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A B S T R A C T

In the field of Geographical Information Science (GIS), geodata transformation and
analysis tools often take the shape of software libraries written in system level pro-
gramming languages. However, the societal impact of these tools is often limited,
as most end users only access these libraries via indirect means: Through bindings
in other languages, through plugin in applications, or both. Additionally, the tools
end-users end up with are often not composable, and may contain other hurdles
like installation or configuration.

The goal of this study is to make core GIS libraries more directly available and com-
posable to end-users. This study presents and prototypes a novel method, centered
around a visual programming language to host the functionalities of GIS libraries
from within an application, and in a composable manner. Additionally, the visual
language is used to connect these libraries to a user-definable Graphical User Inter-
face (GUI). This prototype is implemented as a static web application, so that these
libraries are directly accessible to end users without installation. GIS libraries are
compiled to WebAssembly, making the library usable in any language, including
this web based visual language by using a ’no boilerplate’ plugin system. Finally,
both scalability to handle sizable datasets, and a rich GUI (3D viewers, file inputs,
sliders), are primary design considerations and assessment criteria.

The results show that this specific web-based VPL appears to be a feasible method
for providing direct access to some native GIS libraries, and does offer a unique
set of features not found in comparable visual languages. The significance of this
method, compared to other web-based geometry VPLs, lies in the fact that it of-
fers a lenient plugin system, in combination with a range of different GUI nodes,
certain "dataflow VPL" properties, and a proposed zero-cost abstraction runtime.
All of these features combined lead to a VPL which is able to directly connect GUI

components with native GIS libraries, all while remaining scalable in principle.

On a practical level, more work remains to proof this feasibility. The methodol-
ogy developed by this study is only theoretically accessible and composable, based
on achieved features. User-testing is required to confirm if this method indeed im-
proves workflows, and actually saves time and energy of developers and end users.
Moreover, the prototypical software implementation used is limited and not pro-
duction ready. Both the fact that the ’no-boilerplate’ plugin system cannot be used
with C / C++ GIS libraries, and that backend execution is not possible yet, must
be improved upon in future work. Despite this, visual programing, distribution
using WebAssembly, and Rust-based geocomputation, all proved to be valuable
directions of future GIS research.
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1 I N T R O D U C T I O N

The field of GIS commits itself to the betterment of collecting, processing, storing,
and viewing geodata. By doing so, it offers the world priceless information about
the land we build on, the seas we traverse, the air we breath, and the climates we
inhabit. This information is foundational for many applications, including envi-
ronmental modelling, infrastructure, urban planning, governance, navigation, the
military, and agriculture. As such, the field of GIS is continuously looking for new
ways to provide these fields and industries with both the data and tools they need
to succeed.

Problem Statement and Goal

This thesis concerns itself with the latter: Providing tools. The problem this study
seeks to address, is that the core transformation and analysis tools found in certain
GIS software libraries, are normally not directly accessible by practitioners in the
fields mentioned above: governance, infrastructure, urban planning, etc. A small
number of native software Libraries, like CGAL or GDAL [Fabri and Pion, 2009;
Dohler, 2016], play a foundational role in many GIS tools. However, end users with
a profession different than software developer, are often unable to directly access
these libraries. The tools can only be used indirectly, and only when a software
developer has incorporated these functionalities in an application. Similarly, if re-
search leads to a new GIS library, end users are at the mercy of a software developer
implementing the functionalities of said library as a usable application, or as a plu-
gin for an existing GIS environment like QGIS [QGIS Community, 2022]. Moreover,
even if these capabilities are added to an application, the tools are almost always
less feature rich, and non-composable: The output of one procedure cannot auto-
matically be used as input for another. This leads to labor intensive procedures and
repetitive workflows, as opposed to automated, re-usable procedures. At the same
time, maintainers of a GIS library often find themselves in the situation of having
to maintain and synchronize a great number of bindings and plugins, which limits
innovation (Figure 1).

It is safe to say that the limited reach of these libraries translate to a reduced societal
impact, and with it, the GIS research these libraries are based upon.

The overarching goal of this study is to allow end-users more direct access to core
transformation and analysis capabilities found in native GIS libraries (Figure 2), in
a format which allows composability.

1



2 introduction

Figure 1: The layers of indirection between end users and core GIS functions

Figure 2: The goal: More direct access
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Figure 3: Geoflow: An example of a graph-based VPL [Peters, 2019]

The study attempts to meet this goal by studying two domains in the field of GIS,
and developing a possible solution from them. The goal of composability is ad-
dressed by using the knowledge found within the field of visual programming.
The goal of direct accessibility is met by studying the field of static web applica-
tions. To make the research goals of this study more precise, these two domains
must briefly be addressed.

Composability: Visual Programming

A Visual Programming Language (VPL) is a type of programming language repre-
sented by a GUI, rather than a text-based source code. A VPL ’script’ might take the
shape of for example a graph (Figure 3), or a block-based instruction set.

The goal and purpose of a VPL can be framed in multiple ways. This study draws
from the perspective presented in Elliott [2007], as it bears resemblance to the goal
of this study. Elliott [2007] focusses on the discrepancies between software libraries,
and software applications, and notes that in certain situations, properties of both
libraries and applications are desired. Software libraries often contain expressive,
re-usable functionalities, but do not provide a User Interface (UI) of themselves, and
must be turned into an application before utilization. Software applications on the
other hand, can offer a rich GUI, but lose the ability to be re-composed into new
software like libraries. Additionally, library functionalities presented through an
applications are often reduced and less feature rich compared to the functionality
of the library itself. A VPL can be seen as an attempt to extract the best properties of
both software libraries and applications. It can offer composability to applications,
and GUIs to libraries.
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Because of these reasons, a VPL can be desirable format for a GIS application. Multi-
ple examples exist, like FME [Safe-Software, 2022b], Modelbuilder [Esri, 2022] and
Geoflow [Peters, 2019]. However, if a VPL is meant to operate on geodata, it will
have to attend to the nature of geodata. The size of geodata makes scalable compu-
tation a necessity, and as such, GIS VPLs often contain tools to run these scripts on
a server, without the GUI. The spatial nature of geodata means that visualization
is key in understanding its quality. Also, in most cases a visualization represents
the end product of a GIS process. Both make it so GIS VPLs emphasize data visual-
ization. Finally, GIS Procedures sometimes require empirically defined parameters,
which could be provided in a VPL using GUI features like sliders.

Direct access: Static web applications

The maps and analysis tools used to share geo-information often take the form of
web applications. A web applications offer distribution advantages over native
applications [Kuhail et al., 2021; Panidi et al., 2015]. It allows the same source code
to be used across different platforms without alteration, including windows, mac,
linux, and mobile devices. Moreover, web applications do not need to be installed,
and can often be directly accessed using a link.

Two major developments have occurred with great relevance to web GIS applica-
tions.

The first development concerns static file hosting. Various geodata formats are
increasingly becoming available as singular, statically hosted files, as opposed to
the active Open Geospatial Consortium (OGC) web services which query databases,
and use dynamic routing [Open Geospatial Consortium, 2015]. Examples of these
static formats are the Cloud Optimized GeoTiff [Sarago et al., 2021], and the COPC
file format [Bell et al., 2021]. Static file hosting is orders of magnitude more cheap
in terms of performance and literal cloud-host pricing, and scales more easily to
accommodate high amounts of web requests [Sarago et al., 2021].

The second development is the introduction and adoption of the WebAssembly lan-
guage [Haas et al., 2017]. WebAssembly (wasm) is a binary compilation target meant
for a virtual runtime. wasm binaries can be run in any environment and language,
as long as such a runtime is implemented. Such a runtime has been added to all
major web browsers since late 2019 [w3c, 2019]. Among many purposes, it offers
a method to run native software as (part of) a web application. WebAssembly par-
tially mitigates the need for web-based, JavaScript alternatives of native software
applications and libraries. An Example of this is how Ammann et al. [2022] built
one map viewer, which was both able to serve as a native and web application.

Both these developments taken together leads to a
paradigm shift which is important to recognize. With both used in conjunction, GIS

applications can be conceived which use no active servers at all: Statically hosted
websites, which can still be feature-complete as regular GIS applications.
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Taken Together

Given both phenomena together, it becomes clear that the interface of a VPL might
present a solution to the problem of composability, for it allows both automation
and a rich GUI within one application. In addition, a combination of WebAssembly
and a static web application could allow for direct access and execution of native
GIS libraries without installation, using statically hosted geodata as its data source.
However, if a VPL wishes to ’qualify’ as a GIS VPL, it needs to:

1. be scalable to handle sizable datasets.

2. provide a rich GUI, capable of visualizing geodata, and quickly exploring dif-
ferent parametrization of various procedures.

1.1 research objective

The goal of this study is to allow GIS practitioners without a background in soft-
ware development, to access the full potential of core transformation and analysis
capabilities found in native GIS libraries.

The study attempts to meet this goal by designing and implementing a novel
method based on the fields of visual programming, and static web applications.
This method is thereafter used to load various GIS libraries, and used in demo ap-
plications, after which an assessment can be made on its quality and the extent of its
achieved functionalities. The study concludes by addressing if the method meets
its overarching goal.

While VPLs and even Web-based VPLs have been studied before in the field of GIS,
the focus on direct utilization of native GIS libraries on the web, combined with
bringing those in direct contact with various GUI elements, all without resorting to
active web servers, is a combination unique to this study, at least to the best of the
authors knowledge at this point in time. A comparative study on VPLs found in
the field of GIS, Computer graphics, the web, and generic VPLs, is performed to
ensure this. Additionally, assessment criteria are used to ensure this remains true
after having performed the study.

The overall design of the prototype outlined contains a number of technical chal-
lenges. The compilation of native libraries to Webassembly is known to contain
drawbacks, and achieving scalability with a VPL requires exploration of novel
methods. Therefore, seeking and analyzing solutions to these challenges is required
to making this prototype meet the goals of the design mentioned.
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1.2 research questions

The objectives outlined above lead to the following main and supporting research
questions:

Is a web based VPL a viable method for directly accessing native GIS libraries with a
composable interface?

Supporting Questions

- What GUI features are required to facilitate this method, and to what extent does the
web platform aid or hurt these features?

- To what extent does this method intent to address the discrepancies between software
applications and libraries, as described by Elliott (2007)? Does it succeed in doing
so?

- What are the differences between compiling a GIS library written in C++ to We-
bAssembly, compared to compiling a GIS library written in Rust?

- What measures are taken to make this VPL scalable to large geo-datasets, and how
effective are these measures?

- How does this method compare to existing, alternative VPLs and browser-based geo-
computation methods, regarding the properties relevant to the goal of direct accessi-
bility?

Assessment

In order to proof if the proposed method is viable or not, tests will be performed pri-
marily based upon feature completeness. Within the context of this study, whether
or not a feature was able to be implemented given the constraints of the method
(web based, visual programming), was often deemed a more insightful indicator
compared to measuring aspects like performance and memory footprint. The the-
sis sets out to proof or disproof technical viability. Future research is required to
test How viable it might be compared to other, comparable methods.

1.3 scope

The scope of this thesis is bounded in the following ways:
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Only frontend geocomputation

There is a nuance between ’web-based geocomputation’ and ’browser-based geo-
computation’. ’Web’ can refer to both frontend and backend computation meth-
ods, ’browser’ refers purely to frontend computations. This study focusses on
browser-based geocomputation, and as such, excludes any backend based geocom-
putation.

Adding backend-based geocomputation to a web VPL would be an excellent follow-
up investigation to this study, following in the footsteps of studies like Panidi et al.
[2015].

No user testing

The introduction mentions accessibility as a motivator, which is a subjective concept.
However, user testing is not part of this study, due to scope limitations.

To solve this, this study assesses accessibility without regarding subjective, psycho-
logical accessibility aspects: "does x feel nice to use?". Instead, an accessibility assess-
ment is made by only regarding feature completeness: "Is is possible to do X with
Y?". Moreover, certain presuppositions are made. It is safe to assume that a web
application is more accessible than a native application, for it mitigates installation
needs. Additionally, a VPL is assumed to be more accessible than normal program-
ming. This last aspect is safe to assume based on the findings of Kuhail et al. [2021],
stating that based on 30 independent studies on the accessibility of VPLs, VPLs are
generally considered more accessible than their textual counterparts. These stud-
ies involved user tests with professional programmers, amateur programmers, and
non-programmers alike.

Thus, these reasons together are why this study believes an adequate assessment
can be made without user testing. Nevertheless, a follow up study to reinforce or
revoke these results would be valuable.

Only WebAssembly-based containerization

This thesis examines a WebAssembly-based approach to containerization and dis-
tribution of geocomputation functionalities. Containerization using Docker is also
possible for server-side applications, but is not (easily) usable within a browser. For
this reason, Docker-based containerization is left out of this studies’ examination.
And to clarify: Docker and WebAssembly are not mutually exclusive models, and
could be used in conjunction on servers or native environments.
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Only GIS libraries written in C++ & Rust

The study limits itself to native libraries written in C / C++ and Rust. C++ was
chosen, since almost all relevant GIS libraries are written in C or C++, like GDAL
[Dohler, 2016]. Rust was chosen, for its extensive WebAssembly support. It also ap-
pears to be the most popular language for writing WebAssembly [Eberhardt, 2022].
It contains a number of relevant GIS libraries, but not to the same extent as C /
C++.

1.4 reading guide

The remainder of this study is structured as follows:

Chapter 2, Background, provides an overview of the theoretical background
that is used in the rest of this study.

Chapter 3, Related Work, provides a review of studies comparable to this one.

Chapter 4, Methodology, explains precisely in what way the research-questions
will be answered. In addition, the main design decisions are described and
justified in this part of the study.

Chapter 5, Implementation, presents the implementation of the methodology.

Chapter 6, Testing, tests the results from this implementation in various ways
described by the methodology.

And finally, Chapter 7: Conclusion & Discussion, concludes to which extent
the study was able to satisfy the main research question, and discusses unad-
dressed aspects of the thesis. It also includes the envisioned future works and
a reflection on the quality of the study.



2 B A C KG R O U N D

This chapter offers an overview of the theoretical background that this study builds
upon. The study takes place at the intersection of three prior bodies of work:

- Native GIS transformation & analysis libraries

- WebAssembly & Static Web applications

- Visual Programming Languages

Since giving a full overview of all aspects of these bodies of work is too extensive,
only key elements within these bodies will be mentioned and elaborated, namely
visual programming, and WebAssembly.

2.1 webassembly & (static) web applications

From all browser-based features, WebAssembly turned out to be a deciding factor
of this study. This makes it important to be aware of the state of WebAssembly and
its performance considerations. This section offers a background on WebAssembly,
and how this technology is currently used in frontend web applications.

2.1.1 Rich Clients

The significance of the WebAssembly standard for the point of view of web applica-
tions, can be best understood in conjunction with the Rich client phenomenon. This
is why this explanation starts out by framing WebAssembly within this context.

Since 2012, a trend of rich web-clients can be widely recognized Hamilton [2014];
Panidi et al. [2015]; Kulawiak et al. [2019]. Around this time, browser engines had
become performant enough to allow more decentralized client-server models. By
reducing servers to just static file servers, and adding all routing and rendering
responsibilities to the client, the interactivity of a web application could be maxi-
mized. This led to models like "single page application", which are facilitated by
JavaScript frameworks like Angular, React and Vue. However, the real facilitator
of these developments are the browsers vendors themselves, as these frameworks
would not be possible without the performance increase granted by improvements
of the various JavaScript Just In Time compilers.

9
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This growth has also lead to web applications being used ’natively’. Tools like Elec-
tron [Electron Contributors, 2022] allow web applications to be installed and ’run’
on native machines by rendering them inside of a stripped down browser. Many
contemporary ’native’ applications work like this, such as VS Code, Slack, and Dis-
cord. Additionally, tools like React Native [React Contributors, 2022] are able to
compile a web application into a native application without a browser runtime. It
becomes clear that rich web clients and surrounding tools are starting to blur the
line between native and web software.

2.1.2 The WebAssembly standard

If the line between web application and native application was starting to blur,
WebAssembly makes this line almost invisible.

wasm is a binary instruction format for a conceptual, stack-based virtual machine
[WebAssembly Contributors, 2022]. By combining this low-level format with fea-
tures like a system of incremental privileges, wasm makes for a performant compila-
tion target which can be run containerized, and thus safe. wasm is officially dubbed
the fourth type of programming language supported by all major web browsers,
next to HTML, CSS, and JavaScript [w3c, 2019]. it can be utilized to run a native
application or library in a web browser, regardless of the language used to create
it, be it C/C++, Python, C#, Java, or Rust. This means that in order to create a web
application, developers can now in principle develop a normal, native application
instead, which can then be compiled to WebAssembly, and served on the web just
like any other web application.

Applications

These features together offer a reverse workflow compared to the now popular Elec-
tron based applications described in Section 2.1.1. Applications can now be written
natively, and subsequently published to the web, instead of writing software as a
web application, which may be packaged as a desktop application.

The WebAssembly format has several other use cases. Contrary to its name, We-
bAssembly has no specific link to the web or assembly language, its name being a
remnant of its initial use-case. A cross-platform binary format which is designed to
be lightweight, fast and safe, together with a versatile runtime implemented in sev-
eral languages, makes WebAssembly applicable for other use cases. It is currently
sees usage as a plugin system, as a runtime for serverless cloud-compute services,
and as a lightweight runtime for IoT devices, according to a small-scale survey
[Eberhardt, 2022]. Still, compiling libraries and application to the web remains the
main, post popular application of WebAssembly. This study is focussed on the web
usage of WebAssembly, and will treat it with mainly that use-case in mind.
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Limitations

In principle, and if the appropriate compilers exist, any application and library writ-
ten in any language can be compiled to WebAssembly. In practice, there are quite
a few caveats to the format.

First of all, WebAssembly is required to adhere to containerization restrictions.
There is no ’os’ or ’sys’ it can call out to, as it cannot ask for resources which could
be a potential security risk, like the file system. Secondly, WebAssembly is in its
early phases as a language, and is intended as a low-level compile target. This leads
to limitations like how only simple, numerical values can be used when interfacing
with wasm functions. In the future, the WebAssembly Interface Types proposal will
also allow interfacing with more complex types [Wagner, 2022]. Lastly the current
version of WebAssembly does not support concurrency features like multithread-
ing.

This last shortcoming can be mitigated by calling JavaScript using HTML5 features
from WebAssembly. This is how many current WebAssembly projects are set up.
However, this layer of JavaScript ’boilerplate’ or ’glue code’ is inefficient, as it
leads to duplication and redirection. Additionally, platforms wishing to support
WebAssembly must now also support JavaScript.

Performance

The initial performance benchmarks look promising. The majority of performance
comparisons show that WebAssembly only takes 10% longer than the native binary
it was compared to Haas et al. [2017]. A later study confirms this by reproducing
these benchmarks [Jangda et al., 2019]. It even notices that improvements have
been made in the two years between the studies. However, Jangda et al. [2019]
criticize the methodology of these benchmarks, stating that only small scale, scien-
tific operations where benchmarked, each containing only 100 lines of code. The
paper then continues to show WebAssembly is much more inefficient and inconsis-
tent when it comes to larger applications which use IO operations and contain less-
optimized code. These applications turn out to be up to twice as slow compared to
native, according to their own, custom benchmarks. Jangda et al. [2019] reason that
some of this performance difference will disappear the more mature and adopted
WebAssembly becomes, but state that WebAssembly has some unavoidable perfor-
mance penalties as well. One of these penalties is the extra translation step, shown
in Figure 4, which is indeed unavoidable when utilizing an in-between compilation
target.

Some studies have taken place evaluating wasm’s performance
for geospatial operations specifically. Melch [2019] performed extensive bench-
marks on polygon simplification algorithms written in both JavaScript and We-
bAssembly. The study concludes by showing WebAssembly was not always faster,



12 background

Figure 4: Comparison of compilation trajectories

but considerably more consistent. The performance of the JavaScript implementa-
tion Melch [2019] had this to say: "To call the WebAssembly code the coordinates
will first have to be stored in a linear memory object. With short run times this over-
head can exceed the performance gain through WebAssembly. The pure algorithm
run time was always shorter with WebAssembly.". These findings match Jangda
et al. [2019], showing that the duplication of data into the webassembly memory
buffer is a considerable bottleneck.

A recent study concerned with watershed delineation [Sit et al., 2019] also con-
cluded client-side WebAssembly to be more performant than server-side C, which,
as a side effect, enabled their application to be published on the web without an
active server.

Lastly, the sparse matrix research of Sandhu et al. [2018] must be mentioned. It
shows again that WebAssembly’s performance gain is most notable when perform-
ing scientific computations. It states: "For JavaScript, we observed that the best
performing browser demonstrated a slowdown of only 2.2x to 5.8x versus C. Some-
what surprisingly, for WebAssembly, we observed similar or better performance as
compared to C, for the best performing browser.". It also shows how certain precon-
ceptions must be disregarded during research. For example, it turned out that for
WebAssembly and JavaScript, double-precision arithmetic was more performant
than single-precision, probably due to byte spacing.

Even though geocomputation can fall in the category of scientific computation,
these performance considerations will still have to be taken into account. The most
important conclusion to to take away from prior research on WebAssembly is that
wasm must not be regarded as a ’drop-in replacement’, as Melch [2019] puts it. Just
like any language, WebAssembly has strengths and weaknesses. While wasm is de-
signed to be as unassumptious and unopinionated about its source language as
possible, the implementations of host environments do favor certain programming
patterns and data structures over others, and this will have to be taken into account
when using the compile target.
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2.2 visual programming

This section offers an overview on the topic of visual programming, after which
Section 3.2 and Section 3.3 cover uses of visual programming in geocomputation
and on the web, respectively.

Visual programming languages

A VPL, or visual programming environment, is a type of programming language
represented and manipulated in a graphical, non-textual manner. A VPL often
refers to both the language and the Integrated Development Environment (IDE)
which presents this language in an editable way, by means of a GUI. A visual
programming language allows users to create programs by adding reconfigured
components to a canvas, and connecting these components to form programs.

Multiple types of VPLs exist, but also multiple taxonomies of these types. This
study bases itself on the classifications presented in Kuhail et al. [2021], stating four
different types of visual programming languages:

1. Block-based languages, in which all normal programming language
features, like brackets, are represented by specific blocks which can be ’snapped’
together (see Figure 5a).

2. Diagram-based languages, in which programming function are represented
by nodes, and variables are represented by edges between these components
(see Figure 5b). This makes the entire program analogous to a Graph.

3. Form-based languages, in which the functioning of a program can be con-
figured by means of normal graphical forms (see Figure 5c). This approach
enhances the stability and predictiveness compared to other types, at the cost
of expressiveness.

4. Icon-based languages, in which users are asked to define their programs by
chaining highly abstract, iconified procedures (see Figure 5d).

The meta analysis of Kuhail et al. [2021] shows a great preference among researchers
for block- and diagram-based languages. Only 4 out of 30 of the analyzed articles
chose a form-based VPL, and only 2 chose an icon-based approach.

This study requires to introduce a fifth type of VPL. A Dataflow VPL is a subtype
of a diagram based VPL which only uses pure functions as computation nodes,
only uses immutable variables, and which disallows cyclical patterns. This makes
this VPL not only a graph, but a Directed Acyclic Graph (DAG). More on this in
Section 2.2.3.

Visual programming languages are used in numerous domains. The VPLs of the
30 studies examined by Kuhail et al. [2021] were aimed at domains such as the
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(a) (b)

(c)

(d)

Figure 5: Four different types of visual programming languages: Block-based [Resnick
et al., 2009], diagram-based [Blender Foundation and Contributers, 2022],
form-based [Weber et al., 2013], and icon-based [Francese et al., 2017], respec-
tively
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Internet of Things, robotics, mobile application development, and augmented real-
ity. Within the domain of systems control and engineering, The Ladder Diagram
VPL [Control Automation, 2018] is the industry-standard for programming Pro-
grammable Logic Controllers (PLCs). VPLs are also widely used within computer
graphics related applications, including the field of GIS, These will be covered in
Section 3.2. Lastly, VPLs also have great educational applications. Harvard’s in-
troduction to computer science course, CS50, famously starts out with Scratch, a
block-based visual programming language normally targeted at children, to teach
the basics of computational thinking [Yu, 2021].

2.2.1 Usability

Studies on VPLs indicate that generally speaking, VPLs make it easy for end users
to visualize the logic of a program, and that VPLs eliminate the burden of handling
syntactical errors Kuhail et al. [2021].

The locally famous Cognitive Dimensions study Green and Petre [1996], states that
"The construction of programs is probably easier in VPLs than in textual languages, for
several reasons: there are fewer syntactic planning goals to be met, such as paired delimiters,
discontinuous constructs, separators, or initializations of variables; higher-level operators
reduce the need for awkward combinations of primitives; and the order of activity is freer, so
that programmers can proceed as seems best in putting the pieces of a program together.".
Indeed, a VPL UI can be used to eliminate whole classes of errors on a UI level by,
for example, not allowing the connection of two incompatible data types.

2.2.2 End User Development & Low Coding

A VPL has the potential to make automation available to a large audience, and this
is exactly its purpose. Visual Programming is part of a larger field, named End
User Development (EUD). The field is concerned with allowing end users who are
not professional software developers to write applications and automate processes,
using specialized tools and activities.

Kuhail et al. [2021] point out two serious advantages of EUD. First, end users know
their own domain and needs better than anyone else, and are often aware of speci-
ficities in their respective contexts. And two, end users outnumber developers with
formal training at least by a factor of 30-to-1. This however, does not mean that
experienced developers have nothing to gain from this research. Lowering the cog-
nitive load of certain types of software development could save time and energy
which can then be spend on more worthwhile and demanding tasks.

Not all EUD applications are VPLs. A good example of this is Elliott [2007] con-
structed a GUI algebra system to allow non-cli-based application to ’pipe’ data
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Figure 6: End User development by means of GUI algebra [Elliott, 2007]

between applications, just like how UNIX-based programs can be composed into
pipes Figure 6.

In the private sector, EUD is represented by the "low code" industry. Technology
firms such as Google and Amazon are investing at scale in low-coding platforms
[Kuhail et al., 2021]. The market value was estimated at 12.500 Million USD, and
with a growth rate between 20 and 40 percent, the value may reach as high as 19
Billion by 2030 [ltd, 2021]. Despite this being just market speculation, it does give
an indication in a general need for end-user development solutions.

2.2.3 Dataflow programming

An important aspect of the dataflow-VPL is the connection to the field of dataflow
programming, which is also a more general field than VPLs in particular.

Dataflow programming is a programming paradigm which internally, represents a
program as a DAG [Sousa, 2012]. A graphical, editable representation of a dataflow
program would result into a Dataflow VPL.

The big computational advantage of this model, is that it allows for implicit con-
currently [Sousa, 2012]. In other words, every node of a program written using
dataflow programming can be executed in isolation of any other nodes, as long as
the direct dependencies (the inputs) are met. No global state or hidden side effects
means no data-race issues, which allows parallel execution of the program by de-
fault. When using other paradigms, programmers need to manually spawn and
manage threads to achieve the same effect.

This leads into a valuable side-effect of using dataflow programming / a diagram-
based VPL: By only permitting pure, stateless functions with no side-effect, and
only immutable variables, end users automatically adopt a functional program-
ming style (albeit without lambda functions). Functional programming has many
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(a) (b)

Figure 7: A factorial function, written in a VPL, and in a textual language [Sousa, 2012]

benefits of its own besides concurrency, such as clear unit testing, hot code deploy-
ment, debugging advantages, and lending itself well for compile time optimiza-
tions [Akhmechet, 2006; Elliott, 2007].

All that to say, creating a VPL is not just a matter of designing a stylistic, user-
friendly GUI alternative to regular programming. This might be true for other types
of VPLs, but not for diagram-based ones. By closely resembling dataflow itself, and
because of its functional programming nature, diagram-based VPLs may actually
lead to faster and more reliable software.

2.2.4 Disadvantages and open problems

VPLs and dataflow programming en large have got certain disadvantages and open
problems:

Iteration and conditionals

A problem described in almost all reviewed VPL literature [Green and Petre, 1996;
Sousa, 2012; Kuhail et al., 2021], is that the DAG model of diagram-based VPLs are
ill-suited for representing even the most basic flow control statements: if, else,

for, while. Even if the acyclic quality of the dataflow graph is omitted, the result-
ing models are significantly more complicated compared to their textual counter-
parts, as shown by Figure 7.

Encapsulation & reusability

Similar and yet different is the topic of encapsulation, or, how Green and Petre
[1996] names this problem: ’visibility’. It is widely known that as a program scales
in size, the complexity of managing the application scales exponentially with it. In
textual languages, reducing this complexity is often achieved by means of encap-
sulating sub-routines and re-usable parts of the program into separate functions.
Inner functionality is then hidden, and operations can be performed on a higher
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level of abstraction. This hierarchy of abstraction is just as achievable for VPLs as
described by Sousa [2012]. However only a select number of VPLs offer a form of
encapsulation, and even less allow the creation of reusable functions, or creating
reusable libraries from VPL scripts. It appears that VPL researches and develop-
ers are either not aware of the importance of encapsulation, or have encountered
problems in representing this feature in a graphical manner.

Subjective Assessment

Additionally, the claims that VPLs lend themselves well for end-user development
is problematic from a technical perspective. Usability is a nebulous phenomenon,
and challenging to measure empirically. As often with more subjective matter, re-
searchers have yet to form a consensus over a general evaluation framework. There
is, however, a reasonable consensus on the ’qualities’ a VPL should aspire to. This
is different from a full assessment framework, but nonetheless useful for compar-
ing VPLs. The dimensions given by the cognitive dimensions framework [Green
and Petre, 1996] have acquired a somewhat canonical nature within VPL research.
The number of citations of this work is relatively high, and indeed, almost all VPL

studies the author was able to find referred back to this work. In so far as this
study needs to address the usability of the prototype VPL, we will thus follow this
consensus, and base any assessment on this framework.

Life-cycle support

Finally, Kuhail et al. [2021] names the ’life cycle’ of applications created by VPLs
as one of the most overlooked aspects within VPL research. Out of the 30 studies
covered by the meta analysis, only one briefly touched the topic of life cycle. Life
cycle in this context refers to all other activities besides "creating an application that
does what it needs to do". Examples of these activities are version control, extend-
ing an existing application, debugging, testing the codebase, and publishing the
application to be used outside of an IDE. These operational aspects are important to
making any application succeed, and EUD research should not be limited to purely
the aspect of creating functionalities.

This literary study agrees with the findings of Kuhail et al. [2021]: Not one of the
open source VPLs mentioned by this chapter or the upcoming Section 3.2 or Sec-
tion 3.3, contained life-cycle aspects like Git version control, or integration / deliv-
ery pipelines. For paid VPLs, deployment and version control is sometimes possible
for a fee (See Safe-Software [2022b]). However, in such a situation, users are lim-
ited to the publication tools, version control tools, and package / library managers
offered to them by the vendors.

And on the topic of publication, only 16 out of 30 of the tools analyzed by Kuhail
et al. [2021] were available publicly with some documentation. It seems the lack of
publication tooling might be partially due to a lack of publication in general.



2.2 visual programming 19

2.2.5 Conclusion

The background literature clearly indicates many advantageous properties of VPLs,
both in terms of (end) user experience and the dataflow programming properties.
Additionally, the studies showed important considerations which have to be taken
into account in the design of any VPL. Lastly, the studies agree on several open-
ended issues of which a satisfying answer is yet to be found.





3 R E L AT E D W O R K S

This chapter offers a review of related and comparable studies and projects. While
almost no studies exist at the intersection of all three of these fields, we do find
many related studies and projects which intersect two of these fields, represented
by the edges of:

- Section 3.1 reviews related works on browser-based geoprocessing

- Section 3.2 reviews related works on VPLs used for geo-computation

- Section 3.3 reviews related works on VPL web applications

3.1 browser-based geocomputation

This section is dedicated to related works on client-side geocomputation, or browser-
based geocomputation. this study prefers to use "browser-based geocomputation"
in order to circumvent the ambiguity between native clients like QGIS QGIS Com-
munity [2022], and web clients like Omnibase.

Browser-based geocomputation has seen some academic interest throughout the
last decade Hamilton [2014]; Panidi et al. [2015]; Kulawiak et al. [2019]. Interac-
tive geospatial data manipulation and online geospatial data processing techniques
have been described as "current highly valuable trends in evolution of the Web
mapping and Web GIS" Panidi et al. [2015]. An example of this is the Omnibase
application [Geodelta, 2022] in Figure 8, used by Dutch municipalities to measure
buildings and infrastructure based on point clouds and oblique multi-stereo im-
agery.

browser-based geocomputation, compared to native GUI or CLI geocomputation,
allows geocomputation to be more accessible and distributable. Accessible, since
geocomputation on the web requires no installation or configuration, and distributable,
since the web is cross-platform by default, and poses many advantages for updat-
ing, sharing, and licensing applications. Lastly, by performing these calculations in
the browser rather than on a server, server resources can be spared, and customly
computed geodata does not have to be resent to the user upon every computation
request.

However, browser-based geocomputation poses multiple challenges. Browsers &
JavaScript are not ideal hosts for geocomputation. As an interpreted language,
Javascript is slower and more imprecise compared to system-level languages like C

21
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Figure 8: Omnibase: An example of browser-based geocomputation [Geodelta, 2022]

/ C++. In addition, it has limited support regarding reading and writing files, and
does not possess of a rich ecosystem of geocomputation libraries. Novel browser
features like WebAssembly may pose a solution to some of these open questions,
but this has not seen substantial research.

3.1.1 Examples

Hamilton [2014] created a ’thick-client’, capable of replacing certain elements of
server-side geoprocessing with browser-based geoprocessing. The results of this
study were unfavorable. The paper states how "the current implementation of web
browsers are limited in their ability to execute JavaScript geoprocessing and not yet
prepared to process data sizes larger than about 7,000 to 10,000 vertices before either
prompting an unresponsive script warning in the browser or potentially losing the
interest of the user." [Hamilton, 2014]. While these findings are insightful, they are
not directly applicable to the efforts of this study proposal. Three reasons for this:

• The paper stems from 2014. Since then, web browsers have seen a significant
increase in performance thanks to advancements in JavaScript JIT compilers
[Haas et al., 2017; Kulawiak et al., 2019].

• The paper does not utilize compile-time optimizations. The authors could
have utilized ’asm.js’ [Mozilla, 2013] which did exist at the time.

• The paper uses a JavaScript library which was never designed to handle large
datasets.

The same statements can be made about similar efforts of Panidi et al. [2015]. How-
ever, Panidi et al. [2015] never proposed browser-based geoprocessing as a replace-
ment of server-side geoprocessing. Instead, the authors propose a hybrid approach,
combining the advantages of server-side and browser-based geoprocessing. They
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also present the observation that browser-based versus server-side geoprocessing
shouldn’t necessarily be a compassion of performance. "User convenience" as they
put it, might dictate the usage of browser-based geoprocessing in certain situations,
despite speed considerations Panidi et al. [2015].

This concern the general web community would label as User Experience (UX), is
shared by a more recent paper Kulawiak et al. [2019]. Their article examines the cur-
rent state of the web from the point of view of developing cost-effective Web-GIS
applications for companies and institutions. Their research reaches a conclusion fa-
vorable towards browser-based data processing: "[Client-side data processing], in
particular, shows new opportunities for cost optimization of Web-GIS development
and deployment. The introduction of HTML5 has permitted for construction of
platform-independent thick clients which offer data processing performance which
under the right circumstances may be close to that of server-side solutions. In this
context, institutions [...] should consider implementing Web-GIS with client-side
data processing, which could result in cost savings without negative impacts on
the user experience.".

From these papers we can summarize a true academic and even commercial inter-
est
in browser based geoprocessing over the last decade. However, practical imple-
mentation details remain highly experimental, or are simply not covered. The im-
plementations of Panidi et al. [2015]; Hamilton [2014] were written in a time before
WebAssembly & major JavaScript optimizations, and the study of Kulawiak et al.
[2019] prioritized theory over practice. Additionally, to the best of the authors’s
knowledge, all papers concerned with browser-based geoprocessing either tried
to use existing JavaScript libraries, or tried to write their own experimental We-
bAssembly / JavaScript libraries. No studies have been performed on the topic of
compiling existing C++/Rust geoprocessing libraries to the web.

3.1.2 Commercial web-based geocomputations software

Despite the earlier statement of the general lack of Geospatial data computation
(geocomputation) within browsers, there are exceptions. A select number of web-
based GIS applications are starting to experiment with empowering end-users with
geocomputation. These applications will briefly be mentioned.

GeoTIFF ([Dufour, 2017], Figure 9), is a web-based, open source, geoTIFF process-
ing tool. It offers basic operations such as taking the median or & mean of a cer-
tain area, color band arithmetic, and can plot histograms, all calculated within the
browser using customly written JavaScript libraries.

The modelLab application by Azavea, is also a GeoTIFF / raster based web process-
ing tool, in which basic queries and calculations are possible [Azavea, 2011]. This
tool offers more advanced types of geocomputation, like buffering / minkowski
sums, and even multi-stage processing via a simple but clear visual programming
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Figure 9: The geoTIFF.io application [Dufour, 2017]

Figure 10: The ModelLab application [Azavea, 2011]



3.2 visual programming and geocomputation 25

Figure 11: The Omnibase application [Geodelta, 2022]

language (see Figure 10). However, the tool uses mostly server-side processing,
making this application less relevant to this study.

The last web-based geocomputation platform this study would like to mention
is Geodelta’s Omnibase application [Geodelta, 2022] (see Figure 11). Omnibase
is a 3D web GIS application for viewing and analyzing pointclouds and oblique
multi-stereo imagery. It offers client-side geocomputation in the form of measur-
ing distances between locations, and calculating the area of a polygon. It also offers
photogrammetry-techniques such as forward incision of a point in multiple images,
but these are calculated server-side.

3.2 visual programming and geocomputation

This section is dedicated to giving an overview of related works on VPLs related to
geocomputation.

Figure 12 offers this overview of some of the more significant VPLs present in not
only GIS, but also the neighboring domains based on computer graphics.

VPLs in GIS

Within the field of geo informatics, VPLs are not a new phenomenon. VPLs have
been used for decades to specify geodata transformations and performing spatial
analyses.
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Figure 12: An overview of VPLs in the field of GIS and adjacent domains

The most well-known visual programming language within the field of GIS is the
commercial Extract Transform Load (ETL) tool FME [Safe-Software, 2022b], (see Fig-
ure 13a). This tool is widely used by GIS professionals for extracting data from var-
ious sources, transforming data into a desired format, and then loading this data
into a database, or just saving it locally. FME is most often used within GIS to
harmonize heterogenous databases, and as such specializes in tabular datasets.

The two major GIS applications ArcGIS and QGIS also have specific VPLs attached
to their applications. The main use-case for these VPLs is to automate repetitive
workflows within ArcGIS or QGIS.

Lastly, Geoflow is a much newer VPL meant for generic 3D geodata processing [Pe-
ters, 2019]. While this application is still in an early phase, it already offers a power-
ful range of functions. It offers CGAL processes like alpha shape, triangulation and
line simplification, as well as direct visualization of in-between products. Geoflow
was used to model the 3D envelope of a building based on a pointcloud, which was
subsequently scaled up in the creation of the 3D BAG dataset [Peters, 2019].

VPLs in neighboring domains

Figure 12 shows a great number of non-GIS VPLs. while these do not explicitly
cover GIS, their close ties to computer graphics are still highly relevant to GIS and
the activity of geocomputation.

The choices of which VPL to include in Figure 12 are based upon popularity. The
particular ones chosen see a lot of use, evident by the sheer number of courses
and tutorials which cover these VPLs, and the popularity of the software pack-
ages these applications are attached to. In fact, many of the mentioned VPLs are
popular enough that it is safe to say that VPLs are common in the wider field of
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(a) (b)

(c)

(d)

Figure 13: Four VPLs used in the field of GIS: ArcGIS’s Model Builder [Esri, 2022] (a), Save
Software’s FME [Safe-Software, 2022b] (b), QGIS’s Graphical Modeler QGIS
Community [2022] (c), and Geoflow [Peters, 2019] (d).

computer graphics. This study limits itself to four sub-domains relevant to geo-
computation:

- VPLs to calculate materials, shaders and textures

- VPLs to calculate geometry

- VPLs for photogrammetry

- VPLs to calculate behavior and logic

Commonalities

One interesting fact is that we see a great number of parallels among all these
VPLs.

- All are diagram-based VPLs.

- All offer inspection of in-between products. Some even visualize data being
parsed between nodes.

- All emphasize a process of "parametrization": parameters of various func-
tions can be configured using sliders, curves, and other GUI elements. This
allows quick experimentation of different settings.
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Figure 14: Substance designer, a VPL for textures [Rutten, 2012]

Moreover, the persistence of visual programming within these computer graphics
fields, suggests that visual programming languages are advantageous for calcula-
tions dealing with 2D and 3D data.

One hypothesis of why this might be, is that all these VPLs, with exception to the
behavior VPLs, are essentially dealing with "functional data pipelines". These VPL
pipelines are straightforward calculations, and do not require to handle distributed
systems or use event driven architectures. However, the sheer amount of possible
steps within these pipelines, together with the challenges of fine-tuning many rel-
evant parameters, and the importance of inspecting in-between products visually,
may lead to VPLs being a good fit.

Material VPLs

One of the most commonplace types of VPL present in computer graphics is the
material VPLs. These types of VPLs can be found in special effects applications,
modelling applications, and game engines. In this context, the concept "material"
often refers to a combination of procedural textures and shaders. These may in-
clude PBR settings, normal maps, bump maps, and / or custom shader programs.
The repetitive and time-consuming nature of manually creating textures, and the
fact that some of these material properties can be inferred from each other, lead
many CG applications to develop VPLs for this particular purpose. 3D artists use
these VPLs to create procedural materials.
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Figure 15: Grasshopper, a VPL for geometry [Rutten, 2012]

Geometry, and photogrammetric VPLs

Procedural Geometry VPLs are not far behind the material VPLs in terms of popu-
larity. Applications like Blender’s geometry nodes [Blender Foundation and Con-
tributers, 2022], Rhino’s Grasshopper [Rutten, 2012], or
Houdini [SideFX, 2022], are all widely used to automate the creation of geometry.
Where Houdini and Blender’s VPLs are primarily used in games and special effects,
Grasshopper sees usage in the Architecture, Engineering and construction industry.
In this field, procedural geometry is often referred to as "parametric design".

Alicevision’s Meshroom application must also be mentioned [Alicevision, 2022].
While this can be regarded as procedural modelling, the complexity and compu-
tation involved in photogrammetry make a VPL offering it a class in of itself. The
VPL inside of Meshroom can be used to fine tune all stages of the 3D reconstruction
process.

Behavioral VPLs

The behavioral and logical VPLs found in applications such as Unreal’s Blueprint
[Epic Games, 2022] and Unity’s Bolt [Unity Technologies, 2021] are less relevant to
the activity of geocomputation. However, one interesting property worth mention-
ing, is that these languages have actually designed a way for end-users to define
imperative flow statements, since these could not be overlooked for behavior and
logic. Section 2.2 named conditions and loops as one of the challenges of diagram-
based VPLs. These languages both attempted to solve this problem by introducing
a special "flow state" variable. It represents no value, but simply the activity of ’acti-
vating’ or ’doing’ the node selected. Figure 16 showcases these flow-state variables
in both languages using conditionals. flow-state variables have their own set of
rules, completely separate from connections carrying data. For example, they can
be used cyclically, offering users looping functionality and are allowed to have mul-
tiple sources. Despite these functionalities, one might wonder if these aspects are
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(a) (b)

Figure 16: Two VPLs for logic, showing "flow-state" variables. Left: Unreal’s Blueprints,
Right: Unity’s Bolt. [Epic Games, 2022; Unity Technologies, 2021]

(a) (b)

Figure 17: Two VPLs used on the web: Scratch (a) [Resnick et al., 2009], and nodeRED (b)
[OpenJS Foundation, 2022].

worth these extra complications. Especially since these flow-state variables are ef-
fectively GOTO statements, which are widely known as an anti-pattern in large-scale
software projects.

3.3 browser-based visual programming

This section is dedicated to visual programming applications running in a browser.
It must be emphasized that of all the various VPLs named in Section 3.2, none are
browser-based. This is likely the case because most of those VPLs are computation-
ally intensive, C / C++-based applications.

Nevertheless, if one looks in other domains, we quickly see many VPLs which are
web-based. Out of all 30 VPL studies covered by the meta analysis of Kuhail et al.
[2021], 17 were web based, 7 were mobile based, and only 6 were desktop applica-
tions. Kuhail et al. continue by noting that most of these 6 desktop applications
were build during or before 2013. The reason Kuhail et al. give for this stark differ-
ence is in line with research covered in Section 2.1: "This can be explained by the fact
that desktop-based tools are cumbersome to contemporary users. They must be downloaded
and installed, are operating-system dependent, and need frequent updates.".
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This study wishes to present two web based visual programming languages, which
each use the web in a meaningful way. The first web-vpl is "Scratch" [Resnick et al.,
2009] (See Figure 17a). Scratch is well-known as an educational, block-based VPL,
targeted at children and young adults to teach the basics of computational think-
ing. As noted by the authors of CS50, scratch is, despite this target audience, sur-
prisingly close to any normal programming language, with for and while loops,
if statements, and even event handling and asynchronous programming. Scratch
used to be a desktop application. The web environment this VPL now occupies
allows its users some life-cycle support. Users can immediately publish their work,
search for and run the work of others, and even "Remix / clone / fork" the source
code of these other projects. This encourages users to learn from each other.

The second exemplary web VPL this study wishes to bring to the readers attention
is the "nodeRED" application [OpenJS Foundation, 2022] (see Figure 17b). This is
a feature-rich diagram-based application, created to serve the domain of IoT. This
VPL uses the browser-based platform not only for the aforementioned Section 2.1
reasons, but also for the exact same reasons a router, NAS or IoT device often opts
for a browser-based interface: Servers, either small or big, explaining how they
desire to be interfaced, is more or less the cornerstone all web clients are based
upon. If the server serves its corresponding client, users do not need to find some
compatible interface themselves. For this reason the "nodeRED" application is a
web application, even though it is mostly run on local networks.

3.4 browser-based geocomputation using a vpl

To the best of the author’s knowledge, only one publicly available visual program-
ming language exist which is both able to be configured and executed in a browser,
and is able to be used for geodata computation. This application is called the
Möbius Modeller [Janssen, 2021], and is the closest equivalent to the geo-web-vpl
proposed by this study. Though it only uses JavaScript, the tool is able to be suc-
cessfully used for a number of applications, including CAD, BIM, urban planning,
and GIS. It uses a combination of a ’bare-bones’ diagram-based VPL, together with
a rich block-based VPL (See Figure 18). In fact, the block-based VPL is so rich that
is almost ceases to be a VPL altogether, and starts to be python-like language with
heavy IDE support.

The VPL proposed by this study still differs from the mobius modeller in the fol-
lowing ways:

- This study explores the usage of a pure dataflow VPL, as opposed to the mul-
tiple types of VPLs used by the Möbius Modeller. This is done to allow for
the dataflow programming advantages described in Section 2.2.3.

- This study explores the usage of WebAssembly to hypothetically improve per-
formance and to use existing geocomputation libraries.
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(a) (b)

Figure 18: Images of the Mobius modeller application [Janssen, 2021]

- This study addresses some of the life-cycle issues of VPLs stated in Section 2.2.4.



4 M E T H O D O LO GY

This chapter present the design of the proposed method. It first sums up and clar-
ifies all requirements of the method, followed up by presenting an overview, and
then the various aspects to the design of the method. It finishes by elaborating on
the assessments used to test the environment.

4.1 definitions

Throughout this and subsequent chapters, the following terms and phrases will be
used.

Pipeline / Script: A program ’written’ within a VPL is referred to as a ’script’ or a
’pipeline’.

VPL as Programming Language or Application: An ambiguity exist of calling a
VPL an application or a programming language. Arguments can be made for both.
This study would describe its VPL as an application, which so happens to possess
a composable GUI, and not a programming language. Nevertheless, it does possess
language characteristics, and depending on context, the VPL will be referred to as
both.

Plugin vs Library: A plugin represents additional, optional functionalities for a cer-
tain application. A library represents additional functionalities to be used within
a programming language. Due to aforementioned ambiguity of a VPL, ’additional
functionalities’ for a VPL could be called both. To make matters worse, the upcom-
ing plugin system will blur the lines between library and plugin. To offer some
clarification, the term ’plugin’ will be used when referring to the ’functionalities’
from a point of view of the VPL. The term ’library’ will be reserved for referring to
a software library itself.

Node: a component or ’block’ within a VPL pipeline. It is analogous to a function
in a normal language.

Boilerplate: An informal term to refer to code which is not part of the core logic of
an application. It is in a sense irrelevant code, but still required in order to use a
certain system or feature.

Binding: Bindings refer to the code a maintainer of a library may add to allow it to
be used in another language. For example, a C++ library can have python bindings.
Bindings may sometimes be regarded as boilerplate.

33
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Headless: Headless execution of a program means that it is run without using its
normal GUI. Often, this means a Command Line Interface (CLI) is used instead.

4.2 requirements

Three supporting research questions ask to clarify requirements for the design of
the methodology. These questions can now be partially answered based on the
literature presented at Chapter 2 and Chapter 3, and based on insights granted by
these works. The answers to these questions form the core requirements of the
proposed method, and steer its features and design considerations.

What GUI features are required to facilitate this method? (and to what extent does
the web platform aid or hurt these features?)

Two layers of GUI features are required:

Framework application: Firstly, a base web application is required to host the vi-
sual programming language. This needs to provide a GUI for all basic application
features, like saving, loading, undoing and redoing.

The VPL: Secondly, UI elements are required to form the interactive elements of
the visual program itself. This forms a layer independent from the framework ap-
plication, and will require a custom set of GUI features. That is to say, a text field
within the framework is not the same as a text field within the visual program. Ex-
isting VPLs differ in their level of support of certain ’GUI nodes’. This study has
established that extensive support is required, for the sake of visualizing geodata,
and parametrization of GIS operators.

To what extent does this method intent to address the discrepancies between software
applications and libraries, as described by Elliott (2007) (Does it succeed in doing
so?)

All three discrepancies described by the introduction
may be addressed by incorporating the following aspects:

Generic GUI: The VPL must serve as a generic GUI to serve practically any GIS

library. As such, it requires a wide range of buttons, sliders, text fields, and other
inputs.

Composable applications: In order to make web applications themselves more
composable, the GUI of the VPL itself should incorporate other web applications,
via for example a <iframe> or popup.

Direct utilization: To allow direct utilization of a library, the solution must be dis-
tributed as a static web application. To make sure library capabilities do not get
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Figure 19: The proposed methodology

lost when used in an application, the VPL must be able to accept a wide range of
libraries as plugins, with as little bindings or glue code as possible.

What measures are taken to make this VPL scalable to large geo-datasets? (and how
effective are these measures?)

Three measures can be taken to offer scalability in principle:

Portability: A Backend execution of a VPL pipeline must be predictable. As such,
GIS libraries run on the frontend in the VPL must behave exactly the same as if they
were run on a backend.

Zero-cost abstraction: A pipeline created with the VPL should be able to run head-
less, to ensure a scalable backend can use such a pipeline.

Locality: The VPL should be designed as a Dataflow VPL, which shares characteris-
tics with functional programming. This leads to source code which can be reasoned
about in a local manner, instead of a global one. This allows for parallelization
when scaled in a backend environment.

4.3 overview

The design of this method is as visualized by Figure 19: A Prototype VPL is used to
host the functionalities of GIS libraries from within an application, and in a compos-
able manner. Additionally, it is used to connect these libraries to various GUI fea-
tures. The format of web application is used to allow this prototype to be directly
accessible to end users without installation or configuration. This prototype is stat-
ically hosted, to minimize operational costs. GIS libraries are loaded within this
platform by first compiling them into WebAssembly, and then loading this binary
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as a plugin directly. This method is dubbed a ’no-boilerplate’ method, and explores
how libraries can be used with as little in-between layers as possible. WebAssembly
is also used to that libraries written in native languages can be used without resort-
ing to active backend web services. Finally, as this prototype is intended for GIS

usage, both scalability to handle sizable datasets, and rich GUI support (3D viewers,
file inputs, sliders), are primary design considerations and assessment criteria.

4.4 framework application

To serve the requirements of a Framework application and direct utilization, a
statically hosted web application will be required, to serve as a framework in which
the VPL can be embedded. A UI library akin to imgui [Cornut, 2022] or egui [Erner-
feldt, 2019] would be optimal in providing such an environment. However, due to
the absence of such a desktop application-like framework in the JavaScript ecosys-
tem, a custom implementation will be needed. Using HTML5 features like Web
Components, custom components such as multiple windows, dropdown menu’s,
side menu’s etc. can be created without resorting to JavaScript frameworks.

4.5 web vpl

Secondly, a web-based VPL is required as a host for all subsequent steps of the
methodology. This VPL must serve the requirements of The VPL, a Generic GUI,
Composable applications and Locality.

A novel, custom VPL is needed to fit all requirements. A dataflow VPL must be
designed for web usage, which offers a range of GUI nodes to serve as a generic
GUI, and to allow applications to be composable.

While the intention was to re-use an existing web VPL, the related works review of
Chapter 3 showcased that no exiting browser-based geocomputation VPL would be
an appropriate fit. The Mobius Modeller [Janssen, 2021] came closest, but offered
no dataflow VPL, no GUI components, and no plugin support. Additionally, the
sizable nature of the mobius modeller project made aligning its goals with the goals
of this study challenging. Building a custom implementation would allow more
degrees of freedom.

The following approach was deemed as the most fitting method for implementing
this VPL. First, the components of a dataflow-VPL handling geometry have to be
made clear. Secondly, in order to know what tools may be used to implement this
VPl, a small analysis of "widely supported browser features" is made. Then, with
both these constraints known, a design for a web VPL can be layed out, which can
be subsequently implemented.
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4.5.1 Components

The components of a dataflow-VPL implementation can be subdivided in compo-
nents of a dataflow VPl in general, and a VPL for geo-computation specifically.
Based on the literature study of Section 2.2, any dataflow-VPL must at least contain
the following aspects:

- a base ’programming language model’

A representation of the ’variables’ and ’functions’ of the language

With all computations being pure functions

With all variables being immutable

- a ’graph-like’ visualization of this data model

- an interface to create and edit this graph

- a way to provide input data

- a way to execute the language

- a way to display or save output data

The implementation of these aspects would result in a ’baseline’, general purpose,
dataflow VPL. To specialize this implementation further, A visual programming
language handling geometry should have:

- Type safety

- A way to load or to create geometry data

- A way to export geometry data

- A method to preview geometry data in 3D

- A standard set of geometric types and operations

These requirements need further explanation. First, regarding type safety. In this
context, type safety refers to: The input and output of a function should have a
type stated, and users should be notified of incorrect usage of types, or ’invalid
connections’. Geometry VPLs in particular need this, as many data representations
of geometry are required to be precise about their data usage. A VPL used to con-
struct geometry should reflect this. Additionally, when these types are clear and
clearly communicated, users must have ways to provide these types as inputs or
outputs. This will require specialized parsers to become part of the VPL, such as
an obj and geojson reader and writers.

Regarding visualization, A hallmark of VPLs is the ability to inspect the data of
in-between steps, so this must be provided for. This is also a good fit, since the im-
mutable nature of dataflow VPL variables make these variables ideal for caching.



38 methodology

Figure 20: Fall 2021 desktop browser usage statistics. Data averaged over ([Dashiki, 2020;
W3Counter, 2020; The NetMarketshare Team, 2020; StatCounter Global Stats,
2020])

Finally, a geometry VPL should contain a set of ’internal’, basic types and oper-
ations. All aforementioned features are difficult to implement without defining
some set of internally recognized data types. Basic operations are needed in partic-
ular to transform between the types.

4.5.2 Widely supported browser features

This study defines "widely supported browser features" as the set of default fea-
tures implemented by the browser engines of ’major browsers’. Based on the desk-
top browser market shares of Figure 20, the chromium based browsers (Chrome,
Edge, Opera) have the majority. This is followed up by Firefox, based on the Gecko
engine, and Safari, based on webkit. By supporting these three engines, the vast
majority of end-users can be served.

The set of features common in these three browser engines are well-documented
on websites like MDN web docs [Mozilla, 2022]. This set includes the following
features relevant for the 3D VPL:

- WebGL & WebGL2 (WebGPU is not widely supported yet)

- 2D Canvas API

- Web Workers

- Web Components

- WebAssembly
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Figure 21: A UML diagram of the proposed VPL

4.5.3 Design

A software application of a VPL adhering to the specifications mentioned can be
implemented in several ways. The design chosen is a Model View Controller (MVC)
setup written in JavaScript. The MVC is a common model for interface-focussed
applications, and allows us to reason about the model of the VPL language an a
separate level from the editor / viewer. The JavaScript language will be used in-
stead of webassembly alternatives, in order to limit the usage of webassembly to
just the libraries. Using WebAssembly too much at too many different locations
will make the results of this study less clear.

Javascript is a multi-paradigm language. This study chose an object-oriented ap-
proach, and will use some of the design patterns layed out in [Gamma et al., 1994].
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This design is further elaborated in the subsequent sections, first by covering the
Shim classes, followed up by design details corresponding to the model, view and
controller:

Shim Types

Firstly, since a VPL is partially a programming language, a model is needed to
reason about some of the features of a programming language, such as functions,
types, variables, and modules / libraries / plugins. For example, we desire to
store a description of a function, how many input parameters it needs, and which
variable types each input requires.

These needs led to the design of classes serving as equivalents of these language
features, called shims. The UML diagram (Figure 21) shows a TypeShim and Func-
tionShim, and ModuleShim.

The shim classes are designed using the Object Type design pattern [Gamma et al.,
1994]. This means that these objects are used as types. For example, a loaded func-
tion corresponds to exactly one FunctionShim instance, and that this instance is
shared as a read only with any object wishing to eventually use the function. This
is also useful for defining recursive types. TypeShims can be structured recursively
to define a List of List of strings for example.

Model

From the Shims, the main model of a VPL pipeline can be conceptualized. This
model is at its core a DAG. This DAG should be an object-oriented, graph-like repre-
sentation of the data flow of a regular programming language. This design can be
implemented by writing a Graph class, containing Node and Cable objects.

In this model, Nodes are analogous to function invocations of normal programming
languages. As such, a Node knows about the function they represent through a
FunctionShim reference. The node contains a number of input and output sockets
based on this information, and each socket contains exactly one optional reference
to a Cable. As the name implies, these Nodes form the nodes of the DAG. How-
ever, they differ from a pure DAG implementation, in that they also provide point-
ers back in the reverse direction, forming essentially a normal graph, or a doubly
linked list. This is required for keeping track of all references pointing to a Node,
so that upon the deletion of a node, all pointers can quickly be identified and nulli-
fied.

The Cables of this model are an analogy to the variables of regular languages. Ca-
bles know about the type they represent through a TypeShim. A Cable must have
exactly one origin, which is an output socket of a Nodes, and must have one or
more destinations, which are the input sockets of other Nodes. This is required for
the same reasons as the doubly linked nature of the Cables.
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To reason about the graph as a whole, a overarching Graph class will be needed.
This is what would be called a ’program’ or ’script’ in a regular language. Because
of the way Cables and Nodes reference each other, the graph has characteristics
of a doubly linked list data structure. Using normal references in these types of
situations could easily lead to memory management issues such as Dangling Point-
ers. For this reason, centralizing the graph logic is desirable over adding complex
logic to individual Nodes. This will make it possible to substitute references with
id integers to prevent these types of problems.

View

The view aspect of the VPL will require three main components. First, the graph
itself will need to be visualized in some manner. A graph based visualization will
be used, based on the node-cable connections of the graph model. Important to this
view is that it will need to be redrawn often. Users will want to add, select, change,
and delete nodes, and these interactions should be clearly represented. This makes
the HTML5 ’canvas API’ an ideal fit to this component.

Secondly, since not all actions and interactions will be done by clicking on the graph
itself, a GUI surrounding this graph visualization is required. This will also need to
house common application features, like ’new’, ’save’, ’load’, ’export’, etc. The
browser context means that this aspect will need to be facilitated by HTML. Styling
is required to make what is essentially a website look and behave like an applica-
tion.

Finally, the VPL requires some way of visualizing 3D geometry, so that in-between
products containing spatial data can be viewed. a custom 3D engine, specialized to
the needs of the VPL, would be best option for this aspect.

Controller

Finally, a controller will be needed to modify and manipulate the VPL (NodesCan-
vas in Figure 21). It will need to house all types of interactions, such as loading and
saving a VPL script, model manipulation and updating the view only when neces-
sary. Two important aspects require further explanation: Keeping track of history,
and calculating the graph.

History

In order to support all these interactions, especially undo / redo support, we are
required to explicitly track the history of the graph. A Command Pattern [Gamma
et al., 1994] makes for a good fit in this regard. Instead of directly editing the graph,
all manipulation actions should be represented as Action objects. Each Action can
’do’ and ’undo’ a specific action, and the data needed to make this do and undo
are stored within the action. By then introducing a GraphHistory class (see Fig-
ure 21), the model and controller can be separated, only allowing interaction with
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1 Step -1:

2 Make an ‘order‘ list

3 Step 0:

4 Make a ‘visisted‘ counter, initialized at 0

5 Step 1:

6 Make a ‘dependency‘ counter for each node, initialized at 0

7 Step 2:

8 Add 1 to this counter for each input edge of this node.

9 Step 3:

10 Fill a queue with all dependency 0 nodes.

11 These are the starter nodes.

12 Step 4:

13 Remove a node from the queue (Dequeue operation) and then:

14 add the nodes’ id to the ‘order‘ list.

15 Increment ‘visisted‘ counter by 1.

16 Decrease ‘dependency‘ counter by 1 for all dependent nodes.

17 If one ‘dependency‘ counter reaches 0,

18 add it to the queue.

19 Step 5:

20 Repeat Step 4 until the queue is empty.

21 Step 6:

22 If ‘visisted‘ counter is not equal to the number of nodes,

23 then the graph was degenerate, and probably cyclical.

Figure 22: Khan’s algorithm in pseudo code

the model by serving this bridge Action objects. The GraphHistory maintains a
stack of undo and redo actions, which represents this history.

Calculation

When regarding the graph model, or any other programming language, we see
many functions requiring variables which are the result of other functions. This is
why a graph like this can also be called a dependency graph. If one wishes to calcu-
late the result of a VPL script, then these dependencies must be taken into account.
The functions the graph muse be sorted in such a way that all dependencies are
known before a function is calculated. Such a problem is known as a topological
sorting problem, and can be solved using Kahn’s algorithm (Section 22):

Using this algorithm for calculating a VPL has several important qualities. First of
all, it detects cyclical graph patterns without getting trapped within such a loop.
VPLs implemented on the basis of an event-system suffer from this drawback,
and models such as those must continuously check their own topology to avoid
loops.

Secondly, by sorting the order of calculation before actually performing the calcu-
lations, we can use the algorithm for more than just the calculation. For example,
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in theory this could be used to compile a VPL Script to Javascript at runtime, by
composing a list of functions based on this order.

Finally, if all intermediate calculation results are cached, this same algorithm can
also be used for performing partial recalculations of the graph. The starting posi-
tions of the algorithm then simply become the altered parameter, after which only
the invalidated functions will recalculate.

Mutability

Recall that a variable in this VPL model always has one origin, and one or multiple
destinations, just like variables a regular language. The calculation system requires
to know the mutability of the destination function parameters. This has two rea-
sons. First, to allow concurrent calculations, all functions using a variable should
only be allowed to use a immutable references to this variable, in order to prevent
data races. And secondly, to prevent unnecessary copies of variables, only one func-
tion should be allow to ’claim ownership’ of a variable, as in, modify the data and
pass it along as output, or delete it and free the memory. This is inspired by the
Rust language model [Rust Contributors, 2022]. In such a system, concurrency can
still occur between all other immutable references to this variable. However, only
when all these calculations are done, may this final transformative step occur.

All this to say, the mutability of function parameters must be known in order to
create a performant and memory efficient graph calculation system.

4.6 plugin system

The third step of the methodology involves developing a method to use GIS li-
braries from native sources within the VPL model outlined above. In other words,
a plugin system is required, existing of a plugin model these libraries will need to
adhere to, together with a design for an importer of those libraries at the side of the
VPL.

4.6.1 Design

The design of the plugin system is centered around leveraging the ability of We-
bAssembly to be used as a generic interface. Certain wasm compilers, like Rusts
wasm-pack compiler [wasm-pack Contributors, 2018], support interface types in
the shape of TypeScript type declarations, or embedded within the WebAssembly
binary itself. This follows a design proposal which is soon to be part of the wasm

Standard itself [Wagner, 2022]. These interface types allows wasm to be used as an
interoperable binding: One binary which could be used in any language, such as
Python, C#, Javascript, or Java. Python and Java already have support for a wasm

runtime [Clark, 2019].
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The core concept behind the proposed plugin system, is to make the VPL utilize
these bindings as well, and directly. For this to work, a to-be-imported GIS library
needs to be compiled to WebAssembly, published to a public Content Delivery Net-
work (CDN), and then referenced by the plugin importer, within the proposed VPL.
The importer must then translate the exposed functions and types into nodes which
can be used in a VPL pipeline. During execution, these nodes will then call func-
tions from within the wasm binary, which is possible since modern browsers possess
of a WebAssembly runtime.

This setup may provide answers to the requirements of Portability, Zero-cost ab-
straction and Direct utilization:

• Direct utilization: This setup leads to a low maintenance setup. Per sup-
ported GIS library, only one binding project may be required to serve all needs
in all languages, including the proposed VPL. Not requiring any additional
’wrapper’ or ’boilerplate’ codebases in between the core GIS library and the
application makes it so its inner functionality may be more directly accessed,
and may lead to less features getting ’lost in translation’. This property has
led this design to be called a ’zero-boilerplate’ plugin system.

• Portability: By using WebAssembly, the exact same binary can be run on the
frontend, and a potential scalable backend. Using the same binary in multiple
locations leads to predicable behavior.

• Zero-cost abstraction: Additionally, because of the above two properties, a
native, headless execution of a VPL pipeline can be envisioned, without ref-
erence to the VPL altogether. This is visualized by Figure 23. A pipeline
could be compiled to any plain script, like JavaScript or python, which can
then be executed on a backend, utilizing the functionalities from within these
portable binaries. This could make the VPL a ’zero cost abstraction’, as the ab-
straction imposed by using nodes and GUI components, will not lead to any
difference in performance, compared to if a script was created using a ’nor-
mal’ programming language. This headless runtime will not be part of the
implementation, but is part of the design of this plugin system.

All in all, to allow for zero-cost abstraction in the future, and allow the
zero-boilerplate concept currently, The plugin system of the proposed method will
designed as mentioned above.

4.6.2 Components

The components mentioned above fit together to propose the following workflow
to use a native GIS library in the proposed Web VPL:

1. Write or find a GIS library written in either C++ or Rust.
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Figure 23: The methodology expanded beyond the scope of this study, to provide a
method for backend, cloud-based execution

2. Create a second library, in which a subset of this
library is flagged and wrapped as ’functions usable on the web’.

Optional: Include metadata to add additional functionality to the library

3. Compile this library with a compatible compiler.

4. Publish the results of these compilers to a CDN.

5. Within the VPL: Reference the CDN address to the plugin loader.

6. The plugin loader now loads and converts the exposed functions, and in-
cludes them in the list of VPL components, ready to be used in the VPL.

For the scope of this system, we will refer to a native GIS library compiled to
WebAssembly as a ’plugin’, even though these projects are in essence normal JavaScript
libraries, and can be used in regular JavaScript projects.

What follows is an elaboration on the side of the plugin model:

4.6.3 Plugin Model

The plugin model serves three purposes:

Compilation

One, it needs to form a bridge between the language in which the GIS library is
written, and WebAssembly. In other words, the requirements of the WebAssembly
compiler compatible with the language in question must be adhered to.
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Figure 24: An API which can only be used in an imperative, non-functional manner

The aforementioned WebAssembly interface types proposal is not ready to use for
C or C++ based GIS libraries. However wrapping WebAssembly using JavaScript
types is something C++ does support. This can also leverage the infrastructure of
JavaScript: Existing JavaScript tooling, such as CDNs, can be utilized for distribu-
tion, updates and version control. Therefore, the WebAssembly binaries will be
accompanied by a Javascript wrapper file.

Both the C++ and Rust compilers require functions to be flagged explicitly for com-
pilation. Additionally, for a library to be compilable, all dependent libraries must
also be able to compile to wasm. For C++, the Emscripten compiler can be used to
compile to WebAssembly [Zakai, 2011].

For Rust, the ’wasm-pack’ and ’wasm-bindgen’ toolkits enable wasm compilation
[wasm-bindgen Contributors, 2022; wasm-pack Contributors, 2018].

Wrapping

Secondly, in certain situations, some level of function wrapping may still be re-
quired. Some libraries are written in an imperative style, troubling its conversion
to the functional model used by a dataflow VPL (See Figure 24). This is why the
implementation of this plugin model must take cases like these into account. This
comes down to wrapping the functionality of the GIS library as pure functions, by
making copies of inputs / outputs, or grouping a series of imperative steps.

Flagging

Lastly, a plugin model will need to communicate the content of the plugin to the
VPL. We distinguish between required data, and optional data. The central idea for
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this aspect is to generate this information automatically from the wasm binary and
related files. Only when that is impossible, should the information be manually
added within the plugin.

The following information is required for the VPL to load a GIS library, and convert
it into visual components:

- A list of all functions present in the library, uniquely named.

- A list of all custom types (structs / classes) present in the library, also uniquely
named.

- Per function:

A list of all input parameters, name and type.

An output type.

The following information is optional, but it would improve the functionality and
usability of the library:

- Per function:

A custom, human-readable name.

A description to explain usage.

- Per type:

A custom, human-readable name.

A description to explain usage.

Functions for serializing and deserializing this type (binary, json)

Functions for rendering this type in 2D or 3D.

A ’constructor’ and ’deconstructor’, to convert this type from and to basic
types present within the VPL.

On the side of the plugin loader within the VPL, all the compiled, wrapped and
flagged information within the plugin needs to be extracted. The automated ex-
traction of all required information can be done by utilizing TypeScript Declaration
’d.ts’ files. A ’d.ts’ file can be understood as a ’header’ file generated by the Type-
Script compiler, exposing the types required by all functions found in a correspond-
ing JavaScript file. By using the typescript compiler in the VPL, this header file
could be loaded and interpreted to find all basic information, including the names,
the namespace where to find a functions, and all input and output types. This ex-
traction of types was required, since these are not present in JavaScript source code,
and types are needed in explaining to the end-user how to use a function, and in
making the VPL typesafe.
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With the extracted information from the "d.ts" file, a corresponding Javascript file
can be traversed and loaded as a VPL plugin. javascript’s nature as a scripting lan-
guage can be utilized for this: Firstly, its dynamic nature allowed a library to be
loaded and incorporated at runtime without any special alterations. Hot-loading li-
braries in C++ for example, can’t usually be done without significantly altering the
way a program runs. Secondly, JavaScript’s prototype-based classes and its sup-
port for reflection allows a plugin loader to localize and collect all functions within
a library. And lastly, the "first-class function support" allowed these functions to be
referenced and called by the nodes of the VPL Graph.

Because the VPL will be implemented as a Dataflow-VPL, the loader seeks to ex-
tract only (pure) functions. However, many libraries also include classes, as these
can make an API more clear to use using regular languages. The plugin loader will
need to support classes by converting them to a series of normal functions. Static
methods and constructors can be converted directly, and methods are converted
into functions with the object as the first argument.

The optional data can be exposed by flagging functions with a standard prefix.
These functions are then loaded by the VPL, but will not be converted into visual
components. Instead, these functions are programmatically called when the VPL
engine or the user requires this optional aspect.

4.7 tests

With both the VPL and the plugin system in place, the final step of the methodology
is introduced to gather the results and data needed for properly answering the
second, third fourth sub-research questions.

4.7.1 Compilation Tests

To test the ability of the VPl and the plugin system to host different libraries and dif-
ferent languages, four demo plugins are compiled and loaded within the VPL. The
Rust language and C++ are tested. Per test, the workflow layed out in Section 4.6
is followed. Per language, a minimum plugin is first created, assessing if and how
well a simple function, method, and class can be exposed to the VPL. After this
demo, a more sizable, existing geocomputation library is compiled.

These tests are meant as a qualitative comparison between compiling a full-scale
library written in Rust, to a full library written in C++. This way, the tooling and
workflow can be compared for a realistic use-case. The study is conducted by com-
piling both libraries using their respective wasm toolsets, and noting the differences
in workflow, supported features, and the resulting plugins.
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The libraries must be compiled without ’disruption’: They must be kept the exact
same for normal, native usage.

C++ Library: CGAL

The library tested for C++ is CGAL, compiled using emscriptem. For one, this
library is well established and relevant to geoprocessing as a whole, as multiple
other C++ geo-libraries depend on it. Moreover, it is a sizable and complex project,
making it highly likely the problems described by Section 2.1.2 are encountered.
We could choose more simple libraries, but this is not representative of most C++
geoprocessing libraries.

Rust Library: Startin

The second library tested is the Startin library, written in Rust, compiled using
wasm-bindgen. This library is smaller in scope than CGAL. Ideally, a library with
a size comparable to CGAL should have been chosen, to make for a balanced com-
parison. However, Rust is still a relatively unknown language in the field of GIS,
making libraries like these difficult to find. Startin was chosen, for the triangula-
tion functionalities it provides makes for a good comparison against CGALs Trian-
gulator. It also, just like CGAL, makes use of a high precision kernel, and offers
geometric robustness.

4.7.2 Demo applications

Two demo applications are to be created for the purpose of testing the practical
capabilities of the methodology. The first demo focusses on the intended use case
of ’library publication’. We wish to see to what extent a library published using
WebAssembly can directly be tested from within the proposed environment.

The second demo expands upon this first demo, and is intended to examine to what
extent such a library can actually be composed as part of a ’real’ application. In this
test, the interaction between this library and the composable GUI will be elaborated
upon.

4.7.3 Feature Comparrison

In this third set of tests, the achieved functionality of the VPL is compared with the
functionality of existing VPL methods. This comparisons is made on the base of
features relevant to the goal of this study:

- Does the VPL allow for plugins: Third party ’nodes’?
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- In which language must a third party plugin be written?

- Can third party nodes use customly defined types, such as a new class or
struct?

- Can the VPL be run headless, that is to say, without the GUI?

- Is the VPL accessible as a static web application?

- Does the VPL contain GIS-specific nodes by default?

- Does the VPL contain GUI nodes, so that users can build custom interfaces?

4.7.4 Usage tests

This final set of tests are meant to analyze the usability of the visual language itself.
It allows us to understand the advantages and disadvantages of the more granular
language design decisions.

For the assessment criteria, the cognitive dimensions framework of Green and Petre
[1996] will be used. The framework is useful for its focus on language features.
Also, as commented on in Section 2.2, the study has acquired a canonical nature
among many VPL researchers for its elaborate examination of the "Psychology of
Programming".

The framework presents the following 13 dimensions and accompanying descrip-
tions [Green and Petre, 1996]:

1. Abstraction gradient: What are the minimum and maximum levels of abstrac-
tion? Can fragments be encapsulated?

2. Closeness of mapping: What ’programming games’ need to be learned?

3. Consistency: When some of the language has been learnt, how much of the
rest can be inferred?

4. Diffuseness: How many symbols or graphic entities are required to express a
meaning?

5. Error- proneness: Does the design of the notation induce ’careless mistakes’?

6. Hard mental operations: Are there places where the user needs to resort to
fingers or pencilled annotation to keep track of what’s happening?

7. Hidden dependencies: Is every dependency overtly indicated in both direc-
tions? Is the indication perceptual or only symbolic?

8. Premature commitment: Do programmers have to make decisions before they
have the information they need?

9. Progressive evaluation: Can a partially-complete program be executed to ob-
tain feedback on ’How am I doing’?
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10. Role- expressiveness: Can the reader see how each component of a program
relates to the whole?

11. Secondary notation: Can programmers use layout, colour, other cues to con-
vey extra meaning, above and beyond the ’official’ semantics of the language?

12. Viscosity: How much effort is required to perform a single change?

13. Visibility: Is every part of the code simultaneously visible (assuming a large
enough display), or it it at least possible to juxtapose any two parts side-by-
side at will? If the code is dispersed, is it at least possible to know in what
order to read it?

As stated by the authors; the purpose of this framework is to make the trade-offs
chosen by a language’s designer explicit. It is not meant as a ’scoring’ system
[Green and Petre, 1996].





5 I M P L E M E N TAT I O N

This chapter presents the implementation of the methodology. It discusses the ex-
tent of the achieved functionality, as well as certain ways it fell short of the pro-
posed design.

5.1 introducing: geofront

This section discusses the extent of the prototype VPL implementation. The proto-
type is titled "Geofront", as a concatenation of "geometry" and "frontend".

The Geofront Application is implemented according to the design layed out in Sec-
tion 4.5, and uses TypeScript as its main language. webpack is used to compile this
codebase into a singular JavaScript file, and this file practically serves as the full
application. the repository spend around 11.000 lines of code, divided into core cat-
egories and functionalities. What follows is a clarification of the implementation of
some of these categories.

5.1.1 Model

The visual programming language model as described by Section 4.5.3 and Fig-
ure 21 could be fully implemented on the web. Both the shims as well as the model
itself was implemented in TypeScript (TS). This model allows Geofront to internally
represent the data structure and logic of a dataflow-VPL program.

Type safety was fully implemented by essentially creating a new ’layer’ of hierar-
chal types on top of TS / JS, as proposed by the methodology.

The type system can be extended by types found in third party Plugins. In theory,
this can be used to prevent all incorrect type usage during creation of a Geofront
graph, and before calculation. In practice, to support iteration, some runtime type
checking was still required. Additionally, the type system had to be disabled in
situations were plugins did not produce interface types (such as projects compiled
using emscripten).
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Figure 25: The Geofront Application

5.1.2 View

The graph

The graph data model must be rendered to the screen so users can comprehend and
edit the graph. This visualization is achieved by using the HTML5 Canvas Api. The
Canvas API is a raster-based drawing tool, offering an easy to use, high-level api
to draw 2D shapes such as lines, squares, circles, and polygons. The Nodes Canvas
uses this API to draw polylines and polygons at runtime, to represent the cables
and nodes respectively. These basic shapes and their styles change dynamically,
based on features like the length of a cable, how many input sockets a node requires,
or whether or not a node is selected.

Like other HTML5 features, the main advantage is that this API is included and
implemented within the browser itself. This method is fast thanks to its C++ based
implementation, and can be used without the need to include anything within the
source code of the application.

Additionally, the Canvas API provided granular control over how and when shapes
should be rendered. This feature was instrumental in providing Geofront with
a wide range of widgets, containing sliders, text fields, image viewers, file load,
fetch, and save widgets, and even a component capable of opening up third-party
applications as a pop-up (Figure 26c).

The downside of this implementation, is that all features the HTML renderer nor-
mally accounts for, like picking, conditional styling, and performant rendering of
repetitious elements, are lost. These had to be re-implemented in typescript, which
will never be as performant as the codebase of the browser engines themselves. An
additional limitation is that the draw calls are primarily CPU based, making it less
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(a) (b)

(c)

Figure 26: The basic canvas components of Geofront: a Node (A), a Cable (B), and multiple
Widgets (C)

performant than a pure WebGL implementation would have been. lastly, the imple-
mentation chose to redraw the full canvas on every registered change to the graph,
instead of partial redraws.

These limitations come together to a performance linear to the amount of nodes
and cables drawn. For the current implementation and scale of Geofront, this per-
formance is acceptable. Still, the application slows down when rendering a large
amount of components.

This performance hit is partially due to the implementation, and partially due to
browser feature limitations. The browser does not offer a ’middle ground’ between
html-like rendering and 2D canvas-like rendering required for a visualization like
the dataflow graph. Still, this implementation could have experimented more with
a HTML + SVG based render method.

Presentation

Special care has been put into the presentation of the implementation. The layout
takes inspiration from various geometry VPLs mentioned at Section 3.2, such as
Blender’s GeometryNodes, McNeel’s Grasshopper, and Ravi Peter’s GeoFlow. A
few notable exceptions, however. Firstly, the entire graph is placed on a grid, and
all nodes adhere to this grid (see Figure 27). For example, a node with three inputs
will always occupy three grid cells in height. This grid is applied for much of the
same reason as terminals & source code are displayed using monospaced fonts.
Consistent sizing encourages organization and clarity, for this makes it easy for
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Figure 27: A complete Geofront script

components to line up, and predict how much space something requires. Cables
also adhere to the grid. They alter their shape in such a way to remain as octagonal
as possible, in an attempt to make connections between nodes more readable.

3D Viewer

The 3D viewer attached to the geofront application is also implemented in type-
script. It uses WebGL and the OpenGL Shading Language (glsl) as its graphics
API. The viewer can be used to represent and visualize various geometries, such
as points, lines, meshes, bezier curves, and bezier surfaces. Images can also be
rendered, which are represented as a quad mesh with a texture.

The useful aspect of WebGL is the fact it does not have to be included within the
source code of a program. WebGL supports all render demands basic, small-scale
3D geodata visualization might need, such as point clouds and DTMs. large scale
visualization is not possible, as the visualizer does not support idioms like frustum
culling, or dynamic levels of detail. Additionally, the viewer does not support

These visualization options open the possibility of visualizing a great number of
different geodata types, such as DTM / DSM, GEOtiff, Point clouds, and OGC
vector data. However, specific visualization convertors are not implemented, for
these are reliant upon the compilation of existing geocomputation libraries.

5.1.3 Controller

Interaction

User interaction is made possible through the HTML DOM Events. This API pro-
vides ways to listen to many events, including keyboard and mouse events. When
the mouse is moved, its screen-space position is transformed to a grid position,
which allows the user to select one or multiple objects.
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Figure 28: The Geofront Viewer

(a) (b)

Figure 29: A bezier curve and surface visualized using the geofront viewer
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Geofront’s user interface aims to mimic features of regular desktop applications.
As such, the Geofront Graph supports features like undoing, redoing, duplication,
copying, and pasting. These functionalities can be used with the expected keyboard
combinations (Ctrl + C / Ctrl + V). However, the implementation does lack touch
& mobile support.

In general, these editing features are complete, but there are a few caveats caused
by the browser environment. Namely, the browser has need of its own controls and
shortcuts. For example, the right mouse button brings up the browser context, and
the Ctrl + W shortcut closes a browser tab, which cannot be overwritten. While
there are some workarounds, these aspects make it so Geofront, and web applica-
tions mimicking desktop applications in general, may behave unexpectedly.

Input and Output

The base dataflow VPl component of Geofront support input and output UI ele-
ments, like sliders, buttons, and text fields. These form special nodes on the canvas,
called ’widgets’. Widgets simply are nodes with side effects. By making this a
different type of node, the behavior of the graph becomes more predictable.

The fact that the Geofront implementation opted for a canvas API-based visualiza-
tion made it so HTML could not be used for these aspects, and all these features
had to be created within the constraints of the Canvas API.

Files can be used as inputs and extracted as outputs using the ’file load’ and ’file
save’ widgets. These files are then loaded as raw text or raw binary, which can
be parsed by using a parser appropriate for that file type. The problem with this
implementation, is that it requires a full file to be loaded into memory. Most na-
tive parsers make use of streaming to avoid this. There are ways of supporting
incrementally reading files in a browser, but these methods are not supported by
all browsers yet.

5.2 the plugin system

The plugin system is implemented according to design discussed in Section 4.6.
The implementation comes down to a plugin loader written inside of the Geofront
application, with an accompanied workflow of how to create such a plugin.

5.2.1 The plugin loader

The plugin loader implemented in Geofront can load a JavaScript / typescript li-
brary, and convert it into appropriate visual components.
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As prescribed by the methodology, Typescript declaration files are loaded to de-
termine the name, location, parameter types of functions. This works similar for
libraries which include a WebAssembly binary.

While in theory any JavaScript / typescript library can be used, in practice some
limitations are in place due to the specific implementation used:

Files

Firstly, the current loader accepts only one Javascript file, and one Typescript Decla-
ration file per library. A library without a ’d.ts’ declaration cannot be used. If addi-
tional files are used, such as wasm files, these will have to be explicitly fetched and
run by the JavaScript file. For the purposes of this study this is acceptable, as the
used wasm compilers work in a manner compatible to these limitations. Javascript
bundlers also help to adhere to these limitations. Still, this does mean that not just
any JavaScript library can be imported.

Library Structure

Secondly, while the loader does support namespaces and classes, not all types
of libraries and programming styles are supported. Functions using callbacks,
promises, complex types, or generics, cannot be properly loaded. Libraries utiliz-
ing "method chaining APIs" can be loaded, but are difficult to use as intended on
the Geofront Canvas.

Types

The plugin loader can only load functions using acceptable input and output types.
Not all input and output arguments translate well to the format of a dataflow VPL.
The types may only include:

• basic JavaScript types (boolean / number / string)

• basic jsons (unnamed structs), objects, interfaces

• JavaScript ArrayBuffers like Float32Array (vital for performant data transfer)

The typesystem of the plugin loader will pick up on types exposed by a library, and
include them within the type safety system of Geofront. However, this does mean
that certain types are not supported, like asynchronous promises, or functions as
variables.
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Supported languages

Finally, not all languages are equally supported:

- Javascript / Typescript: If the Javascript and Typescript files used adhere to
the limitations mentioned above, the library can be used. However, a bundler
needs to be used to include all sub-dependencies of a library, as the Geofront
loader does not load sub-dependencies currently.

- Rust: Libraries compiled to webassembly using the "wasm-bindgen" work
"out of the box" in most cases. wasm-bindgen is able to generate JavaScript
wrapper bindings for a wasm library, accompanied by TypeScript type defini-
tions. This wrapper handles type conversions.

However, rust libraries compiled to the web do require a initialization step.
As such, the loader now checks if the library looks like a Rust library, and if it
does, it uses a slightly altered loading method.

- C++ At the time of writing this study, the ’embind’ compiler (explained in Sec-
tion 5.2) does not have an option to compile a typescript declaration file. Ad-
ditionally, the JavaScript generated to wrap the wasm binary is not a wrapper
handling type conversions and memory safety like Rust. Instead, it uses a cus-
tom architecture programmatically expose JavaScript wrapper functions one
by one, and leaves it to the user of the library to deal with type conversions
and memory safety. These two aspects combined makes it so C++ cannot use
Geofront’s loader directly, and must use an additional in-between wrapper
libraries.

- Other languages This study only experimented with Rust and C++ as non-js
languages. While the loader’s ability to work with WebAssembly is promis-
ing, additional testing is required before Geofront can claim to support any
language.

5.2.2 Achieved Workflow

With all the above considerations in mind, the following workflow can now be used
to create a Geofront Plugin, which, as explained, doubles as a normal JavaScript li-
brary. If Rust or C++ is used, this setup in a way triples as also a native geoprocess-
ing library. The Geofront standard library is also implemented by using workflow
with Rust.

1

2 Using Typescript:

3 1. Write or find a geoprocessing / analysis library

4 using typescript,

5 2. Compile and bundle to a ‘d.ts‘ + ‘.js‘ file.

6 3. publish to npm
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7

8 Using Rust:

9 1. Write or find a geoprocessing / analysis library using rust

10 2. Create a second library, which exposes a subset of this

11 library as ’functions usable on the web’, using ’wasm-pack’

12 and ’wasm-bindgen’.

13 3. Compile to ‘.wasm‘ + ‘d.ts‘ + ‘.js‘.

14 4. publish to npm (‘wasm-pack publish‘)

15

16 Using C++:

17 1. Write or find a C++ based geoprocessing / analysis library.

18 2. Create a second library, which exposes a subset of this

19 library as ’functions usable on the web’, using ’emscripten’

20 and ’embind’.

21 3. Compile to a ‘.wasm‘ and ‘.js‘ file using emscripten.

22 4. Manually edit the ’js’ file to wrap initialization and type

conversions.

23 5. Manually create a corresponding ‘d.ts‘ file, calling newly created

methods in the ’js’ file.

24 6. Publish these to npm

25

26 ---------------------------------------------------------

27

28 In Geofront:

29 A. Reference the CDN (content delivery network) address of this node

package.

30 B. Use the library.

5.2.3 Automation and portability

The Section 4.6 mentioned the requirements of library portability and automation.
In this section we assess to what extent this implementation was able to succeed on
delivering these two requirements.

Automation & exposure of metadata

Based on the results, we can state that the loader mitigates the need for explicit
configuration only for the required, mandatory aspects. All optional properties
like human-readable names and descriptions, must be specified explicitly using a
naming convention specific to Geofront.

In practice, however, there are some more "configuration" requirements. The limi-
tations outlined by Section 5.2.1 show that there are quite a few additional consid-
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erations. Geofront does not support all types or all library structures, and certain
languages require additional compile limitations.

Also, while the optional properties are just that, optional, one could argue that some
of these properties are in fact required. Libraries without ’human-readable’ names
and descriptions are harder to utilize in a Geofront script by end users. While
regular programming languages also allow the creation and publication of undoc-
umented libraries, one can question if this should also be allowed for the more
end-user focussed VPL libraries.

So, while the plugin loader can load some simple textual programming libraries al-
most without any special configuration, sizable libraries intended for consumption
by Geofront will still need to be explicitly configured for Geofront. However, even
with these requirements, this can still be considered an improvement compared to
the plugin systems of geometry VPLS studied at Section 3.2, in which developers
are required to create a class per exposed function.

Portability

This system creates seamless interoperability between a textual programming li-
brary, and a VPL plugin to an extent. However, because of the reasons outlined
above, it is also safe to say that this seamless interoperability is only one-directional:
Libraries intended for consumption by Geofront double as also a ’normal’ JavaScript
library. The configuration demands of Geofront only impair the normal, JavaScript-
based usage by forcing a functional style, and by including certain methods only
intended for Geofront. Even these Geofront-specific methods might prove useful
in certain scenarios, such as by providing a way to visualize data.

This seamless interoperability is less prominent in the opposite direction. A normal
JavaScript library, or a JavaScript library using WebAssembly, can’t be automati-
cally used by Geofront in most cases. Most libraries use an imperative program-
ming style, use unsupported types, or consist of multiple files. In some cases, a
library is be able to be loaded, but is then functionality impaired by the interface.

5.3 cli, headless runtime

While the zero-cost abstraction runtime, proposed in Section 4.6, was said not to be
part of the implementation, small scale experimentation has been done as a proof
of concept.

An early build of Geofront had the ability to compile a Geofront script to a subset
of regular JavaScript (see Figure 30). All libraries were converted to normal import
statement, all nodes were replaced by function calls, and the cables substituted
by a variable token. Additionally, because of the no-boilerplate plugin system, this
JavaScript file could be re-imported back into Geofront, to represent the exact graph
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Figure 30: An early build of geofront, showcasing JavaScript interoperability

it originated from. A subset of JavaScript was supported, using inline comments
to add the appropriate metadata. This allowed the setup shown above to be syn-
chronized. That is to say, updating the textual representation led to a change in the
graph, and vise-versa. This JavaScript representation could be executed headless
in either a browser-based application, or using a local JavaScript runtime like Deno
[Deno Contributors, 2022].

However, both the Pipeline to JavaScript compiler, and the JavaScript to Pipeline
compiler, could not be maintained given the other requirements of the environment,
such as complex GUI nodes. Auxiliary systems complicated the export and import
workflow, like allowing a node to iterate through a list. Still, the brief success of the
system does proof the proposed method is feasible, given enough time.





6 T E S T I N G

In this chapter the various software implementations and design choices made in
Chapter 5 are used and tested on various aspects. This is done to gather the data
needed to answer the research questions adequately. It consists of the sections Sec-
tion 6.1. Section 6.2, Section 6.3, and Section 6.4.

6.1 plugin compilation & utilization

In this section, the tests outlined in Section 4.7.1 are performed.

6.1.1 Rust: minimal plugin

The compilation of the minimum Rust plugin, which exposes a function, a class,
and a method, occurred as expected. Figure 31 Shows the source code of this plugin.
The ’wasm-bindgen’ library allows functions and classes to be annotated as ’expose
to JavaScript’ with a macro statement. This simplifies the compilation process to
WebAssembly greatly. Due to Rust’s macro system, it also creates compile time
errors with IDE integration, if a property or class are incompatible to be exposed.
This aids the construction of a wasm-compatible API.

This library was compiled to WebAssembly and JavaScript using ’wasm-pack’. This
produces multiple artifacts, showcased in Figure 33. This figure also showcases
how wasm-pack wraps the functionality: The point_distance function exposed by
the wasm file is wrapped by the JavaScript file, converting it to look like a regular
JavaScript class. Keep in mind that as the Interface Type proposal gets accepted as
’standard webassembly’ [Wagner, 2022], The JavaScript or typescript artifacts can
be ommited, as this logic will be added to the .wasm binary itself. The wasm-pack
library is already able to produce a WebAssembly build with interface types in-
cluded. However, as this is not standard WebAssembly yet, it hinders integration
with WebAssembly produced from the emscripten compiler, so this study chose
against using it.

To check if the result is valid, a small html demo was created to load and use the
library (see Figure 32). Note how the JavaScript library wrapping the wasm file
looks and works almost like a normal JavaScript library, the only difference being
a ’init’ function, which is required to be run before using the library, and the need
to free the memory of used object with the free() method.
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1 use wasm_bindgen::prelude::*;

2

3 #[wasm_bindgen]

4 pub fn add(left: f32, right: f32) -> f32 {

5 left + right

6 }

7

8 #[wasm_bindgen]

9 pub struct Point {

10 pub x: f32,

11 pub y: f32,

12 }

13

14 #[wasm_bindgen]

15 impl Point {

16

17 pub fn new(x: f32, y: f32) -> Point {

18 Point { x, y }

19 }

20

21 pub fn distance(&self, other: &Point) -> f32 {

22 ((self.x - other.x).powi(2) + (self.y - other.y).powi(2)).powf(0.5)

23 }

24 }

Figure 31: Rust: Minimum WebAssembly example

To load this project into Geofront, a reference to the path of the compilation artifacts
must be specified within the Geofront GUI, shown in Figure 34. A local path was
used for convenience, instead of publishing this demo to npm, and accessing it via
a CDN.

Figure 35a shows how all functions in this demo are loaded correctly, and Fig-
ure 35b shows that the functions indeed work as expected to create two Graphs.
Note how the parameter names and Types are also loaded, indicated by the names
visualized at the input and output of the nodes. This is thanks to the ’d.ts’ file of
Figure 33.

6.1.2 Rust: startin plugin

Loading the startin library also occurred as expected. startin already offered a
wasm-ready library, this could directly be loaded into Geofront. However, the API
exposed by this library used a non-functional style, making it hard to properly use
the library on a VPL canvas. This is why a custom plugin library still had to be
created, in which functions like ’new_from_vec’ were added to support functional
usage.
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Figure 32: Web demo using the WebAssembly build

Figure 33: wasm-pack Compilation artifacts: A Typescript Declaration file, a JavaScript
file, and a WebAssembly binary, visualized as WebAssembly Text (WAT).

Figure 34: Loading a plugin into Geofront using the GUI
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(a) (b)

Figure 35: Usage On the canvas

Other than that, all steps performed by the minimal Rust plugin could be made
with this project as well, as shown in Figure 36. This also showcases the usage
of optional, additional bindings: A series of functions are given definition, which
together flag the Triangulation type as ’Renderable’. This way, a variable of type
’Triangulation’ can be viewed in 3D by clicking on it.

6.1.3 C++: Minimal plugin

Unexpected shortcomings were encountered in making a minimal C++ WebAssem-
bly build in Geofront. It was possible to compile the plugin file to WebAssembly,
and to use it in a web demo, but this build was limited in its ability to be automati-
cally interfaced.

First of all, the construction of the C++ source code itself. Emscripten’s embind tool
uses a macro syntax to flag functions marked for JavaScript compilation, shown in
Figure 39.

While it does work similar to Rusts wasm-bindgen, cpp macro’s do not allow for
any pre-compile-time code checking, and can produce hard to decipher error mes-
sages.

Secondly, to compile this file to the right binary with accompanied JavaScript wrap-
per, it had to be compiled using the
-sMODULARIZE=1 and -sEXPORT_ES6=1 flags enabled. Otherwise, the JavaScript pro-
duced uses an import syntax too deviant from regular import statements to have
any chance to be interfaced by Geofront. It must be noted that emscripten was
behind on documentation compared to ’wasm-pack’ and the rust-wasm organiza-
tion [wasm-pack Contributors, 2018]. it does not offer many examples, or thorough
explanations on what many of the compiler flags do or mean [Zakai, 2011]. wasm-
pack on the other hand offers complete tutorials, a range of starter projects, and
elaborate documentation of most of its functionalities.

Thirdly, the compilation with the right flags enabled resulted in a valid ’wasm’ and
’js’ file, but not a ’d.ts’ file. Emscripten does not support typescript declaration
files, and third-party tooling to add this is only conceptual at this point in time. This
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Figure 36: Startin, loaded as plugin within Geofront



70 testing

1 #include <emscripten/bind.h>

2 #include <cmath>

3

4 using namespace emscripten;

5

6 float add(float left, float right) {

7 return left + right;

8 }

9

10 class Point {

11 public:

12 double x;

13 double y;

14

15 Point(double x, double y) :

16 x(x),

17 y(y) {}

18

19 double distance(Point other) {

20 return std::pow(

21 std::pow(x - other.x, 2) + std::pow(y - other.y, 2),

22 0.5);

23 }

24 };

25

26 EMSCRIPTEN_BINDINGS(cpp_min) {

27 function("add", &add);

28 class_<Point>("Point")

29 .constructor<double, double>()

30 .function("distance", &Point::distance)

31 .property("x", &Point::x)

32 .property("y", &Point::y);

33 }

Figure 37: C++: Minimum WebAssembly example
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study was also unable to find any developments indicating development towards
Interface Types. All of this does allow for a working web demo similar to the Rust
equivalent, shown in Figure 38. However, the absence of interface types, or the
substitute typescript interface types, made automated interfacing with the binary
difficult.

This study did eventually achieve a workaround by using JavaScript reflection. By
creating a blacklist of all 134 default functions the emscripten JavaScript wrapper
comes with with the aforementioned flags enabled, we can distill the imported
module down to the 2 symbols exposed by embind in this case, the add function
and Point class. However, by doing this, all function types and the names of all
parameters are lost, and can not be loaded into Geofront, which in turn does not
allow the resulting Geofront graph to be type safe. Another solution would have
been to manually declare type definitions as strings in the CPP file or as a typescript
file, but was deemed a too manual of a solution to a problem which should be able
to be solved programmatically, as ’wasm-pack’ did.

with a custom system in place to load embind files, the plugin loader could attempt
to load both the js and wasm file. It is here were an obstacle was encountered, which
could not be solved within the time frame of this study. The JavaScript wrapper
file dynamically fetches the WebAssembly file. This is allowed when importing a
JavaScript library using ES6 module syntax. However, this is incompatible with
the implementation choices of the Geofront plugin loader. To load a plugin dynam-
ically, it fetches and interprets the source files at runtime. However, for security
reasons, dynamically fetching a wasm file from within these runtime interpreta-
tions is not allowed. The wasm-pack solution does not have the same problem, for
it allows the WebAssembly file to be parsed within its initialization function. A
change within the emscripten JavaScript wrapper would allow this obstacle to be
overcome, but this must be left to subsequent research.

A final workaround was made to still load the plugin within Geofront (Figure 41).
However, this was done by forgoing the concept of a plugin, and by integrating
the WebAssembly binary within the source code of Geofront itself. As this thesis
is a study on direct accessibility of any GIS library, and not on creating the most
feature-rich GIS web VPL imaginable, this solution was discarded. However, it does
shows that if one forgoes all design constraints, it is fully possible to run and use
C++ libraries in Geofront.

6.1.4 C++: CGAL plugin

If the minimum cpp plugin example could not be loaded into Geofront, it will be
unsurprising that the entirety of CGAL could also not be compiled into a suitable
format ready for VPL consumption. Several steps towards this goal were made
however.
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Figure 38: Cpp-wasm web demo

Figure 39: Cpp Plugin Source file

Figure 40: Emscripten JavaScript wrapper blacklist
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Figure 41: The result of the workaround: including the C++ binary within the standard
library of Geofront

WebAssembly compilation was partially successful. A web demo was able to uti-
lize the CGAL kernel for basic operations, as can be seen in Figure 42. Additionally,
A subsequent web demo can utilize the CGAL TIN to a limited extent (Figure 43).

However, this demo too could not be fully completed. The major obstacle prevent-
ing full usage was making sure all dependencies, like Boost, are compiled together
with CGAL. Legacy makefile build systems complicate this process. To get the
current demo’s working, several dependencies and sub-dependencies had to be
manually traversed, their makefiles had to be edited, and the projects had to be re-
compiled and copied to different location, to be used by the emscripten compiler
exclusively. This is an unsustainable workflow, which will complicate develop-
ment.

Secondly, building a proper interface to a CGAL functionality, such as a triangu-
lation, was difficult due to combination of CGAL’s API together with the restric-
tions imposed by emscripten, and the functional interface of Geofront. As an ex-
ample, a robust manner of providing CGAL with an array of points was not found.
A single point could be provided, but instantiating a number of of points from
within JavaScript turned out to be expensive, so much so that the method had to be
deemed unusable. Additionally, this is difficult to interface from within Geofront,
as this would mean a chain of nodes would have to be created, one for each single
point (see Figure 45).

The GDAL.js project was analyzed in an attempt to find a possible solution to
handling the great number of dependencies [Dohler, 2016], and interfacing. Re-
grettably, this project too has resorted to incorporating the source code of GDAL
and all its dependencies, and has altered them heavily. Interfacing was solved by
heavy use of emscripten on the side of JavaScript, to workaround the limitations
regarding parsing vectors and arrays. To illustrate, a fragment was taken from
the inspect_geotiff example, shown in Figure 44. Actions like these cannot be
directly interfaced from Geofronts visual language.

All these factors together made it so a CGAL plugin could not be presented. This
is not to say that a WebAssembly build of CGAL is not possible, but that many
additional steps need to be taken to allow an API which is usable in practice. To
work around all limitations, a more extensive time frame could have allowed this
study to:



74 testing

Figure 42: CGAL Kernel Demo

Figure 43: CGAL Triangulation Demo

1. Translate CGAL and all dependencies to a WebAssembly-acceptable format

2. Build a wrapper library on the side of C++, offering a functional interface
while remaining compatible with C++, Geofront, and Emscripten’s way of
interfacing with WebAssembly.

3. Build a custom importer on the side of Geofront, to provide certain wrappers
around emscripten compiled projects.

However, much of this would be simplified if emscripten adopts the features found
in wasm_pack and wasm_bindgen, such as interface types, and support for vectors
and arrays without pre-allocation.
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1 // [...]

2

3 // This is where things get a bit hairy; the C function follows a common C

4 // pattern where an array to

5 // store the results is allocated and passed into the function, which

6 // populates the array with the

7 // results. Emscripten supports passing arrays to functions, but it always

8 // creates a *copy* of the

9 // array, which means that the original JS array remains unchanged, which

10 // isn’t what we want in this

11 // case. So first, we have to malloc an array inside the Emscripten heap

12 // with the correct size. In this

13 // case that is 6 because the GDAL affine transform array has six elements.

14

15 var byteOffset = Module._malloc(6 * Float64Array.BYTES_PER_ELEMENT);

16

17 // byteOffset is now a pointer to the start of the double array in

Emscripten

18 // heap space

19 // GDALGetGeoTransform dumps 6 values into the passed double array.

20

21 GDALGetGeoTransform(dataset, byteOffset);

22

23 // Module.HEAPF64 provides a view into the Emscripten heap, as an array of

24 // doubles. Therefore, our byte offset

25 // from _malloc needs to be converted into a double offset, so we divide it

26 // by the number of bytes per double,

27 // and then get a subarray of those six elements off the Emscripten heap.

28

29 var geoTransform = Module.HEAPF64.subarray(

30 byteOffset/Float64Array.BYTES_PER_ELEMENT,

31 byteOffset/Float64Array.BYTES_PER_ELEMENT + 6

32 );

33

34 // [...]

35

Figure 44: A fragment from the inspect_geotiff example found in GDAL.js. Source:
Dohler [2016]
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Figure 45: If only one point can be provided at a time, this would become the API in Ge-
ofront for adding three points: A long chain of additions

6.1.5 Comparison

A couple of additional comparisons between the four WebAssembly projects men-
tioned above were made, both in terms of the file size of the compiler artifacts, as
well as the performance of specifically the interoperability between WebAssembly
and JavaScript. These are the results:

Size

Figure 46 shows how the minimum C++ plugin compiles to a binary of 68 kb. Com-
pared to the Rust build of 20 kb, This is around 3.4 times more. The CGAL TIN test
compiled to 258 kb bytes, and compared to startin’s 114 kb, is around 2.3 times
more heavy.

The wasm-pack artifacts include the typescript header files, and both its typescript
and JavaScript file were not optimized for size. Emscripten does not produce a
typescript file, and compressed its JavaScript file.

All of these facts combined make it safe to say that the emscripten wrappers are
significantly heavier.

This study speculates this difference could be because emscripten’s primary use-
case is compiling complete applications. This requires a more heavy wrapper, of-
fering features like file servers. When compiling sizable C++ applications, the over-
head of this wrapper can be marginalized. However, apparently, emscripten is not
able to distinguish between full applications, and small, granular use-cases like this
one, and must include the ’full emscripten runtime’ in all cases.

Performance

To test the performance of wasm - JavaScript interaction, the minimum C++ and
Rust plugins were again used. This makes for a good comparison, since both
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Figure 46: Combined size of all compiler artifacts produced by either wasm-pack or em-
scripten

Figure 47: A benchmark using three comparable demo’s handling points, given 100.000
iterations
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(a) (b)

(c)

Figure 48: Rust vs C++ vs js performance benchmarks

projects deliver the exact same functionality from the point of view of JavaScript.
A pure JavaScript version was added however, to add a base comparison. The web
pages used for these tests are presented in Figure 48.

The results are can be seen in in Figure 47. These results show the emscripten
wrapper is not as performant as the wasm-pack solution. From experimentation,
performance hit could be narrowed down to the initialization step of the ’Point’
classes.

These results may suggest two phenomena: One, just like the artifact size compari-
son, this difference could be because emscripten is written from the point of view of
a C++ application, and use case does not require custom JavaScript - C++ interop-
erability. A full application seldom needs access to specific JavaScript processes the
way this demo does. such an application only needs to address JavaScript through
emscripten own interface, which could be more performant.

And two, the C++ builds may be suffering from ’legacy burden’, as described by
Ammann et al. [2022]. The emscripten solution needs to take more edge cases into
account, has more complicated dependencies, and software compiled using em-
scripten must be more heterogenous than a younger language like Rust. This all
could lead to a significant performance hit.
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6.2 demo applications

This section demonstrates the extent to which Geofront is able to perform the main
role it set out to fulfill: Accessing functions from low level GIS libraries from within
a web VPL, and subjecting these functions to to interactive elements, so that these
functions may be used in different ways by end users.

Two related demo applications are presented, both featuring the startin library
covered in Section 6.1. The following two sections demonstrate the achieved func-
tionality, and implications of said functionality. the last section presents the limita-
tions encountered during the writing and usage of these demo’s.

6.2.1 Demo One: Perlin noise & startin

The first demo application demonstrate Geofronts core ability to connect a native li-
brary to an arbitrary UI. In this hypothetical scenario, we wish to discover how the
startin triangulation reacts to various terrains by subjecting it to different point
samples: Smooth samples, noisy samples, homogenous or heterogenous point dis-
tribution.

In reality, the startin triangulation serves as a normal 2.5D delaunay triangulation,
so we do not expect to see any strange behavior, but one can imagine other terrain
extraction and generalization algorithms where a test like this would grant valuable
insights. An example of such an algorithm would be a plane fitting algorithm using
RANSAC. or least squares adjustment of a polynomial surface.

A test setup is made to generate various terrains using Perlin Noise [Perlin, 2002],
so that different landscapes could be simulated. This setup not provide a way
to generate different sample densities, but it will serve for the purposes of this
demo.

The resulting geometry pipeline can be seen in Figure 49. A UI is created by us-
ing multiple slider widget as inputs numbers. These numbers are used to create
a bounding box area, which is subsequently filled with a random distribution of
points (Figure 49a). The input sliders are also used to construct a noise field, which
is sampled using these points. These noise values are used as the heights of the
points (Figure 49b). Lastly, these points are used as input for the triangular irregu-
lar network (TIN) (Figure 49c).

Multiple observations can be made from this demo: Firstly, note how the various
visualizations of these in-between products could be inspected by selecting the cor-
responding operation (Figure 49). Secondly, observe how by connecting startin

to this arbitrary GUI, the behavior of the library can now be explored with different
parameters (Figure 50). Thirdly, recall that this sequence can be altered in real time,
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(a)

(b)

(c)

Figure 49: Visual inspection of in-between products
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Figure 50: Exploration of the effects of different parameters
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Figure 51: DSM and DTM extraction using Potree within Geofront

without any software alterations. These functionalities in conjunction are all indi-
cators that Geofront can indeed be used to explore the capabilities and quality of
native GIS libraries.

6.2.2 Demo Two: DTM & DSM extraction

Geofront was meant not only to be used to examine and visualize native libraries,
but also to directly utilize them to fulfill real applications. This second application
demonstrates the extent to which this is possible.

The hypothetical scenario used for this demo, is a situation in which a small scale
Digital Terrain Model (DTM) is required from a point cloud. One could imagine a
Digital Surface Model (DSM) or DTM of a construction site, required for creating an
accurate render of a buildings surroundings.

the above startin demo is used as a starting point. This time, however, a TIN

will be generated from a real point cloud, instead of a simulated one, and will
be converted to a .obj file, so that the DTM / DSM might be used in a different
process.

The resulting pipeline can be seen in Figure 51. Central to this pipeline is the ’Potree
applet’, found at the start of the pipeline. This is a special type of UI widget, which
can be used to open a new browser window, running a second application. This
application was created as part of this study, and uses the Potree viewer [Schütz,
2012]. It can be used independently, but by opening it from within Geofront, a
connection between the two applications can be established. It allows Geofront to
request a pointcloud, by pointing to a publicly hosted, potree-converted dataset.
The same connection allows Geofront to request parts of this pointcloud, so that a
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(a)

(b)

(c)

Figure 52: Options when using Potree within Geofront
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Figure 53: Resulting obj mesh, extracted from the Potree demo

sub section can be used in the Geofront pipeline. To query a specific subset, the
Potree viewer itself can be used to:

- Filter the density of the pointcloud to a desired LOD.

- Filter the pointcloud to a certain bounding box or polygon.

- Filter the pointcloud based on classifications, to create either:

a DSM using all samples (Figure 52a),

a DTM with only terrain (Figure 52b), or

a DSM with only buildings (Figure 52c).

The pointcloud subset is then loaded into the Geofront pipeline, after it can be used
as input for any loaded plugin. In this case, the points are inserted to the startin

triangulator, after which the resulting mesh is converted to an .obj string, and
made available for download using a ’save file’ widget, so it could be used in a
render (Figure 53).

Multiple observations can be made based on this demo. First, notice again how all
steps mentioned correspond to the nodes of the pipeline. None of these steps are
final. A different application could be created at runtime, by for example, adding
a laz writer component to save the resulting subset as a point cloud itself, or by
using a component to perform a solar potential analysis. This application strongly
suggests that Geofront can indeed be used to directly utilize native libraries as part
of a "real" use-case. Additionally, it demonstrates that Geofront allows not only
composability between libraries, but also between libraries and full-scale, existing
applications.
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6.2.3 Limitations

Based on the above demo’s, the following limitations in utilization were encoun-
tered:

• Limited STD: The standard operations and widgets present in geofront are
limited. examples of these are scaling a vector, filtering lists, or getting the
highest point from a set. Additionally, standard GIS functionalities, such as
reprojections, are also not possible. Currently, plugin libraries add some of
these basic functions as a workaround.

• Types not interoperable: While the type system of Geofront is extensive and
supports complex aspects such as generics, no clear design is present for in-
teroperating between internal Geofront types, such as a Geofront Mesh, and
a foreign type, such as startins triangulation. The method used in the above
demo’s involves breaking down a type into a basic JavaScript data formats,
and using that as an interoperable model. However, this relies on unsustain-
able parsers which use hardcoded strings, reflection, and "blind thrust".

• Limited visualization: Currently, the application is only able to visualize a
small number of data types, like points, lines, and meshes. Geofront’s source
code will have to be altered to support a library using images, for example.
Another visualization shortcoming is that meshes currently cannot support
over 65.535 vertices.

• Limited performance: The geofront runtime is not offloaded to a different
thread, due to a difficulty of integrating web workers with the logic of the
VPL. This means that heavy calculations performed on the canvas will freeze
up the GUI of the application.

6.3 feature comparison

In Table 1, Geofront is compared against the most similar VPLs mentioned in Sec-
tion 3.2. This comparison was done using the features described in Section 4.7.3.

Based on this comparison, the implementation of the proposed method appears
to indeed provide a unique set of features, not found in comparable visual lan-
guages. It offers relatively extensive plugin support compared to other VPLs, it is
web based, and offers a range of GUI nodes. Moreover, it is unique in its ability to
accept third party Plugins written in different types of languages, and in the fact
that it allows custom types within those plugins.

Geofront’s drawback is that it offers no GIS nodes by default, and relies on third
party plugins to provide these aspects. It can also not yet be regarded as scalable.
Despite certain design decisions which might aid scalability, no native runtime exist
yet which can run a Geofront script in a headless, GUI-less manner.
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Grasshopper Blender Mobius Geoflow Geofront
Plugin support Yes No* No Yes Yes
Plugin language C# - - C++ Rust/Js/Ts**
Plugin types Partially No No Unknown Yes
Headless runtime No No No Yes No
Web based No No Yes No Yes
Base GIS Nodes No No Yes Yes No
GUI nodes Yes Yes No No Yes

—
* Not without altering the source code of Blender itself

** theoretically, any language can be used. Practically, only Rust, JavasScript and TypeScript result in
valid plugins.

Table 1: Feature comparison of relevant VPLs

6.3.1 Plugin comparison

An additional comparison was made between the VPLs which accept third party
plugins. Specifically, the different ways in which a new node has to be registered
in Geoflow, Grasshopper, and Geofront are regarded next to each other.

Grasshopper

Grasshopper offers an object-oriented approach of registering new nodes: (Fig-
ure 54). A derived class has to be created and configured to represent an addition
operation in this case. While this does lead to a verbose setup, this also makes it so
metadata can be included alongside the ’function’, as can be seen in the constructor:
A name, nickname, and description can be provided.

Geoflow

Geoflow offers a similar object-oriented interface of registering new nodes (Fig-
ure 55). It is less verbose than the grasshopper version, but it does use hardcoded
strings to access the inputs and outputs.

Geofront

As shown before, Geofronts ’no boilerplate’ approach directly utilizes type and
function declarations. This leads to the following minimum plugin: (Figure 56).
Not only does this approach lead to no boilerplate code and classes, It also makes
it so no separate binding projects are needed in principle: Functions can be anno-
tated directly where they are declared in the core library. In practice, however, it
still appears to be practical to create a separate library with annotated functions.
Functions annotated with wasm_bindgen are constraint in certain ways, which can
complicate a core library. Also, Geofront does not offer a way to add aspects like
descriptions.
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1 namespace MyPlugin

2 {

3 public class AdderNode : GH_Component

4 {

5 public ComponentNodeFromString()

6 : base("Add Integers",

7 "Add",

8 "This component adds two integer values",

9 "My Plugin",

10 "My Plugin Category")

11 {

12 }

13

14 protected override void RegisterInputParams(GH_Component.GH_

InputParamManager pManager)

15 {

16 pManager.AddIntegerParameter("a", "value A", GH_ParamAccess.item);

17 pManager.AddIntegerParameter("b", "value B", GH_ParamAccess.item);

18 }

19

20 protected override void RegisterOutputParams(GH_Component.GH_

OutputParamManager pManager)

21 {

22 pManager.AddIntegerParameter("R", "result", GH_ParamAccess.item);

23 }

24

25 protected override void SolveInstance(IGH_DataAccess DA)

26 {

27 int a;

28 int b;

29 DA.GetData(0, ref a);

30 DA.GetData(1, ref b);

31 int c = a + b;

32 DA.SetData(0, c);

33 }

34

35 public override Guid ComponentGuid

36 {

37 get { return new Guid("197d2ec4-c3b1-47ed-8355-6af3b7612f01"); }

38 }

39 }

40 }

Figure 54: Grasshopper plugin
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1 class AddNode : public Node

2 {

3 public:

4 using Node::Node;

5

6 void init()

7 {

8 add_input("a", typeid(int));

9 add_input("b", typeid(int));

10 add_output("result", typeid(int));

11 }

12

13 std::string info()

14 {

15 std::string s;

16 if (output("result").has_data())

17 s = std::to_string(output("result").get<int>());

18 return s;

19 }

20

21 void process()

22 {

23 auto in1 = input("a").get<int>();

24 auto in2 = input("b").get<int>();

25 std::this_thread::sleep_for(std::chrono::microseconds(200));

26 output("result").set(int(in1 + in2));

27 }

28 };

Figure 55: Geoflow plugin
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1 #[wasm_bindgen]

2 fn add(a: i32, b: i32) -> i32 {

3 a + b

4 }

Figure 56: Geofront plugin

Still, it is safe to assume that this method of directly using WebAssembly as plugins
makes for a more simplified process compared to the aforementioned methods.

6.4 utilization assessment

This final set of tests offers an analysis on specifically the usability aspects of Ge-
ofront, according to the framework described by Green and Petre [1996].

Abstraction gradient: What are the minimum and maximum levels of abstraction?
Can fragments be encapsulated?

The design of Geofront deemed the need for re-using parts of a script as compo-
nents / functions as more important than the benefits of having no abstraction hier-
archy (what you see is what you get). This is why a method for encapsulation was
developed, by taking a part of a Geofront script, and compiling it to a JavaScript
subset. This could then be loaded by the plugin loader. However, the addition of
special types of nodes, and features like iteration, invalidated the geofront -> js

translator. The translation is still possible, but not implemented. As such, if a user
desires re-usable components and a lower abstraction level, they will need to write
a plugin.

Closeness of mapping: What ’programming games’ need to be learned?

Mapping a problem to a geofront script is intuitive for the most part. Think of the
operations needed to solve a problem, find the right libraries and nodes represent-
ing these operations, and connect these nodes according to type. However, this
mapping of problem and solution is hindered by the fact that Geofront needed to
support iteration, shown in Figure 57.

Based on the studies and experiences with existing VPLs (Section 2.2), these types
of ’iteration games’ are known to be a significant hinder to the closeness of mapping
principle.
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Figure 57: An example of a ’programming game’ within Geofront. The ’loop’ toggle indi-
cates if an component should operate on a full list, or operate on all individual
items within the list. This can be used to iterate over a ’list of objects’ column-
wise, or row-wise. This is considered a ’game’, since this is not an obvious
interaction, and must be learned before properly using Geofront.
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Consistency: When some of the language has been learnt, how much of the rest can
be inferred?

[Green and Petre, 1996] notes on the difficulty of defining ’consistency’ in language
design, and chose to define it as a form of ’predictability’. Geofront has intro-
duced symbolic distinctions between graphical entities to aid this predictability.
The biggest is the distinction between operation and widget components: oper-
ations are pure functions with inputs and outputs. widgets represent some IO in-
teraction, like an input value, a file, or a web service. This way, ’special behavior’
is isolated to widgets, making the rest of the script act more predictable.

In practice, certain inconsistencies within Geofront arise due to the open nature
of the plugin system. the consistency of geofront is mitigated by a library with a
very different notion of naming, or if the library chooses unusual input or output
patterns. For example, a euclidean, 3D coordinate can be specified as a Vector3

object, a structure, an array of three numbers, or three different x, y, z input param-
eters. Then again, it is unclear if inconsistencies between the API’s of a language’s
libraries are to be contributed to the inconsistency of the language as a whole.

Diffuseness: How many symbols or graphic entities are required to express a mean-
ing?

Geofront periodically suffers from the same ’Diffuseness’ problems Green and Pe-
tre [1996] adheres to VPLs general. That is, sometimes a surprising number of
’graphical entities’ / nodes are required to represent a simple statement. This is
apparent when representing simple mathematical calculations.

Additionally, the flowchart can only represent linear processes. Many geoprocess-
ing algorithms are iterative and make use of conditionals. These cannot easily be
expressed in a Dataflow VPL. As such, these processes must happen within the
context of a function, within a ’node’.

A widget evaluating a line of JavaScript could help improve diffuseness. For now,
if a user desires to use dense mathematical statements, or functions with many
conditionals and complex iteration, a Geofront Plugin should be created.

Error- proneness: Does the design of the notation induce ’careless mistakes’?

There are some errors the user can make in Geofront that will not be immediately
obvious. The biggest one is that there are no systems in place preventing large
calculations. These might freeze up the application.

To prevent this, the geofront interpreter should have been implemented to run on
a separate thread, using a web worker. Besides this, in general, many systems are
in place preventing errors, such as the type-safety used throughout geofront. Also,
by disallowing cyclical graphs, users cannot create infinite loops accidentally.
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Hard mental operations: Are there places where the user needs to resort to fingers
or pencilled annotation to keep track of what’s happening?

Geofront is developed specifically to prevent "Hard mental operations". Following
the dataflow paradigm explained in Section 2.2.3, geofront chose to disallows cycli-
cal patterns. This greatly reduces the complexity of possible graph configurations,
and also causes all in-between results to be immutable or ’final’. By then allowing
these results to be inspected, and allowing the graph to be easily reconfigured, Ge-
ofront allows a workflow rooted in experimentation and ’play’. Users do not need
to ’keep track’ or ’guess’ how things work. Instead, they can simply experience the
behavior, and adjust the behavior until satisfied.

Hidden dependencies: Is every dependency overtly indicated in both directions? Is
the indication perceptual or only symbolic?

The dimension of ’hidden dependencies’ is another way the dataflow-paradigm
is advantageous. The pure functions of a diagram-based VPL like Geofront make
the language in general consistent and predictable. However, there are two excep-
tions to this rule: First, the widget nodes are allowed to produce side-effects, such
as opening a window, asking for an input, making a web request, etc. These are
required to provide geofront with interactive inputs and outputs. The distinction
between widgets and

And second, the pureness of functions can only be maintained if all Geofront li-
braries also exclusively use pure functions. There is no fail-safe in place to prevent
the usage of a library containing functions with many side-effects.

Premature commitment: Do programmers have to make decisions before they have
the information they need?

In general, Geofront requires almost no premature commitment. Or, rather, the
level of premature commitment is in line with textual programming languages, in
the sense that a user is always somewhat committed to the structure they them-
selves build.

One practical way in which Geofront exceeds in this dimension of premature com-
mitment, is that the application does not require a restart upon loading a new li-
brary. Users can add or remove libraries "on the fly". This is unlike any VPL studied
at Section 3.2 or Section 3.3.

One particular type of commitment users must be aware off, however, is the com-
mitment to using a VPL like Geofront in general. The current version of Geofront
does not support compilation to JavaScript yet, which would mitigate this prema-
ture commitment.
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Progressive evaluation: Can a partially-complete program be executed to obtain
feedback on ’How am I doing’?

Yes. As explained at the answer for the dimension of ’Hard mental operations’,
this aspect, together with the ability to inspect parameters, allows a user to ’debug
while they write the program’.

Role- expressiveness: Can the reader see how each component of a program relates
to the whole?

as the authors of Green and Petre [1996] write: "The dimension of role-expressiveness
is intended
to describe how easy it is to answer the question ’what is this bit for?’"

One of the ways Geofront addressed this is by making a distinction between nodes
possessing pure operations, and nodes producing side effects, like widgets.

Secondary notation: Can programmers use layout, color, other cues to convey extra
meaning, above and beyond the ’official’ semantics of the language?

No, Geofront does not offer annotations in its current state, besides the way the
nodes are configured on the canvas. Geofront does provide visual indicators for
types, and for if a cable / variable represents a single item, or a list of items.

This could be improved by providing a way to annotate: to create groups, to write
comments, etc. Type colors, or some other way to distinguish data based on iconog-
raphy, would also improve the secondary notation principle.

Viscosity: How much effort is required to perform a single change?

Despite these efforts, the ’mouse intensive’ interface of VPLs like Geofront contin-
ues to be a hinder for viscosity. Certain situations require excessive mouse interac-
tion, like substituting a function with another function, but keeping all inputs the
same. In text, this would be as simple as a non-symbolic renaming of the called
function. In geofront, this requires a lot of reconfiguration of cables.

Viscosity could be improved by creating special actions in the editor to perform
these types of manipulations.

Visibility: Is every part of the code simultaneously visible (assuming a large enough
display), or it it at least possible to juxtapose any two parts side-by-side at will? If
the code is dispersed, is it at least possible to know in what order to read it?

All parts of the code are simultaneously visible, and geofront does not offer any
way of creating new popups or screens, with the exception of special GUI widgets.





7 C O N C L U S I O N

This chapter contains the conclusion of the study. It starts out by answering the
research questions posed in the introduction (Section 7.1), followed up by a sum-
mary of the most significant contributions (Section 7.2) and the limitations of these
contributions (Section 7.3). It continues by addressing points of discussion about
this study (Section 7.4), which is followed by a number of theorized implications
of this study (Section 7.5), and lastly, a reflection on the value and quality of this
study (Section 7.6).

7.1 conclusion

This section answers the research questions. It starts with answering the sub re-
search questions, and concludes with the answer to the main research question.

Sub Questions

1. "What GUI features are required to facilitate this method, and to what extent does
the web platform aid or hurt these features?"

It turned out that two layers of GUI features had to be created:

Framework application: Firstly, a base application was required to host the visual
programming language, which needed to provide support for multiple windows,
dropdown menu’s, side menu’s etc. For this, a custom framework using Web Com-
ponents was created, due to the absence of a desktop application-like framework in
the JavaScript ecosystem. However, this did not provide the same level of tooling
as a library like IMGUI [Cornut, 2022] or egui [Ernerfeldt, 2019]. Because of this, in
this area, the web context lead to a sub-optimal experience.

The VPL: Secondly, UI elements were required to form the interactive elements of
the visual program itself. This GUI was given shape using a custom implementa-
tion. DOM events were used as inputs, and the Canvas API provided a way to visu-
alize the VPL. The web context provided two advantages here. Firstly, a JavaScript
program can access a large amount of features by default, such as this canvas API,
but also WebGL. These features do not need to be included within the source code
of the application, leading to quick load times. Secondly, by using iframe’s and
window pop-ups, the web context could be utilized to integrate third party UIs in a
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simple manner, as demonstrated with the Potree demo in Section 6.2. Summarized,
for this second set of GUI features, the web platform was advantageous.

2. "To what extent does this method intent to address the discrepancies between soft-
ware applications and libraries, as described by Elliott (2007)? Does it succeed in
doing so?"

Based on the features presented at Section 6.2 and Section 6.3, it can be stated that
the implementation was able to address all three discrepancies to a certain extent:

1. Library capabilities get lost when used in an application: Because of the plugin
system of this method, all functions which are included in a wasm compilation
can be accessed by a user from within an application. Additionally, the plugin
boilerplate comparison of Section 6.3 showed that the no-boilerplate setup makes
it simpler to add a new library as a plugin. Both features combined may lead to
less features ending up ’lost in translation’.

2. Applications are not further composable: The implementation showed that
this web-based VPL can make existing applications composable, evident from the
demo application presented in Section 6.2. In this example, the Potree application
was composed within a pipeline to extract a DTM or DSM, while retaining full
functionality as a standalone application.

3. A library offers no visualization or GUI by itself, and must be turned into an
application before it can be used: Because the method presented in this study suc-
ceeded in combining GUI components with low-entry barrier plugins, and because
it allows the usage of unaffiliated WebAssembly projects, Geofront pipelines may
act as a "custom GUI for any library" to an extent. In that sense, end users will only
have to wait for a WebAssembly build, instead of a full application, before they are
able to access a libraries content.

3. "What are the differences between compiling a GIS library written in C++ to
WebAssembly, compared to compiling a GIS library written in Rust?"

The differences between C++ and Rust compilation are caused by the
difference in their respective WebAssembly compilers: C / C++ requires the us-
age of emscripten and embind. Rust requires the usage of wasm-pack, and wasm-
bindgen.

In the experiments performed by this study, significant differences were encoun-
tered between these compilers in terms of file size, supported features, and the
performance of the produced ’glue code’. The results of Section 6.1 showed that
the emscripten compiler produced a binary which requires more than three times
the size of the same functionality compiled with wasm-pack. Interfacing this bi-
nary with JavaScript was between six and seven times as slow compared to the
rust equivalent.

Moreover, emscripten lacked interface features which were required for the pur-
pose of using WebAssembly to compile libraries for generic use by any language.
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wasm-pack provides type declarations in the shape of a TypeScript file, or by em-
bedding them in WebAssembly using the proposed interface types [Wagner, 2022].
On top of that, it offered a strong binding system, allowing complex types such
as a vector of floats (Vec<f32>) to be easily translatable to a JavaScript equivalent
(Float32Array).

Regrettably, none of the above features were present in emscripten. Custom inter-
ventions were necessary on both the C++ end, and the JavaScript end, to get to a
similar level of functionality. However, these interventions made it so both ends
need to be developed in relation to each other, which invalidates the WebAssembly
binary as a generic interface.

Because wam-pack produces WebAssembly binaries with generic, simple, typed
interfaces, Rust libraries could be used within the methodology presented in this
study. However, because binaries produced by emscripten did not possess these
traits, C++ libraries could not be used within the methodology, meaning the goal
of making core C / C++ GIS libraries more directly accessible could not be met.

All in all, it must be concluded that Rust-based WebAssembly compilation is more
performant, more lightweight, and more feature rich compared to C++-based com-
pilation.

4. "What measures are taken to make this VPL scalable to large geo-datasets, and how
effective are these measures?"

Three measures were conceptualized and successfully implemented. However, all
measures do possess certain shortcomings. It must also be noted that all these
measures are only presented ’in principle’. Future work is required to verify their
impact in practice.

1. Portability: The application uses native geocomputation libraries compiled
to WebAssembly, which makes the libraries behave the same way in the fron-
tend, and in a potential back-end.
Effectiveness: The effect of this is limited by the fact that wasm binaries must
for the time being be wrapped using JavaScript, due to the current lack of in-
terface types. This means that currently, a backend would require a JavaScript
runtime to use these libraries.

2. Zero-cost abstraction: The application uses a
zero-boilerplate plugin system, to offer direct usage of JavaScript-wrapped
libraries, and eventually WebAssembly-compiled libraries. This means that
there is no difference between calling an operation in Geofront, and calling
the function in the JavaScript-wrapped library. This allows a Geofront pipeline
to be compiled to JavaScript, completely eliminating any explicit dependency
to the Geofront platform, the VPL model, or the GUI. This is why Geofront
can claim to use ’zero cost abstraction’.
Effectiveness: A Geofront-to-javascript compiler was implemented and func-
tional, but requires further study. For example, it does not compile complex
GUI Widgets, and does not support iteration.
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3. Locality: Geofront is designed as a Dataflow VPL, which shares characteris-
tics with functional programming. This leads to source code which can be
reasoned about in a local manner, instead of a global one. This allow for par-
allelization.
Effectiveness: The implementation of Geofront as a dataflow VPL was suc-
cessful. However, due to limitations of the JavaScript language, the functional
programming properties of the DataFlow VPL could not be strictly enforced.
Plugins must be trusted not to alter input data, or call global, state-altering
functions, as functions could not be declared as ’pure’, and variables cannot
be declared as ’immutable’.

5. "How does this method compare to existing, alternative VPLs and browser-based
geocomputation methods, regarding the properties relevant to the goal of direct acces-
sibility?"

Based on Table 1 presented in Section 6.3, Geofront provides a unique set of fea-
tures. Comparable visual languages do not possess this exact combination. It offers
relatively extensive plugin support compared to other VPLs, it is web based, and
offers a range of GUI nodes. Moreover, it is unique in its ability to accept third party
Plugins written in different types of languages, and in the fact that it allows custom
types within those plugins.

Main Question

"Is a web based VPL a viable method for directly accessing native GIS libraries with
a composable interface?"

Based on the answers to all supporting questions, The answer is a reserved yes.

The method is indeed capable of bringing native GIS capabilities from certain li-
braries directly into contact with end users, from within an application, without
installation or configuration, and in a further composable manner. Compared to
browser-based web applications, this method is more composable thanks to the
dataflow-VPL implementation, and compared to the studied native VPLs, these
functionalities are more directly available because of the static, web based imple-
mentation. The method is also unique compared to studied web-based geometry
VPLs, because of the plugin system, the range of different GUI nodes, the dataflow
VPL properties, and the proposed zero-cost abstraction runtime. All of these fea-
tures combined lead to a VPL which is able to directly connect GUI components
with native GIS libraries, all while remaining scalable in principle.

On a practical level, more work remains to proof this feasibility. The methodol-
ogy developed by this study is only theoretically accessible and composable, based
on achieved features. User-testing is required to confirm if this method indeed
improves workflows, and actually saves time and energy of developers and end
users. Moreover, the prototypical software implementation used is limited and not
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production ready. C / C++ GIS libraries cannot be used in the method presented,
which may or may not be fixed when the emscripten compiler adopts the Interface
Types proposal. Additionally, the zero-cost abstraction runtime is non-functional,
and must be improved upon in future work.

Despite all of this, based on the presented work, it is safe to say that visual pro-
graming methods, distribution using WebAssembly, and Rust-based GIS, all re-
main promising, valuable directions of future GIS research.

7.2 contributions

The study was able to deliver two major contributions:

- A new implementation of a web-based geocomputation VPL This study in-
troduces a novel JavaScript implementation of a web-based dataflow-VPL ca-
pable of both geometry processing, as well as geocomputation. Compared
to existing web-based alternatives, this VPL is closer in design and function-
ality to common geometry VPLs like grasshopper, as it adheres to being a
graph-based dataflow VPL.

- A novel workflow of publishing and using native libraries on the web Sec-
ondly, a new workflow was developed to allow a geo-computation function
or library to be used within a visual programming environment. Moreover,
this can be done with a minimum of configuration steps: Any Javascript,
Typescript or Rust library which satisfies the conditions layed out in Sec-
tion 5.2.1, automatically functions in Geofront.

These two contributions together lead to an environment suited for a number of
use cases, including:

• Visual debugging: One can use this environment visualize the result of an
algorithm in 2D or 3D.

• Fine tuning parameters: In situations where algorithms contain unintuitive
or empirically derived parameters (e.g. RANSAC), a visual environment can
be use to quickly try out multiple settings, and to observe their effects.

• Benchmarking: Geofront can be used to test the web performance of multiple
algorithms written in different languages.

• Publication: Geofront scripts can be shared using a link. this can be used to
make a native library usable online, and by doing so, it may help to lower the
delta between ’my library works for me’ and ’my library works for someone
else’.
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The combination of these features together make Geofront unique among both
geo-VPLS and web-VPLS. by providing the full source code, together will all im-
plementation details given in Chapter 5, this study aims to provide guidance for all
subsequent studies on the topic of VPLs, geocomputation, or geoweb applications
using WebAssembly.

7.3 limitations

These contributions are bound by following limitations:

- Only Rust, Js & Ts library support For now, only libraries written in Rust or
Javascript / Typescript can be used in Geofront. Due to the results layed out
in Section 6.1, a stable method of using any C++ library can not be provided
for at the current moment.

- In practice, not all libraries can be used Section 5.2.1 shows that not all Rust
and JS/TS libraries are supported. Additionally, in order to properly commu-
nicate, visualize, and make data interoperable, special ’config’ functions and
methods are still required.

- Only small-scale geodata is possible the Geofront environment uses browser-
based calculations, which does not lend itself well to process datasets larger
than a certain threshold. This means it cannot be used properly for big data,
or other expensive processes.

- Implementation shortcomings Geofront is a prototype, and has many usabil-
ity shortcomings, explained in Section 6.4. In addition, many geocomputation-
specific aspects are missing, such as a topographical base layer.

7.4 discussion

This section covers questions on the decisions made during the study, and the an-
swer this study is able to provide as a response.

Q: Why wasn’t Geofront developed as a native application, and published to the
web as a whole?

A native-first build of Geofront would indeed be more performant, especially if the
application is fully hybridized: If both a native and web build of an application
are available, then users can choose for themselves if they wish to sacrifice the
performance and native experience for the accessibility of a web build.
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However, many features key to the solution and workflow specific to Geofront
would be lost in such a setup. (Prospected) features like dynamically loading plu-
gins, scriptable components, or the compilation to JavaScript would be lost, or
would have to be regained by incorporating a browser engine within this native
application.

However, a valid criticism can be made that this study could have opted for adding
more native-first components, such as the maplibre renderer [Ammann et al., 2022]

Q: A large reason for developing web-based VPLs is accessibility. Is this environ-
ment accessible?

This study can only answer this question to a limited degree. Based on the anal-
ysis given at Section 6.4, it is safe to say that based on its features, Geofront is
about as accessible as comparable geo-vpls, like Geoflow or Grasshopper. How-
ever, this analysis is only based on the achieved functionality and features. Actual
user-testing is required to assess The true accessibility of the tool.

Q: Is this environment a competitor to native methods of geocomputation?

In theory, yes. Using the workflow as described, native geocomputation libraries
could be used on the web at near native performance, without requiring installa-
tion. Additionally, the web offers enough functionality so that even sizable, local
datasets could be processed this way. In practice, the dilemma between Rust and
C++ means that in the sort term, this environment will not be used for professional
geocomputation. Additionally, the tool is still in a prototypical state, and will need
to be more stable and reliable before being used professionally.

7.5 future work

The many fields this study draws from mean that a great variety of auxiliary aspects
were discovered during the execution ot the study. Some of these aspects are listed
here, and could lead to interesting topics for follow-up research.

7.5.1 Cloud-native deployment & scalability

As presented, an early build of Geofront had the ability to compile a Geofront script
to regular JavaScript (see (Figure 30)). All libraries were converted to normal im-
port statement, all nodes were replaced by function calls, and the cables substituted
by a variable token. This way, the application could be run headless in either the
browser or natively, using a local JavaScript runtime like Deno [Deno Contributors,
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Figure 58: An expanded proposed methodology, repeated

2022]. However, time constraints led this feature to be abandoned in favor for other
aspects.

A future study could re-implement this feature, opening up the possibility for de-
ployment and scalability: Scripts created with geofront could then deployed as a
web worker, as a web applications of themselves, or as a web processing services
[Open Geospatial Consortium, 2015]. Also, by running this script on a server, and
ideally a server containing the geodata required in the process, one could deploy
and run a Geofront scripts on a massive scale.

The overall purpose of this would be to create an open source alternative to tools
like the Google Earth Engine [Google, 2022], and FME cloud compute [Safe-Software,
2022a]. In conjunction with statically hosted geodata, Geofront could become a
’cloud native’ platform, allowing end users both to construct geodata pipelines, and
execute them natively on the cloud as well.

7.5.2 Streamed, on demand geocomputation

This study showed that browser-based geocomputation is reasonably viable. This
might allow for a new type of geoprocessing workflow, which could replace some
use-cases that now require big-data processing and storage. A big problem in the
GIS industry is having to process and store sizable datasets, while only a portion
of it will be actually used. A possible solution could be to take a raw dataset base
layer, and process it on-demand in a browser.

This would have several advantages. First, end-users can specify the scope and
parameters of this process, making the data immediately fine-tuned to the specific
needs of this user. Secondly, this could be a more cost-effective method, as cloud
computation & Terabytes of storage are time consuming and expensive phenom-
ena.
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This type of on demand geocomputation is certainly not a drop-in replacement for
all use cases. But, in situations which can guarantee a ’local correctness’, and if
the scope asked by the user is appropriate, this may be possible. Examples of this
would be a streamed TIN interpolation or color-band arithmetic.

7.5.3 Rust-based geocomputation & cloud native geospatial

An interesting aspect this study was able to touch on is using the Rust language
for GIS processing and analysis. The reason for this was the extensive support for
webassembly, which was essential for allowing GIS tools to be used in the browser.
However, there are additional reasons one might want to perform geocomputation
within Rust. One is that rust is widely considered as a more stable, less runtime
error-prone language than C++, while offering similar performance and features.
Additionally, rust Wasm binaries also tend to be smaller than C++ wasm binaries.

This could be valuable to the "cloud-native geospatial" movement. This GIS move-
ment aims to create the tools necessary to send geocomputation to servers, rather
than sending geodata to the places where they are processed. To do this, geocom-
putation must become more portable than it currently is, and Rust compiled to
WebAssembly might proof to be a strong candidate for creating exchangeable, per-
formant, compact, and error-proof binaries. It already sees usage on both cloud
and edge servers [Eberhardt, 2022].

Therefore, studying Rust-based geocomputation for the purpose of cloud native
and edge computing, would be a promising topic for subsequent research.

7.5.4 FAIR geocomputation

The introduction theorized on how both VPLS and web-apps could be used to make
GIS tools more directly available. The study chose to pursuit this on a practical,
technical level.

However, a more theoretical study could also be performed. It turns out that the
concepts of ’accessible GIS tools’, have something in common with many of the
geoweb studies on data accessibility and usability [Brink, 2018]. The ideas of ’data
silo’s’, ’FAIR geodata’, and ’denichifying of GIS data’ (see Brink [2018]) may be used
as well as well on GIS tooling: Functionality Silo’s, FAIR geocomputation, denichi-
fying of GIS computation.

Therefore, an interesting question for a subsequent study could be: "How could
geocomputation become more Findable, Accessible, Interoperable, and Reusable?",
or "How to integrate the function-silo’s of GIS, BIM & CAD?" By focussing on data
processing actions rather than the data itself, we may shed a new light on why data
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discrepancies and inaccessibility exist. After all, if a user is unable to convert re-
trieved geodata to their particular use case, then the information they seek remains
inaccessible.

7.6 reflection

Here I reflect on possible shortcomings of the thesis in terms of value and quality,
and how I have attempted to address these shortcomings.

Biases regarding C++ and Rust

First of all, in the comparison between C++ and Rust, the studies conducted proved
to be unfavorable towards C++. However, C++ and emscripten may have been
used improperly, due to the authors personal inexperience with the build tooling of
the language. Many complications were encountered during compilation, leading
to extensive editing of makefiles, and attempts at recompiling forked subdependen-
cies of CGAL using unsustainable workarounds. It is unknown how much of this
was due to personal C++ inexperience, inflexibility of the libraries in question, or
the shortcomings of the toolchain.

Despite this, the study performed steps to make the judgement as non-biased as
possible. Preliminary studies were conducted with both languages, and multiple
demo projects have been made with both. Additionally, before the assessment be-
tween Rust and C++, approximately the same amount of time was spent with both
languages. One could even argue that this last fact may make this judgement more
fair compared to an author well-accustomed to C++.

Scope too wide

Additionally, the scope generated by combining geocomputation, web applications
and VPLs, may have made the scope of this study too extensive. This is evident in
the great number of related studies, and the sizable workload of the implementa-
tion. A better approach might have been to focus the scope of the thesis down to
only ’browser-based geocomputation’, ’visual programming and GIS’, or ’portable
GIS libraries using rust’, to allow for a more in-depth analysis.

On the other hand, the core of the contribution of this thesis lies precisely in the
attempt to form bonds between these subjects, especially since prior studies re-
mained by en large closely scoped to their respective domains. The position taken
by the author was that a certain synergy may exist, and that each separate domain
stand to gain from the ideas and knowledge found in the other ones. In order to
make this possible, the study had to acquire a scope to explore all in-between syn-
ergies and interactions, leading to geo-vpls, web-vpls, and browser-based geocom-
putation. Now that this study has made these connections explicit, future studies
can focus on more precise aspects of these cornerstones again.

Too distant from the field of GIS
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Where the exact boundary of one field of study is, and where another begins, re-
mains of course a fuzzy question. Still, the direction of this study appears to stray
far from ’core GIS concerns’, and appears more in one line with the field of "End
User Development (EUD)", and fields like "Computer-Human interactions".

In defense of this, during the implementation of the study, it appeared that little
foundation was in place for a web VPL specifically. This made it necessary to gen-
eralize, to build the missing foundation first. For example "How can a library be
compiled and loaded into a VPL" is a question which had to be answered first. Then,
the question could be specified to geometry and Web VPL. And only after that, the
geodata and geoprocessing libraries specific to the field of GIS could be regarded.
By doing so, this study wishes to provide a foundation to assist any subsequent
future study in this direction, which can then be more GIS focussed.

Subjectivity in qualitative assessment

Lastly, many of the assessments made by this study are qualitative assessment, and
as such, might suffer from a high level of subjectivity. This is unavoidable in any
assessment which does not come down to clear, quantifiable aspects, such as per-
formance, memory usage or precision.

Nevertheless, the study has attempted to scope this subjectivity by basing its as-
sessments heavily on prior works in the field of VPLs, showcasing clear examples,
and by focusing on achieved features.





A S O F T W A R E I M P L E M E N TAT I O N

All source code of the implementation is publicly available under the MIT license,
and can be found on the version control platform Github, at the ’thegeofront’ or-
ganization: https://github.com/thegeofront. Additionally, the Geofront applica-
tion itself is hosted at http://geofront.nl, or https://thegeofront.github.io/.
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