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A Search-Classify Approach for Cluttered Indoor Scene Understanding
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Figure 1: A raw scan of a highly cluttered indoor scene is given (left). Applying our search-classify method, we segment the scene into
meaningful objects (middle: chairs (blue) and tables (purple)), followed by a template deform-to-fit reconstruction (right).

Abstract

We present an algorithm for recognition and reconstruction of s-
canned 3D indoor scenes. 3D indoor reconstruction is particularly
challenging due to object interferences, occlusions and overlapping
which yield incomplete yet very complex scene arrangements. S-
ince it is hard to assemble scanned segments into complete models,
traditional methods for object recognition and reconstruction would
be inefficient. We present a search-classify approach which inter-
leaves segmentation and classification in an iterative manner. Us-
ing a robust classifier we traverse the scene and gradually propagate
classification information. We reinforce classification by a template
fitting step which yields a scene reconstruction. We deform-to-fit
templates to classified objects to resolve classification ambiguities.
The resulting reconstruction is an approximation which captures
the general scene arrangement. Our results demonstrate success-
ful classification and reconstruction of cluttered indoor scenes, cap-
tured in just few minutes.

Keywords: point cloud classification, scene understanding, recon-
struction
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1 Introduction

Processing of 3D digital environments is an increasingly importan-
t research problem, motivated by ambitious applications that aim
to build digital copies of cities (e.g., Microsoft Virtual Earth and
Google Earth). Advances in laser scanning technology and recent
proliferation of GIS services have been driving a strong trend to-

wards processing and modeling of large-scale outdoor scenes based
on aerial photography and street-level laser scanners.

Surprisingly, scanned 3D interiors pose a much more difficult prob-
lem. In contrast to building exteriors which are relatively piece-
wise flat, interior scenes are more complicated in their 3D struc-
tures. Rooms are densely populated with objects in arbitrary ar-
rangements, for example, chairs pulled underneath tables, semi-
open drawers, and etc. Additionally, proper acquisition of interior
spaces is challenging in many ways. For example, when scanning
densely populated indoor scenes, significant parts remain occlud-
ed in all views, yielding a partial representation. The prevalence
of thin structures such as doors, walls and table legs poses another
significant challenge since their acquisition requires high sampling
rate relative to the scale of the scene. Hence, traditional modeling
techniques would perform relatively poor on interior scenes, due to
typical clutter, missing parts and noise (see Figure 1).

3D scans of large scale environments are relatively new and were
made possible due to recent progress in scanning technology. Sev-
eral algorithms have been proposed for modeling [Sinha et al.
2008; Schnabel et al. 2009; Nan et al. 2010; Livny et al. 2010],
and object segmentation in scanned outdoor scenes [Frome et al.
2004b; Anguelov et al. 2005; Golovinskiy et al. 2009]. However,
only very recently, researchers have been addressing the complex
challenges present in cluttered scanned indoor scenes [Kim et al.
2012; Shao et al. 2012].

We develop a fully automatic algorithm that is capable of under-
standing and modeling raw scans of cluttered indoor scenes (see
Figures 1, 2). In our method, we define a set of shape features that
are used for supervised learning of a classifier. We argue that object
classification cannot be directly applied to the scene, since objec-
t segmentation is unavailable. Moreover, the segmentation of the
scene into objects is as challenging as the classification since spa-
tial relationships between points and patches are neither complete
nor reliable. For example, it is practically impossible to segment
and attribute legs of chairs drawn close together. Thus, classifi-
cation and segmentation together, constitute a typical chicken-egg
problem.

Our key idea is to interleave the computations of segmentation and
classification of the scene into meaningful parts. We denote this ap-
proach search-classify, since we search for meaningful segments
using a classifier that estimates the probability of a segment to be
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Figure 2: A zoom into the cluttered region of Figure 1 (left), reveal that accurate segmentation and classification are challenging, even for
human perception. We initially over segment the scene (mid-left) and search-classify meaningful objects in the scene (mid-right), that are
reconstructed by templates (right) overcoming the high clutter.

part of an object. Global fitting techniques such as Hough trans-
form [Vosselman et al. 2004] and RANSAC [Schnabel et al. 2007]
aim at fitting a primitive shape to partial or noisy data using a robust
process. Nevertheless, ours is a much harder problem since shape
is not known apriori and it lies in a cluttered scene with challenging
foreground/background separation.

In our algorithm, we traverse the scene and incrementally accumu-
late patches into meaningful labeled objects. In each step, we query
accumulated parts with our classifier and obtain a set of likelihood
probabilities for different classes. We proceed by growing regions
with highest likelihood probability. We further reinforce classifica-
tion by template fitting in order to solve ambiguous cases. Given a
classified shape, we fit it a deformable template. Using fitting er-
ror, we can detect outliers and misclassified parts and re-iterate the
search-classify process. An immediate outcome of this step is an
approximated scene reconstruction by deformed templates which
captures the general objects’ arrangements.

In a nutshell, our method consists of the following steps. We devel-
op a set of features and train a classifier from a large set of exam-
ples for recognition of several specific object classes. Given a raw
scan of an indoor scene we initially over-segment it into piecewise
smooth patches. We search-classify the scene by iteratively ac-
cumulating patches that form regions with high classification like-
lihood. This process performs until the whole scene is classified
into meaningful objects and outliers. Nevertheless, classified ob-
jects can overlap , contain outliers and ambiguities. Therefore, we
reinforce the classification step with a template fitting step. Thus,
we deform templates to fit to the classified point cloud and select
the best matching template. The fitting process reinforces or un-
dermines classification leading to a consistent scene understanding
and reconstruction.

Our paper makes the following novel contributions:

• Presenting a search-classify approach for interleaving seg-
mentation and classification in cluttered scanned indoor
scenes. In contrast to traditional techniques, we do not decou-
ple segmentation and classification apart. Instead, we detect
meaningful objects in the scene by growing maximum likeli-
hood regions based on a learned classifier.

• Our scene understanding and fitting contributes an approx-
imate reconstruction of the global scene which conveys the
general arrangement and interrelations in the scene. I.e., in-
stead of aiming for exact 3D reconstruction which is imprac-
tical with such data quality, we loosely match the local geom-
etry with deformable templates of the same class.

• We utilize a template fitting method for reinforcement of
scene recognition and ambiguity resolution.

2 Related Work

Our work essentially bridges between scene understanding and re-
construction. We divide our discussion on related work in two
main parts, focusing on 3D scene classification and reconstruction
of large-scale digital scenes.

Scanned Scene Understanding The problem of object recog-
nition in 2D images has been extensively researched in computer
vision for many years [Ullman 1996; Belongie et al. 2002a; Fei-
Fei et al. 2007; Lowe 2004; Viola and Jones 2004]. With the current
proliferation of scanning devices (e.g. Kinnect c©) and acquisition
projects (e.g., Google Earth), research has also transitioned to ob-
ject recognition in 3D scanned data. Since our work focuses on 3D
scanned indoor scenes, and due to large dissimilarities between 2D
and 3D data characteristics, we will naturally restrict our discussion
to the 3D domain.

In recent years, object recognition has been explored using scanned
depth information combined with texture(RGB-D) [Quigley et al.
2009; Lai and Fox 2010; Lai et al. 2011]. While these method-
s learn scanned object classifiers from a training set, they assume
very simple scenes with one or very few objects. Thus, segmenta-
tion into meaningful parts is simple and is either ignored [Quigley
et al. 2009] or approached using primitive fitting and background
subtraction [Lai and Fox 2010; Lai et al. 2011]. In contrast, for
cluttered indoor scenes, segmentation is non-trivial and cannot be
solved using existing techniques.

Golovinskiy et al. [2009] introduced a classification algorithm for
outdoor environments based on foreground/background separation
and supervised learning classification. Since indoor scenes are
more complex, cluttered, with large missing parts, segmentation in-
to meaningful objects is a very difficult problem. In fact, we claim
that classification and segmentation of scanned indoors are inter-
dependent problems. Hedau et al. [2010] introduced a high-level
object classifier for indoor scenes which is based on texture infor-
mation and 3D box geometry around objects. Nevertheless, assum-
ing a correct segmentation of the scene into boxes, is difficult in
clutter scenes. Silberman and Fergus [2011] presented an algorith-
m for indoor scene segmentation which uses graph-cut to propagate
classification labels of features to the full scene. Cluttered indoor
scenes consist of poor connectivity due to missing parts and outlier-
s, thus a global segmentation solution such as graph-cut typically
reaches local minima. Our segmentation performs by an iterative
growing process reinforced by classification. Koppula et al. [2011]
addressed semantic labeling of 3D indoor scenes by fusing color,
depth and contextual information together. They developed a clas-
sifier that performs on an over segmented low-level scene represen-
tation. In contrast, we seek for meaningful segments in the scene by
a controlled region growing process which interleaves classification
and segmentation.

There has been considerable work on defining and computing shape
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Figure 3: Search-classify overview. Left-to-right, starting from a raw scan, we randomly select a patch triplet with high classification
likelihood value (green). In each iteration we grow by adding one neighbor patch (red). We do not add patches that decrease classification
likelihood (chair bar yielding 0.88). Finally, we deform templates to fit points and reinforce classification.

descriptors for 3D point clouds [Johnson and Hebert 1999; Be-
longie et al. 2002b; Frome et al. 2004a]. These works focus on
defining discriminative and invariant shape descriptors for single
object classification. Recently, spin images descriptors were used
by Matei et al. [2006] to categorize 3D point cloud objects.

Several papers use statistical models to classify different point de-
scriptors. Markov Random Fields were used in this context by
computing the classification of a point from its local descriptor and
neighbors [Anguelov et al. 2005; Munoz et al. 2009]. Galleguillos
et al. [2008] and Xiong et al. [2010] used conditional random
fields for patch classification based on contextual relations. In con-
trast, we perform search-classify to detect and label full objects.
Recently, Shotton et. al [2011] presented an efficient body-parts
recognition approach using low level per-pixel classifiers trained
on randomized decision forests. While this method works well
for body parts, our problem consists of larger class variations (e.g.
chairs, sofas, tables, cabinets, monitors, etc.) and higher clutter re-
sulting in self occlusions and missing parts. Fisher et. al [2010;
2011] showed an efficient graph representation for synthetic indoor
scenes that facilitates the semantic relationships between objects
and can be applied to scene similarity and querying computations.

Data-driven Reconstruction Much of the prior work on large-
scale scene reconstruction focus on outdoor urban environments,
providing automatic and interactive reconstruction solutions from
3D point clouds [Nan et al. 2010; Zheng et al. 2010; Shen et al.
2011], collections of photos [Werner and Zisserman 2002; Dick
et al. 2004; Goesele et al. 2007; Sinha et al. 2008; Xiao et al. 2008;
Furukawa et al. 2009] or multi-view video [Pollefeys et al. 2008].
Few works approached the reconstruction challenge using prior fit-
ting. Gal et al. [2007] fitted local basic shapes to scans via partial
matching. Schnabel et al. [2009] presented a hole-filling algorithm
that is guided by primitive detection in the input. While these works
locally fit basic shapes to the point cloud, ours is a more challeng-
ing problem. We do not know apriori what is the object’s shape nor
its position in the scene. Thus we need to segment and classify the
point cloud prior to a deformable template fitting step. Recently, Li
et al. [2011] introduced a method that simultaneously recovers a set
of locally fitted primitives and their accurate global mutual relations
in man-made objects. They balanced between local primitive fitting
and global relations through an iterative optimization process.

Our template fitting algorithm is inspired by recent works of Xu
et al. [2010; 2011]. In [Xu et al. 2010], co-segmented shapes are
deformed by scaling corresponding parts in the source and target
models. In [Xu et al. 2011], a model is deformed to fit a silhouette
target while using high-level structural controllers. We continue
this trend and deform a template to fit the imperfect point cloud in
a constrained manner using non-rigid ICP and deformation energy
minimization.

3 Overview

The key-idea underlying our search-classify approach is a con-
trolled region growing process which searches for meaningful ob-
jects in the scene by accumulating surface patches with high classi-
fication likelihood. We reinforce recognition with a template fitting
step where templates are deformed-to-fit classified objects. These
two algorithmic components perform in a feedback loop, where
initial classification is refined by template fitting which in turn is
reevaluated by classification (see Figure 4).

Scene understanding includes two intricate subproblems: objects
separation and objects classification. This constitutes a chicken-egg
type of problem since object classification requires its separation
from background and other objects. Conversely, to segment an ob-
ject in a noisy imperfect scene, prior knowledge of object’s type
and shape is needed. We solve this problem using a search-classify
region-growing process which traverses the scene.

In the preprocessing stage, we compute a classifier by learning
shape features from a training set. Give a raw scan of an indoor
scene, we initially over-segment the scene into smooth patches and
compute an adjacency graph between parts. Our scene understand-
ing problem reduces to finding disjoint sets in this graph with maxi-
mum classification likelihood. These sets define objects in the scene
that have good classification recall of one of the categories. We start
from a set of random seeds defined by patch triplets. Region grow-
ing performs from the initial seeds, by traversal of their adjacency
graph and accumulating segments into significant objects. For each
set of segments (representing a potential object), we attempt to ac-
cumulate adjacent segments by querying our classifier with the new
set for likelihood probability value. We grow a set if its likelihood
value is non-decreasing (see Figure 3).

The above segmentation process is not perfect since objects may
still overlap due to ambiguities in cluttered regions. Our feed-
back loop utilizes a deformable template fitting step to reinforce
or undermine segmentation and classification results. We fit a de-
formable template to the classified point cloud aiming at minimiz-
ing their one-sided Hausdorff distance (points to template). Thus,
incorrectly segmented parts (outliers) will have a low fitting score
to template (see red loop in Figure 4). Template deformation is
computed using local scale controls which deforms the template
via local scaling to the nearest points. This is a part-aware non-
homogeneous scaling deformation we call ”deform-to-fit”.

4 Algorithm Details

Our algorithm consists of the following fundamental tasks:

• Feature set definition

• Supervised learning of classifier

• Scene understanding using search-classify region growing
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Figure 4: Block-diagram overview of our method.

• Deformable template fitting

In the following, we describe the technical details of our algorithm.

Point cloud features In order to separate and classify objects
in raw scans, we first need to define a set of descriptive features
that provide good separability and discernibility characteristics with
regards to scanned objects in the scene. Local descriptors such as
curvature, spin images [Johnson and Hebert 1999] or SIFT [Lowe
2004] are inefficient for our data, resulting in redundant features
due to the high clutter and noise levels.

Our aim is at defining features with the following characteristics:
global, good separation, generic enough for indoor scenes and fast
computation time. Since the shape descriptor will be utilized in
our search-classify controlled region growing process, we are not
concerned with descriptor robustness to missing data and noise.

As observed by Fu et al. [2008], there is a strong correlation be-
tween functional parts in man-made objects, their geometry and
their general upward orientation. Similarly, we observe that man-
made objects consist of a natural segmentation along their upward
orientation which relates to their functional parts (e.g. table legs,
top, etc.). Therefore, we make a simplifying assumption of hav-
ing a floor plane which defines the upward orientation of objects.
Floor information can be easily extracted from camera gyroscope
or by analyzing major planes in the scene. We segment each object
into horizontal slabs (see Figure 5) by analyzing point distribution
along the upward axis. We project all points onto the correspond-
ing upward axis, and detect jumps in the point distribution gradient
(i.e. zero crossings in the 2nd derivative). In our experiments, it
was sufficient to segment the objects into at most three meaningful
horizontal slabs, hence, we detect the three strongest zero crossings
passing a threshold.

We utilize the horizontal segmentation into slabs to compute dis-
criminative features as follows:

• oriented bounding box height-size ratio: (height Bh, width
Bw and depth Bd) Bh/

√
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• object’s top layer aspect ratio: Bt
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Figure 5: Features used for point cloud classification. Left-to-
right, bounding box measures, detected horizontal slabs by change
in point distribution along upward position, angle between slabs
COMs.
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• change in center of mass (COM) along horizontal slabs, com-
puted as angles between slabs COM’s: ∠1(B

t
com, B

m
com),

∠2(B
b
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m
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For each dimension of the feature vector, we normalize it to [0, 1]
and define an out-of-range value of 200 for missing features in the
vector.

A Randomized Decision Forest Classifier Randomized deci-
sion forests (RDF) [Breiman 2001] have proven to be efficient
multi-class classifiers for many tasks [Shotton et al. 2008; Shot-
ton et al. 2011]. A key feature of RDF classifiers is that they can
handle missing data in the classification query in a straightforward
manner. Specifically, if one of the features is missing, we simply
provide with an out-of-range value for that feature in the feature
vector. Thus, while traversing the trained decision forest, it will
simply ignore these out-of-range values yielding a correct classifi-
cation result.

Handling missing data in the classification process is an important
characteristic for our method, since large parts of the object are
missing in the scanned data as well as not known apriori in the
classification process.

Here, we use supervised learning to train an RDF classifier with
various indoor objects. We define an RDF as an ensemble of T
decision trees, each consisting of interior split and leaf nodes. Each
split node consists of a feature θ and a threshold τ . To classify an
object defined as a set of points x in the point cloud, we compute
our feature vector and starting at the root, we repeatedly branch left
or right according to the comparison of each feature θ to threshold
τ . At the leaf node of tree t, a learned distribution Pt(c|S, x) over
different labels c is stored. The distributions are averaged together
for all trees in the forest to give the final classification:

P (c|x) = 1

T

T∑
t=1

Pt(c|x)

The decision tree is computed by selecting a set of features and
thresholds that maximize separation of the given training set (see
Figure 6). Each tree is trained on a random subset of labeled s-
canned objects. In our implementation we define 50 decision trees
and for each tree, we randomly use 30% of the data for its training.
Our training set consists of manually segmented and labeled scans
of roughly 1000 different objects (e.g. 20 beds, 110 cabinets, 510
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Figure 6: Visualization of joint distribution of several feature pairs
using our RDF classifier, showing clear separation between chairs
(blue) and tables (red).

chairs, 40 monitors, 250 tables, etc.). We choose to train our classi-
fier on sets consisting of both synthetic and scanned objects (which
are possibly imperfect), thus to provide with better, close to reality
object distributions.

Search-Classify: Segmentation and Classification via Region
Growing Given a raw scan of an indoor scene S, we would like
to understand it by detecting and labeling meaningful objects. This
task involves solving two problems: segmentation of objects from
their background and from other objects and their classification.
These problems are heavily interdependent: knowing the object
type and shape apriori allows a specified search of it and its seg-
mentation; having a segmentation into meaningful objects allows
their classification. Nevertheless, a scanned indoor scene consist-
s of a large number of objects with unknown shapes and no clear
segmentation.

We initially oversegment the scan S into a set of piecewise smooth
patches P =

⋃
i(pi) with smooth varying normals by considering

k-closest points for each point. We use a normal variation threshold
of ni · nj > 0.8 and with k = 6 under a distance threshold d <
1cm. The resulting patches are not accurate nor they need to be as
we use over segmentation to reduce data complexity. We compute
an adjacency graph G(E, V ) with nodes vi ∈ V corresponding
to patches pi ∈ P and edges E connecting close patches using
Euclidean distance deuc from patch centers with threshold deuc <
15cm (see Figure 7).

The search-classify procedure starts by selecting m random patch
triplets (pi, pj , pk) ∈ P . Similar to randomized fitting methods
(e.g. RANSAC), we analogously test for classification likelihood of
each patch triplet. Thus, a patch triplet (pi, pj , pk) (also denoted as
object seedOl =

⋃
(pi, pj , pk)) with good classification likelihood

to one of the trained object has high probability to be part of this
object class in the point cloud. We remove triplets with very low
classification likelihood as they do not form an object or contain too
little shape information.

We define the region growing process by traversing the graph

Algorithm 1 Graph Traversal
while ‖P‖ > 0 do
RandomSelect{(pi, pj , pk) ∈ P |C(pi, pj , pk) ≥ 0.55}
Ol ← {pi, pj , pk}
while !stop do
N(eij)← [eij |pi ∈ Ol , pj 6∈ Ol]
e∗ij ← maxeij∈N(e)C(Ol ∪ pj)
if C(Ol ∪ pj) ≥ C(Ol) · 0.95 then
Ol ← Ol ∪ pj

else
stop

end if
end while

end while

G(V,E) from each object seed Ol while searching for high clas-
sification likelihood values. In each traversal step, we loop over
all edges {eij |pi ∈ Ol , pj 6∈ Ol}. For each edge eij , we test
classification likelihood value for the object defined by the union
of patches: Ol

⋃
pj . We then select the edge yielding the highest

classification likelihood value and grow the current object seed by
accumulating this patch: Ol = Ol

⋃
pj .

In the search-classify process, we test for classification likelihood
using very partial information. In the initial step, the object is de-
fined by only three patches which we grow by accumulating more
data. Therefore, classification likelihood value C(Ol) in the begin-
ning is low but then should increase if data is accumulated correct-
ly. Hence, we facilitate our algorithm using an adaptive likelihood
threshold. In the beginning we use a low threshold allowing the
growth of many candidate seeds. As more data is accumulated, we
increase likelihood threshold, assuming object seeds to grow and
converge to the correct object (see Figure 7, middle). Typically,
we start with a likelihood threshold of 0.55 and increase it every
iteration to the average seeds’ classification likelihoods.

Since object data is missing, we need to define classification queries
for partial objects, i.e. classification queries with missing feature
values. Detecting missing features is a complex problem since it
requires apriori knowledge of the object’s (complete) shape. With-
out some knowledge of the complete object’s shape, it is practically
impossible to decide what exactly is missing. Instead, we take a
generic approach and compute for each object seed Ol a horizon-
tal segmentation. Depending on the number of horizontal slabs, we
fill the feature vectors with values, while for missing slabs, we fill
out-of-range values which are easy to handle by the decision forest.

The region growing process stops if accumulation of any neighbor-
ing patch to Ol results in a decrease of the current likelihood value
or if classification value is below the current threshold. Specifically,
we request that C(Ol

⋃
pj) ≥ 0.95 · C(Ol) using a 0.95 factor to

enable hysteresis of our system.

Initially, we select 20−50 random triplet patches depending on the
scene complexity and filter triplets with a likelihood value above
0.55. We then grow objects seeds until growing process is stopped.
Note that it is possible of two objects Ol and Om to share common
patches. We resolve this ambiguity problem using the deform-to-
fit step to follow. Trivially, if two objects merge completely in the
growing process, we remove one to avoid redundancy (see Algo-
rithm 1).

Template Fitting via Deformation Our deform-to-fit step is in-
spired by the part correspondence algorithm of Xu et al. [2010].
They compute shape correspondence using a set of local scale-
deformations between objects parts. Similarly, we use a deformable
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Figure 7: Visualization of graph traversal and classification. Left-to-right, from a graph defined on initial patches, we select an initial
object seed with above threshold classification confidence (mid-left). We traverse the graph in directions where classification confidence
increases (number value, also blue color intensity). In rightmost figure, we show a neighboring patch (table-side) causing a steep decrease
in classification confidence, hence we do not accumulate.

template which allows non-rigid fitting onto the target point cloud
via a set of localized scale deformations.

The input to our template fitting is a segmented point cloud object
and a polygonal template with predefined scalable parts. Both tem-
plate and point cloud belong to the same object class. Initially, we
rigidly align the template to the scanned data by aligning their up-
ward positions. Next, we perform part-based scaling deformations
to fit the template parts to the point cloud, while minimizing a one-
sided Euclidean distance from points to template. We alternate be-
tween establishing correspondence and deformation in a non-rigid
ICP manner. In each step we compute closest distances between
points to template and deform the template for only a fraction to
minimize this distance.

Since this step can yield large deformations in the template parts,
we perform a structure-preserving deformation optimization after
each step similar to Xu et al. [2011]. Thus, after each deformation
step, we optimize the local deformation scales using pre-analyzed
part information for each template model. The optimization itera-
tively restores scale relations such as symmetries and proximities
between parts of the template while refitting it to the point cloud.

Given a segmented and classified point cloud object, we fit several
templates of the same class using the above deform-to-fit method
and select the best matching template in terms of the one-sided dis-
tance. This step yields a refinement of the segmentation. We detect
outliers in the search-classify process as patches with a large Eu-
clidean distance to the fitted template (see Figure 8). We remove
outlier patches from the object and return them to the scene classi-
fication process.

Figure 8: Misclassification causes a chair seat (pink) to be attribut-
ed to a table (left). Fitting (middle), although not perfect, detects
chair seat as outlier and is removed (right).

5 Results and Discussion

In this work, we have experimented with a large amount of scanned
indoor scenes and modeled objects for training and evaluation pur-
poses. In our preprocessing step we have trained our classifier on
both clean 3D digital models and manually segmented scans. The

majority of objects that appear in our indoor scenes are chairs, ta-
bles, vases, LCD screens, keyboards and silverware. We used the
ALGLIB library [Bochkanov 2012] to compute an RDF classifi-
er. We demonstrate the good separation between chairs and tables
achieved by our feature vector classification in Figure 6. Figures 1
and 2 demonstrate the effective power of our method in highly clut-
tered regions as in the table and chair legs. The algorithm correctly
labels objects incrementally, resolving ambiguities and guiding the
template fitting to a plausible reconstruction.

To scan large-scale scenes we used a commercial hand-held active-
light scanner (MantisVision Inc.). This is a mid-range scanner ac-
quiring dense 3D points with high precision (within 1mm positional
accuracy). Compared to other commercial state-of-the-art scanners,
ours provides highly detailed captures however, a large amount of
data is still missing due to occlusions, restricted accessibility, and
scene complexity (see Figures 1, 14). We ran all our experiments
on a MacBookPro (4GB RAM, I7 2.6 Ghz CPU). Training for all
our objects was below 5 minutes and query time with the RDF was
a fraction of a second. Deform-to-fit process of fitting one object
class takes 10 seconds on average.

In Figure 9, we analyze the performance of our classifier in terms
of precision/recall, ROC and scalability. Both precision/recall and
ROC diagrams show that our classifier is highly accurate with good
performance values. For scalability, we have created synthetic
scenes with varied object density (Figure 10(left)). We have vir-
tually scanned the scene and applied our method resulting in clas-
sification of the scene into meaningful objects (Figure 10(right).
Accuracy has stayed high with a moderate decline as clutter grows
and small fluctuations due to scan noise.

We compare our method with the method of Lai et al. [2011] which
focuses on detection of specific objects on top of tables (e.g, bowls,
caps etc.). Figure 11 left and middle scenes show accurate segmen-
tation results for both methods. In the right scene, our method was
less accurate due to insufficient scan resolution. Nevertheless, since
our method is not restricted to objects on tables, it has classified all
objects in scene.

Our template database consists of 8 chairs, 8 tables, 3 monitors
of different styles (also 1 vase and 1 cabinet). This is a sufficien-
t number to templates as they can deform non-rigidly in a struc-
ture preserving manner allowing large variability. In Figure 12 we
show the best fitting templates to classified objects in two scenes.
Their fitting score measures the average one-sided Euclidean dis-
tance. Commonly, likelihood values are high due to robust classi-
fication, and reconstruction error is low due to deformable fitting.
Nevertheless, when scanned data is too sparse even for our percep-
tion (top row - small seat), both classification and fitting values are
marginal.
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Figure 9: Performance evaluation of our method. Left-to-right, precision/recall diagram for chairs (red) and tables (blue), ROC curve at
various threshold settings and classifier scalability measured as accuracy vs. scene density.

Figure 10: Two scanned indoor scenes with low (top) and high
(bottom) clutter levels. In our classification result (right column),
color hue denotes object class (purple-table, blue-chair).

Figure 13 shows the limitation of our method to natural position of
objects in the scene. Our classification features as well as template
fitting use the upward direction with respect to the ground floor, in
their computation. Once this assumption is not valid, both classi-
fication (middle chair is classified as table) and fitting (rightmost
chairs are aligned with floor) fail.

Finally, we present multiple results of our method on various scenes
in Figure 14. Left-to-right is the raw input scan, over segmentation
into piecewise smooth patches (colored independently), our seg-
mentation and classification result, where color hue represents the
object class and color intensity represents likelihood value with-
in the class, and finally our deform-to-fit template reconstruction.
Figure 14(a), shows a scene consisting of additional objects such
as LCD screen and cupboards. Although LCD screen data is very
sparse, it is correctly classified and reconstructed. Figures 14(b-
d) are especially challenging due to their clutter and large missing
parts. For example, in Figure 14(d) chair seats are completely miss-
ing as chairs are pulled under the table and can not be accessed by
scanner. Our classification algorithm combined with deformable
fitting successfully segments and reconstructs the scene resolving
existing ambiguities. Scanned data is always partial and noisy, nev-

ertheless, it contains sufficient information when viewed in a larg-
er context than the local geometry in a point neighborhood. Fig-
ure 14(e) shows a perfect reconstruction as templates deform and
match the scanned data precisely. Figures 14(f-g) show challenging
examples of scenes with very large missing parts some containing
only a seat to represent a chair. In most cases, data was sufficient
to yield a correct reconstruction, however, in Figure 14(g) the yel-
low seat represented by a simple plane was incorrectly classified as
table due to geometrical ambiguity.

Conclusions and Future Work We have presented an automatic
algorithm for cluttered indoor scene understanding and modeling.
Our method is based on initial random selection and iterative region
growing with increasing classification likelihood. By selecting suf-
ficiently many candidates, our algorithm can segment and classify
the whole scene consistently. Scene reconstruction performs by de-
forming template models to fit the classified points.

In future work, we plan to extend this model to incorporate con-
textual information between different object. This way, we may be
able to solve even very challenging ambiguities such as in Figure
14(g) using such information as chairs typically surround a table.

Figure 11: Comparison of of Lai et al.[2011] (top) with our method
(bottom) on three different scenes.
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Figure 12: Two examples of final classification likelihoods and template fitting values. Mid-left figure shows classified scene with likelihood
values per object. Mid-right figure shows three best fitting templates to each object with average matching distance.

Figure 13: Limitation to upward orientation. Since classification
and fitting assume a natural upward orientation, objects not obey-
ing this assumption will yield incorrect results, here a chair classi-
fied and fitted by a table.
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Figure 14: Seven results of our search-classify method showing the raw input scan (left), initial oversegmentation into piecewise smooth
patches (mid-left), classification result (mid-right) color hue representing the object class and color intensity representing final likelihood
value, and template based reconstruction (right).
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