

Leveraging Knowledge Graphs and Semantic Web Technologies for Validating 3D City Models

Abstract

The widespread use of 3D (three-dimensional) city data plays a significant role in various applications such as
mixed reality, infrastructure facility management, solar potential analysis, navigation and so on. Ensuring high
spatial and semantic quality in these endeavours is crucial to gathering proper results. Ensuring quality means
verifying that the data adheres to relevant standards. Although these relevant standards are openly published,
there are issues in names of interoperability and reusability in academic studies and software development
efforts. In this study, these issues are addressed using semantic web technologies. 3DCMs (3D city models) are
treated as knowledge graphs (KG) with this approach. The main contribution of the study is a web-based
interoperable tool for validation of CityGML LOD2 (Level of Detail 2) 3DCMs which is compatible with
relevant standards. Besides, an open-source 3DCM-to-KG converter and an open validation ontology are
published as by-products while accomplishing the main goal. By virtue of the KG approach, the 3DCM KG
becomes capable of carrying its own validation constraints which come from the validation ontology. With these
efforts, this study provides a practical interoperable solution to improve the quality and usability of 3DCMs and
validation plans, fostering consistency across applications while aligning with established standards in the field.

Keywords: 3D City Models, Data Quality, Semantic Web Technologies, Knowledge Graphs, Validation

1.​ Introduction

Geographic or spatial data constitutes 80% of the approximately 2.5 exabytes of data produced daily in
the world and 60% of the data held in existing databases is spatial data [1, 2]. This sheer amount of spatial data
underpins numerous applications, from navigation systems to urban planning, where the need for detailed,
accurate, and structured representations of the physical world is ever-growing. Given this dominance of
geospatial data, 3D city models (3DCMs) emerge as a critical tool, transforming raw spatial information into
structured, three-dimensional representations of urban environments. 3DCMs are digital representations of urban
objects with three-dimensional geometry, foremost buildings, and are essential subjects for a large range of tasks
which are vital for our understanding and planning of cities today [3]. 3DCMs should ensure high spatial and
semantic quality to gather accurate results from these tasks. For example, in a solar analysis, defining surfaces
that are not roofs in use as roofs or errors in the surface geometries will be misleading in terms of the solar panel
placement. Therefore, purchasing and using invalid data can cause economic drawbacks [4] and ensuring quality
has been a crucial research topic in the field. With the mentioned use of 3D city models across various
applications and domains, CityGML was introduced as a standard data model and an exchange format [5], and
data quality studies in the field have usually been carried out on this model.

The validation on CityGML datasets generally consists of three main tasks which are schema validation,
geometry validation and semantic validation. Schema validation is the validation of CityGML documents against
CityGML schema documents, and it can be considered a well-known solution due to its being widely performed
in the literature. Geometry validation is the validation of city objects in a CityGML dataset against the
definitions in the ISO:19107 Spatial Schema Standard [6, 7]. This standard provides a description set for
representing and manipulating geographic entities through vector-based geometric primitives, such as points,
curves, surfaces, and solids, and topological relationships, ensuring that the geometry of city objects adheres to
consistent and mathematically defined structures. As an example of the geometry validation control, it can be
given that GML rings’ are topologically closed, and the first and last points of GML rings have to be identical.
Semantic validation is performed even if the objects in the CityGML data pass schema validation and geometric
validation to detect if it contains unrealistic representations in object classes or attribute fields. An example of a

semantic error is that the value in the attribute field expressing the measured height of a building does not match
the height value calculated from the coordinate arrays, or, a wall or balcony surface is represented as a roof. The
structured list of which of all these controls will be applied on a CityGML document and in what order is called
a validation plan [8].

Studies before 2013, they do not include semantic validation [9, 10, 11]. These studies only dealt with
the geometric validation of city models. The semantic validation concept was obviously emphasised in the study
done by [12] for the first time. In addition to performing semantic validation, this study emphasises
interoperability and the fact that data exchange should satisfy the data provider and the client.

With the experiment (Quality Interoperability Experiment, QIE, 2016) done under the editorial of
Wagner and Ledoux [8], validation checks of CityGML 3DCMs are classified and tested by various software. In
their study, requirements for the validation of CityGML-formatted city models are defined in detail. The tested
validation requirements for CityGML data consist of semantic checks for the “Building” thematic class in
addition to schema and geometry validation. While the study shows an extensible requirement coding system for
other thematic classes, the tested requirements in this study can be considered as a minimum consensus basis as
buildings are essential elements of 3DCMs. Although this study is a well-organized guide in the field, there is
still a lack of agreement with the minimum basis in the applied validation plans, even in most current studies.
This situation is a drawback to interoperability because the mentioned methodologies are not able to produce an
identical validation result for the same 3DCM due to the lack of consensus. Most of the current studies on the
quality are mostly focusing on the positional accuracy of models regarding ground truth data [13,14,15]. In [15],
they also employed val3dity [16] software to perform geometry validation besides the positional accuracy. The
study of [17] performs several semantic checks without depending on any basis, such as QIE. They also did not
perform any geometric checks so while semantic validation requires being valid geometrically, the results of
performed checks are not meaningful. In [18], they perform a validation process on IFC-formatted (Industry
Foundation Class) BIM (Building Information Model). As stated in the study, there is a lack of standardization
work in the BIM field for interoperability in which quality requirements are defined so this study is in a state of a
prototype.

The first realised application of QIE is the study [19]. They adopted a validation plan based on QIE for
the context of heating demand simulation, using CityDoctor [20] software. With the last version of CityDoctor
software, a realised tool for QIE is freely available to use. The error codes and the minimum validation
requirements in QIE are implemented in this last version of CityDoctor. Besides, the validation results are stored
in the same CityGML file through DataQualityADE [21]. The implementation is remarkable progress for
interoperability while the rest of the available tools are not serving identical results even if they are applying the
same checks [8]. The difference between error codes and results for the same checks also hinders the reusability
of validation results because comparing and evaluating these results together into the same process at different
times sequentially requires additional code-matching processes. The interoperability and reusability problems
can be demonstrated in Figure 1.

Figure 1. Validation results of three fictional validation software against the same 3DCM data. Software-1 and
Software-2 claim the 3DCM is valid but Software-2 does not include semantic validation. Software-1 and
Software-2 include the same kind of checks but produce different results due to the need for more consensus
between applied checks in the context of geometry validation. Besides, while different providers are using
different software, melting their results into the same pot requires a code-matching phase due to the difference in
error codes, even if the applied checks are the same.

In this study, we have aimed to solve interoperability and reusability problems by leveraging the
knowledge graph (KG) approach and semantic web (SW) technologies. With this approach, validation plans can
be directly transferred and accessible online with the associated 3DCM KG as validation graphs. Section 1.1.
describes the relationship between semantic web technologies and the validation process in detail while exposing
the effect of the KG approach on the solution of the interoperability and reusability problems. We have described
our solution and developed web-based software in Section 2. Section 3 discusses the experimental results
according to the current state of other relevant solutions in the literature. Finally, future plans and prospects of
the adopted approach are put forward in Section 4.

1.1. Knowledge Graphs, Semantic Web and Validation

Semantic web (SW) is an extension of the well-known document-based web which enables the
cooperation of people and computers using the information with well-defined meaning [22, 23]. Today we know
this cooperation as interoperability and the mentioned well-definition of the meaning is possible thanks to the

links between resources. The SW paradigm uses RDF (Resource Description Framework) language, or format,
for interlinking between knowledge resources [24]. These interlinked resource networks defined in RDF format
are also known as knowledge graphs (KGs) which are directed and labelled graphs [25].

RDFs are constructed with triples which are subject, predicate and object sequences. Subjects and
objects denote entities that represent objects from the world with URIs (Unique Resource Identifiers), and
predicates denote relationships between these entities. Therefore, subjects and objects become nodes and
predicates become edges of a RDF-formatted KG. KGs are used either to represent application domains or
individual relations in any domain [26]. If a KG represents classes and properties of an application domain, the
KG is named as an ontology, a T-Box, or a namespace [27]. We define the ontologies using OWL (Web
Ontology Language), an RDF derivative syntax which is a W3C recommended standard for the modelling of
ontologies [28]. Suppose a KG represents relations between individuals in any domain, represented by a T-Box
(the T stands for “terminology”), or attribution ownership, the KG is named an A-Box (the A stands for
“assertions”). This manner enables an A-Box to carry its relevant definitions through a T-Box over the web so,
this semantic richness of data transfer between different information systems or applications in various domains
eases the interoperability. This reliably compatible transfer mechanism is even more useful for the data among
applications or situations that include unforeseen schemas [29, 30].

The idea of KG is also currently being researched in the architecture, engineering, and construction
(AEC) industry, especially for validation, as adopted in this study. While most of the efforts in the literature are
focused on BIM data [31, 32, 33, 18], there is still a research gap for a noteworthy effort for CityGML models.
In this study, we adopted the KG approach for validation of CityGML, specifically using the Shapes Constraint
Language (SHACL) [34] which is a W3C recommendation language and standard to validate RDF-formatted
KGs [36].

The SHACL engine validates RDF graphs by defining shapes which are sets of constraints, and by
comparing these constraints against nodes of the RDF graph. The constraints in a shape are mandatories or
restrictions that RDF data must and are defined according to an ontology, which is also what the RDF graph
nodes are defined in [35, 36]. A set of SHACL shapes is also known as a shapes graph, hence, a SHACL
document can also be considered as another KG to validate the RDF-formatted data graph [37]. For the
validation process, constraints in a SHACL shape are compared to the associated data graph node. This
associated node is also known as the target node. If the SHACL processor finds an inconsistency between a
shape and a node, it reports a violation for the target node regarding the shape in question in the validation
report. The relation between SHACL shapes and data graph nodes is demonstrated in Figure 2, and the unity as
connected data and shapes graphs is shown in Figure 3.

Figure 2. Prefixes at the top of both graph documents represent URIs of the used ontologies. The prefix
“citygml” (highlighted with red) belongs to the ontology in which data and shapes graphs are both defined. The
shape “citygml:ModelShape” (highlighted with green) contains constraints to validate the individual, or instance,
that belongs to the CityModel class in “citygml” ontology. The constraint “citygml:extent” (highlighted with
blue) contains the restrictions, which are about the count of occurrence for the “extent” property belonging to the
CityModel instance.

Figure 3. The connectivity between data and shapes graphs. Each shape in the shapes graph validates an
individual, or a target node, within the same hierarchy as the data graph.

By virtue of this mechanism, in this study, we have adopted the KG approach to validate LOD2
CityGML models. With this approach, it can be enabled to carry a 3DCM KG with its own shapes graph which
contains validation constraints for the application domain of the 3DCM. Besides, it could be also enabled to
process multidomain data in different formats into the same application frame thanks to the RDF meeting point
and the data’s having self-definitions. This approach will play a key role in ensuring interoperability by
informing the data client about what the data is being validated against and restricting the data provider about the
standards according to which the data should be presented. In addition to the merits mentioned above, semantic

web technologies allow for the inference of new information using the existing relationships in the data [38].
This enables the discovery of implicit relationships or, in our context, implicit validation rules that are not
explicitly stated in the KG. This capability also opens a way to recover missings or eliminate inconsistencies
from ontology statements [39]. Our methodology, which is explained in detail in Section 2., consists of the main
steps below to implement this KG approach;

➢​ Creating a “Validation Ontology” based on QIE 2016,
➢​ Extracting the shapes graph from “Validation Ontology” using automated web tools,
➢​ Converting the CityGML data into an RDF graph,
➢​ Validation of the RDF graph against the shapes graph,
➢​ Usage of the pipeline through the web interface with different CityGML datasets,

2.​ Methodology

2.1. General pipeline

The general pipeline of the implemented validation process is demonstrated in Figure 4. According to

the pipeline, the client accesses the validation software and uploads their CityJSON formatted city model data.
Following file upload, the client should choose the ontology against which the data will be validated. In our
implementation, regarding our needs, the only ontology option is the validation ontology which is created based
on QIE 2016 (2. component in Figure 4). After this selection, the selected ontology and the CityJSON data are
sent to the server for the validation process. On the server side, the CityJSON file is converted to an RDF file, in
other words, 3DCM KG (1. component in Figure 4.). The KG is validated against the SHACL graph generated
regarding the validation ontology via automated OWL to SHACL web tool (3. component in Figure 4). The
validation process produces a human-readable validation report that includes all geometric and semantic
violations for every object level in a city model such as Ring, Polygon and Shell (4. component in Figure 4).
Then, this report is sent back to the client for the examination. The rest of the section continues with
explanations of the components of the architecture.

Figure 4. The general pipeline of the study

2.2. Creation of the validation ontology

At this phase, as a crucial need for the validation, a validation ontology has been created which includes
the validation check definitions in QIE 2016. This ontology plays an essential role in generating both SHACL
and RDF graphs. Regarding the definitions in QIE 2016, the validation ontology must also be inherited from
GeoSPARQL[40], CityGML [41, 42], and Simple Features [43] namespaces in addition to RDFS and OWL
built-in ontologies. Hence, the ontologies of GeoSPARQL, CityGML and Simple Features were used as base
T-Boxes. At first, the base ontologies mentioned before which are RDFS, OWL, CityGML and Simple Features
were imported into a workspace of the Protege ontology editor [44]. The required data properties of QIE 2016
were included in the workspace by linking the relevant classes of base ontologies. The properties were divided
into 2 classes which are geometric and semantic properties regarding the rule classification in QIE 2016. The
geometric properties were also divided into 3 subclasses which are shell properties, ring properties and polygon
properties. All properties have values as boolean literals, as True or False. Lastly, the additional class, “validity,”
states the data's validity status and is created to store validation results after the validation process. After the
consequent property classification and property-base class linking processes, the created ontology can be
exported in any desired format such as OWL, Turtle, JSON-LD, N-triples, etc. The JSON-LD (JSON for linking
data), which is the chosen format for this study, is gaining popularity in the field thanks to the JSON format’s
wide usage in web applications. The properties of the validation ontology and the linked base ontology classes
are given in Table 1. In Table 2, definitions of the properties are given considering the QIE 2016 study.

Table 1. Property classes and associated object classes

Property
Class

Subclass of Geometric
Properties

Property Name Linked Object Class

Geometric Shell Properties areAll3AnglesConnected citygml:SolidType

hasSelfIntersections

isCorrectOriented

isEdgeManifold

isVertexManifold

isWatertight

tooFewPolygons

Ring Properties consecutiveSamePoints sf:Surface

isClosed

isCollapsedtoLine

noSelfIntersection

tooFewPoints

Polygon Properties hasDuplicatedRings sf:Polygon

hasHoleOutside

hasInnerNestedRings

hasInteriorDisconnected

hasIntersectedRings

isCcwise

isCoplanar

isNormalsDeviated

Semantic Semantic wallSurfaceNormals citygml:WallSurfaceType

wallSurfacePolygonNormals citygml:BuildingType

roofSurfaceNormals citygml:RoofSurfaceType

roofSurfacePolygonNormals citygml:BuildingType

groundSurfaceNormals citygml:GroundSurfaceType

groundSurfacePolygonNormals citygml:BuildingType

outerCeilingSurfaceNormals citygml:OuterCeilingSurfaceT
ype

outerFloorSurfaceNormals citygml:OuterFloorSurfaceTyp
e

storeyHeightEqualGeometry citygml:AbstractBuildingType

attributeHeightEqualsGeometry citygml:AbstractBuildingType

Validity - validity citygml:CityModelType

Table 2. Property definitions of the validation ontology

Property Name Definition Desired Value

areAll3AnglesConnected States if all triangles of the shell in question are
connected.

True

hasSelfIntersections States if the shell in question has self-intersections. False

isCorrectOriented If one polygon is used to construct the shell, this property
states if the points of the exterior ring are ordered
counterclockwise.

True

isEdgeManifold States if each edge of the shell has exactly 2 incident
polygons.

True

isVertexManifold States if each vertex of the shell constructs an umbrella
with its incident polygons.

True

isWatertight States if the shell in question is watertight. True

tooFewPolygons States if the shell in question has at least 4 polygons. False

consecutiveSamePoints States if the ring in question has repeated points, except
first and last points.

False

isClosed States if the points of the ring construct a closed loop. True

isCollapsedtoLine States if the points of the ring collapse to a line. False

noSelfIntersection States if the ring in question has self-intersections. True

tooFewPoints States if the ring in question has at least 3 unique points,
except the first and last points.

False

hasDuplicatedRings States if the polygon in question has two or more
identical rings.

False

hasHoleOutside States if the polygon in question has any exterior rings. False

hasInnerNestedRings States if any of the interior rings of the polygon are
completely inside another interior ring.

False

hasInteriorDisconnected States if any of the interior rings of the polygon are
disconnected.

False

hasIntersectedRings States if any rings of the polygon are intersected. False

isCcwise States if the points of the exterior rings of the polygon
are all oriented counterclockwise.

True

isCoplanar States if all rings of the polygon in question are coplanar
within a tolerance value.

True

isNormalsDeviated States if all rings of the polygon in question have
deviated surface normals within a tolerance value.

False

wallSurfaceNormals States if the face normal of the WallSurface in question
has zero Z direction within a tolerance value.

True

wallSurfacePolygonNormals If the WallSurface consists of several connected
polygons, this property states if these polygons have
deviated surface normals within a tolerance value.

True

roofSurfaceNormals States if the face normal of the RoofSurface in question
has a positive Z direction within a tolerance value.

True

roofSurfacePolygonNormals If the RoofSurface consists of several connected
polygons, this property states if these polygons have
deviated surface normals within a tolerance value.

True

groundSurfaceNormals States if the face normal of the WallSurface in question
has a negative Z coordinate within a tolerance value.

True

groundSurfacePolygonNormals If the WallSurface consists of several connected
polygons, this property states if these polygons have
deviated surface normals within a tolerance value.

True

outerCeilingSurfaceNormals States if the face normal of the OuterCeilingSurface in
question has a negative Z direction within a tolerance
value.

True

outerFloorSurfaceNormals States if the face normal of the OuterFloorSurface in
question has a positive Z direction within a tolerance
value.

True

storeyHeightEqualGeometry States if the sum of all storey heights, which is stored in
the storeyHeightsAboveGround attribute, is equal to the
total height of the building geometry.

True

attributeHeightEqualsGeometry States if the value of the measuredHeight attribute is
equal to the total height of the building geometry.

True

validity This field includes the validation report with a unique
URL

String

2.3. CityJSON to RDF conversion

This phase consists of consequent processes of CityJSON parsing, creating triples, and linking triple
elements with relevant definitions in the validation ontology. The CityJSON encoding of the CityGML data
model is chosen for this study thanks to its comfort mapping to Python dictionaries and its less nested structure
than GML encoding [45]. The parsing of the CityJSON file is carried out using the cjio Python library which is
created for CityJSON file management [46]. The CityJSON file is converted into a DataFrame with this parsing
process to ease the triple extraction for the RDF output. The nature of DataFrames is similar to Python
dictionaries, which is also similar to JSON files, hence it becomes easier to create subject-predicate-object
combinations from key-value pairs such as “key-is a-value”. The Rdfpandas Python library is used to extract
triples from DataFrames [47]. In this extraction, the row indices of the DataFrame become subjects, the column
names become predicates, and the corresponding values become objects. The triple store is an RDF-like property
graph without any resource linking in this state [48]. While all processes till this state can be automated using the
mentioned libraries before linking triple elements and the validation ontology, further information from the
CityJSON data must be extracted to satisfy the properties of the validation ontology. This is needed because the
cjio library only transfers attributes to the DataFrame, not geometries and thematic classes [49]. The
CityJSON-to-RDF converter includes additional operations to overcome this problem. The thematic classes and
parent-child relations are extracted with the additional Python functions which traverse the CityJSON data to
gather this information.

To extract and include geometries into triples, the open3d Python library is used [50]. Regarding the data
properties in the validation ontology, the extracted geometric information is attached to the triple store as
Boolean values. The open3d library provides the necessary 3D computational geometry components to create
additional functions to calculate geometric Boolean properties from the coordinate sequences (Polygon Z WKTs
(Well Known Text)) obtained from the CityJSON data. After the calculation of all required properties, all triple
elements in the store are linked to the relevant definitions in the validation ontology. As a result of the linking
process, the triple store of CityJSON data becomes a 3DCM KG regarding the validation ontology and can be
exported in any RDF format, such as Turtle, JSON-LD, N-triples, etc. The RDFLib Python library is chosen for
the RDF file creation [51]. Figure 5 includes the workflow of RDF creation process and a part of a created RDF
file.

The bottom side of the Figure 5 includes a chunk of triple samples from created RDF files. The red
highlighted triples include attributional, hierarchical and object class information. These triples are gathered
from DataFrames generated by cjio library, and by CityJSON file traversing for extracting hierarchical,
parent-child or hasGeometry, relations. The green highlighted triples include geometric properties which are
required for check of validation requirements such as watertightness, having self-intersections, being vertex
manifold, and so on. These geometric properties are calculated using open3d library-based functions. Following
the triple extraction, all generated triples are aggregated into a graph, then elements of these triples
(subject-predicate-object) are linked into relevant T-Boxes. The “valid: ” prefix in the figure states the validation
ontology, and the part after the colon states the validation properties and corresponding calculated values.
Similarly, the “geo: ” prefix states the GeoSPARQL ontology, and the “citygml: ” prefix states the CityGML
ontology. As the data part in the figure, the object with the

“ex:GUID_DBDABF53-7DD5-4C2F-BE7F-51F29A0CBA16_1” URI is an instance of BuildingPart class of the
CityGML. The object “has geometries” as six surfaces. The object’s “geometry type” is Lod2Solid of the
CityGML data model. The object’s parent is the Building object with another URI. The object’s watertightness is
calculated as “True” regarding the validation ontology. Further inspections or exemplifications are possible
through the figure or the repository of the project which is already given in the Conclusions section.

Figure 5. RDF creation workflow and a sample part of RDF data.

2.4. Generating the SHACL graph and carrying out the validation

The SHACL graph generation process is actually a conversion from property restriction axioms in the
ontology, which are given in Table 2 for our purpose, to the SHACL shapes. The process can also be summarised
as a conversion between statements like “Object-has value-X” and “Object-must have a value-X” to enable the
detection of violations in the data graph using the SHACL engine.

The conversion between the ontology and the SHACL graph is certainly accomplished in an automated
manner without any handwritten editing process. The “owl2shacl” conversion tool by SPARNA [52] is used for
an automated process. Table 3 shows two samples from the restriction axioms and the corresponding SHACL
shapes. The SHACL graph, which includes such shapes, is used for the validation process. The validation
process is carried out using the pySHACL library, which handles SHACL graph manipulations and validation
processes [53]. The final validation report includes such violations by individuals of every class which has
property restrictions in the validation ontology. In this way, invalid objects of RDF data can be inspected by the
client thanks to detailed information for each individuals. Figure 6 shows a few samples from validation
processes between RDF statements and the relevant SHACL shapes.

Table 3. Two samples of ontologic restrictions and corresponding SHACL shapes

Ontologic Property Restriction Definitions SHACL Shapes

:isWatertight rdf:type owl:DatatypeProperty ;
 rdfs:subPropertyOf :shellProperties .

…

<citygml#SolidType> rdf:type owl:Class ;

rdfs:subClassOf <citygmll#GeometricPrimitiveType> ,

 [rdf:type owl:Restriction ;

owl:onProperty :isWatertight ;

owl:hasValue "true"^^xsd:boolean] ,

<citygml#SolidType-isWatertight>
 a sh:PropertyShape ;
 sh:hasValue true ;
 sh:path <valid#isWatertight> .

:tooFewPolygons rdf:type owl:DatatypeProperty ;
 rdfs:subPropertyOf :shellProperties .

…

<citygml#SolidType> rdf:type owl:Class ;

rdfs:subClassOf <citygmll#GeometricPrimitiveType> ,

 [rdf:type owl:Restriction ;

owl:onProperty :tooFewPolygons ;

owl:hasValue "false"^^xsd:boolean] ,

<citygml#SolidType-tooFewPolygons>
 a sh:PropertyShape ;
 sh:hasValue false ;
 sh:path <valid#tooFewPolygons> .

Figure 6. Samples from validation processes carried out using pySHACL engine

2.5. Usage of the pipeline via the web interface

The web interface of the application is developed using Python's Flask library [54] to manage web
services, alongside core web technologies such as HTML (HyperText Markup Language) and JavaScript (Figure
7). The pipeline starts by storing the data online. Users begin by selecting a CityJSON file from their local file
system and uploading it to the interface. Once uploaded, the user selects an ontology to determine the validation
criteria. At present, the only available ontology is the validation ontology described earlier. After these initial
steps, the data and selected ontology are transmitted to the server by clicking the "Process Data" button. On the
server side, a SHACL graph for the validation ontology and an RDF graph of the CityJSON data are generated.
The validation process is then executed, and the resulting validation report is stored with a URL in the "validity"
field of the RDF data. This report is also sent back to the client, enabling them to download and review it.

The web interface offers tools to visually examine both invalid city objects and the complete city model.
Once CityJSON data is uploaded, users can view the entire city model by selecting the “View Full Model”
button located on the left side of the interface. After the validation process, a list of invalid Building and
BuildingPart object URIs will appear on the right panel. Users can investigate the missing or damaged triangles
causing the geometric issues by clicking on the respective object URIs. Simultaneously, clicking an object URI
highlights that object with a red color within the full model view. The 3D rendering of these objects is powered
by the Three.js JavaScript library [55].

Figure 7. The user interface of the application

3.​ Results and Discussion

The described pipeline indicates that an interoperable validation process is possible for both geometrical
and semantical aspects by the virtue of using the KG approach. The data begins to be stored online with the
validation ontology and the report after the upload and the validation processes. By the automated real-time
creation of the shapes graph for the data, the data brings its own validation rules to the client by preventing the
client from planning a rule set. By storing the validation report with a time stamp in a node of the data graph,
possible new clients of the same data or data providers are also be informed about the validity of the data. Table
4 shows the server configuration, runtimes, object counts, and file sizes for two LoD2 (Level of Details-2)
CityJSON test models with no texture, Rotterdam, Vienna and Den Haag, which are published openly from [56].
Table 5. includes percentages of affected Building or BuildingPart objects for the validation violations, or
invalidities, detected by the developed solution which test models have.

Considering the file sizes and the runtimes, the product application can be plugged into real-world data
validation routines of concerned institutions with more powerful server configurations and user authentications.
Regarding the runtime limits of popular cloud computing services, runtime results for both models are
acceptable without implementing any acceleration technique if cloud systems were preferred instead of physical
servers [57]. However, real-world scenarios can require larger models with more objects. In such a situation,
further clustering and acceleration techniques with higher server configurations can be considered.

Before the examination of the validation results in Table 5, it should be considered that the SHACL
results are not totally human-friendly for reading, especially for people who are not closely familiar with such a
mechanism. Hence, the results are converted into a more readable form in the table for better understanding. The
granularity level was a crucial decision for a better understanding. For urban applications, usually we concern
about solid level validity, or city object level, because the ring and polygon level invalidities are usually the
atomic reasons of solid level invalidities. For example, the most concerned validity aspect will likely be the

watertightness for a flood simulation, and connection problems between triangles or false holes that came from
wrong-oriented rings are possible reasons of the watertightness. Based on this, we summarized the percentages
of geometric invalidities in solid level granularity rather than thousands of polygon level invalidities. Besides, as
a novel aspect of our study, we also share the semantic invalidities, or semantically wrong defined surfaces, in
polygonal surfaces but in polygon level. The interface of the solution provides validation results as both the
SHACL engine-generated form and also more human-readable with individual or error grouped form as well.

The table includes the semantic invalidities that cannot be identified by the currently in-use validation
software. The most notable aspect of this functionality is that both semantic and geometric invalidities can be
revealed and stored in connection with associated individuals online. Beyond the table, the most frequently
encountered semantic invalidity across all models is the misdefinition of ground and roof surfaces. These errors
are detected by examining the orientations of surface normals and comparing them to directional restrictions in
the validation ontology by the SHACL engine. Furthermore, the geometric invalidity ratio can be seen as more
broadly different from that of actual validation software. This difference is related to the chosen snap tolerance
parameter for the solution. For example, a snap tolerance of 0.01 is set as the default in val3dity, and the ratio of
invalid objects changes according to this tolerance value, which is similarly applicable in our solution. The snap
tolerance is an inevitable parameter to select in such studies, as it directly impacts the consensus between
different software. For this reason, the dynamic selection of this parameter based on the inherent nature of the
input data, such as the reference system of the model or the coordinate precision of the data collection technique,
could be a topic for further exploration experiments.

The developed solution stands out from its peers in terms of comprehensiveness and interoperability. As
detailed in Section 2, the most notable studies in the literature lack a standard to reach consensus, provide
geometrical and semantical validation, and provide reusable validation plans and reports. Based on this, our
solution introduces a standardised framework that addresses these gaps, ensuring consistent validation processes
and improved interoperability across systems.

The most obvious limitation of this study lies in its confinement to the CityGML Building schema and
LoD2 models. Both the validation ontology and the RDF converter were specifically designed for LoD2
buildings. To expand the application's scope to encompass other application schemas within the CityGML data
model and higher LoDs, it would be necessary to extend the current validation ontology and enhance the RDF
converter to align with this updated framework. However, considering the application's ability to address gaps in
the existing literature and the predominant focus of most studies on LoD2 buildings, this limitation does not
undermine the novelty of the application. Instead, it establishes a foundation for future research and
advancements in the field.

Table 4. Observables of application runtime

Server Configuration City Model Objects Size (KBs) Size (RDF; KBs) Time (mins)

CPU: Intel Core i7-7700HQ
2.80 GHz
RAM: 32 GB DDR4

Den Haag 2498 16251 22673 10

Vienna 1322 5504 24905 13

Rotterdam 853 5769 9737 5

Table 5. Detected invalidities for each test model (T: Total instances, V: Violations, P: Percentage)

Invalidity Type

Invalidity Percantages per Test Model

Den Haag Vienna Rotterdam

T V P T V P T V P

Solid Level Geometric
Invalidities

1990 3 0.15 2204 456 20.69 853 807 94.61

Semantic Surface
Invalidities

16209 44 0.27 43260 203 0.47 15482 1051 6.79

4.​ Conclusions
This study aims to prove the ability to implement the KG approach and SHACL-based validation on

3DCMs by introducing an interoperable web tool. The mechanism indicated above enables 3DCM KGs to
explain themselves by carrying their own definitions as ontologies and to inform the data-sharing parties about
which constraint set the data is validated against or which set the data should be validated against. While a wide
variety of institutions are putting efforts into ensuring standardisation and settling interoperable workflows, we
believe that such a study can be a notable milestone, especially in the domain of 3DCMs. The application can be
downloaded and compiled from [58].

Besides the virtues discussed earlier, thanks to making the 3DCM data alive on the web as a KG, the
study workflow can also be used for time-dynamic city data operations in collaborative information systems,
which we will frequently encounter soon. If we simply take a look at the nature of the KGs, it can be easily seen
that every validation activity or every partial edit on a 3DCM KG can be stored in separate nodes with time
stamps and editor, or accessor, information to inform shared parties about the history of the data.

It is also noticeable that the usability of the developed mechanism is not restricted to the CityGML data
model or the 3DCM domain. In other words, the customisation of the mechanism for the CityGML data model is
handled using relevant open ontologies and developing a CityGML(or CityJSON)-to-RDF converter. Based on
this, the extension of the use of this mechanism to other domains or research fields can be done using
domain-specific new ontologies and developing conversions for the relevant format-to-KG. In the future, where
it is inevitable that all structured or unstructured data will come together in a unified information source, just as a
Guide to the Galaxy, making the multi-domain worldwide data interlinked and alive-on-web with such a
mechanism will play a crucial role in the decision-making and solution-producing processes for experts in all
fields. Considering the extensive use of geospatial data over all other types of data on the web, it is important to
carry out and disseminate such studies in the GIS field for accomplishing the unification path stated above.

Our future plans include the healing of the 3D objects that are detected as invalid using the workflow
explained above. The next nearest move is to implement overlap and intersection tests for neighbour city objects
like BuildingParts, Buildings, or other objects that are defined in other thematic classes except the Building
schema. Due to the current process of only checking the geometric validity of individual objects separately, the
validation report does not include any violations of inter-object geometric invalidities. The other purpose of this
plan is to create an end-to-end pipeline that accomplishes both the validation and the healing processes on the

same 3D city KG to keep the model up-to-date and valid with minimum user interruption. The literature has
various studies and software to handle the healing process on 3D objects but regarding our preliminary
inspections, it can be seen that there is still no matured and fully-automatized method. After completing a mature
validation and healing pipeline, one of our other next steps will also be the visualisation of the invalid and healed
geometries together to make the pipeline a comprehensive framework for 3DCM quality management.

References

1.​ Vopham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.. (2018). Emerging trends in geospatial artificial
intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health,
17(1). https://doi.org/10.1186/s12940-018-0386-x

2.​ Burns, R. and Thatcher, J. (2014). Guest editorial: what’s so big about big data? finding the spaces and
perils of big data. GeoJournal, 80(4), 445-448. https://doi.org/10.1007/s10708-014-9600-8

3.​ Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D City
Models: State of the Art Review. ISPRS International Journal of Geo-information, 4(4), 2842–2889.
https://doi.org/10.3390/ijgi4042842

4.​ Krämer, M., Haist, J., & Reitz, T. (2007). Methods for Spatial Data Quality of 3D City Models. In
Eurographics Italian chapter conference (pp. 167-172).

5.​ Gröger, G., Kolbe, T. H., Czerwinski, A., & Nagel, C. (2012). OpenGIS® city geography markup
language (CityGML) encoding standard. Version: 1.0. 0, OGC 08-007r1.

6.​ ISO, T. (2003). 211. ISO 19107 Geographic information–Spatial schema.
7.​ Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., & Khoo, V. H. S.. (2016). The Most Common

Geometric And Semantic Errors In Citygml Datasets. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W1, 13–22.
https://doi.org/10.5194/isprs-annals-iv-2-w1-13-2016

8.​ Ledoux, H., & Wagner, D. (2016). OGC® CityGML Quality Interoperability Experiment.
9.​ Ledoux, H., & Meijers, M.. (2011). Topologically consistent 3D city models obtained by extrusion.

International Journal of Geographical Information Science, 25(4), 557–574.
https://doi.org/10.1080/13658811003623277

10.​ Ledoux, H. (2013). On the Validation of Solids Represented with the International Standards for
Geographic Information. Computer-aided Civil and Infrastructure Engineering, 28(9), 693–706.
https://doi.org/10.1111/mice.12043

11.​ Alam, N., Wagner, D., Wewetzer, M., Von Falkenhausen, J., Coors, V., & Pries, M.. (2013). Towards
Automatic Validation And Healing Of Citygml Models For Geometric And Semantic Consistency.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-2/W1, 1–6.
https://doi.org/10.5194/isprsannals-ii-2-w1-1-2013

12.​ Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries, M., & Coors, V.. (2013).
Geometric-Semantical Consistency Validation of CityGML Models. In Lecture Notes in Geoinformation
and Cartography (pp. 171–192). Lecture Notes in Geoinformation and Cartography.
https://doi.org/10.1007/978-3-642-29793-9_10

13.​ Singla, J. G., & Trivedi, S.. (2022). 3D building reconstruction and validation using high-resolution
stereo data. Current Science, 122(8), 900. https://doi.org/10.18520/cs/v122/i8/900-906

14.​ Gabara, G., & Sawicki, P.. (2021). Quality Evaluation Of 3d Building Models Based On Low-Altitude
Imagery And Airborne Laser Scanning Point Clouds. The International Archives of the Photogrammetry,

https://doi.org/10.3390/ijgi4042842
https://doi.org/10.5194/isprs-annals-iv-2-w1-13-2016
https://doi.org/10.1080/13658811003623277
https://doi.org/10.1111/mice.12043
https://doi.org/10.5194/isprsannals-ii-2-w1-1-2013
https://doi.org/10.1007/978-3-642-29793-9_10
https://doi.org/10.18520/cs/v122/i8/900-906

Remote Sensing and Spatial Information Sciences, XLIII-B2-2021, 345–352.
https://doi.org/10.5194/isprs-archives-xliii-b2-2021-345-2021

15.​ Dukai, B., Peters, R., Vitalis, S., Van Liempt, J., & Stoter, J.. (2021). Quality Assessment Of A
Nationwide Data Set Containing Automatically Reconstructed 3d Building Models. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W4-2021,
17–24. https://doi.org/10.5194/isprs-archives-xlvi-4-w4-2021-17-2021

16.​ Ledoux, H.. (2018). val3dity: validation of 3D GIS primitives according to the international standards.
Open Geospatial Data, Software and Standards, 3(1). https://doi.org/10.1186/s40965-018-0043-x

17.​ Chadzynski, A., Li, S., Grišiūtė, A., Chua, J., Hofmeister, M., Yan, J., ... & Kraft, M. (2023). Semantic
3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs. Data-Centric
Engineering, 4, e20.

18.​ Pauwels, P., van den Bersselaar, E., & Verhelst, L. (2024). Validation of technical requirements for a
BIM model using semantic web technologies. Advanced Engineering Informatics, 60, 102426.

19.​ Coors, V., Betz, M., & Duminil, E.. (2020). A Concept of Quality Management of 3D City Models
Supporting Application-Specific Requirements. PFG – Journal of Photogrammetry, Remote Sensing and
Geoinformation Science, 88(1), 3–14. https://doi.org/10.1007/s41064-020-00094-0

20.​ https://transfer.hft-stuttgart.de/pages/citydoctor/citydoctorhomepage/en/ Last access: 05/03/2025
21.​ Betz, M., & Coors, V.. (2021). An Application Domain Extension For Storing Validation Results Of

Citygml Structures. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, VIII-4/W1-2021, 11–16. https://doi.org/10.5194/isprs-annals-viii-4-w1-2021-11-2021

22.​ Lassila, O., Hendler, J., & Berners-Lee, T. (2001). The semantic web. Scientific American, 284(5),
34-43.

23.​ Cömert, Ç., Ulutaş, D., Akıncı, H., & Kara, G. (2010). Semantic web services for implementing national
spatial data infrastructures. Scientific research and essays, 5(7), 685-692.

24.​ World Wide Web Consortium. (2014). RDF 1.1 Primer.
25.​ Pauwels, P., Zhang, S., & Lee, Y. C. (2017). Semantic web technologies in AEC industry: A literature

overview. Automation in construction, 73, 145-165.
26.​ Nardi, D., & Brachman, R. J. (2003). An introduction to description logics. Description logic handbook,

1, 40.
27.​ Kostovska, A., Vermetten, D., Doerr, C., Džeroski, S., Panov, P., & Eftimov, T. (2021, July). Option:

optimization algorithm benchmarking ontology. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (pp. 239-240).

28.​ Hitzler, P., Krotzsch, M., & Rudolph, S. (2009). Foundations of semantic web technologies. Chapman
and Hall/CRC.

29.​ Vinasco-Alvarez, D., Samuel, J. S., Servigne, S., & Gesquière, G. (2020). From citygml to owl (Doctoral
dissertation, LIRIS UMR 5205).

30.​ Van den Brink, L., Janssen, P., & Quak, W. (2013). From geo-data to linked data: automated
transformation from GML to RDF. Linked Open Data-Pilot Linked Open Data Nederland.

31.​ Werbrouck, J., Senthilvel, M., Beetz, J., & Pauwels, P. (2019, September). A checking approach for
distributed building data. In 31st forum bauinformatik, Berlin: Universitätsverlag der TU Berlin (pp.
173-81).

32.​ Hagedorn, P., & König, M. (2020, July). Rule-based semantic validation for standardized linked building
models. In International Conference on Computing in Civil and Building Engineering (pp. 772-787).
Cham: Springer International Publishing.

https://doi.org/10.5194/isprs-archives-xliii-b2-2021-345-2021
https://doi.org/10.5194/isprs-archives-xlvi-4-w4-2021-17-2021
https://doi.org/10.1186/s40965-018-0043-x
https://doi.org/10.1007/s41064-020-00094-0
https://transfer.hft-stuttgart.de/pages/citydoctor/citydoctorhomepage/en/
https://doi.org/10.5194/isprs-annals-viii-4-w1-2021-11-2021

33.​ Hagedorn, P., Pauwels, P., & König, M. (2023). Semantic rule checking of cross-domain building data in
information containers for linked document delivery using the shapes constraint language. Automation
in Construction, 156, 105106.

34.​ Knublauch, H., & Kontokostas, D. (2017). Shapes constraint language (SHACL). W3C Candidate
Recommendation, 11(8), 1.

35.​ https://www.ontotext.com/knowledgehub/fundamentals/what-is-shacl/ Last access: 05/03/2025
36.​ Cimmino, A., Fernández-Izquierdo, A., & García-Castro, R.. (2020). Astrea: Automatic Generation of

SHACL Shapes from Ontologies. In Lecture Notes in Computer Science (pp. 497–513). Lecture Notes
in Computer Science. https://doi.org/10.1007/978-3-030-49461-2_29

37.​ Pareti, P., & Konstantinidis, G. (2021). A review of SHACL: from data validation to schema reasoning
for RDF graphs. Reasoning Web International Summer School, 115-144.

38.​ Zeshan, F., Ahmad, A., Babar, M. I., Hamid, M., Hajjej, F., & Ashraf, M.. (2023). An IoT-Enabled
Ontology-Based Intelligent Healthcare Framework for Remote Patient Monitoring. IEEE Access, 11,
133947–133966. https://doi.org/10.1109/access.2023.3332708

39.​ Vinasco-Alvarez, D., Samuel, J., Servigne, S., & Gesquière, G.. (2021). Towards Limiting Semantic
Data Loss In 4d Urban Data Semantic Graph Generation. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, VIII-4/W2-2021, 37–44.
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-37-2021

40.​ http://www.opengis.net/ont/geosparql Last access: 05/03/2025
41.​ Chadzynski, A., Krdzavac, N., Farazi, F., Lim, M. Q., Li, S., Grisiute, A., ... & Kraft, M. (2021).

Semantic 3D City Database—An enabler for a dynamic geospatial knowledge graph. Energy and AI, 6,
100106.

42.​ Quek, H. Y., Hofmeister, M., Rihm, S. D., Yan, J., Lai, J., Brownbridge, G., ... & Kraft, M. (2024).
Dynamic knowledge graph applications for augmented built environments through “The World Avatar”.
Journal of Building Engineering, 91, 109507.

43.​ http://www.opengis.net/ont/sf Last access: 05/03/2025
44.​ Musen, M. A. (2015). The protégé project: a look back and a look forward. AI matters, 1(4), 4-12.
45.​ Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S.. (2019). CityJSON: a

compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and
Standards, 4(1). https://doi.org/10.1186/s40965-019-0064-0

46.​ https://cityjson.github.io/cjio/index.html Last access: 05/03/2025
47.​ https://rdfpandas.readthedocs.io/en/latest/ Last access: 05/03/2025
48.​ Hartig, O. (2014). Reconciliation of RDF* and property graphs. arXiv preprint arXiv:1409.3288.
49.​ Akın, A. T., & Cömert, Ç.. (2024). ”Cityjson2rdf” A Converter For Producing 3d City Knowledge

Graphs. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLVIII-4/W9-2024, 15–19. https://doi.org/10.5194/isprs-archives-xlviii-4-w9-2024-15-2024

50.​ Zhou, Q. Y., Park, J., & Koltun, V. (2018). Open3D: A modern library for 3D data processing. arXiv
preprint arXiv:1801.09847.

51.​ https://rdflib.readthedocs.io/en/stable/ Last access: 05/03/2025
52.​ https://github.com/sparna-git/owl2shacl Last access: 05/03/2025
53.​ https://github.com/RDFLib/pySHACL Last access: 05/03/2025
54.​ https://flask.palletsprojects.com/en/stable/ Last access: 05/03/2025
55.​ https://threejs.org/ Last access: 05/03/2025
56.​ https://www.cityjson.org/datasets/ Last access: 05/03/2025

https://www.ontotext.com/knowledgehub/fundamentals/what-is-shacl/
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1109/access.2023.3332708
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-37-2021
http://www.opengis.net/ont/geosparql
http://www.opengis.net/ont/sf
https://doi.org/10.1186/s40965-019-0064-0
https://cityjson.github.io/cjio/index.html
https://rdfpandas.readthedocs.io/en/latest/
https://doi.org/10.5194/isprs-archives-xlviii-4-w9-2024-15-2024
https://rdflib.readthedocs.io/en/stable/
https://github.com/sparna-git/owl2shacl
https://github.com/RDFLib/pySHACL
https://flask.palletsprojects.com/en/stable/
https://threejs.org/
https://www.cityjson.org/datasets/

57.​ Akin, A. T., Usta, Z., & Cömert, Ç.. (2024). Elaborating and performing optimization approaches for
web-based 3D spatial analysis of 3D city models. Journal of Spatial Science, 69(4), 1225–1239.
https://doi.org/10.1080/14498596.2024.2377564

58.​ https://github.com/alpertungakin/3DCMQuality/tree/main/Valid_app_gui Last access: 05/03/2025

https://github.com/alpertungakin/3DCMQuality/tree/main/Valid_app_gui

	Abstract
	1.​Introduction
	1.1. Knowledge Graphs, Semantic Web and Validation

	2.​Methodology
	3.​Results and Discussion
	4.​Conclusions

