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Abstract

We present an automatic reconstruction pipeline for large scale urban scenes from aerial images captured by a camera mounted on
an unmanned aerial vehicle. Using state-of-the-art Structure from Motion and Multi-View Stereo algorithms, we first generate a
dense point cloud from the aerial images. Based on the statistical analysis of the footprint grid of the buildings, the point cloud
is classified into different categories (i.e., buildings, ground, trees, and others). Roof structures are extracted for each individual
building using Markov random field optimization. Then, a contour refinement algorithm based on pivot point detection is utilized
to refine the contour of patches. Finally, polygonal mesh models are extracted from the refined contours. Experiments on various
scenes as well as comparisons with state-of-the-art reconstruction methods demonstrate the effectiveness and robustness of the
proposed method.
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1. Introduction1

Digital 3D models of urban scenes are important for a variety2

of applications such as urban planning, navigation, simulation,3

virtual reality, and entertainment. However, the digitization4

of urban scenes with complex architectural structures still5

remains a challenge [1, 2, 3]. Most of traditional surface6

reconstruction techniques reconstruct objects with smooth7

surfaces by exploiting either increasingly sophisticated solvers8

or better formulation of prior knowledge [4]. For urban scenes,9

since automatic semantic segmentation is very hard to achieve,10

the reconstruction process (especially for complex architectural11

structures) requires tedious manual effort.12

In the last two decades, a considerable amount of reconstruc-13

tion approaches have been developed, aiming at automatically14

modeling large scale urban scenes. Most of these approaches,15

however, are designed to deal with Light Detection and16

Ranging (LiDAR) point clouds obtained from airborne planes17

or ground level vehicles, which usually face expensive device18

cost and unavoidable severe occlusions. Most recently, state-19

of-the-art Structure from Motion (SfM) and Multi-View Stereo20

(MVS) methods [5, 6, 7] have produced extremely compelling21

results on a wide variety of scenes. A typical SfM and22

MVS pipeline starts by automatically matching features among23

the input image sequences, then it recovers the internal and24

external camera parameters, and produces a sparse and finally25

a dense 3D point cloud of the scene. To further enhance26

the data acquisition, in this work we exploit an Unmanned27

Aerial Vehicle (UAV) mounted with a camera, which provides28
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more flexibility and significantly improves the efficiency for29

capturing large scale urban scenes.30

Although UAV imagery is more effective in capturing all31

sides of urban buildings and robust against occlusion, the point32

clouds computed from SfM and MVS are still noisy and sparse,33

which hinders automatic processing and reconstruction. To34

overcome these problems, statistical information from different35

resolution are extracted to enhance the segmentation and36

reconstruction. The proposed method manages to classify the37

point cloud and reconstruct architectural models automatically,38

and it is robust to a wide range of data qualities.39

The contributions of our work include:40

• a novel framework for automatic reconstruction of large41

scale urban scenes from UAV images, which provides42

realistic reconstruction with semantic information.43

• an object level point cloud segmentation algorithm and44

a roof extraction algorithm based on a regularized MRF45

formulation, which significantly speeds up the whole46

reconstruction pipeline.47

• an effective contour refinement method based on pivot48

point detection, which ensures compact final reconstruc-49

tion.50

2. Related Work51

The reconstruction of urban scenes has been a hot topic in52

computer graphics and computer vision in the last two decades53

with large number of approaches recently developed [2, 4]. In54

this section, we review the work that are most related to the55

proposed method. We divide these work into three categories56

according the data sources they use.57
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Image-based reconstruction. Using street level ortho-58

rectified photographs, Müller et al. [8] devised a procedural59

modeling strategy that identifies repeated elements in the facade60

image using mutual information. Sinha et al. [9] proposed61

an interactive system to recover the 3D structure of buildings62

by manually drawing outlines overlaid on 2D photographs63

and calculating their intersections. Enhanced by 3D depth64

information recovered from SfM, Xiao et al.[10] proposed a65

semi-automatic image-based approach for facade modeling.66

Garcia-Dorado et al. [11] first calibrated aerial images and67

fused them with GIS meta-data to compute a per-building 2.5D68

volumetric reconstruction using graph cut.69

Laser scan-based reconstruction. In the last decades, laser70

scanners have provided a new type of data source for urban71

reconstruction. Lin et al. [12] first classified the point clouds72

of a large scale residential area into different categories, and73

then performed reconstruction based on segmentation of each74

building into basic symmetric and convex blocks. Lafarge75

and Mallet [13] proposed a non-supervised approach for point76

cloud classification. Then, regular roof sections are represented77

by basic geometric primitives and irregular roof components78

are represented by the combination of a set of geometric79

primitives. By assuming piecewise planar structures, Lafarge80

and Alliez [14] reconstruct surfaces using a point consolidation81

strategy that preserves of the buildings’ structure at a given82

scale.83

Aiming at 2.5D reconstruction, Zhou and Neumann [15]84

proposed a data-driven approach to detect a set of principal85

directions to align roof boundaries. They used these roof86

boundaries to produce a footprint for the reconstruction. Poullis87

and You [16] created compact city models from high elevation88

LiDAR data by simplifying boundaries of fitted planes. Lafarge89

et al. [17] employed Bayesian decision to assemble simple90

urban structures as the reconstruction from a single Digital91

Surface Model (DSM). By extending the traditional dual92

contouring algorithm into 2.5D, Zhou and Neumann [18]93

optimized the 2D boundaries for the roofs, which enables the94

reconstruction of buildings with arbitrarily shaped roofs. In95

their following work [19, 20], the authors further incorporated96

topology control and global regularity to improve the dual97

contouring results, yielding impressive performance.98

To reconstruct facade details, Nan et al. [21] proposed an99

interactive reconstruction method that exploits the repetitive100

structure of the facades. During the drag-and-drop operation,101

each facade element is snapped to its proper location based on102

discrete optimization that balances between a regularity term103

and a data fitting term. By using Manhattan World assumption,104

Venegas et al. [22] first segmented the point cloud into walls,105

edges, corners, and edge-corners. They then organized the106

classified points into clusters to extract a volumetric description107

of the buildings.108

MVS-based reconstruction. As images of urban scenes109

becomes easier to acquire from both the internet (e.g., flicker)110

and cameras (e.g., smart phones), more and more recent111

research interests have focused on reconstructing urban scenes112

from a set of images or videos.113

Pollefeys et al. [23] designed a real-time system to generate114

street level city models from video frames captured by onboard115

cameras. Given a dense point cloud reconstructed from a set116

of images using SfM and MVS techniques, Arikan et al. [24]117

proposed O-Snap, an interactive reconstruction system that118

fits planar primitives along with boundary polygons, and then119

snaps polygons together to obtain a mesh model of a building120

through non-linear optimization. Using the same data source,121

Nan et al. [25] proposed to reconstruct detailed urban models122

by assembling facade details onto a set of manually extruded123

coarse models based on linear integer programming. Some124

other approaches [26, 27] are also proposed for reconstruction125

of large scale scenes based on MVS. These methods can126

generate high resolution results, but semantic information are127

ignored during the reconstruction and usually suffer from data128

storage difficulties.129

To obtain a level-of-detail representation of urban scenes,130

Verdie et al. [28] introduced an abstraction step between131

the classification and reconstruction steps to regularize planar132

structures from a large set of plane candidates. Finally, a133

surface model is extracted from a set of 3D arrangements134

based on a min-cut formulation. Compared with methods135

using ground level images, airborne-based data sources cover136

larger area of the scene. Most of existing airborne-based137

methods [15, 16, 17, 18] describe data in 2.5D due to the data138

acquisition strategy. This strategy makes quality reconstruction139

of building faces not possible, since only the roof information140

is available in the data. In this paper, we focus on the automatic141

generation of lightweight urban models from airborne point sets142

reconstructed from UAV images.143

3. Overview144

Our method takes as input a sequence of images of a scene145

and outputs 3D polygonal mesh models of the scene. The146

images are captured by a camera mounted on a UAV. In a pre-147

processing step, we extract a point cloud from these images148

using SfM and MVS [29]. Then there are two core steps149

for automatic generation of the urban models: point cloud150

classification and roof extraction. The main idea for automating151

these processes relies on a regularized MRF labeling strategy.152

An overview of our method is shown in Figure 1.153

We first classify the point cloud of a large scene into four154

different categories, i.e., buildings, ground, trees, and others.155

We define a set of point features based on a 2D supporting156

grid by projecting the point set onto the ground. Then the157

classification is achieved using a regularized MRF formulation.158

Graph cut [30, 31] is used to solve the labeling problem (see159

Section 4).160

After point cloud classification, the data for each building161

is processed independently. By projecting the points onto the162

ground plane, a depth map is first generated to represent the163

2.5D structure of a building. Based on the depth map, a higher164

resolution regularized MRF formulation is used to extract the165

roof structure of the building, followed by a regularization step166

for the roof contours. Finally, polygonal mesh models are167

generated by extruding the roof patches onto the ground (see168

Section 5).169

2



Figure 1: An overview of the proposed reconstruction pipeline. From a sequence of images captured by the camera mounted on an UAV (a), a point cloud (b)
is generated using SfM and MVS. Then an object level segmentation is performed to decompose the entire scene into buildings and other objects (c). For each
individual building, we extract the roofs (e) from its depth map (d) defined on a grid representation. Then a polygonal model (f) is extracted from the roofs (e).
Finally, the entire scene can be textured (g) for various applications.

4. Object Level Segmentation170

The goal of the object level segmentation step is to separate171

each individual building from others. By doing so, the point172

cloud of each building in the large scene can be processed173

independently. In our work, this procedure focuses on three174

categories, i.e., buildings, ground, and trees. We first describe175

how the statistical information is obtained, then we exploit176

graph cut to segment the points into the above three categories.177

4.1. Point features178

Inspired by previous work [13, 32] that exploits geometric179

features defined on single points to perform classification, our180

approach relies on a statistical analysis of the neighborhoods of181

the points.182

In order to classify the points into the aforementioned183

different categories, we first compute the statistical information184

of the data based on a 2D supporting grid. Specifically, the185

entire region of the the scene is discretized into a grid defined186

on the ground plane using predefined grid resolution rg. We187

project all the points onto the grid and within each grid cell188

we compute attributes for the points projected into this cell.189

In the grid, each cell has the standard 4-connected neighbors.190

An illustration of a 2D supporting grid is shown in Figure 2.191

Note in the classification step, our goal is to extract individual192

buildings and it is not necessary to extract precise contours193

for buildings, thus we choose to use a larger (compared with194

the one used for roof extraction described in Section 5.1) grid195

resolution for the classification. Empirically, the grid resolution196

is set to 0.35 m.197

To extract discriminative features for classification, we198

analyze the spatial distribution and structure of the points for199

Figure 2: An illustration of the 2D supporting grid for object level
segmentation.

each category based on the 2D supporting grid. Considering200

different objects in an urban area often exhibit strong structural201

regularities, e.g., buildings often exhibit planar regions, sharp202

corners, and axis aligned dominant planes; points of trees203

have more random distribution for both positions and normal204

directions; the ground plane is usually regarded as a single large205

segment that is relatively planar and low in height, allowing206

for it to be identified separately. Our point cloud classification207

algorithm incorporates features defined by these observations.208

We introduce an identification function F(·) that measures209

the probability of a grid cell ci ∈ C belonging to one of these210

three categories. Similar to [13], our identification function211

is defined on a set of features extracted from the point set, as212

below:213

• the maximum height of the cell from the ground: hi =214

max{pi → z} − zground215

• the standard deviation of the absolute value of z compo-216
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nent of the normal vectors in a cell: σNz217

• the standard deviation of the height of the points in a cell:218

σH219

Then, the normalized identification function F(·) is defined as

Fground = max (1 − hi/~, 0)
Fbuilding = min (max (hi/~ − γ · σNz, 0), 1)
Ftree = min (α · σH + β · σNz, 1)

, (1)

where zground denotes the elevation of the ground plane; ~220

is a threshold such that a point is considered belonging to a221

building if its height from ground is higher than ~; α and β are222

weights that balance between the elevation feature and the point223

distribution. Since the heights of trees in the experimented areas224

are less than 6m andσNz ranges from 0.01 to 0.4, we set ~ = 6m,225

γ = 3, α = 0.03, and β = 3 through all our experiments.226

Intuitively, a value of F( fc) closer to 1 means the cell in the227

grid has higher possibility to be assigned the label fc, and vice228

versa.229

4.2. Point classification230

As the point cloud is discretized and embedded into a231

uniform 2D grid, the goal of the classification is to classify the232

corresponding cells into different categories. This classification233

is a typical labeling problem. We compute an assignment of234

labels fc to elements c ∈ C such that the joint labeling f235

minimizes an objective function E( f ). Our energy function236

consists of two terms: data and smoothness costs.237

Data cost. The data cost D(c, fc) measures how well the label238

assignment fits to the cells C. The normalized identification239

functions F(·) provide the initial labeling estimation for all the240

cells. We define the data cost for each category as follows241

D(c, fc) =


1 − Fground if fc = ground
1 − Fbuilding if fc = building
1 − Ftree if fc = tree

. (2)

Smoothness cost. The smoothness term measures the spatial242

correlation of neighboring cells. Given two adjacent elements243

p and q, the smoothness energy term is defined by244

Vp,q =
1

γ ·
∣∣∣hp − hq

∣∣∣ + 1
· 1(p, q), (3)

where 1(p, q) is an indicator function that has value 0 if p and q245

are signed the same label, otherwise it has value 1. Intuitively,246

the smoothness term penalizes assigning different labels to a247

pair of adjacent cells (p, q) that have smaller difference in their248

heights, i.e.,
∣∣∣hp − hq

∣∣∣. For all the examples shown in the paper,249

γ is set to 10.250

Optimization. Thus the overall energy function is

E( f ) =
∑
c∈C

D(c, fc) + λ
∑

p,q∈N

Vp,q. (4)

Finding a solution to this labeling problem is equivalent251

to the minimization of the above energy function. In our252

implementation, we use graph cut [30, 31] to find the optimal253

labeling assignment. Compared with previous point cloud254

classification methods [32, 13] that use features defined on local255

neighborhood of the points, our statistic based classification256

can obtain more reliable results especially for complex scenes257

with higher level of noise and is more consistent with human258

perception.259

4.3. Object segmentation260

Since our final goal is to reconstruct buildings exhibited in261

the scene, we perform a segmentation step that aggregates and262

extracts individual buildings using a simple label based region263

growing algorithm.264

We first extract buildings, trees, and ground by querying265

and combining neighboring cells that have the same label266

assigned in the previous classification step. The remaining267

points are more likely distributed in small regions with irregular268

geometries, thus are classified into the fourth category (i.e.,269

others). Using the features defined in Section 4.1, some tall270

objects (e.g., wire poles) may be misclassified as building.271

We filter out these false positives using a simple thresholding272

mechanism. In our implementation, if the 2D area of a273

projected object labeled as building contains less than 200 grid274

cells (i.e., 24.5 m2), the object is then assigned as others. A275

point set of building may still contain some points that may276

belong to ground or other categories, but these outliers are only277

restricted within no more than one cell outward of the contour278

of the building structure. So these outliers will have little effect279

on the final reconstruction.280

5. Polygonal Mesh Extraction281

Given the point clouds of individual buildings separated from282

the scene, our next goal is to reconstruct mesh models from283

these point clouds. Automatic reconstruction is challenging due284

to the following two reasons. First, point clouds reconstructed285

from images using SfM and SVM are usually nonuniform and286

contain a higher level of noise compared with laser scans.287

Second, missing data is an unavoidable problem during the data288

acquisition process due to occlusions, lighting conditions, and289

the trajectory planing of the UAV. We observe that in the point290

clouds generated from aerial images the walls of the buildings291

are extremely sparse and incomplete if the trajectory for the292

UAV are not carefully designed, while roofs are relatively293

denser and more complete than the walls. Thus, quite a294

few previous work mainly utilize only roof information for295

reconstruction [15, 16, 17]. These methods are either based on296

region growing for roof extraction [16, 17], or detection of roof297

contours by measuring certain point features (e.g., [15]), thus298

they suffer difficulties caused by noise and missing data. In this299

work, we propose a regularized MRF formulation to extract the300

roof structure of the building, followed by a refinement step for301

the roof contours. Finally, building models are extruded from302

the roof patches.303

Compared with previous graph-cut based approaches for304

surface reconstruction [33, 13, 14, 11], where their formulations305
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are based on either the irregular graph of the Delaunay306

tetrahedron, or points, or triangulated meshes, our formulation307

makes use of a graph with a four-neighbor grid structure in308

2D space. Thus, our strategy significantly simplifies the roof309

extraction process, resulting in better stability and efficiency.310

5.1. Roof extraction311

In order to reliably extract roof structures, we employ another312

MRF-based segmentation algorithm on a grid with higher313

resolution defined on the point set of the building. This grid is314

similar to the one used in the previous classification stage, but315

with smaller cells that ensure more details of the roof structures316

can be recovered. Another difference is that in the new grid each317

cell stores an elevation value of the local points projected into318

the cell. Thus this grid can also be regarded as a depth map that319

provides us an effective way to process the data. With the depth320

map representation, processing can be conducted efficiently and321

effectively on the depth map despite the imperfections of the322

data.323

Before extracting the roof structures from the point set, it324

would be helpful to reduce the noise in the data. To this end,325

we run a median filter on the depth map, since median filters326

are well known for reducing noise and outliers, and meanwhile327

preserve features (i.e., edges) of the data.328

After the 2D filtering preprocess, we generate a set of plane329

hypotheses from the depth map using RANSAC [34]. Thus330

each cell in the depth map is assigned with an initial hypothesis331

label. Performing RANSAC on the depth map is extraordinarily332

efficient as the depth map significantly reduces the amount of333

data and maintains sufficient 2.5D information of the point334

cloud. We now perform a global optimization over all the335

cells in the depth map, to consistently segment the depth map336

into a set of planar regions (including roofs and the ground).337

This optimization is formulated as a cell-wise labeling problem,338

which is similar to the one used in the previous classification339

step (see Section 4.2). Our objective function still has a data340

cost term and a smoothness cost term.341

Data cost. The data cost term D(p, fp) encodes the
likelihood of assigning a label fp to a cell p ∈ P. It is defined as
the distance measured from p to the corresponding plane with
label fp

D(p, fp) = dist(p, fp)
= xp · n f + D.

(5)

where xp is the position of cell p in the grid, n f is the normal342

vector of the plane, and D is the constant coefficient in the plane343

equation denoted as Ax + By + Cz + D = 0.344

Smoothness cost. Smoothness cost term Vp,q penalizes the
assignment of two different labels to adjacent cells p and q, and
thus encourages the coherence between neighboring cell pairs:

Vp,q =


0 if lp = lq
δ1 if lp , lq, lp = lground or lq = lground,
δ2 otherwise

(6)

where lground denotes the ground plane. The penalty term δ1
is a constant term that makes the penalty robust to region

boundaries. δ2 is another penalty term defined as the distance
between the projected points on different planes

δ2 =
∥∥∥pro ji(p), pro j j(p)

∥∥∥
2 ,

where pro j(p) is the projection of the point on the correspond-345

ing plane.346

Optimization. By combining the above two terms, the
overall energy is defined similar to that in Equation 4:

E( f ) =
∑
p∈P

D(p, fp) + µ
∑

p,q∈N

Vp,q, (7)

where P is the cells set and N represents the standard 4-347

neighborhood. Parameter µ is a weight that balances between348

the two terms. To optimize the above energy, we use the same349

graph cut algorithm used in Section 4.2.350

5.2. Contour refinement and model extraction351

Minimizing the above energy defined in Equation 7 will352

decompose the depth map of a building into a set of roof patches353

(see Figure 3). In our experiments, we observed that directly354

optimizing Equation 7 tends to generate zigzag artifacts in the355

roof contours.356

Considering planar and orthogonal structures are common in357

architecture (i.e., most building structures are aligned with three358

dominant principal directions), we add a rotation step before359

the grid structure is built. Specifically, we detect two dominant360

directions by analyzing the normals of the original point set,361

and then transform the point cloud such that these directions362

are aligned with the X and Y axes of the 2D coordinate system.363

Experiments show that the alignment of the grid with the 2D364

coordinate system significantly helps to eliminate the zigzag365

artifacts in the extracted roof patches. Figure 3 shows the366

extracted roofs after the rotation step.367

To extrude polygonal models from the roof patches, we first368

extract straight line segments from the roof contours obtained in369

the previous process. Specifically, we divide each roof contour370

into the following two categories of small contours according371

to the contents linked by the contours.372

• Building boundaries: a roof patch is on one side of the373

contour and a ground patch is on another side;374

• Roof boundaries: patches on both sides of the contour are375

of roof.376

Figure 3: Roof extraction without and with the rotation step. Color denotes
different roof patches.
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Figure 4: An illustration of pivot points and contour segments. The colors
represent different roof patches.

Figure 5: Contour simplification using the Douglas-Peucker polygonal
approximation algorithm [35].

Since each cell in the grid has been assigned with a roof377

patch, pivot points are detected by checking the number of roof378

patches associated with the junctions in the grid. Specifically,379

a junction in the grid is considered as a pivot point if the cells380

associated with this junction belongs to at least 3 different roof381

patches (see Figure 4).382

We linearize, and thus simplify the contours of roof383

patches using the Douglas-Peucker polygonal approximation384

algorithm [35]. This algorithm decomposes the contours into a385

sequence of straight line segments by recursively finding a point386

that has the maximum distance to the simplified segments, and387

this point is discarded if it is closer than a threshold ε to the388

approximating segments. The recursion is continuing until no389

more points can be found that have distances greater than ε to390

the simplified segments. In our experiment, we set ε to 0.2 m.391

Figure 5 shows an example of contour simplification results.392

In the end, we finish the whole pipeline by constructing a393

polygonal mesh from the refined contours. Specifically, we394

construct a 2D polygon for each boundary loop in the contours,395

and further extrude them to the ground plane by adding vertical396

walls that are orthogonal to the roofs and the ground plane. The397

result is 2.5D reconstruction of the building in the scene. By398

performing the same processing on each individual buildings,399

then entire scene is reconstructed.400

6. Results and Discussion401

We have tested our approach on several datasets of large402

scenes acquired by a high resolution camera mounted on an403

UAV. After the images are obtained, we generate colored point404

clouds from these images using SfM and MVS. Since SfM405

and MVS are based on local image features, the computed406

point clouds usually suffer from serious noise, occlusions, and407

nonuniform densities. We then reconstruct polygonal models408

from the point clouds using our proposed method. Figures 6409

and 7 show the reconstruction of theses scenes.410

Figure 6 shows a portion of the United Nations Educational411

Scientific and Culture Organization cultural heritage site of412

Al-Balad, Jeddah, Saudi Arabia. The area scanned by the413

UAV consists of many unique 100-300 year old buildings414

with complex architectural features, cluttered rooftops, lattice415

shuttered windows, and balconies. In the last fifty years, the416

cultural heritage site has lost over 600 historical buildings417

and within even the last several months homes have been418

destroyed by accidental fire. We were given special permission419

to scan the area due to its endangerment with the intent to420

document the remaining buildings and generate a master plan421

of the area. This study will help in digitizing the remaining422

375 buildings that would be too time-consuming to do using423

manual methods. The dataset consists of 1,518 images captured424

during three 10-minute autonomous flights with a Sony QX100425

camera (20M pixels) and 24mm (equivalent lens) achieving a426

ground sampling density of 2.5 − 3.0cm per pixel. The three427

flights were repeated over the same area at an elevation of 50m428

(oblique), 75m (oblique), and 75m (nadir). The total generated429

point cloud contains 20 million colored points. Although a430

dense point cloud was generated a higher frequency of noise431

especially in low-feature surface areas (e.g., windows, white432

walls, metallic surfaces, etc.) was created. Our method benefits433

from the statistical analysis of the imperfect point cloud, which434

compensates the low quality of the data in an excellent way.435

As can be seen from this figure, although the roofs of the436

buildings are noisy and have missing regions, our method437

successfully detected and reconstructed all buildings in these438

regions, resulting in crack-free models.439

Figure 7 shows a portion of a large modern residential area440

consisting of a mix of two story homes with garage ports441

and multiple balconies, multi-story apartment buildings, and442

a residential park. Two 15-minute flights were conducted to443

capture the entire area (approximately 125 × 100 m2) using a444

larger UAV with a Sony Nex-7 camera (24M pixels) mounted445

on a gimbal angled at 50◦ achieving a ground sampling446

density of 1cm per pixel. The dataset consists of 924 images447

and the point cloud generated from these images contains448

approximately 80 million colored points. The reconstructed449

polygonal models fit the initial point cloud in a precise manner,450

and significantly reduce the storage. By converting the point451

cloud representation into polygonal models, the storage of the452

scene is reduced from 1.2 GB (initial point cloud with color, in453

binary format) to 530 KB (polygonal model).454

Robustness to parameters. Our MRF formulations for the455

object level point cloud segmentation and roof extraction relies456

on two key parameters: λ and µ. In our experiments, we457

found the final reconstruction results are not sensitive to these458

parameters.459

Figure 8 demonstrates the object level segmentation results460

for a historical downtown scene with increasing value of461

parameter λ. As can be seen from this figure, smaller values of λ462
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(a) (b) (c) (d)

Figure 6: Segmentation and reconstruction of an old downtown area. (a) Initial point cloud; (b) Object level segmentation result; (c) Polygonal models reconstructed
by the proposed method; (d) Textured polygonal models.

(a) (b) (c)

(d) (e) (f)

Figure 7: Segmentation and reconstruction of a large modern residential area. (a) Initial point cloud; (b) Object level segmentation result; (c) Polygonal models
reconstructed by the proposed method; (d), (e), and (f) are the zoomins of the marked building in the scene.

λ = 0                                   λ = 1.5                                    λ = 4                                        λ = 8Point cloud without ground

Figure 8: The effect of varying parameter λ (in Equation 4) on the segmentation results. Red, green, and blue colors represent building, tree, and others respectively.

μ=1                                               μ=1.5                                       μ=2                                            μ=3

Outlier ratio:   1.6%                                            3.0 %                                        6.7%                                          7.5%

Figure 9: The effect of varying parameter µ (in Equation 7) on the final reconstruction results. Here outlier ratio is defined as the percentage of points whose
distances to the 3D model are larger than 0.8m. Blue color represents the building roofs.
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   (a)                                       (b)                                 (c)                                   (d)                                   (e)                                    (f)

Figure 10: Comparison of the reconstruction results of our approach with other methods on three individual buildings (in different rows). (a) Photo of the building;
(b) Point cloud; (c) Surface model reconstructed by Screened Poisson Reconstruction algorithm [36]; (d) DEM simplification result [37]; (e) Result of 2.5D Dual
Contouring method [18]; (f) Our result.

ignore more smoothness constraints, which results in more gaps463

and holes in the segmentation results due to noise and missing464

data. On the contrary, increasing the value of λ will encourage465

close segments to be merged. However, as our experiments466

demonstrate, the value of λ in the range [1.4, 4.3] can guarantee467

similar satisfactory segmentation results.468

In Figure 9, we demonstrate the robustness of our roof469

extraction algorithm on the final reconstruction result in terms470

of varying parameter µ. Similar to the effect of varying λ471

in the object level segmentation step, µ controls how much472

smoothness constraints are preferred in the energy function.473

Intuitively, increasing the value of µ encourages larger planar474

roofs in the final reconstruction. Our experiments reveal that475

the value of µ in a range of [1.5, 3.0] usually generates similar476

compact 3D models.477

Comparison. We also conduct comparisons with three478

methods: Surface simplification from Digital Elevation Model479

(DEM) [37], Screened Poisson Reconstruction [36], and 2.5D480

Dual Contouring [18].481

Figure 10 shows the reconstruction results of three individual482

buildings. The results of the DEM simplification method are483

competitive in terms of fitting quality to the point clouds.484

However, it can not produce straight roof boundaries. The485

Screened Poisson Reconstruction method [36] can generate486

an isotropic dense mesh surface from the point clouds. This487

method, however, can not handle local incompleteness (i.e.,488

holes in the point clouds) caused by occlusions. Besides,489

since the result is represented as a single surface approximating490

the entire scene, it is rather difficult to differentiate individual491

buildings in the reconstruction. The results from the 2.5D492

Dual Contouring [18] method contain large areas of small493

bumps. This is because the 2.5D Dual Contouring algorithm494

is initially designed to deal with airborne LiDAR point clouds495

that mainly consist of points of building roofs with uniform496

density and higher accuracy. Thus, it is sensitive to our noisy497

point clouds computed from images using SfM and MVS.498

Compared with these approaches, our method can generate499

a simplified polygonal model that is visually pleasing and500

satisfactory for various applications or can be used as input for501

further processing.502

In Table 1, we show a quantitative comparison with the503

aforementioned methods on the buildings shown in Figure 10.504

As can be seen from this table, the Screened Poisson505

Reconstruction method wins in terms of precision, but the506

final surfaces are more fluctuating. Our method has similar507

accuracy as the 2.5D Dual Contouring method, but it has a508

more compelling performance and our results have the simplest509

geometric structure. Our approach is seeking a tradeoff between510

accuracy and automatic reconstruction.511

Furthermore, we also run our method on LiDAR point cloud512

data provided by [18]. As shown in Figure 11, our method also513

can deal with LiDAR data and can obtain a similar compact514

reconstruction results as the primitive-based method proposed515

in [13].516

Accuracy and scalability. To intuitively evaluate the517

accuracy of the reconstructed models, we show the overlay of518

the point clouds onto the polygonal models in Figure 12, where519

color coding indicates the error magnitude. Our method has an520

average fitting error less than 0.2 m for the scene.521

Besides the individual buildings, the experiments also522

demonstrate that our reconstruction framework has satisfactory523

performance on large scenes (see Figures 6 and 7). We record524

the running times for these scenes, which can be seen in Table 2.525

Both the object level segmentation and roof extraction for the526

8



0.8 m

0 m

Figure 12: Point cloud overlaid on the reconstructed models. Color indicates the distances from points to their nearest faces in the model.

  (a)                              (b)                             (c)

Figure 11: A comparison of our method with the primitive-based method
proposed in [13] on a LiDAR point cloud. (a) The model obtained by [13];
(b) 2.5D Dual Contouring result [18]; (c) Our result.

Table 1: Statistical comparison of running times (in seconds), mesh sizes (face
number), and mean errors (in meters, defined as the average distance of the
points to the model) of our method with 2.5D Dual Contouring [18] (2.5D
for short) and Screened Poisson reconstruction [36] (SPR) methods on the
buildings shown in Figure 10.

2.5D [18] SPR [36] Ours
Figure 10 Time 0.31 7.66 0.40
(top) # Faces 2,250 56,344 675
20.6 k points Error 0.076 0.068 0.096
Figure 10 Time 0.28 8.42 0.38
(middle) # Faces 3,599 110,287 387
29.6 k points Error 0.086 0.044 0.053
Figure 10 Time 0.17 1.97 0.19
(bottom) # Faces 1,382 66,968 207
13.9 k points Error 0.093 0.103 0.106

two scenes take only a few seconds. Thus, our method is quite527

suitable for processing large scale urban environments.528

Limitations. During the reconstruction, we mainly rely on529

the roof information of the buildings. We assume that there is530

only one flat ground in each scene and the roofs are parallel to531

the ground plane. Since the models are obtained by extruding532

prisms from the ground plane to the roofs, the reconstructed533

buildings always lie in the same ground plane, and they are534

actually 2.5D reconstructions. Given point clouds with vertical535

facades, our current formulation simply ignores these vertical536

facade information and only uses the information given by the537

roof points.538

Another limitation is that the piecewise planar roof structure539

Table 2: Running times (in seconds) of the two core steps (object level
segmentation and roof extraction) for the two large scenes shown in Figure 6
and Figure 7.

Segmentation Roof extraction
Figure 6 2.36 3.36
Figure 7 15.01 6.92

assumption becomes too restrictive when dealing with atypical540

architectures, e.g., buildings with curved roofs or facades.541

Currently our method can not handel these types of buildings.542

7. Conclusions and Future Work543

This paper presented an automatic framework for recon-544

structing large scale urban scenes from UAV images. We545

introduce an effective segmentation algorithm which segments546

the data based on statistical analysis of their geometric547

properties using a low resolution grid structure. Roofs are548

extracted and their contours are simplified and refined using549

a similar grid structure of higher resolution. By using the550

proposed MRF formulations on the statistical information,551

our method is able to handle a higher level of noise and552

outliers. Experiments on various scenes show the reconstructed553

polygonal models are more compact and regular compared with554

state-of-the-art methods.555

Currently, we only use the roof information for the recon-556

struction. Although the walls are sparse, they do provide extra557

constraints on the geometry of the buildings. As a future work,558

we would like to exploit the wall information to regularize the559

roof extraction algorithm. Another interesting problem could560

be approximating the trees in the scenes using template models561

from a database.562

Acknowledgements563

We thank the anonymous reviewers for their valuable564

comments and suggestions. This work was supported by the565

KAUST Visual Computing Center.566

9



References567

[1] N. Haala, M. Kada, An update on automatic 3d building reconstruction,568

ISPRS Journal of Photogrammetry and Remote Sensing 65 (2010) 570–569

580.570

[2] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van Gool,571

W. Purgathofer, A survey of urban reconstruction, in: Computer Graphics572

Forum (STAR Proceedings of Eurographics), 2013.573

[3] F. Rottensteinera, G. Sohnb, M. Gerkec, J. Wegnerd, U. Breitkopfa,574

J. Jungb, Results of the isprs benchmark on urban object detection and 3d575

building reconstruction, ISPRS Journal of Photogrammetry and Remote576

Sensing 93.577

[4] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, J. A. Levine,578

A. Sharf, C. Silva, State of the art in surface reconstruction from point579

clouds, in: S. Lefebvre, M. Spagnuolo (Eds.), Eurographics 2014 - State580

of the Art Reports, 2014.581

[5] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,582

R. Szeliski, Building rome in a day, Communications of the ACM 54 (10)583

(2011) 105–112.584

[6] Y. Furukawa, J. Ponce, Accurate, dense, and robust multiview stereopsis,585

IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (8)586

(2010) 1362–1376.587

[7] C. Wu, S. Agarwal, B. Curless, S. M. Seitz, Multicore bundle adjustment,588

in: Proceedings of the 2011 IEEE Conference on Computer Vision and589

Pattern Recognition, CVPR ’11, IEEE Computer Society, Washington,590

DC, USA, 2011, pp. 3057–3064. doi:10.1109/CVPR.2011.5995552.591

URL http://dx.doi.org/10.1109/CVPR.2011.5995552592

[8] P. Müller, G. Zeng, P. Wonka, L. Van Gool, Image-based procedural593

modeling of facades, in: ACM SIGGRAPH 2007 Papers, SIGGRAPH594

’07, 2007.595

[9] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, M. Pollefeys,596

Interactive 3d architectural modeling from unordered photo collections,597

ACM Transactions on Graphics (TOG) 27 (5) (2008) 159:1–159:10.598

[10] J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, L. Quan, Image-based façade599
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