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Abstract

The flexibility of the Industry Foundation Classes (IFC) format makes it challenging to blindly
rely on the data it stores. This is because, to allow its flexibility, the stored data in an IFC
file can be missing, incorrect, redundant, or stored in vague ways while the file can still be
considered format compliant. This missing reliability is an issue for a format that is so central
to the Architecture, Engineering and Construction (AEC) industry. This also severely hampers
the chances for automated processes to be applied in the AEC industry. Chances that could
reduce the time and cost spend on a construction while enlarging its quality. Prior done
research on this subject is sparse. The small subset of this research that covers the ”repair” or
reliable extraction of IFC data primarily focuses on idealized situations that do not often occur
in practice. Due to the combination of these factors, this master thesis attempts to discover if
it is possible to extract reliable data from the unreliable IFC files with an automated method.

Because of the large flexibility and broadness of the IFC format, the scope of the thesis had
to be limited. This was done by focusing on the extraction/reconstruction of storeys (and
their elevations), rooms, and apartments. For these three subjects not only extraction/recon-
struction methods have been created, but they have also been implemented in an open source
software tool1.

To develop reliable processes, the processes have to be based upon reliable data. From the
data available in the IFC format, the tangible geometry is considered to be the most reliable.
However, not all the other data can be discarded. Only the data that is implicitly stored in
the tangible geometry can be ignored without losing information. In practice this means that
most, if not all, topologic data and a subset of the semantic data can be ignored.

It was found that for the extraction/reconstruction of storeys (and their elevations), a z-value
extraction based on created IfcSlab/IfcRoof groups was fairly effective. These groups were
made based on their size, height, and location. This process does show a lowered reliability
in buildings with complex storey structures.

It was found that for the extraction/reconstruction of rooms, a voxelization approach func-
tioned very well. The boolean refinement that followed, which took the shape from a rough
voxelization to the precise room shape, showed some reliability issues.

Finally, it was found that for the extraction/reconstruction of apartments that rules applied
to a created space syntax graph showed promise. The rules that were used were simple,
resulting in lower reliability in structures that had more complex room relationships.

In conclusion, this research has been unable to give a definite answer to the issues at hand.
However, all three the subjects that have been covered showed promising results and can be
considered steps towards a solution.

1The tool is available from: https://github.com/jaspervdv/IFC_ApartmentDetection
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1. Introduction

1.1. Background & Motivation

The Architecture, Engineering and Construction (AEC) industry is complex. A large amount
of parties have to communicate and collaborate to successfully realize a building or construc-
tion [Bouchlaghem et al., 2005]. These parties create masses of data that has to be exchanged
in an easy and reliable manner. The Industry Foundation Classes (IFC) format was introduced
to ease this exchange of data [Ozturk, 2020]. However, to support the diverse needs of the
different disciplines in the AEC sector the IFC format is very flexible [Venugopal et al., 2012].
This flexibility can result in data that is missing, incorrect, redundant, or stored in vague ways
while the IFC file is still being considered format compliant [Venugopal et al., 2012; Noardo
et al., 2021; Ying and Lee, 2021a]. So, although the IFC schema should improve interoperability
and clarity, in practice the format is unclear and error-prone [Venugopal et al., 2015; Noardo
et al., 2021]. This makes it challenging for a party to rely blindly on the received data that is
stored in IFC files. These parties, and the AEC industry as a whole, would benefit from a novel
approach that could extract accurate and reliable data based on these possibly unreliable IFC
files in an automated manner.

The variable quality of the data stored in IFC files makes it challenging for automated pro-
cesses to function in an effective and reliable manner. Unreliable IFC files often create unreli-
able automated output. This forces involved parties to evaluate the data present in an IFC file
and manually bring it up to a standard that ensures reliable output of the automated process.
An example of this can be seen in the parties that cover the Building Energy Modelling (BEM)
computations [Lilis et al., 2015]. BEM computations require special geometry which could be
automatically extracted from IFC files with established software packages. However, errors in
the IFC files can result in an output with an insufficient quality. This forces the parties to either
avoid automated processes and manually extract and correct the required data or manually
validate the automated output. The BEM sector, but also other parties in the AEC industry,
would be significantly helped by an automated process that could function in a reliable man-
ner on faulty IFC data. An example of an issue that could arise by blindly trusting an IFC file
can be seen in Figure 1.1.

A reduced need of the semi-manual validation of the IFC files before automated processing
would allow automated processes to be applied more easily and take a more central role
in the AEC industry. This would allow the parties to put more focus, time, and effort in the
manual creation of design solutions while allowing the computer to resolve the detection and
collection of data [Türkyılmaz, 2016]. This will not only save resources at parties individually,
but also to the collaborative group as a whole. Involved parties will be able to share products
and more accurate feedback in a shorter time span. The improved exchange can possibly
result in an overall reduction of cost in both the development and subsequent life of a building
[Venugopal et al., 2015] while allowing for more innovative design solutions to be created [Hu
et al., 2016].
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(a)

(b)

Figure 1.1.: An example of an issue that could be created when relying on IFC data that may
not be correct. (a) shows the outlines of a space bound by walls (left). An incorrect space
object can be seen in the middle, on which a valid relationship space boundary is based
(right), however this is not correct due to the space object being incorrect. (b) shows the
desired situation where the space object complies with its surrounding walls.

One could reason that the reliability and accuracy of the data stored in IFC files has to be
ensured by the original creator of the IFC file. Thus, the original Building Information Mod-
eling (BIM) model has to be repaired and/or the model creators should be better educated.
However, this is a partially flawed idea due to the significant amount of errors that are either
hidden from the user and/or are created by the software packages when exporting the mod-
els [Katsigarakis et al., 2019; Arroyo Ohori et al., 2018]. These are often errors that the user
has no direct control over and can be completely unaware of. Aside from this, having au-
tomated software that functions on sub-optimally made IFC files allows firms to more easily
share models even though their BIM expertise is limited.

Although the chances that the automated extraction of reliable data from unreliable IFC files
opens up, it seems that it has not been extensively covered in prior research. The small subset
of research that does cover a form of automated repair or reconstruction often presume an
idealised but unreal situation. This research often covers singular errors or only take format
and non-standard use into account. However, in practice, a variety of different errors occur,
often having effect on each other. These errors range from minor intrusive ones, e.g. presence
of small wall clashes and unreferenced features1, to heavily interoperability limiting ones,

1Note that although the presence of a small number of unreferenced features could pass by without notice. Larger
numbers of unreferenced features does bloat the already large file size of the IFC format resulting in, among other
things, reduced interoperability.
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e.g. absence of topologic data, incorrect geometry2, or incorrectly labelled data.

1.2. Research Goal

The potential that an automated approach of reliable data extraction from unreliable IFC data
could provide in combination with its trivial coverage in literature opens up an interesting
space for this research. The goal of this research is to not only develop a method that can
automatically extract reliable data from faulty IFC files but also correct and enrich the file.
This will be attempted to be done by ignoring the majority of the data that is considered error-
prone and recreating this data based on data that is considered to be reliable. The output of
this method should be a reliable base for already established automation methods to function
upon. To successfully create this method this research will address the following question:

• How can building features be automatically detected from an IFC file in a reliable man-
ner?

The term features is used in this thesis as an encompassing term for objects and values. Ob-
jects are sets of, but not limited to, walls, floors, and rooms. Values are sets of, but not limited
to, dimensions (e.g. storey elevation heights) and classifications (e.g. complex or simple
rooms). The research question can only be answered if the following question is answered as
well:

• What data in an IFC file can be considered accurate and/or reliable and is the minimal
needed data to base the reconstruction upon?

1.3. Research Scope

The presented research questions will be the main focus of the thesis and will not only be
attempted to be answered but will also be attempted to be implemented (and tested) in an
open source software tool. Due to the flexibility and broadness of the IFC format there are
too many building features and objects to evaluate in a reasonable time-span. This makes
it challenging to answer these questions for the complete IFC format. And thus, a subset is
taken. This research will focus on the detection, reconstruction and storing of storeys, rooms,
and apartments. These three elements were selected due to all three being of importance for
the building permit sector and the building energy modeling sector. The apartments have
an added complexity in the sense that they are often not stored in IFC files or, when they are
stored, it is done in non-standard ways.

Effectively, this limited scope creates three main research questions out of the overarching
question:

• How can storeys and their elevations be automatically detected from an IFC file in a
reliable manner?

• How can rooms be automatically detected from an IFC file in a reliable manner?

• How can apartments be automatically detected from an IFC file in a reliable manner?

2e.g. a room shape that does not comply with the walls that should bound it.
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1.4. Thesis Structure

• Chapter 2 covers related works. This will be split into two distinct parts. The first part
will cover the related works that have been done in the IFC/BIM domain. The second
part will cover feature detection works outside of the IFC domain that show interesting
methods which could be applied in the IFC/BIM domain.

• Chapter 3 covers the methodology. This is split into four parts. The first part will cover
the minimal reliable subset. The following parts will cover the detections, reconstruc-
tion, and storage of each of the three selected IFC elements.

• Chapter 4 will go into some of the implementation details of the tool and supportive
software. It also covers the datasets which were used to test the tool upon.

• Chapter 5 covers the results of the described methodologies. This chapter is split into
three parts where every part covers the result of the detection, reconstruction, and stor-
age of each of the three selected IFC elements. Every part will also cover relevant dis-
cussions.

• Chapter 6 will give a brief conclusion, a list of input requirements for the tool, and
recommendations for future works.
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In this chapter, relevant knowledge and related methods are presented. Section 2.1 will pri-
marily focus on the IFC format and its problems. Section 2.2 will cover the already prior
created methods/tools that help detect, reconstruct, and/or repair features in the IFC for-
mat. Due to the limited research done on the detection, reconstruction, and/or repair of the
three selected features in the IFC format, Section 2.3 will cover potential applicable methods
of detection and reconstruction in other domains. The apartment detection is a classification
process that is usually covered in disconnect from any format. The literature that describes
approaches that could be applied to the IFC format can be found in Section 2.4.

2.1. The reliability of the IFC format

As has been mentioned in Chapter 1, the IFC format has been introduced to improve the in-
teroperability of BIM data [Ozturk, 2020]. BIM data should be reliable and easily exchangeable
to function in its central role in the AEC industry. If the IFC format is considered as a collection
of geometry, semantic data, and topologic data, it can be noted that the reliability in all three
types of data is limited in practice.

Arroyo Ohori et al. [2018] showed that the geometric objects in an IFC file can be filled with
errors, see Figure 2.1. The most common errors that were found by Arroyo Ohori et al. [2018]
were objects that are self-intersecting. Aside from this, planes were not planar while they
were supposed to be planar and disconnected objects modelled as one singular object were
also noted. An important comment was that these errors were generated by the software
with which the original BIM model was created. The users often did not notice these errors
and these errors were able to slip through an entire design and construction process. Krijnen
et al. [2020] corroborate the presence of incorrect geometric objects in IFC files. This research
evaluated space boundaries in three different IFC models. A space boundary is a relationship
between a space and its bounding elements. Occasionally a space boundary was incorrect
or completely missing. These errors were of a different nature than the ones noted by Ar-
royo Ohori et al. [2018]. In the described cases by Arroyo Ohori et al. [2018] the object itself
was placed correctly and largely intact (all vertices and edges were present) although parts
(often faces) were incorrectly shaped. Krijnen et al. [2020] presented objects that could not
be classified as being largely intact. These objects had incorrect faces, missing faces, or the
objects were completely missing. Krijnen et al. [2020] expanded their research to inaccura-
cies found in semantic and topologic data as well. The semantic data that was tested was
the assignment of objects to certain storeys, this was found to be occasionally incorrect. The
tested topologic data that was found to be incorrect was the wall connectivity data. In two
of the three models, this data was partially incorrect. These erroneous topologic connections
were e.g. missing relations between walls that were connected and walls that were not con-
nected but were marked as connected. Arroyo Ohori et al. [2018] noted that of the errors they
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(a) (b) (c)

Figure 2.1.: A set of the errors in IFC files found by Arroyo Ohori et al. [2018]. a) A self in-
tersection, b) A self intersections in planes that should be planar c) A topological manifold
that contains non-obvious geometric intersections.

found at least a subset can be resolved to support further reliable processing. Creating all the
processes that resolve the issues took however too long to implement completely.

As mentioned before these errors were to an extent created by processes that were out of
direct control of the creator of the BIM files. This does however not mean that the errors are
only introduced by the software packages that are used to create the IFC data. Noardo et al.
[2021] studied the use of IFC data in practice. They highlight the user errors that can be present
parallel to issues that are potentially created by the software. It is noted that these issues can
be actual mistakes but that the IFC format also allows multiple interpretations. This suggests
that a subset of these errors have gotten into the file accidentally due to the creator being
unaware of that his approach was faulty or non-standard.

Noardo et al. [2021] also demonstrated issues within semantic data. Most of the semantic
data of the models they evaluated scored fairly well on their created scale, except for the use
of IfcBuildingElementProxy objects. IfcBuildingElementProxy objects allow users to store data as
a generic type. Although the IFC format is very flexible and often enables the user to store
data as a variety of predefined types, there can still be situations where a correct type to
represent an object is not available. The use of a generic object, the IfcBuildingElementProxy,
allows users to still store this data in the file. Noardo et al. [2021] mentioned that these generic
elements are often used to store data that could be stored in a predefined type. The use of
IfcBuildingElementProxy for objects that can be correctly stored in a predefined type creates a
loss of semantic data that has to be reconstructed or deducted in another way. Even if this
incorrect use of the IfcBuildingElementProxy is applied to a small set of objects, it can have
noticeable effects on the quality of the results created by the automated processes. Around
75% of the models were considered to be unsuitable for automated processes based on the
IfcBuildingElementProxy use alone. A visual representation of this number can be found in
Figure 2.2a.

The research of Noardo et al. [2021] was not limited only to semantic data but extended over
a multitude of other types. The most interesting one was the covering of spaces, or IfcSpace
objects. Only 20% of the considered IFC models had well used IfcSpace objects. Another 27%
had approximated volumes, these are cases where the rooms did not comply with angled
roofs but were just boxes. The other 53% had either displaced IfcSpace objects, missing IfcSpace
objects, or overlapping/misused/redundant IfcSpace objects. A visual representation of these
numbers can be found in Figure 2.2b.
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(a) (b)

Figure 2.2.: Two edited charts with data presented by Noardo et al. [2021]. (a) displays a score
given to 39 models related to the presence of IfcBuildingElementProxy. The minimum score
requirement for reliable automatic processing is 0.6 (the highlighted area). (b) displays
the quality of the IfcSpace use in these models, only 20% has no apparent mistakes (the
highlighted area).

2.2. Automatic detection of features in IFC Files

Noardo et al. [2020] developed an open source tool1 that reads IFC files and semi-automati-
cally extracts data that can be used to ease the building permit process. The tool is able to
check the maximum height, reciprocal overlap and overhang of building parts with respect
to the base of the building. The main focus of this research is not on the creation of reliable
data based on IFC models with severe errors and does not cover the implementation in depth.
However, it does show a way of processing IFC data while ignoring some errors that could be
present in an IFC file.

In a series of papers [Ying and Lee, 2020, 2021b,a], the detection, repair, and generation of sec-
ond order Space Boundaries (SBs) is covered. A second order SB is an IFC object that represents
the geometry used for BEM. This series presents a fast and robust approach that creates and
corrects more complex SB shapes than established software packages allow [Ying and Lee,
2021a]. The SBs are detected in a building by evaluating curved objects, IfcSpace objects, and
IfcSite objects. These objects are used to extract the Common Boundaries (Cds) between the SBs
and their surrounding objects. The use of the curved objects instead of relying solely on the
IfcSpace and IfcSite objects is due to their limited IFC support for curved objects. Reconstruct-
ing the curved Cds from the surrounding objects enables more accurate reconstruction. The
extraction of the shape of curved objects and the merging of it to the relating IfcSpace object is
not covered in detail.

To check for errors in SB, 38 rules are constructed that test both semantic and syntactic errors
[Ying and Lee, 2021b]. Geometric errors are also tested with the help of a Monte Carlo ray
tracing approach. This way it can detect gaps in SBs but also overlapping or overhanging
surfaces.

Lilis et al. [2015] cover the detection and (semi-) automatic repair of geometric errors in IFC
files, with a partial focus on spaces (rooms). Three different errors are detected and repaired:

1The tool can be found at: https://github.com/tudelft3d/GEOBIM_Tool
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Figure 2.3.: Example of the BSP tree that is being used in the work of Lilis et al. [2015].

clash errors, space definition errors, and incomplete shell errors. The errors are detected,
and resolved, with the help of a BSP tree. Every IFC object is used as (or transformed to,
details to this are not mentioned) a B-rep. This B-rep is split over the BSP tree where every
node of the tree exists out of one, or more, coplanar surface polygons with the same normal
direction. The two branches of these nodes represent what lies outside the normal direction
and what lies inside of the normal direction, see Figure 2.3. With this BSP tree, it is fairly easy
to determine and resolve geometric intersections and contacts with other B-reps. It is however
important that all the B-rep normals are correctly orientated before the BSP tree is generated.
This way of working is (partially) extended to not only the detection and repair but also the
generation of SBs by Lilis et al. [2017]. In this expansion the construction objects are presented.
These are objects that bound second order SBs. These objects are: IfcWall, IfcSlab, IfcCovering,
IfcRoof, IfcCurtainWall, IfcColumn, IfcBeam and IfcBuildingElementProxy objects. This research
has similar issues as the one of Ying and Lee [2021a] where the success of the detection of the
second order SB is dependent on the correct placement and validity of IfcSpace objects.
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2.3. Automatic room detection in other domains

Research regarding room detection in IFC files without relying on IfcSpace objects in any sig-
nificant way has not been found in literature. However it has been covered in two closely
related fields. Interior space extraction directly from BIM models [Xiong et al., 2017] and room
detection from paper floor plans [Ahmed et al., 2012, 2011].

Xiong et al. [2017] cover a method for the extraction of interior spaces from complex CityGML
LoD4 models. Although these spaces are created from the CityGML format, the presented
method could be implemented in the IFC format. The extraction of interior spaces is based on a
voxelization approach that can be summarized in three steps. The first step is the voxelization
of the original model where the created voxels inherit the semantic relationship of the rooms
they represent in the model. Step two is a course extraction of spaces which helps eliminate
invalid spaces. The final step uses these rough spaces and the stored semantic data to refine
the space shapes. This approach is fairly fast and accurate, however, the created room shapes
do not completely comply with the surrounding geometry.

In a series of papers [Ahmed et al., 2012, 2011], syntactic and semantic data is extracted from
paper floor plans. A major part of this paper covers extracting texts, icons and wall objects
from the flat plans. The central elements for creating the room shape, walls, are however
readily available in the IFC model and can be selected with ease. This means that the detection
process of walls from this paper can be disregarded. However, the step from wall objects to
rooms is of particular interest. This is done by following connected building components
until a closed loop is formed [Ahmed et al., 2011]. This loop represents the outer boundary
of a room. This outer boundary is combined with earlier extracted semantic data to get a rich
room object.

Methods and research covering the transformation of point clouds to 3D volumetric geometry
(either b-reps or meshes) have been evaluated but they have been found to generally have
unneeded complexity. This complexity is often introduced in point cloud processing due to
an uncertainty if geometry that has been detected is actual real geometry that is present in
the building or is just an artifact in the point cloud [Mura et al., 2014]. In IFC models, it is
however clear which geometry is actual geometry, so this uncertainty is not present.

2.4. Space syntax in indoor environment

Space syntax is a facet of graph theory that represents a spatial configuration as a labelled
graph, which enables a designer (or other reviewer) to directly evaluate the configuration
and its performance in terms of connectivity [Hillier and Tzortzi, 2006], see Figure 2.4. This
tool can be applied to the architectural space and buildings by showing the relations between
rooms, hallways, and spaces.

An apartment can be considered a group of rooms. Possibly apartments can be detected from
certain connectivity traits or patterns that are recognizable in the graph of a building. Al-
though assessment methods have been developed with graph theory [Jeong and Ban, 2011;
Kim et al., 2008], it seems none attempted to find patterns in the spatial configuration. This
does not mean that the done research is not usable however. Jeong and Ban [2011] do show
a way of displaying the graph data in a matrix shape enabling easy pattern detection. Both
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Figure 2.4.: Examples of the graph representations of floor plans. Figure from Jeong and Ban
[2011]

Jeong and Ban [2011] and Kim et al. [2008] cover graph extraction based on IFC models. How-
ever, the presented extraction of room data from the IFC model is a complex process that relies
on only reading the IFC data, hopefully by adjusting the IFC data the need for such a complex
technique can be avoided.
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This chapter presents the developed methodology. This methodology is based on the de-
scribed objectives in Chapter 1 and the covered literature in Chapter 2. The methodology can
be split in four parts that are covered in separate sections. Section 3.1 clarifies which subset of
data is being used for the detection and reconstruction methods that follow it. Section 3.2 will
cover the detection of storey elevations and the correct labelling of objects to those storeys.
Section 3.3 will cover the detection and/or creation of the rooms/IfcSpace objects’ geometry,
topological, and semantic data. Section 3.4 will be closely related to the described processes in
Section 3.3 but will deviate into the grouping of IfcSpace objects into apartments. A schematic
overview of the methodology can be found in Figure 3.1.

3.1. Minimal reliable subset

As mentioned in Chapter 1 and 2, the data stored in the IFC format is not always correct or
reliable enough to allow downstream processes to function well. To enlarge the reliability
of the output of these processes the input data has to be filtered. Not all the available data
present in IFC files is required for processing and faulty data could be avoided by ignoring
the unneeded data. However, when reducing the total amount of data on which a process is
based the negative effect of incorrect data could be amplified. This means that the subset of
data that is used to execute further processing should be reliable and chosen thoughtfully in
an attempt to avoid the most, if not all, errors.

This subset of reliable data is considered to be the tangible geometry in the file. Tangible ge-
ometry are objects that will be tangible when a building is realized, e.g. walls, floors, columns
and doors. Intangible geometry are objects that are not actually realized in a building, e.g. val-
ues, and objects like room shapes and annotations. The tangible geometry is considered to be
plainly visible for users and its correctness is crucial for both automated and non-automated
processes. This means that aside from errors in this data being fairly easy to see there is also a
large group of people checking this data when passing over it. When the creator/user misses
errors in this data incorrect tangible geometry will also be noted by other collaborators, re-
ducing the chances of errors being overlooked. Tangible geometry is often also important
for a large group of collaborators, enlarging the chances of errors being spotted and rectified.
Tangible geometry has also shown to be a possible source for the reconstruction of other types
of data, as for example SBs Lilis et al. [2015]. It is important to note that tangible geometry is
not completely free of any errors [Arroyo Ohori et al., 2018]. However, it has also been stated
that these errors can often be resolved with already developed tools. The process of resolving
these issues is outside of the scope of this research which is why for this research the tangible
geometry is presumed to be completely correct.

The only data that can be reconstructed with the help of tangible geometry is data that is
implicitly stored in that tangible geometry. For example, the explicitly defined walls bound
a room, thus the walls are storing the room boundaries implicitly, see Figure 3.2. Semantic
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Figure 3.1.: A simplified schematic overview of the methodology. Every blue block will be
covered in a section of this chapter. The light blue block encapsulating the storey detection
and object sorting will be covered in a single section.
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(a) (b) (c)

Figure 3.2.: Example of the possibly derivation of data from other data. (a) shows the original
situation where a room (highlighted in blue) does not comply with the walls that should
bound it. (b) shows the data that is considered reliable. (c) shows a newly created room
(highlighted in blue) that is created based on this data. Note that the floors have been
removed from this view to allow for easy display.

data is often not implicitly stored in tangible, or any other, geometry however. This means
that the developed solution can not completely rely on tangible geometry only, if it would do
so it would result in large data losses. The reliance on other data than tangible geometry will
be forced to a minimum. Topological data is regarded as data that is completely recoverable
and is thus completely disregarded.

3.2. Detection of storey elevations and the labelling of
objects

This section is split in two parts. The first part will cover the way that the storey elevations
are approximated. The second part will cover how the objects in the IFC files are sorted into
storeys.

3.2.1. Approximation of storey elevation

The literature covered the detection of storey elevations very minimally, this means that a
novel method had to be created. This novel method approximates the storey elevations by
grouping floor representing objects that are considered to be on the same storey. If the group-
ing is executed correctly the z-value of every group will resemble the storey elevations of
the evaluated building or construction. IfcSlab objects are regularly used in the IFC format
to represent objects that have a primarily horizontal nature, including, but not limited to,
both roofing and flooring objects. The IfcSlab objects are not the only objects that should be
considered for roofing. IfcRoof objects, when they are not used as aggregates, can represent
the geometry of a roofing structure. Directly extracting the z-values of all the IfcSlab/IfcRoof
objects in a model will rarely create a reliable storey elevation list. The correct values are pre-
sumed to be in that list but depending on the nature and complexity of the evaluated model
the list will be filled with noise. This noise can manifest itself in e.g. very small elevation
differences, duplicate values or incorrect z-values. That is why the data needs to be prepro-
cessed and filtered. A visual summary of this preprocessing and filtering can be found in
Figure 3.3.
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(a) (b)

(c) (d)

(e)

Figure 3.3.: Visual summary of the storey elevation extraction process. (a) is the original
situation. (b) IfcSlab objects with small top face areas are ignored. (c) neighboring slabs
are merged. (d) unique elevation values are extracted. (e) the lowest elevation values from
groups of small elevation differences are picked.
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Figure 3.4.: An example of the vertex that is used to extract the z-value of a single Ifc-
Slab/IfcRoof grouping, marked in blue. The highlighted in blue vertex is the lowest possible
vertex of all the top face vertices of all the objects in one group. In this particular case there
are three other options that have the same z-value, marked in gray. If multiple vertices
are present with the same z-value the first vertex in the data structure with the desirable
z-value is taken.

All the IfcSlab and IfcRoof objects are initially collected from an IFC file. After the collection
this pool of objects is filtered on their top face area, see Figure 3.3b. Small slab objects are
ignored (≤10% of the median of all IfcSlab and IfcRoof top face areas). Doing this results in
three benefits:

• It reduces the chance of elevations being evaluated of objects that do not represent floor-
ing or roofing.

e.g. incorrectly made furniture models or poles and beams that are incorrectly classified
as IfcSlab objects.

• It reduces the chance of elevations being evaluated of objects that do represent flooring,
but are floors that should not be considered on their own storey.

e.g. balconies and the intermediate landings between stairs.

• Using the median instead of the average to filter the objects reduces the chances of
incorrect influence when a small number of extremely large top faced IfcSlab/IfcRoof
objects are present in the model.

The preprocessing starts with the merging of IfcSlab/IfcRoof objects that are neighboring into
singular shapes, see Figure 3.3c. This results in horizontally planar IfcSlab/IfcRoof objects be-
ing seen as one group. This is advantageous for the efficiency of the following computations.
Although this is an effect that the process has, it is not the major goal of this step. The major
goal is merging the slanted IfcSlab/IfcRoof objects that rest against each other into one single
group. This enables us to evaluate complex roofing structures as a one shape instead of a col-
lection of shapes. The pairing of neighboring IfcSlab/IfcRoof objects is done by evaluating the
length of an edge of an IfcSlab/IfcRoof object and the length of the begin point of that edge, to
the vertex of a potential neighbor, to the end point of that edge. If this distance is sufficiently
close to the length of the edge, the objects are considered to be neighbors.

For each of the resulting groups, the z-value is extracted. This z-value is taken from the single
lowest possible vertex of all the top face vertices of all the objects in one group, see Figure
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Figure 3.5.: The isolated 8th floor of the facade model of the Boompjes. It can be clearly seen
that this model has no data that can enable the software to detect the storey elevation of
this floor.

3.4. After ordering this list, it will represent a rough storey elevation list. This list is however
still filled with noise that has to be removed. Firstly, all the duplicates are removed, only
unique values are allowed to be present in the storey elevation list, see Figure 3.3d. After this
step, the elevations with a small difference are grouped. From every group of closely lying
elevations the lowest value is taken. The resulting elevation list is considered to be a close
approximation of the storey elevation list, see Figure 3.3e.

When multiple files are used to represent a building, the storey approximation process will
only be required to evaluate the construction model. This is due to the expectation that a con-
struction model encompasses the entire building and that it includes all the constructional
IfcSlab/IfcRoof objects representing floors and roofs. The storey elevation list resulting from
the construction model is afterwards forced upon the other files, completely discarding the
original elevations and other features present in these models. This creates a situation where
there is no deviation from the number of storeys and their elevations between files. Aside
from this consistency across files, it also enables processing of files that do not have the re-
quired data present to enable an accurate approximation of the storey elevations. This is often
the case in interior or facade models, see Figure 3.5.

There should always be an extra option that bypasses the approximation of the storey eleva-
tions. If the method does not correctly process the data present in the IFC file, it should not
influence the following processes.

3.2.2. The sorting and labeling of objects

After the storey elevations are approximated and updated within the IFC files, it is possible
to sort the objects present in each file into the new storeys. This is done by taking the z-value
of a base point of each object and measuring the z-distance from that object to every storey
elevation. The storey where the z-distance from elevation to object base is the smallest while
still positive is considered to be the storey at which the object is placed. The object will be
labelled with this storey number. For a visual explanation see Figure 3.6. For most objects
this base point is the lowest point of the object offset by +20 centimeters, If the object is small
(less than 1 meter in height) the lowest point of the object is taken without this offset. Taking
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Figure 3.6.: Visual summary of the storey sorting process of an object. The object (the top
staircase in this example, highlighted in blue) is to be assigned to a storey. The distance
from every storey to the base point of the object is measured, the storey with the smallest
positive distance is considered to be the correct storey at which this object is located (high-
lighted in blue). The distance is positive when the storey elevation is lower than the base
point while the distance is negative when it is higher.

this 20 centimeter translated location as a base point resolves the issues that can occur when
objects are slightly misplaced due to rotations. An example of this are columns that are placed
diagonally, which can create a situation where the lowest point is located below the floor it
actually rests upon.

There are some objects processed in a slightly different way. Firstly, the IfcSlab and IfcRoof
objects do not use the z-value of the base point to compute the z-distance to the storey but
the lowest point of the top face of the object. This is the same point that is used to get the z-
value of a IfcSlab/IfcRoof object, see Figure 3.4. Taking this z-value results in the IfcSlab object
being matched to the storey with the same (correct) level instead of one storey too low. The
IfcWall and IfcStair objects use points to compute the z-value that are a 1/3 of their total height
translated up from the base point. This enables reoccurring exceptions to be matched to the
correct storey. For example: walls comprising the facade often start lower than the height of
the storey they belong to or a IfcStair object that occasionally starts below the elevation of the
storey they belong to.

3.3. Detection and reconstruction of rooms

This section is split in three parts. The first part will cover the correction of incorrectly clas-
sified IfcSpace objects present in the inputted IFC files. This has to be done to find the IfcSpace
objects that have to be replaced/corrected. The second and central part of this section will
cover the creation of geometry that represents a room. The third part will cover the recovering
and connecting of semantic data to this newly created room geometry.
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3.3.1. Semantic data extraction

As mentioned in Section 3.1, it is challenging to reconstruct semantic data from other data
sources that can be found in an IFC file. When creating new rooms, or IfcSpace objects, the se-
mantic data of the original IfcSpace object it replaces has to be copied. This means that some of
the semantic data has to be acquired from the original input IFC file. The semantic IfcSpace data
from the input files can rarely be used directly due to the IfcSpace objects often being incor-
rectly classified. IfcSpace objects can be classified ”Partial”, ”Element” or ”Complex”. When
classified ”Partial” the IfcSpace object is presumed to be a part of a space, when classified ”El-
ement” it is presumed to be a complete but singular space and when classified ”Complex” it
is presumed to encompass a group of spaces. IfcSpace objects representing rooms should thus
be classified as ”Element” while IfcSpace objects representing areas encompassing multiple
other IfcSpace objects should be classified ”Complex”. In practice, most, if not all, IfcSpace ob-
jects in an IFC file are classified ”Element”, see Figure 3.7. This creates a challenge in finding
the actual IfcSpace objects representing a room. To find the IfcSpace objects representing the
rooms, a check will be done to see if an IfcSpace object encompasses another IfcSpace object. If
this is the case it is presumed that the IfcSpace object is not representing a room and its classi-
fication can be changed to ”Complex”. If there is no other IfcSpace object found inside, it can
be classified as ”Element” and its semantic data can be stored for later use. This process can
be sped up with the use of a spatial index filled with IfcSpace objects.

3.3.2. Reconstruction of room geometry

Although the detection and reconstruction of room representing geometry in the IFC format
has been covered in literature, it was chosen to adapt a method that was developed outside
of the IFC format. The reasoning for this is that the covered methods created in the IFC space
required a substantial set of correct tangible and intangible data to function reliably. This is,
as stated before, something that can not always be expected from IFC files. The method de-
veloped and presented here is based on the method developed by Xiong et al. [2017] where
voxelization is used to reconstruct the room representing geometry. This method has to be
extended to allow for valid IfcSpace geometry. IfcSpace geometry has to be watertight1. This
is not the case with the rough room shapes created by voxelization. Simple smoothing oper-
ations are not able to ensure watertight fitting with surrounding geometry and thus simply
smoothing the voxelized shapes will not suffice. That is why an alternative voxelization pro-
cess has been developed. A visual overview of the process can be found in Figure 3.8 and
3.12.

As the first step of the reconstruction process, the room bounding objects are selected from
the IFC file. [Lilis et al., 2017] presented a list of bounding SB geometry. These are the IfcWall,
IfcSlab, IfcCovering, IfcRoof, IfcCurtainWall, IfcColumn, IfcBeam, and IfcBuildingElementProxy ob-
jects. The IfcBuildingElementProxy objects are however excluded from our room bounding
objects. IfcBuildingElementProxy objects can be room bounding objects but they can be used
for a range of different subjects as well, of which many are not room bounding. Primarily, ge-
ometry representing the site is incorrectly classified and created with IfcBuildingElementProxy
objects, see Figure 3.9. Including these objects creates reliability issues and speed perfor-
mance issues. After analysing IFC models, the list of objects presented by [Lilis et al., 2017]
is considered to be fairly limited. To successfully encompass the room bounding objects, a

1The IfcSpace geometry has to be directly enclosed by its bounding geometry, no space between it and this geometry
is allowed.
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3.3. Detection and reconstruction of rooms

(a) (b)

Figure 3.7.: Incorrectly classified IfcSpace objects in a model used in practice. (a) shows the
overlapping IfcSpace objects located in the model (highlighted in green). (b) shows an ex-
ploded view of the in (a) highlighted IfcSpace objects. of these exploded objects only the
lowest should be classified as ”Element” while the rest should be classified ”Complex”.
However in this model all the IfcSpace objects are incorrectly classified ”Element”.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8.: The steps taken when creating a rough room shape. (a) the floor plan of the input
IFC model. (b) the room bounding geometry (highlighted in blue) is filtered from the input
file. (c) the approximated smallest bounding box (highlighted in blue) is created around
the room bounding geometry. (d) the smallest bounding box is rescaled and populated
with voxels (highlighted in blue), note that for clarity a large voxel size is chosen. (e) the
voxels that intersect with the room bounding geometry are marked as intersecting voxels
(highlighted in blue). (f) The first room is grown (highlighted in blue) until no potential
voxels are left for this room.
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(a) (b)

Figure 3.9.: Two examples of incorrectly assigned IfcBuildingElementProxy objects (highlighted
in green) that are used to represent the site but are assigned as objects representing the
building.

new selection is added to this list. The IfcPlate, IfcCovering, IfcMember, IfcRoof, IfcDoor, and
IfcWindow objects are added. All these objects are spatially indexed. This can be done with
simple bounding boxes surrounding each of the objects. Although the bounding boxes of IFC
objects are occasionally available from the input IFC files, these should not be used. Bounding
boxes are not tangible geometry and can be easily created based on the tangible geometry.
So, the bounding boxes stored in file have to be discarded. Creating new ones ensures the
accuracy of the boxes without the need to check the validity of every box for every object.

When the indexing of the room bounding objects is finished, the approximated smallest ori-
ented bounding box around the construction file is created, see Figure 3.8c for a single file
visual explanation. Bounding boxes around the other files are created that have the same
rotation angle as the smallest oriented construction bounding box. The construction bound-
ing box is grown to encapsulate the other generated bounding boxes. This creates a rotated
bounding box that encapsulates all the objects in a model.

The domain and the rotation angle constructed by the final grown box are used to base the
voxel grid upon, see Figure 3.8d. A desired voxel size can be submitted by the user. This
voxel size is first used to slightly re-scale the domain. The re-scaling of the domain allows
the voxels to completely fill the domain without the need to change voxel’s dimensions. This
means that the submitted voxel size will be the actual size which is used for the processing.
After this, the domain is populated with voxels. The geometry of every voxel is a 3D area
that can be used to query the earlier made spatial index of the room bounding objects. This
returns a set of objects that could potentially intersect with this voxel. It is tested if there is an
actual intersection between the voxel and the object with the signed volume of a tetrahedron
approach. An object is considered intersecting with a voxel if it intersects with any of the
edges of that voxel. If an intersection is found, the voxel is marked as an intersecting voxel
and no further intersections are analysed for this particular voxel. If a voxel does not have any
objects that it intersects with, it is not marked as an intersecting voxel. This process results in
a voxelization of the room bounding objects, see Figure 3.8e.

Once every voxel has been evaluated for a room bounding object intersection, the room ge-
ometry can be grown, see Figure 3.8f. This is done by selecting a voxel that has not been
assigned already (voxels can be unassigned or assigned as part of a room, as being outside of
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(a) (b)

Figure 3.10.: 2D explanation of the voxel intersection and 26-connectivity where gray object is
room bounding geometry and blue are intersecting voxels. (a) the chosen approach where
due to the choice to consider a voxel to be intersecting with an object when it intersects
with any of its edges disallows intersecting voxels to be connected diagonally. (b) if this
rule is changed to e.g. intersection of the midpoint of the voxel intersecting voxels could
be connected diagonally. This creates diagonal openings where spaces could grow through
when 26-connectivity is used for growing.

the building, or as an intersecting voxel). From this voxel a rough room shape can be grown.
The growth is executed via a 26-connectivity growing process. The 26-connectivity voxel ap-
proach is chosen because the objects that bound rooms are always volumetric. This means,
in combination with the earlier mentioned intersecting voxel classification2, that there is no
possibility of rooms growing through walls, see Figure 3.10. The use of 26-connectivity has
as an advantage that it will allow the rooms to grow in narrow diagonal spaces, enlarging the
chances of accurate room approximation while using fairly big voxel sizes, see Figure 3.11.

The room growing process grows a room into all the non intersecting voxels until it encoun-
ters an intersecting voxel. An intersecting voxel means the boundary of a rough room shape.
But, instead of keeping the room bounded by the intersecting voxels, the room is allowed to
include the intersecting voxel as room object. This means that intersecting voxels can (and
will) be part of multiple rough room shapes while non-intersecting voxels will always be
included in a single rough room. This intersecting voxel will however not be used to find
any neighboring voxels, locally ending the growing process at that particular voxel. If the
growing process encounters a voxel that does not have 26 neighbors, this voxel is deemed
as being on the boundary of the domain and thus as being outside of the building. A room
is presumed to be always completely encapsulated by space bounding objects. Thus, if the
space that is being grown encounters the end of the domain, it means that it is not inside
of a building. If the voxel is found to be outside of the building, it will cause all the prior
found and upcoming found voxels for the currently being grown room shape to be marked
as exterior voxels. Voxels, and in extension rough room shapes, that are marked exterior will
not continue into the next step of the room reconstruction process. Instead they are discarded
and not used further.

2voxels are being considered intersecting voxels if any of their edges intersect with a room bounding object
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(a) (b)

Figure 3.11.: 2D explanation of the benefit of 26-connectivity when voxel sizes are (too) large.
The gray geometry is room bounding geometry and the blue geometry are intersecting
voxels. (a) is the chosen approach where due to the 26-connectivity narrow rooms can still
be grown. If the lower right voxel is the beginning of the room growing process the other
two voxels can be found as part of the rough room shape (the first step is the black arrow).
(b) if for example 6-connectivity was picked this would have been impossible, the growing
process would only find intersecting voxels from which no growing steps can be taken,
resulting in an inaccurate room shape.

The growing of a rough room shape is finished once no unassigned neighboring voxels can
be found anymore. If this moment is reached for an interior space, the shape refinement can
begin. The first step is to create a bounding box around the rough room shape, see Figure
3.12b. This bounding box is the beginning of the IfcSpace representation object. This box
is scaled up slightly around its center point (Figure 3.12c). This scaling process is done to
ensure that the box encompasses the entire set of room bounding objects that enclose the
actual room shape. This can resolve issues that can occasionally occur when a building or
construction has slanted roofs or tight wall corners, see Figure 3.12a and 3.12b. The created
box is used to query the spatial index with room bounding objects. The returned objects are
used to split the box in a subset of pieces (Figure 3.12d). Within these pieces is a solid that
correctly bounds the room and can be used as the IfcSpace representation object. This solid is
found by firstly removing all the objects that have a z-height that is smaller than one meter,
no living space is lower than one meters and can thus be discarded. After these objects have
been discarded, a known point inside of the room is selected. This point is found by searching
the voxels constructing the rough room for a non-intersecting voxel. If this non-intersecting
voxel is found, one of its corner points is taken (Figure 3.12a). We know for certain that this
point is inside of the room shape. This is due to the non-intersecting voxels being completely
free from any intersection. so, it can not lie partially outside of the room shape and thus none
of its corner points could lie outside of the room shape. For every residual solid, it is tested
if this point lies inside of it. If it does, this solid is considered to be the room representing
geometry (Figure 3.12e).

The splitting of solids is a costly process that has a limited robustness. That is why it is nec-
essary to keep the solids used in the split process as simple as possible while still creating
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(a) (b)

(c) (d)

(e)

Figure 3.12.: The steps taken when going from a rough room shape to a refined room shape
from a top down plan view, the gray outlines are wall objects. (a) the rough room shape
with the intersecting voxels marked in blue and the point that is known to be in the room
indicated with a blue x. It can be seen that the room grows into the intersecting voxels.
(b) the resulting bounding box of this rough room shape in blue, it can be seen that it does
not encapsulate the entire actual room shape. (c) the bounding box is scaled up to reduce
the chance of partial encapsulation. (d) the result of the splitting process, where every blue
area is a solid that could represent the room shape. (d) the final room shape that is found
by testing if earlier found point (the blue x in (a)) fell inside of the solid.
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the desired precision for a room shape. IfcWindow and IfcDoor objects often have a lot more
detailed geometry than is required for the creation of a room shape. There is no need for
the room shape to accurately follow the outline of the window frame for example. The com-
plexity of the objects also brings a bigger chance of geometric inaccuracies and errors being
present in these objects which can severely hamper the performance of the splitting process.
This possible presence of inaccuracies was a known issue which was chosen to be ignored by
this research. However, when these complex objects are present in the room bounding ob-
ject pool, they can not be completely discarded. This complex shape issue that is potentially
present in the IfcWindow and IfcDoor objects is addressed in two ways.

The first way this issue is addressed, is by creating an adjusted application of the IfcOpening-
Element objects for IfcWall objects, see Figure 3.13. IfcOpeningElement objects are the spatial
voids that create openings in other IfcObjects. Of the IfcOpeningElement objects present for
a certain IfcWall object, only a handful are usually not occupied by IfcWindow or IfcDoor ob-
jects. For the creation of room shapes, these occupied openings do not have to be applied
to the IfcWall objects; a wall with holes filled with windows can be considered as the same
as a wall that has no openings. The only real difference is the added complexity the former
introduces. Thus, IfcOpeningElement objects that have space bounding objects placed inside
can be ignored. The creation of these simplified walls is done by reconstructing the wall ge-
ometry by initially ignoring all the IfcOpeningElement objects. This means that no opening
elements are initially present in the geometry of an IfcWall object. For this wall, each of its re-
lated IfcOpeningElement objects is checked if it encompasses another (space bounding) object.
Only if the IfcOpeningElement encompasses no space bounding object, the IfcOpeningElement
is applied to the wall, creating an opening at that location. This will result in wall geometry
that only has openings present at locations where no objects occupy the actual opening.

However, not every complex room bounding shape is encompassed by an IfcOpeningElement.
The second processing way is used when IfcWindow and IfcDoor objects are not encompassed
by IfcOpeningElement objects. By creating an oriented approximated smallest bounding box
around these objects, they can be very crudely simplified, see Figure 3.14. IfcWindow and
IfcDoor objects are often small and linear in nature, this means that the smallest bounding box
is a resource friendly way of not just surrounding the object by a solid but also creating a
simplified shape of it. These bounding boxes are used in the further processing of the room
geometry.

There are still some objects that have not been addressed. The primary focus so far has been
on IfcWindow and IfcDoor objects. However, bigger and non-linear shapes can occasionally
also show geometry inaccuracies. Especially non-watertight solids3 are a major issue. When
these inaccuracies are spotted, the bounding box simplification is not accurate enough. For
bigger room bounding objects that are considered complex, the geometry will be handled
per face instead of as one complex shape. These bigger objects, although still complex, often
do not have a similar level of complexity that is present in the IfcDoor or IfcWindow objects.
This means that using the faces of the objects can still yield decent results while not having a
drastic effect on performance.

Topological data related to these newly reconstructed IfcSpace geometry objects has to be re-
constructed as well. This is done by selecting all the objects used to split the room geometry.
From each of these objects, a ray is cast from the two points where the object and the refined
room shape are closest to each other. If the ray between the object and the room geometry
is longer than 0.5 meters, the object is not considered to be topologically connected to the

3solids that have faces that are not watertight; have gabs between them.
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(a) (b)

Figure 3.13.: An example of simplification by selective IfcOpeningElement application. (a)
shows the normal application of IfcOpeningElement objects. A simple wall is reconstructed,
the IfcOpeningElement objects are found and they are all applied to the wall object. This
results in a fairly complex wall shape where the openings are filled with (often) complex
objects. (b) shows the method applied for the room refinement process where, initially, a
simple wall is constructed and its IfcOpeningElement objects are found. Only now it is tested
if these IfcOpeningElement objects encompass another (room bounding) object. If they do
not they are applied to the simple wall shape. This results in a more simple wall shape and
avoids the need to use more complex shapes (for example the shapes of IfcWindow objects)
to reconstruct the room geometry.
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(a) (b) (c)

Figure 3.14.: An example of simplification by bounding box creation. (a) shows a complex
IfcDoor object. (b) shows this complex object overlaid with its oriented smallest bounding
box. (c) shows the resulting bounding box that is used to replace the IfcDoor geometry for
the room refinement process. The reduction of detail can be clearly seen, every side of the
door is constructed out of a single surface and the door handle has been internalized as
well.

room. If the ray length is 0 (¡ 0.0001) meters, the split object is considered to be topologically
connected to the room. If the ray is between 0 and 0.5 meter in length, it is tested if this ray
is intersected by any of the other objects that were used to split the rough room shape. If it is
not, this object is also considered to be topologically connected to the room.

3.3.3. Matching semantic data to an IfcSpace object

After the new room geometry is made, the semantic IfcSpace data has to be found and copied.
As described in 3.3.1, this data has to be copied from the original file. The stored IfcSpace
objects are classified into ”Element” and ”Complex” objects. The semantic data of the ”Ele-
ment” IfcSpace objects is used to copy. If no semantic data has been found in the file, either
due to the file having no IfcSpace objects included or due to the process having failed to collect
the needed data, the rooms will be given generic names. If the semantic data has been found,
this data is related to a point based on each old room’s shape. For every original ”Element”
room shape a central lying point is picked, this can not be the center of mass due to L, U,
or O-shaped rooms potentially having a center of mass point that lies outside of the room
geometry. These central points are then tested to see if they fall within the newly created
room geometry. If a point does, the IfcSpace object where this geometry belongs to will get the
semantic data that is bound to this point (and its original IfcSpace object). If multiple points
fall inside of the newly created room geometry, the semantic data they supply is appended
into one so no information is lost.
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(a) (b) (c)

Figure 3.15.: Examples of room connecting objects with the resulting graph connections dis-
played underneath. (a) shows no connections between two rooms. (b) shows connection
via room separators that are discarded from this research. (c) shows connection via a door.

3.4. Detection and reconstruction of apartments

This section is split in two parts. The first part will cover the detection and reconstruction of
room connectivity data. The second part will cover chosen rules that are used to pair spaces
together into apartments.

3.4.1. Reconstruction of connectivity data

The literature covered room connectivity detection very minimally. When it is covered, it
is often used for the navigation within buildings. The goal of these reports was not just
creating a graph between rooms but also, to a certain degree, creating valid walking paths.
This nuance adds a lot of complexity that is, for the goal of this research, unneeded. That is
why a novel method is created that incorporates the connectivity between rooms with as the
main goal to ”just” create a space syntax graph from a building based on the input IFC files.
This method is closely related with the presented method in Section 3.3 and partially uses
some of its processes.

As the first step of this process, IfcStair objects are spatially indexed. IfcStair objects are part of
the Room connecting object group. Room connecting objects are the objects that can connect
one room to another. These are IfcDoor and IfcStair objects. In theory, room splits are also
room connecting objects; however, the current implementation of the room detection process
is unable to split rooms. This means that there are no occurrences of room splits in the input
data of this process. A visual representation of some of the connecting objects can be found
in Figure 3.15.

The next step in this process locks in with the process that is described in Section 3.3.2. The
topologic data of the room that was created includes the IfcDoor objects that are connected to
that room. The IfcDoor objects can be isolated from the complete topologic data and grouped.
For these IfcDoor objects, it has already been established that they are related to the room. This
is the reason why the IfcDoor objects are not included in the spatial index of the connecting
objects. To query IfcStair objects from the spatial index, the upscaled bounding box (see Figure
3.12c) that was created around the rough room shape is used. This bounding box is however
often considerably larger than the actual room. Consequently, the result of the query could
include IfcStair objects that do not have a connection to the room that is being evaluated. To
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Figure 3.16.: Visual explanation of the staircase to room (highlighed in blue) binding. Two
points are extracted from the IfcStair object. One is representing the connection at the base
and one at the top. If one of these points falls inside of a IfcSpace objects the staircase is
considered to be connecting to that room.

check if IfcStair objects actually connect with a room object, two base points are extracted, see
Figure 3.16. One point represents the top of the staircase and one represents the bottom. Both
of these points have been translated in a positive z-direction to float slightly higher than the
actual bottom and top of the staircase. These points are averaged in the xy-direction reducing
the chance of the point resting against a wall (or room) face. If one of these points falls within
the room, it is connecting to that room.

If a connection object is found to be connecting to a room, this room is stored as related to the
connecting object. If the connecting object already has a related room, it can be concluded that
this stored related room connects to the currently evaluated one. A connection between these
two rooms can be established. This connectivity data is collected for further processing.

If the entire room connectivity process (and the room detection process described in Section
3.3) is finished, there will be a small subset of connectivity objects that have only one single
connection. This, presumably, means that the connectivity object connects an IfcSpace object
to the outside. This connection to the outside can however be varied in nature. It can be a
front door to the garden but it can also be a door on the third floor to a balcony. The door to
the balcony does not actually connect the room to the outside. To resolve this issue a rule was
introduced: if the connecting object is located below 2 and above -0.5 meter height, it can be
marked as a connection to the outside. If not this connection is discarded.

29



3. Methodology

3.4.2. Detection of patterns and creation of rules

The detection of apartments will be done with a simple rule set. With these rules, the spaces
and their connectivities can be split into apartments at so called splitting points. These rules
are created based on the evaluation of multiple apartment buildings and models but are to a
certain extent a simplification of reality. The created rules are:

• Connections to the outside are splitting points.

• An apartment/section has to minimally consist out of two rooms.

• An apartment/section has to have at least one room with a singular connection.

• An apartment/section has to minimally have a floor area of 22 square meters4.

• A hallway/connection space is a splitting point when it has has five or more door con-
nections it.

After all the IfcSpace objects have been created (so once the processes described in 3.3 and
3.4.1 have been completely finished), apartments can be grown with the help of the created
rules. A visual summary of the growing process can be seen in Figure 3.17. The process is
started from a room that has only one connection to another room, and, thus, is the outer leaf
of a graph. From this leaf room every other connecting room can be added to the apartment.
With every step (or series of steps), the apartment and the potential connecting room are
tested based on the created rules. If the apartment complies with all the rules when hitting
a potential splitting space, that space is marked as such and the apartment can not continue
to grow into that space. These splitting points are not definite however. If another apartment
grows into this splitting point and does not consider it a splitting point, the splitting point is
removed, see Figure 3.18. The apartments that now rest against each other are merged into
one singular apartment.

4This is the area of the smallest studio in Rotterdam that was available for rent on publicly accessible websites at
the time of writing (03/05/2022)
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(a) (b) (c) (d)

Figure 3.17.: Visual representation of the apartment growing process. (a) one arbitrary leaf
node that has not yet been grouped to an apartment is selected. (b) the grown apartment
group checks if it is valid for being an apartment and if the next connecting room is an
apartment splitting object, in this case, it is not and it can grow into the next room. (c)
this process is repeated, one of the connections is to the outside and thus the apartment is
unable to grow in this direction. If the grown apartment group satisfies the set rules and
can not continue to grow further it is classified as an apartment. (d) a next arbitrary leaf
node that has not yet been grouped to an apartment is selected and grown from.
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(a) (b) (c)

Figure 3.18.: Visual representation of the apartment merging process. (a) one apartment (in
light blue) has stopped growing due to the next connecting room being considered a split-
ting point from this perspective. (b) for the second apartment (dark blue) this splitting
point is not considered a splitting point and thus the apartment can internalize this room.
(c) The two apartments are directly connected to each other without separation of a split-
ting object and thus they are merged into one.
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This chapter covers some of the details relating to the development and testing of the open
source software tool that were not covered in the previous section. A subset of the implemen-
tation details that require more elaboration are covered in this chapter. Section 4.1 elaborates
on the IFC files that have been used to test the reliability and effectiveness of the software tool.
This is followed by Section 4.2 where the language and libraries used for the software tool are
described. This section also covers the way files are processed and how user interactions are
dealt with. The final section covers the ways the data is visualized.

4.1. Used datasets

The IFC models used to test and develop the methods range in nature from small single file
models to multi file models with thousands of objects. The models can be categorized in
simple, moderate, and complex models. The simple models have a fairly low object count,
their storey structure is simple and they have a low number of faults present. The moderate
models are a lot more complex. These models are not just structurally more complex but
they also include a relatively large occurrence of incorrect data and incorrect object use. This
is something that is very limited in the simple models. The complex models are very large
models or models where clear mistakes and/or structural issues are present. A summary of
the used models can be found in Table 4.2. A visual comparison on the difference between
the different categories can be seen in Figure 4.1. A complete visual overview of the used
models can be found in Appendix B.

This test model collection is a subset of all the available IFC files. The available collection has
been vetted for a number of reasons. Firstly, a selection had to be made to be able to keep the
time spent on processing and evaluating the models within reason. The set models has been
selected to encompass a wide variety of different style of buildings in a range of different
sizes and complexities. The models that have a large IfcBuildingElementProxy object count or
use IfcBuildingElementProxy objects as room bounding objects have also been limited. Due
to the way the methods have been developed IfcBuildingElementProxy are ignored. Thus, it
is known that these will perform badly. Table 4.1 shows how many IfcBuildingElementProxy
objects are present in each of the models.

During the development of the tool, box-like models were used to develop the initial steps of
a functionality. These were extremely simple models that were created to test certain aspects
of the method/tool. More complex models representing buildings were used to refine the
functionality.
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Model name
(Simplified)

Total #
objects

Total #
IfcBuilding-
ElementProxy
objects

Total # room
bounding
IfcBuilding-
ElementProxy
objects

% of
IfcBuilding-
ElementProxy
objects

Score
(0-1)

FZK-Haus 199 0 0 0% 1
Institute-Var-2 1183 0 0 0% 1
Smiley-West-10 1252 0 0 0% 1
RAC-sample-
project

481 69 0 14% 0.3

DigitalHub 5041 0 0 0% 1
ON4 The
Building

1414 153 0 11% 0.5

CUVO
Building

1750 2 2 0.1% 0.5

Witte de
Withstraat

1510 104 69 7% 0.3

Projekt Golden
Nugget

6138 145 15 2% 0.5

Boompjes 51307 1302 28 3% 0.5
Rabarberstraat 482 120 77 25% 0.5
SubZero 1080 1066 - 99% 0

Table 4.1.: Summary of the IfcBuildingElementProxy object count in the tested models. The
score column is based on the by Noardo et al. [2021] proposed scores. A score above 0.6 is
considered good enough for automated processing. The two separated last entries in the
table are examples of models that have not been chosen to be evaluated.

Figure 4.1.: An in scale isometric visual comparison of three test models from the three dif-
ferent complexity categories. From left to right: the Institute-Var-2 model (simple), the
DigitalHub model (moderate), and the Boompjes model (complex). See Appendix B, for a
visual of every model that has been used.
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4.1. Used datasets

Model name
(Simplified)

Source Overall
complexity

# files # objects Structural
complexity

Faulty data
occurance

FZK-Haus IBPSA
repository

simple 1 119 simple low

Institute-Var-2 IBPSA
repository

simple 1 1183 simple low

Smiley-West-10 IBPSA
repository

simple 1 1252 simple low

RAC-sample-
project

AutoDesk
Revit

moderate 1 481 moderate moderate

DigitalHub Aachen
University
repository

moderate 4 5041 moderate moderate

ON4 The
Building

self made
model

moderate 1 1414 complex high

CUVO
Building

supplied by
supervisor

complex 1 1750 moderate high

Witte de
Withstraat

supplied by
supervisor

complex 1 1510 complex moderate

Projekt Golden
Nugget

AutoDesk
Revit

complex 1 6138 complex high

Boompjes Manucipality
of Rotterdam

complex 3 51307 very
complex

moderate

Table 4.2.: Summary of the used models to develop and test the software tool. The final
column covering the faulty data covers the occurrence of both faulty data and non-standard
use. The simple box-like models have been excluded from this list.
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4. Implementation details

4.2. Software tool

The methodology that was described in Chapter 3, is implemented in an open source software
tool1 that is written in C++. IFC files are opened, parsed, and edited with the help of the
open source IfcOpenShell library2. This library resolves most of the challenges present when
processing an IFC file. This library uses the Open CASCADE library3 to transform the implicit
geometry stored in the IFC files to explicit geometry on which computations can be done more
easily. The Open CASCADE library is also used outside of the IfcOpenShell context to ease
other geometric operations. The functionality of both libraries is supported and extended by
the boost library. Like Open CASCADE, this library is used to ease geometric operations.
Primarily, the spatial indexing is done with the help of the boost library.

The goal of the developed methods, and the software tool in which they are implemented, is
to function on IFC models that are used in practice. These IFC models are, as described earlier,
often comprised out of multiple IFC files representing different disciplines, e.g. construction,
facade and interior models. This means that the tool will have to be able to process one or
multiple IFC files as if it is one model. The files can not be read and blindly be loaded into
memory. By doing this it will lose its connection to the original file. It is considered important
to preserve this connection because it is desirable to be able to store the updated data in the
original file structuring instead of one singular merged output file.

This is why the helper class is introduced. For every new IFC file that is loaded a new helper is
created. The helper stores the data from a single file. Added to this, the helper is a collection
of extra information and functions that eases the processing of the IFC data. These helpers are
collected into a cluster, which in turn is also a collection of extra information and functions
that helps processing. At every process all the helpers in the cluster are looped through
linearly. This keeps the data separated while still being able to evaluate the data as one
singular model. This enables us to create new objects and data based on all the objects while
still knowing which file had which object included. The storing of the data in the correct
file will now be an easy and quick process. The data in the model will also be spatially
indexed. To guarantee separation between the files, every helper will have its own unique
spatial indexes. Every unique file has four different spatial indexes that are used for specific
tasks.

The tool is not a blind executable but has a simplistic console interface. Through the interface,
the user is given information and is able to select and skip certain processes. The processes
related to the detection of storeys, described in Section 3.2, can be ran in isolation. The user
is, able to monitor the results of the storey detection and compare it to the found storeys in
the IFC file. This allows the user to make an educated choice between the two. The sorting of
the objects can be skipped completely if only the room and/or apartment related processes
are required. Each of these subsequent processes, aside from the IfcSpace creation process, is
made to function on both the newly created IfcSpace objects and the existing IfcSpace objects.
This allows the tool to output and improve the data even when the IfcSpace creation fails or
is unneeded. Most of these processes can be run in isolation as well. For example when
the original IFC files only have to have topologic relationships added to the existing IfcSpace
objects, that is possible.

1The tool is available from: https://github.com/jaspervdv/IFC_ApartmentDetection
2Available from http://ifcopenshell.org/
3Available from https://dev.opencascade.org/
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4.3. Visualisation of the data

Although the methods clearly described the room bounding objects, it was considered of
importance to give the users extra flexibility. To facilitate this flexibility the tool gives the user
the ability to use different objects for this process. This is split up in four options:

• The default room bounding objects

• The default room bounding objects with IfcBuildingElementProxy objects added

• The default room bounding objects with a custom selection of other objects added

• A complete custom selection of objects

It is important to be aware that only the default room bounding objects have been imple-
mented extensively. The new types of objects that an alternative option can introduce do not
go through any special processing or handling. This means that the alternative objects could
result in unexpected results or errors.

Similarly the user is also given more control over the apartment creation rules. Although the
methods were clearly described the created rules the user is given an option to change those.
The rules that can be changed are:

• Minimal apartment room count

• Minimal apartment area size

• Minimal connections needed to be considered splitting point

These alternative options have not been addressed in the rest of the report. The options are
present but not part of the core research.

4.3. Visualisation of the data

To help developing the tool and test the methods, Rhino3D and grasshopper were utilized.
The ease of visual programming augmented with c# code that is available in this package
made it very easy to visualize rough and intermediate output from the tool (point coordi-
nates or simple geometry writing). This visual check made it easy to directly monitor the out-
put and correct issues in the code or the developed method before later stages were reached
where the tool could create formatted IFC output. The most important intermediate checking
mechanism was the visualization of the rough room shapes. This was done by outputting
the corner points of each non-intersecting voxel and their room number. With a Rhino/-
Grasshopper script, this was transformed into visuals, see Figure 4.2 and 4.3.

The apartment connectivity data is written to a file that enables us to display it in Rhino 3D
with the help of the Syntactic grasshopper plugin4. Syntactic is meant to be a set of tools
that bring space syntax theory into computational design workflows [Nourian, 2016] but it
can also be used to visualize the graph data. This is done by slightly altering the expected
input to bend the Syntactic output to a suitable visual. Syntactic usually needs Rhino3D
points (representing rooms), edges (representing connections), a list of strings (representing
the room names), and a list of doubles (to represent the room areas) to construct a valid
graph. The output of the C++ tool is, aside from an updated IFC file, a .txt file that has the
graph data included. This graph file has the four categories of data supplied. For every room

4Available from https://www.grasshopper3d.com/group/space-syntax
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4. Implementation details

Figure 4.2.: The grasshopper algorithm that is used to display the rough room data.

(a) (b)

Figure 4.3.: The rough room output of the grasshopper script. (a) is a visual of the FZK-Haus
model. (b) are the created rough room shapes that the script visualized.
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4.3. Visualisation of the data

Figure 4.4.: The grasshopper algorithm that is used to display the graph data.

an unique generic point in 2D space is made. Every connection between rooms is translated
as edges between these points. The room names and areas are easily copied from their real
IfcSpace counterpart. With a simple C++ script in grasshopper, this data can be parsed into
the building blocks required to let Syntactic function, see Figure 4.4.

A fifth data stream is added to the graph .txt file that signifies the section or apartment the
room is part of. The custom created part of the grasshopper script can filter out the data of
the other categories based on this section or apartment data. This allows display of the entire
building graph with the apartments colored differently and also display all the sub-sections
or apartments isolated.

To display the IFC models, two different viewers were used: BIMvision5 and BIMcollab zoom6.
BIMvision has an elaborate set of tools allowing to measure and count objects. In addition,
BIMvision also notifies the user clearly when objects were present in the file but not drawable
by the tool. The price for this is that it struggles to display large files and is unable to have
more than two files opened in one session. This prevented the bigger and more complex files
to be viewed as one model. BIMcollab zoom was able to process and display these files more
easily and was thus used to display the complex models.

5Available from https://bimvision.eu/download/
6available from https://cutt.ly/vGtRqfy
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5. Results & discussion

This chapter is split in five sections. Each of these sections will cover the results of a process
that can be found in the described methods1. Section 5.1 and 5.2 cover the results of the storey
elevation detection and the sorting of the objects, see Section 3.2 for the related methods. This
is followed by Section 5.3 where the detection and reconstruction of room data is covered, the
method of this process is described in Section 3.3. The final section of this chapter, Section 5.4,
covers the detection and reconstruction of apartments, the method of this process is described
in Section 3.4.

Every section in this chapter is split in three parts. The first part of every section gives an
overview of the results. This part covers the actual results and the way these results are col-
lected. This is followed by a small discussion, which covers an interpretation and explanation
of the prior shown results. The closing part of every section will cover the limitations of the
method and/or the software tool. Here the causes of, and potential solutions for, unexpected
and/or undesirable results are covered.

Every result is based on a uniform voxelgrid of 44 x 44 cm. The tables will have three special
values. Values inside of brackets have a clarification in the text. Question marks ”?” mean the
approximation is too vague to be done accurately, this often also has a clarification in the text.
The hyphen ”-” means that the code failed to execute the process completely resulting in no
output. Some columns have been colored. These columns are displaying the performance of
the tool per model. See table 5.1 for the meaning of the used colors.

1a subset of the processed files are available from: https://github.com/jaspervdv/IFC_ApartmentDetection/
tree/main/models/exports

Indication meaning Indication color
perfect/reliable result
(no errors are present)
decent result
(small amount of errors are present)
undesirable result
(medium amount of errors are present)
undesirable result
(large amount of errors are present)

Table 5.1.: The indication colors used in the results and their meaning. The indication/score
is relative, based on the amount of errors in relation of size of the object population. The
two shades per indication were used to easily distinguish between rows, their meaning is
identical.
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5. Results & discussion

5.1. Detection of storey elevations

5.1.1. Overview of the results

The results of the detected storey elevations can be challenging to evaluate in an objective
manner. The deemed most accurate and objective method is manually evaluating the height
of every major floor and roofing (group) and compare it to the storey elevation found by the
software. This is to an extent manually executing the described method in Section 3.2.1. A
major floor in this context is a floor that has a top face area of at least 10m2 and has at least
one room placed on it2. Of every major floor, the top face height is taken as the approximated
storey height. For the roofing, the elevation at the base of roofing with a xy-area of at least
10m2 is taken as a storey elevation. The manual evaluation of the correctness of the floors
placed at the same storey (the elevation merging) is done on a sensible case-by-case basis.
The result of this evaluation can be found in Tables 5.2 and 5.3.

Table 5.2 shows the storey counts from different sources per model. The number of expected
storeys are manually determined while the number of approximated elevations are the ones
outputted by the software tool. For the manual determination of the storey elevations in
multi-file models, the construction model is evaluated only. This is exactly the same as the
software tool does. The final column shows the amount of storeys in the original IFC file. This
column only shows if the outcome corresponds with the original storeys and should not be
considered as a marker for accuracy or success of the process. It is only an indicator if the
results do comply with the original model. The values in the original model could however
be incorrect or established with a different reasoning.

Table 5.3 shows a summary of the approximated storey elevations. The first column shows
the manually approximated storey count. The second column shows the amount of storey
elevations that comply with the elevations that have been manually approximated. The final
column show the amount of approximated storey elevations by the tool that comply with the
storey elevations stored in the original IFC model.

A complete overview of the original storey elevations, the manually determined storey ele-
vations, and the the software approximated storey elevations can be found in Appendix C.
This appendix includes all the storeys of the evaluated models.

The forcing of the storey elevations upon the other files (the non-structural files of a model)
that comprise the model is checked by comparing the storey elevations of all files before and
after processing. This is only done for the DigitalHub and Boompjes model because these
models are the only models that are constructed out of multiple files. The results of this can
be seen in Table 5.4.

5.1.2. Discussion

Table 5.2 shows that the tool often approximates the same amount of storeys as expected.
It also shows that the more complex a model is, the bigger the chance that deviations from
this expected amount can occur. Especially the models that have, partially, complex floor-
ing structures show these deviations. These deviations are presumed to be due to different
ways of elevation merging. The manual, considered sensible, approximation takes the spatial

2This required presence of a room is ignored if the input model has no room objects included.
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5.1. Detection of storey elevations

Model name Expected #
storeys

Approximated #
storey elevations

Original # storeys

FZK-Haus 2 2 2
Institute-Var-2 5 5 5
Smiley-West-10 5 5 5
RAC-sample-project 6 3 6
DigitalHub 4 4 3
ON4 Building 6 7 7
CUVO Building 3 3 8
Witte de Withstraat 4 (?) 3 8
Projekt Golden Nugget 8 8 12
Boompjes 36 (?) 38 40

Table 5.2.: Comparison of the approximated storey count by the tool. The ”?” indicates that
the storey structure of the model was (partially) too complex to objectively determine the
storey elevations.

Model name Expected #
storeys

# correctly
approximated
storey elevations

# of correspondence
w/ original
elevations

FZK-Haus 2 2 2
Institute-Var-2 5 5 5
Smiley-West-10 5 4 4
RAC-sample-project 6 3 0
DigitalHub 4 3 1
ON4 Building 6 6 6
CUVO Building 3 3 1
Witte de Withstraat 4 (?) 3 0
Projekt Golden Nugget 8 5 0
Boompjes 36 (?) 37 2

Table 5.3.: Summary of the approximated storey elevations by the tool. The ”?” indicates that
the storey structure of the model was (partially) too complex to objectively determine the
storey elevations.

Model name # of non-structural
files

Correct # of forced
elevations

DigitalHub 3 3
Boompjes 2 2

Table 5.4.: Summary of the storey elevation forcing upon non-structural models.
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relationship between floors into account while the automated approximation only looks at
the floors’ z-values. These complex models often have a smaller amount of approximated
storey elevations than the original IFC file had included. The most extreme case of this is the
Witte de Withstraat model. However there are occasions where new storeys are created.
This is always the case in models that do not have a dedicated roof storey. An example of this
can be seen in the top storey of DigitalHub model, see Figure 5.2.

Table 5.3 shows us that the computed storey elevations often complies more with the expected
values in the simple models. Of the simple models, the Smiley-West-10 model is the only
model of the three where an error occurs. This error occurs at the top of the building. This is
the storey where only the roofing structure is located in the model. The more complex models
show a worse performance. The performance is worse than is the case in Table 5.2. However,
it should be noted that, in complex models, it is also more challenging to manually determine
expected storey elevations. This creates a more subjective component to the evaluation and
comparison.

If the computed storey elevations are compared to the original storey elevations in a more
complex building, we can see some phenomena occur that are worth highlighting. The first
one is that even when a structure is too challenging to manually approximate the storey el-
evations in an accurate way, the software is still able to make an educated guess. However,
these educated guesses do deviate both in the number of storeys and their values from both
the original model and the sparse amount of manually approximated elevations. An exam-
ple of where the tool struggles can be seen in Figure 5.1 which shows the lower floors of the
Boompjes construction model. However, the struggles of the tool do not stop at the lower
floors of the model. In the higher, and more simple, part of the building, both the expected
and the tool-approximated elevations persistently deviate by 0.08m from the storey eleva-
tions that are stored in the original file. Due to this area being fairly simple, the expected
elevations can be considered fairly objective. This deviation is caused due to the storey el-
evations stored in the construction file being based on the interior file of the building. This
interior file has a screed floor that has a thickness of 8 cm creating this deviation. The com-
plete unsummarized evaluation for the Boompjes model can be found in Table C.10 and Table
E.1 in the Appendix.

Table 5.4 shows that the forcing of the storey elevations upon the non-structural files has a
100% success rate on the tested models. This forcing of the storey elevations from the struc-
tural to the non-structural files also resolves some errors that can occur in the model. The
expected result was that all the storey counts and their elevations across the files are the same.
This would make the models more unified and some files more easy to process. However,
the Boompjes model shows the added advantage that when a storey (elevation) is missing
from a file, this can be resolved by the storey forcing. The file representing interior of the
Boompjes model has the 12th storey missing. This caused the 11th storey to incorrectly rep-
resent both the 11th and the 12th. By forcing the found-storey elevations upon this file, this
error is resolved. This can be seen in Figure 5.3.

5.1.3. Limitations

The performance of the storey elevation detection is good in isolated cases. These cases are
often simple models that have a very low amount of overlapping storeys. The moment mod-
els become more complex, inaccuracies occur in the results from the process. All the detected
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5.1. Detection of storey elevations

Figure 5.1.: Section of the lower storeys of the Boompjes model. The complexity of the flooring
structure can be clearly seen.

Figure 5.2.: Example of the roof storey that is added by the tool. The gray storey elevations
were already present in the original IFC file of the DigitalHub model. It can be seen that
the roofing structure of the model has no dedicated storey elevation. This elevation, high-
lighted in blue, is added by the tool.
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5. Results & discussion

Figure 5.3.: The added storey to the Boompjes interior file highlighted in blue. The marked
in gray other storeys were already present in the file and correctly numbered, only the 12th

storey was missing.

errors (and, when known, their causes) of the storey elevation detection that occurred will be
covered and explained in this subsection in order of model complexity.

The Smiley-West-10 model displayed the first error, the incorrect detection of the roof eleva-
tion. In the current state of the tool, it does not process normal IfcSlab object or IfcRoof and
IfcSlab objects being part of the roofing structure in different ways. This means that for the
storey elevation detection, all the elevations are approximated based on the lowest point of
the top face of an IfcRoof or IfcSlab object. If the object is part of the roofing structure however,
its elevation should be taken from the lowest point of the lowest face of the object. This results
in the 20 cm difference between the expected and approximated value of storey 3, see Table
C.3. This could be resolved by creating a function that checks if the objects are part of the roof
or the flooring. The issue can pass by undetected if the roofing structure storey is defined
by a closely located floor. This is for the case of the Institute-Var-2 model, although the
elevation of the roofing structure is incorrectly determined this elevation is merged with the
one determined for the floor that is located closely, see Figure 5.4. This almost accidentally
results in an accurate result.

The tool struggles with complex flooring structures. It was briefly mentioned in the dis-
cussion that the manual, considered sensible, approximation takes the spatial relationship
between floors into account while the automated process only considers the z-values of the
floors. This is due to the core functionality of the process being rather simplistic, and is only
able to consider the z-domain. The xy-domain of the building, and its floors, is currently ig-
nored. This results in storey elevations being merged into one, even if the floors that they are
based upon are spatially separated from each other. The issue could be resolved by creating
an xy-domain for every storey group while determining the grouping of IfcRoof and IfcSlab
objects. This xy-domain could be used as an extra parameter to determine if storeys should
be merged into one or not. This xy-domain should also be saved to improve the subsequent
sorting process. The introduction of such a domain could potentially reduce the inaccura-
cies not only in the RAC-sample-project model but also in the complex basement area of the
Boompjes model and the separate buildings of the Witte de Withstraat.

The Witte de Withstraat model is however a unique case. The model seems to be com-
prised out of three different buildings, see Figure 5.5. Each of these have their own storey
elevation structure. This is a certain logic that the tool cannot recognize and will be extremely
challenging to add. In this particular case, the xy-domain would improve the storey eleva-
tion detection and might even create the correct storeys per building without recognizing this
logic. This is however presumed to be an outlier due to none of the three buildings having
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5.1. Detection of storey elevations

Figure 5.4.: A section of the Institute-Var-2 model that shows the situation where a closely
related floor can hide the incorrect roof detection. The highlighted in blue roofing and
flooring structure will have the same storey elevation due to the software merging closely
located storey elevations.

storey defining slabs that are located on the same z-height while being located at a close xy-
location. If this would have been the case they would have been merged into one. A potential
solution to this would be adding a functionality that allows the tool to recognize certain tags
or groups as separate building parts. This would enable the user to use certain settings to sep-
arate objects, for example the use of IfcPropertySingleValue or another label. This is however
intangible geometry, thus it would be wise to clearly notify the user that this is an option, but
might not be reliable due to the software being unable to check the validity of these labels.

The method and the created tool have been based around the IfcSlab and IfcRoof objects that
are stored in the construction file of a model. The Boompjes model showed that in a multi-file
model the storey elevations can also be based on another file. In the case of the Boompjes

model the elevations stored in the IFC file were, partially, based on the on the interior file. The
tool and method did not incorporate this. However, exactly the same method can be applied
on the interior file instead of the construction file. This is done by selecting the interior file
as construction file when prompted by the tool. Doing this yields more compliant results
in the upper section of the model with the original storey elevations. The interior file does
not cover all the storeys, and thus the storey elevations in the basement levels are incorrectly
or not approximated in this case. An added option that would enable the evaluation of all
the file instead of a single file would however not directly resolve this. Due to the way that
small z-differences between floors are merged to the lowest z-value, it will still malfunction,
see Figure 5.6. Therefore, to function properly, not only this option has to be added, but the
z-value merging has to be revised as well.

Almost vertical IfcSlab or IfcRoof objects are processed in the same manner as primarily hor-
izontal IfcSlab or IfcRoof objects. This is due to the expectations that IfcSlab or IfcRoof objects
only occur primarily horizontal. However, the Projekt Golden Nugget model shows that
this does not have to be the case, see Figure 5.7. In this example, it creates an extra storey in
the upper area of the model that is unexpected and considered to be incorrect. An improve-
ment to the code would be implementing an adjusted process for primarily vertical IfcSlab
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5. Results & discussion

Figure 5.5.: The multi-structure nature of the Witte de Withstraat model. The different sub-
buildings with a different storey structure are highlighted in different shades of blue.

Figure 5.6.: The situation in the Boompjes model that creates an undesired z-value extraction.
The flooring is constructed out of a structural floor (dark gray) and a screed floor (light
gray). Even when both are evaluated by the tool, the tool will merge the z-values found
in these floors to the lowest of the tool, resulting in the z-value still being 8 cm lower than
expected.
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5.2. Object to storey matching

Figure 5.7.: The top area of the Projekt Golden Nugget model. The highlighted roof object
is an IfcRoof object that is primarily vertical. This IfcRoof object causes the tool to create an
extra storey elevation at the base of it, which is incorrect

and IfcRoof objects.

5.2. Object to storey matching

5.2.1. Overview of the results

The accuracy of the object classification can be tested by manually counting the amount of
objects that are not classified on the storey at which they are (primarily) located. Doing this
results in Table 5.5 and Table 5.6. Table 5.5 covers the accuracy of the sorting process when
the storeys that are approximated by the tool are used. Table 5.6 covers the accuracy when
the original storeys (and their elevations) that are stored in the IFC file are used. Both tables
have the same columns. The total number of objects is the counted number by BIMvision
and not manually counted. The original misplaced objects are the manually counted objects
that show a clear incorrectly assigned storey before processing. The processed misplaced
objects are the manually counted objects that show a clear incorrectly assigned storey after
processing. The final column, the processed number unclassified objects, shows the amount
of objects that have not been sorted into a storey. These objects can not be drawn in a 3D
viewer due to this. This number is acquired by BIMvision. Exploded elevation views based
on the labelling of the objects can be found in Appendix D.

5.2.2. discussion

Table 5.5 shows that, when processing the simple models, the software can correctly assign all
objects. Even in complex models, the processed files show almost all a significant improve-
ment in the labelling of objects. Some persistent issues are resolved by the tool, see Figure
5.8. However, the more complex models show that errors do still occur. A subset of these
errors are created by incorrectly processing certain types of objects. For example, both the
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Model name Total # objects Original #
misplaced
objects

Processed #
misplaced
objects

Processed #
unclassified
objects

FZK-Haus 199 0 0 0
Institute-Var-2 1183 0 0 0
Smiley-West-10 1252 0 0 0
RAC-sample-project 481 8 5 3
DigitalHub 5041 13 1 6
ON4 Building 1414 3 7 0
CUVO Building 1750 199 0 0
Witte de Withstraat 1510 241 7 8
Projekt Golden
Nugget

6138 (?) 7 1

Boompjes 51307 923 (120) 379 27

Table 5.5.: The comparison of misplaced objects before and after processing. Note that only
extremely misplaced objects have been counted.

Model name Total # objects Original #
misplaced
objects

Processed #
misplaced
objects

Processed #
unclassified
objects

FZK-Haus 199 0 0 0
Institute-Var-2 1183 0 0 0
Smiley-West-10 1252 0 0 0
RAC-sample-project 481 8 15 0
DigitalHub 5041 13 41 0
ON4 Building 1414 3 3 0
CUVO Building 1750 199 0 0
Witte de Withstraat 1510 241 466 8
Projekt Golden
Nugget

6138 (?) (?) (?)

Boompjes 51307 923 (120) 929 0

Table 5.6.: The comparison of misplaced objects before and after processing the original storey
elevations. Note that only extremely misplaced objects have been counted.
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5.2. Object to storey matching

(a)

(b)

Figure 5.8.: Mislabelled objects being corrected in the Boompjes model. (a) shows an elevation
view of all the objects being labelled as part of the 5th floor. It can be seen that underneath
the 5th storey some objects are still labelled as part of the storey while they are actually part
of the storey below it. (b) shows the same selection of labelled object but now based on the
processed model. It can be clearly seen that the mislabelled objects that were present have
been corrected.

ON4 Building model and the Boompjes model show similar behavior where all the balconies
in the model are (partially) incorrectly classified, see Figure 5.9. If the objects representing
balconies would be removed from this summary, the processed number of misplaced objects
in the ON4 Building model would be 3 and in the Boompjes model 146.

As has been mentioned in Section 5.1, the lower storey structure of the Boompjes model is
very complex. Not only the storey detection process, but also this sorting process struggles
with these complexities. The results in Table 5.5 are drawing a skewed picture of the resulting
output of the Boompjes model. We can split the model in two parts, from the -4th floor to the
ground floor and from the 1st floor to the top floor. The top section does not have a lot of
complexities and only includes a total of 3 incorrectly classified objects in the construction
and interior model. The other 143 misplaced objects are all located in the lowest 5 storeys.
This is excluding the 233 incorrectly assigned balconies.

The Project Golden Nugget presents a challenge when trying to evaluate the tool’s perfor-
mance. The number of storeys and the way they are populated is so complex and inaccurate
that it is challenging to categorise the objects in a reasonably objective way. This is why this
model does not have a number of original misplaced objects. However, it can be said that the
processed model is a lot more structured than the original one. The degree of improvement
is not quantifiable and thus the model is not further considered in this section.

The results in Table 5.5 do have a slight bias. This is because the original misplaced object
count is based on the storey elevations stored in the original IFC file while the processed mis-
placed objects count is based on the storey elevations that have been created by the software
tool. Therefore, they are tested against different conditions. The tool is also able to use the
original storey elevations to base the sorting process upon. This does still force the elevations
of the construction file upon the other files but it does not create new storeys or elevations.
The results can be seen in Table 5.6. The table shows that, when using the original elevations,
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5. Results & discussion

Figure 5.9.: Fragment of the Boompjes model showing the incorrect assignment of the bal-
conies. The floors of the balconies are incorrectly assigned to a floor lower than they are
actually located.
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5.2. Object to storey matching

Figure 5.10.: The merged 11th and 12th storey of the Boompjes interior model isolated from
the rest of the model.

a higher number of misplaced objects are present in the processed file. Across all the models,
there is no improvement using the original storey elevations.

The extreme value of misplaced objects in the original model of the Boompjes draws attention.
This is due to the 11th floor of the interior model. As described in Section 5.2, the 12th storey is
missing in the interior file. This results in the 11th and 12th storey being merged into the 11th

storey, see Figure 5.10. The 12th storey is absent from the interior model and the next storey
is the 13th. In theory these objects are thus not incorrectly sorted. They fall between the
bottom of the 11th and the bottom of the 13th storey. However, in practice, this is presumably
undesirable. After processing by the tool, the objects of these storeys are sorted into the
correct 11th and 12th storey. This occurs both when the newly computed storey elevations
and when the original storey elevations are used. Both inhered the storey elevations from the
construction model that has the 12th storey present.

The final columns of Table 5.5 and Table 5.6 show the amount of unclassified objects that are
present in the files after processing. Unclassified objects are not displayed when the model
is opened in a 3D viewer but are instead (completely) ignored. This is undesirable because it
essentially means that objects/data is being lost from the model. Table 5.6 shows that, when
the original storeys are used, all objects are successfully classified and no unclassified objects
are stored into the processed file. The only exception to this is the Witte de Withstraat.

5.2.3. Limitations

Similar to the detection of the storey elevations, the sorting process performs well in the
simple models. When more complexity is present in the processed model, more errors occur.
A major element at play in the errors is the already mentioned absence of an xy-domain in
the method. Objects that have their base point located higher off the ground (e.g. walls) or
objects that are located higher off the ground themselves (e.g. hanging lights or ceilings) often
get incorrectly assigned in models that have storeys that are partially overlapping in the z-
direction, see Figure 5.11. This occurs often in the lower section Boompjesmodel. The solution
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5. Results & discussion

(a) (b)

Figure 5.11.: Schematic section of the Boompjes basement showing the solution that the xy-
domain integration could yield. The walls show their basepoints and the colors of the walls
reflect to what domain they are assigned (light blue = lower domain, blue = upper domain).
(a) shows the current situation where a floor creates a domain that covers the whole xy-
range of the building, resulting in walls being incorrectly assigned to the wrong storey
when half elevations are present. (b) shows that when the xy-domain is integrated, the
floors do not create domains covering the whole xy-range of a building anymore, resulting
in more accurate assignment of objects.

would be creating a complete xyz-domain for every storey. This could help determine the
potential storey where the object could be situated.

A more complex ”score” system could introduce more accuracy as well. This score system
would give every storey a score based on how likely it would be for an object to be at the
storey. This would enable multiple evaluations to be done when finding the correct storey
location. In the current version of the method and tool, the location of the base point of an
object is the only evaluation that is done to assign an object to a storey. If an object has a
base point that is, for example, slightly lower than the storey where it should be located,
it could be incorrectly assigned to a storey lower. This occurs in the Boompjes model with
the balconies. With a scoring system, more evaluations with each their own weight could
be incorporated. This could allow objects to be sorted more precisely. Another example of
incorrectly assigned objects are walls that span multiple storeys. Due to their base point being
higher off the ground, they are often assigned at other storeys than they are actually placed,
see Figure 5.12.

When the newly approximated storey elevations are used, occasionally an object is not classi-
fied. These unclassified objects are often objects that are flagged as having no representation
while also not aggregating other objects that might have a representation. Objects that have
no representation can not be processed by the tool. The flag that signifies the absence of repre-
sentation does however not mean that the objects have no actual representation. For example,
the unclassified objects in the DigitalHub objects are all IfcDoor objects that are present and
visible in a 3D viewer prior to processing. The fact that these viewers can find these objects
and display them means that a representation should be available somewhere in the file. Cur-
rently the tool has no functionality for dealing with these objects. However, the inability to
classify the objects occurs with less than 1% of the objects present in tested models.
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Figure 5.12.: The Witte de Withstraat model with a wall highlighted that is labelled to be
on the first floor instead of the ground floor. This is caused by picking the basepoint for
the elevation of a wall at a third of its height. This is very high for walls spanning multiple
floors.

5.3. Detection and reconstruction of room data

5.3.1. Overview of the results

The classification of the existing IfcSpace objects into ”element” and ”complex” objects is eval-
uated by manually executing the classification of the existing IfcSpace objects and comparing
that to the classification that was done by the tool. If an IfcSpace object encapsulates another
IfcSpace object, it should be classified ”Complex”. From the test models that were evaluated,
only the Witte de Withstraat and the Boompjes model have IfcSpace objects present that en-
capsulate or overlap with other IfcSpace objects. The Boompjes model is, however, a very large
model that presents a large amount of different IfcSpace objects and object interactions. This
allows us to evaluate the accuracy of the process on a large and diverse set of spaces even
though only a small set of suitable models is available. To establish the success of the process
four floors of the Boompjes model are evaluated. The results of the Boompjes model can be
found in Table 5.8. An overview of the complex space detection on the other models can be
seen in Table 5.7.

The evaluation of the created IfcSpace representation shapes is again done manually. The
evaluation is done at two stages of the IfcSpace representation creation process. The first
evaluation point establishes if the rough voxelized shape of the space can be found during
the voxelization process and if this shape is correct. The second evaluation establishes if a
correct shape has been constructed that completely complies with its bounding geometry.
The results of these evaluations can be found in Table 5.9. Note that the total amount of
spaces present in the model is not equal to the total amount of IfcSpace objects present in
the model. The amount of spaces present in the model is the manually counted number of,
enclosed by room bounding geometry, areas. It does not differ if this area is occupied by zero
or multiple IfcSpace objects, one single enclosed area will always be counted as one space.
Some of the complex room shapes that have been created by the tool can be seen in Figure
5.13. An example of the rough room output can be found in Figure 4.3.
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Model name Total # IfcSpaces Expected #
complex spaces

Approximated #
complex spaces

FZK-Haus 5 0 0
Institute-Var-2 82 0 0
Smiley-West-10 140 0 (14) 7
RAC-sample-project 14 0 0
DigitalHub 64 0 0
ON4 Building 168 0 0
CUVO Building 0 0 0
Witte de Withstraat 57 3 9
Projekt Golden
Nugget

86 0 0

Table 5.7.: The comparison of the expected number of complex spaces and the number of
complex spaces approximated by the tool for a subset of the models.

Floor Total # IfcSpaces Expected #
complex spaces

Approximated #
complex spaces

-2 69 24 2
-1 68 24 20
6 238 84 42
20 197 76 49

Table 5.8.: The comparison of the expected number of complex spaces and the number of
complex spaces approximated by the tool for the Boompjes model.

Model name Total # spaces # of correct rough
room shapes

# correctly
shaped IfcSpaces

# of solids

FZK-Haus 5 5 5 5
Institute-Var-2 82 82 82 82
Smiley-West-10 140 (126) 140 126 126
RAC-sample-project 14 14 3 3
DigitalHub 68 58 58 58
ON4 Building 168 151 0 0
CUVO Building 51 (44) 43 23 23
Witte de Withstraat 53 23 15 15
Projekt Golden
Nugget

59 44 0 0

Table 5.9.: The summary of the accuracy of the IfcSpace shape recovery.
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Model name Total # replaced
spaces

# of correctly
copied semantic
data

FZK-Haus 5 5
Institute-Var-2 82 82
Smiley-West-10 140 (126) 134
RAC-sample-project 0 0
DigitalHub 68 56
ON4 Building 0 0
CUVO Building 0 0
Witte de Withstraat 8 5
Projekt Golden Nugget 0 0

Table 5.10.: Summary of the IfcSpace object semantic data matching.

The copying process of the semantic data is evaluated by comparing the IfcSpace object’s
semantic data in the original IFC file to that of the replaced IfcSpace object(s) in the processed
file. The results of this evaluation can be found in Table 5.10. For this evaluation, only new
IfcSpace objects with a created representation are used. This means that, when an IfcSpace
shape that is present in the original IFC file but (for any reason) not replaced by a new IfcSpace
shape, it will not be included in this semantic evaluation as a failed copy.

Finally, the accuracy of the topologic relationships of the IfcSpace objects is evaluated. BIMvi-
sion has a function that can highlight the objects that have a topologic relationship with each
other. With the help of this functionality, every newly created IfcSpace object can have its
topologic relations assessed. The results of this assessment can be found in Table 5.11. The
incorrect relationships and missing relationships have been separated in this table. The in-
correctly related objects are objects that are marked as related while they should not have a
relationship with the IfcSpace. The missing related objects are objects that are marked as un-
related but should have a relationship with the IfcSpace object. As with the evaluation of the
semantic data, the topologic relation is only evaluated on the newly created IfcSpace objects.
The only exception are the models highlighted with an asterisk. For these models the IfcSpace
objects from the original model are used as input. A visual example of the created topologic
relations can be seen in Figure 5.14.

5.3.2. Discussion

It can be observed in Table 5.8 that the number of complex IfcSpace objects approximated by
the tool is a lot lower than the expected number. This occurs on every storey and seems to
be unrelated to the total amount of expected complex spaces. The presence of more complex
IfcSpace objects in a file does not signify a smaller percentage of correctly classified spaces.
When evaluating the objects in the 3D model, it becomes clear that often the expected to
be ”Complex” spaces do not completely encapsulate the ”Element” spaces, see Figure 5.15.
When the shapes do only partially overlap, the tool is unable to determine if it is a complex
space or not and will always regard it as not complex. This creates a lower than expected
count of complex spaces in the Boompjes model.
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(a)

(b)

Figure 5.13.: Visual examples of IfcSpace shapes created by the tool. (a) the shape of the ”liv-
ing” space of the FZK-Haus model that is created by the tool. (b) the shape of the first floor
hallway of the DigitalHub model that is created by the tool.
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(a)

(b)

Figure 5.14.: Visual examples of objects that are found to be topologically related to an Ifc-
Space, according to the tool. The correctly related objects marked in blue and incorrectly
related objects marked in red. For clarification, the IfcSlab resting directly on top of both
the rooms in the examples have been hidden. (a)the FZK-Haus model. (b) the DigitalHub

model.
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Model name Total # IfcSpaces # IfcSpaces with
incorrect related
objects

# IfcSpaces with
missing related
objects

FZK-Haus 5 0 0
Institute-Var-2 82 0 0
Smiley-West-10 140 0 0
RAC-sample-project 3 0 0
DigitalHub 68 6 4
ON4 Building* 168 0 0
CUVO Building 23 0 (9) 0
Witte de Withstraat* 15 0 0
Projekt Golden Nugget* 86 83 0

Table 5.11.: Summary of the IfcSpace object topologic relation recovery.

(a) (b)

Figure 5.15.: Visual examples of ”Complex” IfcSpace outliers. (a) a singular space partially
encapsulated in the xy-plane but completely in the z-plane. (b) two spaces completely
encapsulated in the xy-plane but not in the z-plane
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Table 5.7 shows that the only false positives occur in the Smiley-West-10 model and the
Witte de Withstraat model. The false positives that occurs in the Smiley-West-10 model
are caused by the input data being faulty. The Smiley-West-10 model has an incorrectly
placed wall in 7 of its apartments which resulted in the IfcSpace objects’ shapes representing
the bathroom and the hallway on the first floor to overlap, see Figure 5.16. For every apart-
ment where wall misplacement occurs, two different IfcSpace objects are placed in the iden-
tical location. This results in the software to incorrectly presume that there are 7 ”Complex”
IfcSpace objects present. The effect of this seemingly minor geometry error can be noticed in
all the subsequent processes as well. In Table 5.9, it can be seen that, of the three simple mod-
els, only in the Smiley-West-Building the tool is unable to recreate accurate IfcSpace shapes
for all the spaces. The 14 incorrectly shaped rooms that are present are incorrect due to this
wall displacement, see Figure 5.20a. In Table 5.10, again the Smiley-West-Building is the only
simple model where the results were not ideal due to the same reason.

The ”Complex”/”Element” classification process functions incorrectly on the Witte de With-
straat model, but this is not due to faulty data. The file has many redundant IfcSpace objects
present for different phases. Aside from the phase (and the GUID), these IfcSpace objects are
almost identical duplicates of each other placed at the same locations. If one of these near
identical room representations is slightly bigger than the other, it causes the tool to occa-
sionally incorrectly assign IfcSpace objects to ”Complex”. This is similar to the issue in the
Smiley-West-10 model although the root cause is different.

Table 5.9 shows that the process that creates IfcSpace objects performs well on the simple
models. However, for complex models the performance is sub-optimal. This quality reduc-
tion ranges from a subset of spaces not being created to no spaces being created at all. The
table also shows that during the (attempted) creation of the IfcSpace representation objects,
there are more rough room shapes found than IfcSpace objects created. The processes exe-
cuted during the voxelization are fairly simple and robust. These processes function without
the need of solids or watertight closed off faces. The subsequent refinement of the shape3 is
more complex and does require these solids or watertight connected faces. The difference in
the requirements of these two processes is clearly reflected in the results in this table. Of the
IfcSpace representation shapes that have been made, all of them are valid solids.

The DigitalHub and ON4 Building models show that, although the voxelization process is
more robust, it can also struggle in some complex models. This can manifest itself in different
manners. The DigitalHub model has spaces that have been incorrectly merged into each
other, see Figure 5.17. The ON4 Building model has missing rough room shapes in seemingly
simple surrounding geometry, see Figure 5.18. The more complex a model becomes, the more
exceptions to the expected growing and intersection rules can be present.

All these issues with complex models and shapes do however not mean that complex IfcSpace
shapes cannot be created by the tool. Figure 5.13a and 5.13b show that big and/or intricate
room shapes can be extracted in both simple and fairly complex models. The created room
shapes successfully follow the room bounding geometry to very small detail. Interestingly,
these shapes, in the case of the DigitalHub model, seem to be able to be non-manifold (or
extremely close to be non-manifold) without the software crashing, creating inaccuracies or
having issues with storing the data. Although it is positive to see that non-manifold shapes
do not create issues in the tool, it might create issues in subsequent processing by other soft-
ware.

3going from the rough room shape to the correctly shaped IfcSpace
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(a) (b)

Figure 5.16.: The incorrect original IfcSpace representations in the Smiley-West-20 model. (a) is
the situation in 7 of the 10 apartments where, due to an incorrectly situated wall, the IfcSpace
representations are creeping past it. This results in the room representations occupying the
same space. (b) shows the desired situation that occurs in the other three apartments. The
wall correctly splits the space into two, allowing two separate IfcSpace representations to
occupy their respective space without overlapping. The software will classify both these
IfcSpace objects correctly as ”Element”.
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The presented results do not only show issues related to the functioning of the tool but also
some related to user errors. All the processes for the complete evaluation were executed with
a voxel size of 44 x 44 centimeters. This means that, when a hallway or opening is smaller than
88 centimeters4, the code could be unable to detect that opening. This creates an error in the
toilet spaces of the DigitalHub model. This space has areas that are less than 88 centimeters
wide and results in the space being detected as three separate spaces instead of one singular
space.

Table 5.10 shows that the copying of the semantic data is functioning fairly reliably. The
DigitalHub model is however showing issues with semantic data copying. When analyzing
the processed model, it becomes clear that the majority of the vertical shafts through the
building do not get any semantic data assigned to them. Of the multiple spaces that comprise
one shaft, none have the correct semantic data copied in a correct manner. All these spaces
wear the generic name that the tool gives it when it is unable to find a suitable semantic set.

The final table of this section, Table 5.11, shows that for the simple models the topologic
relationships can be accurately recovered. The DigitalHub model shows some spaces that
have one incorrectly related object, see Figure 5.14b for an example. For a currently unknown
reason, all the incorrectly related objects are IfcCovering objects, except for one other occur-
rence. Aside from the DigitalHub model, only the CUVO Building model shows potentially
incorrectly found relations. This model is created in such a way that the basement walls rest
against the IfcSpace representation shapes of the ground floor with one edge, see Figure 5.19.
These walls have a spatial relationship with these IfcSpace objects. However, it is questionable
if they are desirable due to the relation being 1D instead of 2D.

5.3.3. Limitations

As was the case for the processes described in Section 5.1 and 5.2, the processes related to
the creation and recovery of IfcSpace data are very accurate on the simple models. Excep-
tions are present when faulty data is supplied. The Smiley-West-10 model did include some
faulty data resulting in almost all the processes outputting undesirable data. This faulty data
was the incorrect placement of a subset of walls. Although the misplacement was extremely
minor, the effect rendered the newly created data affected by this useless. The issues were
however centralized spatially around the locations of the faulty data and the output that had
no relationship with the faulty data remained completely unaffected.

The errors that this particular wall misplacement caused in the space shape approximation
process can be completely resolved by introducing fuzzy logic. The fuzzy logic could be
used when going from the rough room shape to the accurate room shapes. Currently the
boolean split process that creates the accurate shape avoids the use of fuzzy logic. There is an
alternative version of the tool where fuzzy logic is used. This version is able to create correctly
shaped rooms at the problem location, see Figure 5.20. At other locations in the model that
did not show any signs of issues in the original build, it now is unable to create the room
representation shapes. The tool would benefit if there was a way to combine the two builds.
This could be implemented in such a way that the tool could enable fuzzy logic when issues
are encountered in the normal creation of an accurate room shape.

4If the model has walls or rooms that are not perpendicular or parallel to the created voxelgrid the smallest allowed
hallway or opening is 67.35 centimeters
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Figure 5.17.: A section of the second floor of the DigitialHub model populated with the non-
intersecting voxels representing a rough room shape. It can be seen that this rough room
has grown through a door into a second room.

Figure 5.18.: The first floor of the ON4 Building model populated with the non-intersecting
voxels representing rough room shapes. It can be seen that a subset is not occupied by
rough room shapes.
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Figure 5.19.: Example of a topologic room wall connection that is 1d, highlighted in dark blue.
This occurs in the CUVO Building model where the top of the walls of the basement level
are flush with the floor of the ground floor.
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(a) (b)

Figure 5.20.: The effect of using fuzzy logic in the boolean split function that can create pre-
cise spaces. (a) is the result of the process using no fuzzy logic when encountering the
misplaced wall in the Smiley-West-10 model. (b) is the result when using fuzzy logic in
this process.

66



5.3. Detection and reconstruction of room data

The creation process of the accurately shaped spaces in RAC-sample-project and the ON4

Building model is performing very badly. This is due to the process encountering walls that
are too complex for the Open CASCADE library to parse into solids. The backup approach
where the object’s faces are used instead of the unified solid also yields no positive effects in
this case. This results in the boolean process not using these walls as splitting agents. This
means that the process creates invalid and/or incorrect shapes that are often discarded by
the tool itself. A crude solution for this would be creating oriented smallest bounding boxes
around the walls as a way to simplify them when solid geometry cannot be recovered. This
style of simplifying is also done for IfcDoor and IfcWindow objects and works well if the object
they encompass is primarily linear in nature. However, if the walls are not primarily linear in
nature, the results will be affected drastically. An alternative approach that could avoid the
need of simplification is the earlier mentioned use of fuzzy logic. However, when attempting
this, it did not resolve the issues in this case.

Although the CUVO Building is a seemingly simple model, it also showed a reduced space
creation success. This is mostly caused by the excessive use of IfcCurtainWall objects/aggre-
gates like they were IfcDoor or IfcWindow objects. These IfcCurtainWall objects can be, like
IfcDoor and IfcWindow, extremely complex. The tool does however not simplify these IfcCur-
tainWall, which can, and does, result in situations where the curtain wall does not split a
room correctly, this can be seen in Figure 5.21. A potential solution is again creating smallest
bounding boxes around the objects as a way to simplify them when solid geometry is not
recovered. Again, as was noted at the wall simplification, this will only work if the object that
is being simplified is primarily linear.

Due to the way the results have been presented, a major issue with the tool has been passed
over unnoticed. Slight symptoms might be spotted when looking at the results of Table 5.10
where the shafts in the DigitalHub are unable to recover any semantic data. This is due to
the tool using simplified IfcSlab geometry where no IfcOpeningElement objects are applied.
This means that no holes are present in the IfcSlab geometry that is used to create the IfcSpace
shapes. This often prevents the created IfcSpace shapes to occupy multiple storeys. These
simplified IfcSlab objects are used because their use resolves many of the issues that could
occur when an atrium or open staircase is present in a model. However, it does create a
situation where a shaft spanning over multiple storeys will be split over every storey, see
Figure 5.22.

In Section 5.2, it was mentioned that the tool sometimes encounters objects that are flagged as
having no representation while also not aggregating other objects that have a representation.
For the processes described in this section, this also creates an issue. These objects are unable
to be used to shape rough room shapes, see Figure 5.17. These objects also can not be used as
split agents to refine the room shape. Finally, they can not be identified and used in the pro-
cesses related to the topologic relations. In the DigitalHub, this results in IfcSpace objects that
incorrectly occupy two spaces and in the mentioned missing related objects. These objects
are the four IfcDoor objects for which no representation objects can be found.
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Figure 5.21.: Visualization of the incorrect output that can be caused by excessive curtain wall
use. The CUVO model has a major part of its doors and windows stored as IfcCurtainWall
objects. It can be seen that the processes do not deal with this properly, resulting in rooms
bleeding through the curtain walls into other rooms.
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Figure 5.22.: Visualization of the shaft splitting that occurs due to the simplified IfcSlab use
in the space detection process. In this section of the DigitalHub model, the shaft is high-
lighted with the resulting IfcSpace object shapes occupying this shaft highlighted in blue. It
can be seen that the single shaft is split in three spaces separated by two voids equalling
the height of the IfcSlab object next to it
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Figure 5.23.: Example of the connectivity data that is stored in the description of the IfcSpace
objects that have been processed by the tool.

Model name # of found
connections

# incorrect
connections

# missing
connections

# floating
spaces

FZK-Haus 5 0 0 0
Institute-Var-2 81 0 0 0 (2)
Smiley-West-10 147 0 3 3
RAC-sample-project* 11 0 3 14
DigitalHub 62 0 0 0 (8)
ON4 Building* 132 0 25 70 (85)

158 0 2 6 (21)
CUVO Building 29 6 8 14 (32)
Projekt Golden Nugget* 45 8 37 79

Table 5.12.: Summary of the room connection approximation. The numbers in brackets have
the spaces included that have no connections to the rest of the building. These spaces are
often shafts.

5.4. Detection and reconstruction of apartments

5.4.1. Overview of the results

To evaluate the performance of the room connectivity process, a combination of manual and
automatic checking is done. With the help of Rhino 3D and grasshopper (with the Syntac-
tic plugin), it is possible to display room connections in a graph and count the amount of
connections. Although it can display the connections, it is only used to automatically count
the number of connections. The accuracy of these connections is checked manually in the
model itself. The tool writes the connectivity data to the description of the IfcSpace object,
see Figure 5.23. This facilitates a reliable and fairly easy way to manually check the created
connections between spaces. The result of these checks can be found in Table 5.12. The table
shows the number of found connections and how many of those are incorrect. The table also
covers the missing connections, these are connections that should be present based on the
door and staircase placement but could not be detected by the tool. The final column covers
the number of floating spaces. Floating spaces are spaces that do not have a connection to
the outside. This can be both isolated spaces or groups of spaces, see Figure 5.23. The model
names marked with an asterisk use the original IfcSpace objects stored in the IFC model due to
the tool being unable to create new valid IfcSpace objects in these models.

The performance of the apartment/section detection is evaluated completely manually. As
was mentioned before, the tool writes the connectivity data to the description of the IfcSpace
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5.4. Detection and reconstruction of apartments

(a) (b) (c)

Figure 5.24.: Examples of floating spaces in graph form. (a) has no floating spaces, all spaces
are (correctly) connected to the outside. (b) has one floating space. (c) has 1 floating cluster
/ 4 floating spaces

Model name # expected
apartments

# of correct
apartments/-
sections

# incorrect
apartments/-
sections

# missing
apartments/-
sections

FZK-Haus 1 1 0 0
Institute-Var-2 1 1 0 0
Smiley-West-10 10 10 0 0
RAC-sample-project* 1 0 2 0
DigitalHub 1 1 0 0
ON4 Building* 20 13 4 3

20 16 4 0
CUVO Building 1 0 4 0
Projekt Golden Nugget* 8 0 11 0

Table 5.13.: Summary of the apartment approximation.

objects, see Figure 5.23. This can be compared to the expected apartment groups. The results
of this assessment can be found in Table 5.13. This table covers the amount of correctly and
incorrectly found apartments/sections. It also covers apartments that are clearly missing
from the output.

For both the tables, the ON4 Buildingmodel has two rows. The first row is the original model.
The second row is a model that has all empty door openings replaced with IfcDoor objects and
the two galleries of the model have been occupied with an IfcSpace object. These two IfcSpace
objects are thus places outside of the building. The CUVO model has been excluded from
the majority of the described evaluations because the tool was unable to create a large set of
the expected IfcSpace objects. The source BIM model is not available so manually adding the
IfcSpace objects and and using those for further processing is regarded as too challenging.
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5. Results & discussion

Figure 5.25.: Example of the required connections for a cluster in the CUVO Building model
to be connected to the outside. The dark blue rooms are the evaluated cluster, the black
pathways show all the connections to the outside. The blue spaces are the created spaces
that are on this pathway, the red spaces are spaces that are on this pathway but have not
been created. Although no pathway to the outside exists (every path passes through a non-
existing space), the tool considers the cluster to be directly connected to the outside.

5.4.2. Discussion

Table 5.12 shows that the connections of rooms in the simple models are very accurately
recovered. the Smiley-West-10 building is however showing that three spaces are floating.
These floating spaces are caused due to the incorrectly placed walls mentioned in Section
5.3.3. If the process is executed with the version of the tool that has fuzzy logic implemented,
these floating spaces do not occur. The results based on the DigitalHub are also very accurate,
the only floating spaces here are the shafts that are unconnected to other rooms in a horizontal
manner. The original ON4 Building model is showing some missing connections and a large
amount of floating spaces. The tool performs better on the adjusted model where openings
are replaced with doors and the external connecting rooms are added. As with the DitigalHub
model, there are also a lot of shafts present here that cause floating spaces to be present. At
the Projekt Golden Nugget model the performance is severely hampered. Only 7 of the 86
IfcSpace objects have a connection to the outside and many connections are missing. Also the
merging of the limited amount of made apartments seem to be executed unsuccessfully.

The results of the CUVO Building model shed a light on the inner workings of the tool due to
its data being very unsuited for the process. Surprisingly, the model incorrectly creates a very
low amount of floating spaces. Almost every cluster of rooms is considered to be connected
to the outside, this is not the truth however. In reality, most of these clusters are not connected
to the outside. Due to the limited amount of created IfcSpace objects in earlier processes, the
IfcSpace objects that should form the connection between these clusters and the clusters that
are actually connecting to the outside are missing, see Figure 5.25. Aside from this, also a
relatively large amount of connections that were expected to be present are also missing. The
majority of these missing connections are spaces that were supposed to be connected via
IfcCurtainWall objects.

Table 5.13 shows that although the implemented rules for the detection of the apartments are
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5.4. Detection and reconstruction of apartments

Figure 5.26.: Incorrect apartment growth due to the simplicity of the rule set. The apartment
here has grown into the stairwell.

very simple, the tool is already able to approximate apartments with a decent success rate.
The simple models show no incorrect apartment detections. The wall misplacement of the
Smiley-West-10 model does not have any effect on this process. Like the simple models, the
DigitalHub model also has been processed with no inaccuracies. The ON4 Building model
does show some inaccuracies. In both the adjusted and unadjusted model, the causes are pri-
marily the same: incorrect or missing room connections. Aside from these there is one error
that occurs in the model due to the simplicity of the rule set, see Figure 5.26. At this loca-
tion, there is an apartment that has been grown into some of the hallways/connective spaces
between other apartments. This growth has however not continued to other apartments but
stayed inside the splitting spaces only. Therefore, it has not replaced other apartments or
obstructed certain apartments to be created.

The choice to almost completely manually assess this process of the tool instead of relying on
the graphs created with the help of Syntactic was taken due to Syntactic having issues with
floating spaces. If the input data was not all connected, the output could be inaccurate or
incorrect. In addition, complex models could give heavily cluttered graphs where apartments
and even the normal connections were challenging to recognize. Syntactic was a very useful
tool to help develop and implement the methods, but for the final results, it was not reliable
and clear enough. The Syntactic graphs for the simple models can be found in Appendix F.

5.4.3. Limitations

The process that find the connections between spaces performs very well, however an issue
has been introduced due to the way a preceding process has been implemented. Currently,
there is no functionality to detect the connection between two IfcSpace objects that have their
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5. Results & discussion

boundary faces resting against (or close to) each other. This has been explicitly mentioned in
the method as something that could not occur and, thus, no process regarding this has been
developed. To an extent, this has not changed. However, in the preceding section, it has been
mentioned that the current implementation of the methods splits spaces that span multiple
storeys into multiple IfcSpace objects that only occupy a single storey. This occurs quite often
for shafts for example, see Figure 5.22. These IfcSpace objects representing a single shaft often
are only connected to other spaces via a face to face connection, and this connection cannot
be found by the tool. As mentioned before, this is a limitation of the space creation process
and, thus, it should be resolved in the space creation process and not in the processes related
to connectivity of rooms.

However, this is not completely the end of this issue in the connectivity processes. By allow-
ing the tool to generate results for models where it was unable to create new IfcSpace objects,
this lack of room to room connectivity is again an issue. In original IFC models, there can be
multiple IfcSpace that occupy one enclosed area while all being ”Element” or ”Partial” spaces,
see Figure 5.27. These spaces should all be connected to each other but the tool is currently
unable to signify them as doing so. Thus, although the room reconstruction method and im-
plementation should be improved to prevent the need to use existing spaces, it would still
be wise to implement a way to connect these kind of IfcSpace objects. This would increase
the versatility of the tool. This is one of the issues that is present in the ON4 Building model
and Projekt Golden Nugget model. In the ON4 Building model, occasionally, the rooms are
connected via openings in the walls instead of IfcDoor objects. This is, for testing purposes,
easily bypassed by replacing these openings with IfcDoor objects. This is done in the second
entry of the ON4 Building model in Table 5.12 and 5.13. The Projekt Golden Nugget model
has a lot of open spaces that are partitioned into IfcSpace objects. This model really showed
how limiting this missing feature is. The tool is almost completely unable to reconstruct a
connectivity graph. Due to this, it is subsequently also unable to separate the data it into
apartments.

The connections to the outside are restricted to be only present at ground level. This prevents
doors that lead to balconies, which are on the outside of the building, to be mistaken as
normal ground floor exits. However, when an apartment complex has galleries that connect
certain apartments to the ground floor and the outside, this can create issues. The tool is
unable to detect an outside connectivity for those apartments. These apartments are not at
a low enough level to be directly connected to the outside; consequently, the tool does not
register an outside connections. This issue can be easily bypassed by creating an IfcSpace
object in the model that occupies the space of these galleries, essentially becoming a hallway
but outside of the building. This is done in the second entry of the ON4 Building model in
Table 5.12 and 5.13.

The way connections to the outside space are determined create another issue. Currently
when a door has only one singular connection to a space, the door is, when located near
the ground floor, presumed to be a connection to the outside. However, when the code fails
to create an IfcSpace object, a door object could incorrectly only have a single connection as-
signed. This can result in the creation of incorrect connections to the outside. This error
occurs multiple times in the CUVO model. Clusters of rooms are marked as connected to the
outside, while in reality, this is not true, see Figure 5.28.

The CUVO model shows another room connectivity issue. When the methods were devel-
oped the potential misuse of IfcDoor objects was not anticipated. The CUVO model uses
three ways to model doors, with: IfcDoor objects, IfcWindow objects and IfcPlate objects. The
IfcDoor objects function as intended because the process was developed to function on these
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5.4. Detection and reconstruction of apartments

Figure 5.27.: Floorplan of the ground floor of the FZK-Haus model with the three IfcSpace
shapes, occupying the largest space, highlighted. The faces of each IfcSpace shapes that
rests against another is highlighted. These connections can not be detected by the tool.

Figure 5.28.: The room clusters incorrectly considered by the tool to be connected to the out-
side
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5. Results & discussion

objects. However, the use of IfcWindow and IfcPlate objects make these alternative ”doors” to
be completely discarded by the tool. If this misuse of objects was caused by the creator of the
model (and not created by the software package when exporting), this might be one of the
few issues that possibly should be addressed in the original BIM model. The only reason it is
known that these objects should be considered as door is either due to the object’s name or
due to the separate use of IfcAnnotation objects. This is hard to reliably detect in an automated
manner.

The amount of connecting doors and staircases is counted per IfcSpace object. Although not
explicitly mentioned, this can be seen in Figure 5.23. This counting process occasionally over
counts the actual amount of doors present in the model. This occurs when the door and the
door frame are modelled as two separate IfcDoor objects. This door (and its frame), consisting
out of two objects, is thus counted as two doors. A solution for this problem would be check-
ing if an IfcDoor object completely encapsulates another IfcDoor object. If so, these two object
could be considered as one single door.

Apartment buildings can be complex structures that are currently being generalized with ex-
tremely simple rules by the described methods. The generalization of the splitting agents (the
hallways) creates at least one occurrence in the test models where the ending of an apartment
is incorrectly detected, see Figure 5.26. This is due to the apartment being connected to a hall-
way that only has one door and two staircases. The staircases are not incorporated in the rule
set, the rules only use the doors. However, adding the staircases to this rule would still not
create a situation where the hallway is recognized as the ending of an apartment. The hallway
has to have at least 5 connections to other spaces to be considered a hallway. Adding a rule
that would make a room a splitting agent based on the presence of two staircases also will not
function well because a room with two staircases can still be part of one apartment or section
in another building. Examples of this would be the Institute-Var-2, Smiley-West-10 and
the DigitalHub models.

An improved apartment detection could be introduced with two additions. The first one
would be the introduction of more, and/or more precise, rules that rely not only on the con-
nectivity structure but also on other topologic relationships of the IfcSpace objects it tries to
group. This could for example be the recognizing of different styles of doors that could sig-
nify the ending of an apartment or the wall thickness. This however has to rely partially on
semantic data, which is considered unreliable. Secondly, the user could get more control over
the rules. Being able to turn certain rules off and on or change variables would allow the user
to get a more reliable output. However, it would also force the user to be more familiar with
the model, which can cost a lot of time. This is also slightly error prone.
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6. Conclusion & future work

This thesis showed potential methods to create and extract reliable data from IFC models for
three subjects: storeys, rooms, and apartments. The development of these methods and their
implementation was done based on the question:

• How can building features be automatically recovered from an IFC file in a reliable man-
ner?

To answer this question completely and accurately one other question has to be covered
first:

• What data in an IFC file can be considered accurate and/or reliable and is the minimal
needed data to base the reconstruction upon?

The data in an IFC file that is considered accurate and/or reliable is the tangible geometry. This
is geometry that is easily seen by the users and is of importance for a lot of involved parties.
Thus, this geometry is getting a lot of passive and active accuracy checks. This geometry
also implicitly stores a large quantity of other information that can be reconstructed based on
it. However, not everything can be reconstructed based on tangible geometry. A subset of
the semantic data has to be trusted at face value due to it not being implicitly stored in any
other data. This subset should be kept as small as possible by ignoring any semantic data
that can be extracted or recreated with the help of the tangible geometry. Topologic data is all
considered unreliable and can be recreated based on the tangible geometry in this research’s
test cases.

The overarching research question has been attempted to be answered by focusing on three
subjects: storey elevations, rooms, and apartments.

The detection/recovery of storey elevations can be done by grouping IfcRoof and IfcSlab ob-
jects and extracting the z-values of these groups. The classification of the IFC objects to a
storey can be done based on the z-distance between a chosen base point on/in the object and
the storey elevation. Although the detection process is very crude, it is able to accurately
approximate the amount of storeys and their elevation in simple models very accurately.
Buildings with more complex storey structures show that the presented method currently is
still too unsophisticated to be trusted blindly. Similarly, the process that classifies the objects
to storeys performs well on simple models but starts to become unreliable in buildings with
more complex storey structures.

The rooms shapes can be reconstructed by a voxelization process that is followed by a boolean
refinement. The voxelization and refinement process can be based on the room bounding
geometry1. The semantic data can be recovered from the original IfcSpace object that the new
IfcSpace object replaces via a simple point in solid operation. The related topologic relations
can be created by a ray-casting process. This room reconstruction process is often able to

1IfcWall, IfcSlab, IfcCovering, IfcRoof, IfcCurtainWall, IfcColumn, IfcBeam, IfcPlate, IfcMember, IfcDoor, and IfcWindow
objects
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accurately voxelize most geometry shapes. However, the refinement process that creates a
refined room shape can be severely hampered by complex geometry and incorrectly placed
objects. In simple models, the refinement performs very well, but more complex models
show that not all and occasionally no room shapes at all can be reconstructed. However, the
process that recreates the topological relationships of the rooms performs well.

Finally, apartments can be detected by constructing a graph based on room connecting ob-
jects2. This graph can be split into apartments via a simple set of rules. It was observed that
the apartment detection process performs very well considering the simplicity of the rule set
that was used. However, it does show occasionally that this rule set requires extra refinement
to improve performance and reliability.

In conclusion, this thesis has been unable to give a definite answer to the research question.
All three subjects that were covered showed promising results, but still the output of the tool
can not be relied upon blindly. For some subjects, the output can range from completely
correct to completely missing. Therefore, the research showed how to automatically recover
features, but not how to do it in a reliable manner. The research did show promise; the tool
was able to recover/create very accurate data from some models. If the tool was unable to
recover the data reliably, it is often known how to resolve this issue. For future works, it is
suggested to address or look into these issues. The considered most important focus points
are:

• Improving the geometry handling process, so that the tool is able to recover more com-
plex data structures. Currently not all the geometry is recoverable, creating situations
where not all objects are evaluated in the processes and their data is effectively being
lost.

• Implementing an xy-domain into the storeys recovery and object classification code.
This could increase the performance in models that have complex storey and roofing
structures.

• Improved geometry simplification process and the incorporation of selective fuzzy logic
in the room recovery process.

• Addition of more complex rules and evaluation methods in the apartment detection
process.

• Improving functionality that is not part of the core code. E.g. the implementation of
code that is able to detect the connection between IfcSpace objects that rest with their
faces against each other.

2IfcDoor and IfcStair objects
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Due to the presence of these issues and, additionally, due to the limited scope of the research,
the correct functioning of the created tool is still heavily dependent on the quality of the
input IFC file. This means that there are requirements for the input IFC files to ensure good
functioning. The list of requirements is:

• The IFC file has to be in the IFC4 or IFC2x3 format.

• If multi-file models are used, one single file should have all the structural floors avail-
able.

• Only use single phase files.

• It is not recommended to use models that have room bounding elements that are Ifc-
BuildingElementProxy objects.

• The chosen voxel size should be smaller than half the smallest distance between two
room bounding objects.

• It is recommended to only process models with simple flooring structures, e.g. no half
elevations.

• Geometry has to be watertight. e.g. no gaps between walls that should rest against each
other.

• No direct openings from interior spaces to the outside are allowed.

• No objects representing doors that are not of type IfcDoor are allowed.

• It is recommended to avoid the processing of files that have extensive use of curtain
walls.

• It is heavily discouraged to use curtain wall objects to replace window or door objects.

• IfcSpace objects should either not encapsulate or completely encapsulate other IfcSpace
objects. No partial encapsulation is allowed.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.
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A. Reproducibility self-assessment

Criteria Level reflection
Input data 0 - 3 Ranges from publicly available data from

third parties and myself to one private
dataset that has not been made public

Preprocessing (3) Aside from exporting a model to IFC no
preprocessing is required

Methods 3 Publicly available from the Github
repository but does not contain metadata
or DOI yet.

computational
environment

3 All free and open source libraries were
used.

results 0/3 Aside from a small subset, publicly
available from the Github repository but
does not contain metadata or DOI yet.

Table A.1.: The reproducibility criteria assessment.
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B. Used ifc models
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B. Used ifc models

(a)

(b)

Figure B.1.: Visual overview of the FZK-Haus model. (a) isometric view of the model. (b) Floor
plan of the ground floor.

84



(a)

(b)

Figure B.2.: Visual overview of the Institute-Var-2 model. (a) isometric view of the model.
(b) floor plan of the ground floor.

85



B. Used ifc models

(a)

(b)

Figure B.3.: Visual overview of the Smiley-West-10 model. (a) isometric view of the model.
(b) floor plan of the ground floor.
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(a)

(b)

Figure B.4.: Visual overview of the RAC-sample-project model. (a) isometric view of the
model. (b) floor plan of the two ground floor levels and partial site.
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B. Used ifc models

(a)

(b)

Figure B.5.: Visual overview of the DigitalHub model. (a) isometric view of the model. (b)
floor plan of the ground floor.
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(a)

(b)

Figure B.6.: Visual overview of the ON4 building model. (a) isometric view of the model. (b)
floor plan of the ground floor.
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B. Used ifc models

(a)

(b)

Figure B.7.: Visual overview of the CUVO building model. (a) isometric view of the model.
(b) floor plan of the ground floor.
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(a)

(b)

Figure B.8.: Visual overview of the Witte de Withstraat model. (a) isometric view of the
model. (b) floor plan of the ground floor.
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B. Used ifc models

(a)

(b)

Figure B.9.: Visual overview of the Projekt Golden Nugget model. (a) isometric view of the
model. (b) floor plan of the ground floor.
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(a)

Figure B.10.: Visual overview of the the Boompjes model. (a) isometric view of the model. (b)
floor plan of the first storey.
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C. Results of the storey elevation
detection process

FZK-Haus
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated elevation
(m)

0 Ground floor 0 0 0
1 2.70 2.70 2.70

Table C.1.: Full comparison between the stored in file storey elevations and the approximated
elevations for the FZK-Haus model.

Institute-Var-2
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated elevation
(m)

-1 -3 -3 -3
0 Ground floor 0 0 0
1 3 3 3
2 6 6 6
3 9 9 9

Table C.2.: Full comparison between the stored in file storey elevations and the approximated
elevations for the Institute-Var-2 model.

Smiley-West-10
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated elevation
(m)

-1 -2.81 -2.81 -2.81
0 Ground floor -0.25 -0.25 -0.25
1 2.53 2.53 2.53
2 5.23 5.23 5.23
3 7.75 7.93 7.95

Table C.3.: Full comparison between the stored in file storey elevations and the approximated
elevations for the Smiley-West-10 model.
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C. Results of the storey elevation detection process

RAC-sample-project
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated elevation
(m)

-1 -1.5 -0.80 -1.5
0 Ground floor -0.55 -0.55 -
1 0 0 -
1b - 2.70 -
2 2.53 - -
2b 3 3 2.58
3 5.73 6 6.01

Table C.4.: Full comparison between the stored in file storey elevations and the approximated
elevations for the RAC-sample-project model.

DigitalHub
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated elevation
(m)

-1 -3.67 -3.37 -3.67
0 Ground floor -0.15 -0.15 -0.2
1 3.75 3.75 3.75
2 7.65 - 7.65

Table C.5.: Full comparison between the stored in file storey elevations and the approximated
elevations for the DigitalHub model.

ON4 Building
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated elevation
(m)

-1 -3.50 -3.50 -3.50
0 Ground floor 0 0 -0.90
1 3.20 3.20 3.20
2 6.40 6.40 6.40
3 9.60 9.60 9.60
4 12.80 12.80 12.80
5 - 16.00 16.00

Table C.6.: Full comparison between the stored in file storey elevations and the approximated
elevations for the ON4 Building model.
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CUVO building
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated
elevation (m)

kelder -2.9 -2.9 -2.9
bk. fundering - -1.4 -
ok BG -0.7 -0.3 -
Peil=0 0 0 0
- 3.35 - 3.35
ok 1e 4 4 -
1e verdieping - 4.50 -
ok 2e - 7.8 -
3e verdieping - 13.00 -

Table C.7.: Full comparison between the stored in file storey elevations and the approximated
elevations for the CUVO building model. The original storey names are used where possi-
ble.

Witte de Withstraat
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated
elevation (m)

- -2.5 - -2.5
BK VLOER 00 -800 0 -0.8
BK VLOER 00 (R) - 0.5 -
BK VLOER 01 (W) 3.453 3.5 3.453
BK VLOER 01 (R) - 5.105 -
BK VLOER 01 (GZ) - 5.5 -
BK VLOER 02 (W) 6.78* (?) 6.78 -
BK DAK (W) 9.9* (?) 9.6 -
BK VLOER 02 (R) 10.01 -

Table C.8.: Full comparison between the stored in file storey elevations and the approximated
elevations for the Witte de Withstraat model. The original storey names are used where
possible. The values marked with the asterisk are unsure. The structure of the building is
complex and the storey elevation could be either one of those or both.
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C. Results of the storey elevation detection process

Projekt Golden Nugget
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated
elevation (m)

GN UG 1 OK FFB -2.5 -2.25 -2.5
TG Garage UG OK FFB - -1.95 -
HG UG 1 OK FFB - -1.948 -
GN EG OK FFB 0.14 0.3 0
HG EG OK FFB - 0.75 -
HG OG 1 OK FFB 3.33 3.50 3.33
GN OG 1 OK FFB - 3.79 -
Pfette Rechts - 4.06 -
GN OG 2 OK FFB 6.59 6.77 -
GN OG 3 OK FFB 9.59 9.77 9.59
GN OG 4 OK FFB 12.59 12.77 12.59
- - - 14.24
GN OG 5 OK FFB 15.66 15.85 15.66
- 18.02 - 18.20

Table C.9.: Full comparison between the stored in file storey elevations and the approximated
elevations for the Projekt Golden Nugget model. The original storey names are used
where possible.
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Boompjes
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated
elevation (m)

-3 -8.935 -8.935 -9.235
-2 ? -6.935 -6.935
-1a ? -4.13 -4.13
-1 ? -2.7375 -1.37
0 Ground floor -80 0 -
0a Ground floor 0.83 0.9125 0.83
0b ? 2.555 -
1 5.03 5.11 5.03
2 8.09 8.17 8.09
3 11.15 11.23 11.15
4 14.21 14.29 14.21
5 17.27 17.35 17.27
6 20.33 20.41 20.33
7 23.39 23.47 23.39
8 26.45 26.53 26.45
9 29.51 29.59 29.51
10 32.57 32.65 32.57
11 35.63 35.71 35.63
12 38.69 38.77 38.69
13 41.75 41.83 41.75
14 44.81 44.89 44.81
15 47.87 47.95 47.87
16 50.93 51.01 50.93
17 53.99 54.07 53.99
18 57.05 57.13 57.05
19 60.11 60.19 60.11
20 63.17 63.25 63.17
21 66.23 66.31 66.23
22 69.29 69.37 69.29
23 72.35 72.43 71.71
24 75.41 75.49 75.41
25 78.47 78.55 78.47
26 81.53 81.61 81.53
27 84.59 84.67 84.59
28 87.65 87.73 87.65
29 90.71 90.79 90.71
30 93.77 93.85 93.77
31 96.83 96.91 96.83
32 99.89 99.97 99.89
33 102.97 - 102.31

Table C.10.: Full comparison between the stored in file storey elevations and the approxi-
mated elevations for the Boompjes model. ”?” values are at locations too complex to ac-
curately approximate an expected elevation manually. ”-” values do not have a matching
elevation for that storey.
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D. Visual results of the storey elevation
detection and object sorting process

(a)

(b)

Figure D.1.: Visual result of the elevation detection process on the FZK-Haus model. (a) the
front isometric view. (b) an exploded view based on sorting process based on these eleva-
tions.
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D. Visual results of the storey elevation detection and object sorting process

(a)

(b)

Figure D.2.: Visual result of the elevation detection process on the Institute-Var-2 model.
(a) the front isometric view. (b) an exploded view based on sorting process based on these
elevations.
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(a)

(b)

Figure D.3.: Visual result of the elevation detection process on the Smiley-West-10 model.
(a) the front isometric view. (b) an exploded view based on sorting process based on these
elevations.
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D. Visual results of the storey elevation detection and object sorting process

(a)

(b)

Figure D.4.: Visual result of the elevation detection process on the RAC-sample-project

model. (a) the front isometric view. (b) an exploded view based on sorting process based
on these elevations.
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(a)

(b)

Figure D.5.: Visual result of the elevation detection process on the DigitalHub model. (a)
the front isometric view. (b) an exploded view based on sorting process based on these
elevations.
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D. Visual results of the storey elevation detection and object sorting process

(a)

(b)

Figure D.6.: Visual result of the elevation detection process on the ON4 building model. (a)
the front isometric view. (b) an exploded view based on sorting process based on these
elevations.
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(a)

(b)

Figure D.7.: Visual result of the elevation detection process on the CUVO building model. (a)
the front isometric view. (b) an exploded view based on sorting process based on these
elevations.
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D. Visual results of the storey elevation detection and object sorting process

(a)

(b)

Figure D.8.: Visual result of the elevation detection process on the Witte de Withstraat

model. (a) the front isometric view. (b) an exploded view based on sorting process based
on these elevations.
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(a)

(b)

Figure D.9.: Visual result of the elevation detection process on the Projekt Golden Nugget

model. (a) the front isometric view. (b) an exploded view based on sorting process based
on these elevations.
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D. Visual results of the storey elevation detection and object sorting process

(a)

(b)

Figure D.10.: Visual result of the elevation detection process on the top section of the Boompjes
model. (a) the front isometric view. (b) an exploded view based on sorting process based
on these elevations.
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E. Adjusted Results of storey elevation
detection process of the Boompjes
model

111



E. Adjusted Results of storey elevation detection process of the Boompjes model

Boompjes
Storey Expected elevation

(m)
# Original elevation
(m)

# Approximated
elevation (m)

-3 -8.935 -8.935 -9.235
-2 ? -6.935 -6.935
-1a ? -4.13 -4.13
-1 ? -2.7375 -1.37
0 Ground floor 0 0 -
0a Ground floor 0.93 0.9125 0.83
0b ? 2.555 -
1 5.11 5.11 5.03
2 8.17 8.17 8.09
3 11.23 11.23 11.15
4 14.29 14.29 14.21
5 17.35 17.35 17.27
6 20.41 20.41 20.33
7 23.47 23.47 23.39
8 26.53 26.53 26.45
9 29.59 29.59 29.51
10 32.65 32.65 32.57
11 35.71 35.71 35.63
12 38.77 38.77 38.69
13 41.83 41.83 41.75
14 44.89 44.89 44.81
15 47.95 47.95 47.87
16 51.01 51.01 50.93
17 54.07 54.07 53.99
18 57.13 57.13 57.05
19 60.19 60.19 60.11
20 63.25 63.25 63.17
21 66.31 66.31 66.23
22 69.37 69.37 69.29
23 72.43 72.43 71.71
24 75.49 75.49 75.41
25 78.55 78.55 78.47
26 81.61 81.61 81.53
27 84.67 84.67 84.59
28 87.73 87.73 87.65
29 90.79 90.79 90.71
30 93.85 93.85 93.77
31 96.91 96.91 96.83
32 99.97 99.97 99.89
33 102.97 - 102.31

Table E.1.: The adjusted full comparison between the stored in file storey elevations and the
approximated elevations for the Boompjes model. The expected elevation values are based
upon all the files comprising the model not only the construction model. ”?” values are
at locations too complex to accurately approximate an expected elevation manually. ”-”
values do not have a matching elevation for that storey.
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F. Results of the apartment detection
process

Figure F.1.: Connectivity graph of the FZK-Haus model.
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F. Results of the apartment detection process

Figure F.2.: Connectivity graph of the Institute-Var-2 model.
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Figure F.3.: Connectivity graph of the Smiley-West-10 model. The colors indicate different
apartments/sections.
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