a) The registered scans. (b) A top view of the
registration result. (c) A cross section of the registered scans. Individual scans are coded in different colors.



Table 1: A summary of the number of scans (#Scans), number of isolated rooms (#Rooms), number of portals detected by our method and
percentage of portals corrected for generating the result (#Portal / %Manual), number of edges connecting pairs of portals and percentage
of them selected in the final result (#E-portal / %Selected), number of edges connecting pairs of overlapping blocks and percentage of them
selected in the final result (#E-overlap / %Selected), runtime of the initial constraint detection (Constraint), runtime of the block assembly
(Assembly), and the number of iterations taken in the optimization (#Iter) for each example.

Figure #Scans #Rooms #Portal / %Manual #E-portal / %Selected #E-overlap / %Selected Constraint Assembly #Iter
1 37 29 78 / 3 % 671 / 5.2 % 14 / 93 % 55 sec 73 sec 5
10 8 5 15 / 0 % 67 / 9.0 % 1 / 100 % 0.3 sec 4 sec 1
11 4 4 10 / 0 % 7 / 42.8 % 0 / - 0 sec 4 sec 1
6 31 26 73 / 5 % 538 / 4.3 % 16 / 100 % 45 sec 51 sec 19
7 49 24 74 / 0 % 1100 / 5.5 % 31 / 74 % 132 sec 8 sec 1
8 67 11 87 / 4.6 % 487 / 5.7 % 52 / 99 % 51 sec 11 sec 1
9 73 26 152 / 6 % 1472 / 2.3 % 89 / 93 % 284 sec 25 sec 2
15 156 102 376 / 2 % 10528 / 1.7 % 65 / 95 % 263 min 33 sec 9

Figure 10: A scene with its rooms scanned using the FARO hand-
held scanner. (a) Our registration result. The scans in gray color
represent the hallway. (b) A cross section.

Figure 11: A scene consisting of 4 rooms captured purely by
the Kinect One scanner. (a) Our registration result. (b) A cross
section. Note that the Kinect One scanner introduces challenging
distortions, e.g., the red lines indicate two walls that should be
parallel.

Figure 12: Precision and recall of the portal detection algorithm
for each set of scans used in our experiments.

optimization (Table 1), we can see that most of the feature-based
matchings are valid. This is expected as geometric features are
stable. In contrast, only a small portion of portal matchings is
selected. This is because real scenes usually contain doors (or
windows) having the same geometry and thus many pairs have high
matching scores, but most of these portal matchings cause conflicts
and thus they are forbidden by our global optimization. From the
percentage of edges chosen to connect portals and the percentage

Figure 13: The effect of portals in registering the scans of the
building shown in Figure 1. We first introduce new scans by
positioning the scanner at the doors. Then, we gradually drop 5
scans each time and run the two methods. The loss rate is computed
as the portion of scans that cannot be registered.

chosen to connect overlapping blocks, we can also conclude that
geometric features control the registration when strong overlaps
exist, and the portals influence the result only if common features
are too weak or absent from the scans. All our tests suggest that
portals are valid and important features, and they play a critical role
in registering building scans.

To examine the effect of portals further, we randomly drop scans
of a scene and compare the registration results with and without
portal information. Before dropping scans, we first introduce more
scans obtained by positioning the scanner at the doors and we leave
the doors open during the scanning. Then, we gradually drop scans
and run our method both with and without portal information. We
record the number of the scans that cannot be registered and plot
the ratio of unregistered scans. Figure 13 presents a comparison
of the scene shown in Figure 1. We can see that although more
overlapping regions are introduced, it is still impossible to obtain
a satisfactory registration without portal information. In contrast,
the use of portals ensures a more stable registration as scans are
gradually dropped.

Iterative constraint adding. By using the strategy of iteratively
adding local constraints instead of exhaustively enumerating them
at the beginning of the optimization, we can efficiently solve our
optimization problem defined in Equation 6. Experiments reveal
that only a few iterations are sufficient to achieve a globally
consistent registration of the scans. Table 1 presents the runtime
of the block assembly step and the number of iterations for all the
examples in the paper. We also compare our strategy of iteratively
adding constraints with the exhaustive constraint enumeration on
the scene shown in Figure 1. We record the timing for both methods
by incrementally adding blocks into the scene. The run times of the



Figure 15: Registration of a large synthetic scene consisting of 102 isolated rooms. (a) Three out of 156 input scans. (b) Registered scans of
the entire scene. (c) A top view of the assembled blocks. (d) A cross section of the entire floor. (e) A cross section.

Figure 16: Comparison of our global registration method with four competing methods on two sets of scans. (a) The scans of the second
floor of the building shown in Figure 6. (b) The scans of the entire building shown in Figure 1. The value at the bottom of each sub-figure
indicates the number of scans that cannot be registered by the corresponding method.

Figure 14: A comparison of our iterative constraint adding strategy
with the exhaustive constraint enumeration on the scene shown in
Figure 1. Since exhaustive constraint enumeration is too slow, we
stopped when the number of blocks increased to 10.

two strategies are compared in the plot in Figure 14. We can see
that our strategy of iteratively adding constraints can significantly
speed up the optimization process and that exhaustive constraint
enumeration will be too time-consuming for the larger examples
presented in this paper.

Scalability. In addition to the examples of real scenes discussed
above, we also tested our optimization-based block assembly algo-
rithm on a large synthetic scene. Figure 15 shows this synthetic
scene consisting of 102 isolated rooms, captured by 134 virtual
scans. Our strategy of iteratively adding constraints enables us to
register this large number of blocks efficiently (see Table 1 for the
timing).

Timing. The run times of initial constraint detection and block
assembly for each set of scans are given in Table 1. For the
initial constraints, we compute local conflicts for every triplet of
blocks, which is the most time-consuming step. Assuming a scene
consisting of M scans, the total number of conflict tests is C3

M =
M(M − 1)(M − 2)/6. These are not large numbers of tests and
can be efficiently performed for most of the scenes described in our
paper. However, for the synthetic scene consisting of 156 scans (see
Figure 15), the total number of conflict tests is large (i.e., 620, 620)
and it takes more than four hours.

Comparison. We also conducted comparisons of our global
registration method with four other approaches. The first was a
greedy approach in which we sorted the matching scores of all
the edges in the connection graph. Then, starting from the edge
with the highest matching score, we incrementally searched and
added scans that had the highest matching score with the registered
ones. To ensure consistent registration, only blocks that did not
cause a conflict could be added. The second approach was a
global registration method using our framework but omitting all
portal matchings. The third approach was a global registration
method proposed by Huber and Hebert [2003]. The fourth approach
was another global registration method proposed by Theiler et
al. [2015]. As can be seen from Figure 16, the results of the
other four registration methods provided completely wrong room
layouts due to ambiguities in the pairwise matchings. Moreover,
the first three approaches managed to register only part of the scans
that contain common regions. In contrast, our method successfully
registered all the scans in their correct positions.

Acquisition guideline. Since portals reside in walls, their shapes
are usually clearly captured. This can be seen in Figure 17 where
the same room was scanned at different positions. However, a portal



Figure 17: A room with a door scanned at three different positions with an increasing scanner angle. (a) An illustration of the door portal
and scanner positions. (b), (c), and (d) show the extracted wall where the door resides for the each scanner position. The inset in each
sub-figure shows the original scan of the room.

may not be properly captured in some extreme cases. For example
in Figure 17 (d), the scanner was positioned at the corner of the
room with a very large oblique scanning angle. This results in a
point cloud with a severe decrease in density and the door portal is
only partially captured. In such a case, our method cannot detect
this door portal. In general, to ensure that portals can be properly
captured, we advise that scanning from room corners be avoided.

Limitation. When scans do not have overlap, our method relies
purely on the geometry of the portals and the non-penetrating
constraints for registration. In this case, our method may not
position rooms of identical geometry in their correct positions.
For example, the synthetic scene shown in Figure 15 consists of
many duplicated rooms. In our result, 36 rooms (i.e., 35%) are
in wrong positions due to the rooms and portals having the exact
same geometry. In this example, we regard such assembly as a
valid interpretation of the input scene.

6 Conclusions and Future Work

We presented a global registration framework for aligning building
scans. Our local registration strategy relies on portals to establish
the potential connections between non-overlapping scans or scans
with only limited overlap, as well as traditional local registration
using feature matching. We formulate global registration as a
combinatorial optimization problem. We also proposed an acceler-
ation strategy by iteratively adding constraints, which significantly
improves the overall efficiency of our method. In our results, we
demonstrated the capability of our method in registering scans of
indoor scenes both with and without exterior scans. Unlike existing
methods that are very sensitive to the positioning of the scanner
to ensure reasonable overlap between neighboring scans, we do not
make any particular assumptions on data acquisition, allowing more
freedom for the user to scan the scenes.

In future work, we plan to exploit a crowdsourcing strategy for
scanning even larger buildings so that isolated rooms can be
simultaneously scanned by many scanners and users. Scanning in
such a fashion can lead to very large overlaps and missing parts in
the acquisition. We believe that this will lead to very interesting
and challenging registration problems that have not been tackled
before.
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