Large Scale Asset Extraction for Urban Images
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Preprocessing: Given an input image, we first detect line segments and rectify 7+ = T S
the image based on the detected most dominant facade. We then extract rec-
tangular superpixels to restrict the search space for assets.
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Prior Estimation: We employ a particle filter to estimate prior distribution
functions (pdf) for the four bounding box parameters. For each parameter,
three pdfs are estimated and updated during detection: global prior, history pri-
or, and image prior.

Object Proposals: Object proposals are sampled as the evolving particle i ‘111 Global
states and guided by the search space induced by estimated rectangular B >
superpixels. f
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Asset Extraction: The proposed objects are classified, and the classifier’'s out- -
put score is used to update the pdfs, and thus guide the sampled object pro-
posals.
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GUIDED OBJECT PROPOSALS

We estimate and update the prior prob- | We improve upon state-of-the-art ob- v

abllltles_ of boundln_g box parameters ject proposals by using the concept of U

(x-location, y-location, scale, and aspect | interleaved proposing and classifica-

ratio) . During our detection framework, tion. HEEMm 2 i = i = 1D &
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Prior * Helps in sampling based on the learned
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- N e B;‘é‘;tifby ———— The sampled particles are output as ob The evolution of the particle filter across an image. At the first iteration, particles are sampled around three
Image | current image Ject proposals and they are guided by the | jnjtig| states. The bounding boxes show the sampled particles with the weights represented by the color
Prior | Guides the parameters according to Image and history updates. map on the left. Particles with higher weights are used more often in subsequent iterations.
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To further show how the priors help get better pro-
posals, we apply the prior weights as a scoring
function for the exhaustive space of proposals re-
trieved by EdgeBoxes. The Figure above shows

We compile and manually annotate a large-scale dataset of urban images with labels for windows and facades.
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Running time in seconds for 3000 proposals.
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