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Abstract
Automated reconstruction of detailed semantic 3D city models is challenging due to
the need for high-resolution (HR) and large-scale input datasets, the ambiguous
definition of the ensuing model, the intricacy of the processing pipeline, and its costs.
Furthermore, existing methods mainly focus on geometry rather than semantics.
Detailed semantic models may include roof installations whose size and function vary:
dormers, windows, chimneys, etc. All elements visible on the roof from an aerial view
are called ‘‘superstructures”. Deep Learning techniques can facilitate their
modelization. A convolutional neural network (CNN) applied to aerial images outputs
a segmentation of superstructure categories. These results can then be vectorized,
extruded in 3D with their semantic description, and added to a simple 3D model. This
thesis demonstrates that building height data fused to a CNN on RGB aerial images
improves the semantic segmentation of roof superstructures for classes with relief.
Fusion of absolute and relative height data with different interpolation methods
applied to LiDAR point cloud data is achieved through a fusion network from the
state-of-the-art (FuseNet). First of all, experiments prove that prediction accuracies
increase by 11% on average for dormers and 12% for chimneys compared to U-Net
output on the same dataset. Best performance is reached with the fusion of absolute
height (rather than normalized) and IDW or NN interpolation technique (rather than
none). However, although superstructure types are better recognized, their boundaries
are fuzzier due to data input mismatches, and more background pixels are classified.
Secondly, the predictions and modelization of both a Bavarian and Dutch test set
prove the technique scalability. However, a training set annotated for Bavaria and
applied to a test set in the Netherlands yields inaccurate results due to local
architectural typologies and different input data characteristics.
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1 Introduction
Digital representations of the built environment support diverse purposes such as city
planning and analysis, or disaster management. Particularly relevant, semantic 3D
city models virtually reproduce urban areas by incorporating descriptive attributes to
building geometries. The open data model and exchange format CityGML defines four
Levels of Detail (LOD) for object depiction (OGC 2012), further subdivided by
Biljecki et al. 2014. Each of them is relevant for different applications and, thus,
necessitates a clear definition. Some usages require more advanced geometries,
whereas others benefit from concise representations (Peters et al. 2021). Detailed
models have high LODs and include small architectural specificities (dormers,
windows, etc.) as in figure 1.1. They can serve energy demand estimation, roof
insulation assessment by detecting irregularities and thermal bridges, urban wind flow
analysis, runoff, and noise diffusion modeling. Moreover, they can support urban
planning and be used to assess the age and condition of buildings through their
architectural characteristics (dormers, chimneys) or their potential for vertical
extension. Finally, these models can support the energy transition by helping to
determine the roof surface suitable for photovoltaic (PV) or solar-thermal
installations, which convert sunlight into electricity and heat, respectively.

LOD1.0 LOD3.0LOD2.0 LOD2.1 LOD2.2 LOD2.3
roof shape extensionssimple extrusion dormers roof overhangs windows, chimneys+ + + + +

Figure 1.1: Level of Details according to Biljecki et al. 2014

1.1 Motivation
Automatically generating these models over city scales is a challenging practice,
especially to reach high LODs. Although several reconstruction techniques exist for
buildings up to LOD2.0., more detailed 3D representations capturing roof installations
(LOD2.2 and further) are rare, and methods to generate them are lacking. Given the
numerous applications of such models, it is urgent to develop appropriate techniques
to produce them. Obtaining them for a single and recent building can be achieved by
simplifying its Building Information Model (BIM), a tool used by architects and
engineers to share and manage construction processes (Donkers et al. 2016,
Arroyo Ohori et al. 2018). However, on a broad scale, a technique must be elaborated
from elementary input data, available for all constructions uniformly.

The challenges arise from the need for high-resolution (HR) and large-scale input
datasets, the ambiguous definition of the ensuing model, and its complex data structure.
Moreover, the processing pipeline to efficiently extract advanced LODs on a broad scale
is intricate, costly, and time-consuming. Finally, existing methods mainly focus on
geometry rather than semantics. However, the output should be light-weighted and
contain thematic information to broaden their potential analysis usages, unlike 3D mesh
representations principally dedicated to visualization (Willenborg et al. 2018). Since
Deep Learning (DL) allows extracting information from extensive datasets with little
manual work, it offers high potential for automatizing the generation of 3D urban objects
based on various data inputs. The studied approach detects ‘‘roof superstructures”
through a DL algorithm, extrudes them in 3D, and adds them to a simple 3D model

1



1.2 Research context

available. In the context of this work, superstructures have a broad definition, including
all that is visible on the roof from aerial views. It varies from architectural specificities
(chimneys, dormers, windows, etc.) to technical ones (PV installations, ventilation
systems, etc.). Specifically, this research seeks to improve the DL performance for
superstructure detection by exploring the combination of 2D and 3D data sources within
a Deep Neural Network (DNN).

1.2 Research context
The work is carried out in the context of an existing project, developed since 2018 at the
Chair of Automotive Engineering of the Technical University of Munich. The elaborated
tool assesses the PV potential of buildings in the German state of Bavaria to support
the development of sustainable solar charging stations for electric vehicles. Therefore,
this research benefits from the current implementation framework and datasets while
aiming to improve the results.

Among other aspects, the existing processes include an evaluation of the physical
suitability of buildings for PV panel installation based on the geometrical
characteristics of the roofs. Those are two folds: roof azimuths and available surface.
Both are assessed independently through a Convolutional Neural Network (CNN) on
aerial images, a particular type of DNN applied to raster data for 2D Computer Vision
(CV) tasks. The algorithm estimating the roof surface available detects roof
superstructures through CNN and subtracts their areas from the total roof surface.
Relevant classes are determined during the research process and yield corresponding
geometrical and semantics enhancement of the output model.

The current implementation uses simple DNN architectures applied to 2D data. This
thesis strives to improve the geometrical assessment of roofs by fusing 3D information
into the network to enhance the multi-class segmentation of superstructures. Final
surfaces detected are extruded in 3D in a simplified form, and the semantic 3D model
already available can be upgraded. The resulting representation includes characteristics
of LOD2.2 through dormers’ depiction and particularities of LOD3.0 with chimneys and
windows (cf. figure 1.1). However, roof overhangs are not depicted since unidentifiable
from aerial data, resulting in a model different from any described by Biljecki et al. 2014.

1.3 Research question
The main research question is the following: How can building height data fused to
a Convolutional Neural Network (CNN) on RGB aerial images improve the semantic
segmentation of roof superstructures?

Sub-questions regarding input, network architecture, and evaluation of its output are
thereby posed:

• Which types of building height information are the most relevant for detecting
roof superstructures through data fusion?

• How should the input data be processed? How to deal with different resolutions
of available data (point cloud and images) and temporal mismatches?

• How should the existing pipeline be modified to fuse height data efficiently to the
network?

• How to evaluate the results’ accuracy for multi-class superstructure segmentation
and the added value of different height input?
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1.4 Hypotheses
Three types of hypotheses are drawn:

• Improvement for some classes only. Superstructures will benefit differently
from height data according to their type. Detection of chimneys and other higher-
profile obstacles will be improved, unlike flat superstructures such as solar panels
and windows.

• Absolute versus relative height. Relative elevation, normalized using the
simple building model, highlights roof installations more than absolute elevation
data since it has a narrower range of values corresponding to each building
independently.

• Interpolation methods. An interpolated dataset provides a higher
understanding of the roof structure and is more likely to improve predictions
than punctual data. The interpolation technique taking the most points into
account is expected to provide richer information and thus, produce better
results.

1.5 Approach
First, a network architecture for height data fusion is chosen from the state-of-the-art.
Then, relevant 3D data is identified (LiDAR point cloud) and processed to provide height
maps. A normalized dataset called “relative”, is obtained by computing the difference
between the points and a simple 3D city model. Absolute and relative height maps are
derived, and diverse interpolation methods are investigated. Next, each dataset is fused
to the CNN, and their respective results are assessed experimentally. The best results
are eventually modeled in 3D, and PV potential assessment derived from the resulting
model is demonstrated.

PredictionsHeight data
Fusion

Height data
Processing

Selection 
of datasets

3D extrusionPolygonization

Research scope Out of scope

+

Figure 1.2: Research scope

1.6 Organization of the document
The following chapter defines the main terms and presents relevant work related to DL
and its application to aerial imagery combined with other data types. It also describes
the status of DL in the frame of the existing pipeline for PV potential estimation.
The third chapter presents the methodology, processes to generate height maps and
quantitative assessment tools for CNN predictions. Next, datasets, data splits, and DL
experiments are detailed. The subsequent part exposes the results and analyzes them
through quantitative and qualitative criteria. The final chapter answers the research
question, discusses the outcomes, and describes contributions and potential future work.

3



2 Theoretical background and related work
The introduction chapter exposed the relevance of the research and the need for
efficient roof superstructure segmentation. This chapter explores state-of-the-art
semantic segmentation and 3D data fusion methods. Consequently, a methodology to
answer the research problem is determined.

First, main DL terms are defined, and the mathematical background for
understanding a neural network functioning is exposed. Then, performing network
architectures are chronologically presented, as well as methods for incorporating
multiple data types and their performance. Finally, an overview of the works achieved
for the PV assessment project is provided, including a description of how it has
applied DL so far. Lastly, a subsection concludes on a methodology built upon the
works aforementioned.

2.1 Deep Learning, Context and Definitions
Artificial intelligence (AI) can be considered a branch of computer science, aiming at
simulating, extending, and expanding human intelligence (Shi and Zheng 2006) and
making machines able to reproduce human behavior based on human-intelligence
understanding. Application domains are broad, including robotics, voice and image
recognition, and natural language processing (Niu et al. 2016). The growth of research
on AI exploded in the 1990s, mainly due to the increase in computational power
(ibid.).

Artificial Neuron Networks (ANN), often just called Neural Networks (NN), were
developed to build such “intelligent” machines. These networks are inspired by the
biological neural network functioning (Gupta 2013). They can have various
applications, including engineering, and can be employed for pattern recognition or
image segmentation which is the case in this research. In supervised Machine Learning
(ML), the model learns from its previous experience, obtained through labeled data,
to output an answer (e.g. classification tasks, assigning a category to the data).
Whereas in unsupervised ML, the model outputs a result merely based on the input,
with no previous knowledge (e.g. clustering tasks, grouping data based on common
characteristics). This work employs the first technique.

2.1.1 Neural Network

A NN is composed of neurons (or “units”) implementing functions mapping an input
with output. More precisely, the input, comparable to a synapse, is multiplied by a
weight computed with a mathematical function, whereas another one—the activation—
determines the neuron’s output (Gupta 2013). A succession of neurons forms a “Neural
Network”. In the case of supervised ML, these are trained to make the functions provide
the desired output when fed with an input. The units located at a similar depth in the
network form a hidden layer, and the first and last network layers are, respectively, called
input and output layers (figure 2.1). A network composed of numerous layers is called
a “Deep Neural Network”, from which the appellation “Deep Learning” derives. The
training data, usually manually labeled, allows the network to figure out the functions
of the nodes connecting best the input x to the correct output ŷ (Ng 2021).

Different network sorts have been developed for distinct aims and adapted to various
input types (sound, images, etc.). One of the purposes is image classification, also called
“semantic segmentation”, which assigns an object-class probability value to each pixel
on an image. Minaee et al. 2020 provides a review of the architectures developed for
this task until 2019.
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Hidden layers Output 
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Output 
value

Input 
layer

Input 
values

x1

x2

x3

ŷ

Figure 2.1: Standard Neural Network, adapted from Ng 2021

2.1.2 Training, validation and test datasets

In the case of supervised ML, a “training dataset” is necessary to train the network
and fit the model. Additionally, verification and test datasets are commonly employed
to improve and assess network performance. The validation dataset is a sample of
examples, independent of the training dataset, used to evaluate the model fit on the
training dataset. It is still used in the development stage and allows for adjusting the
network’s higher-level hyperparameters. The test dataset, also independent, allows for
evaluating the final model and illustrates various real-world cases the model would face.

2.2 Mathematical background
DNNs are often described as “black boxes” since it is unlikely to apprehend what
happens in each of their neurons. However, DNNs are able to figure out the best
parameter values through calculus. Mathematical aspects allow the practitioner to
define blocks composing a network architecture, assess its performance, and rectify its
parameters. Therefore, this subsection based on Ng 2021 introduces fundamentals to
understand the network architectures presented afterward.

2.2.1 Neuron weight and bias

An ANN layer is composed of several neurons, connected to all or only part of those of
the next layer. For each neuron a weight and a bias are applied to the input, resulting
in z, before computing the output through an activation function a (figure 2.2). The
weight w and bias b are learnable parameters, where b is a constant.

Figure 2.2: Operations occurring in a neuron; source: Ng 2021

2.2.2 Activation functions

The activation function acts like a synapse for the next layer by activating it with
its output. These activations can either be linear or non-linear: the early age of DL
usually employed the sigmoid function σ (function 1), whereas nowadays, depending on
the application, it mainly uses rectifiers, such as the Rectified Linear Unit (ReLU). The
latter does not modify the result if it is positive or outputs zero if it is negative.

σ(z) =
1

1 + e−z (1)
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2.2 Mathematical background

In the last layer, the function usually differs since it yields the network output, that
is, the final classification result. For binary classification, logistic regression is
generally used (based on a sigmoid function), whereas, for multi-class outputs,
softmax regression is employed, generalizing the logistic function to several
dimensions. The softmax function normalizes the output to a probability distribution.

2.2.3 Cost and loss functions

The loss error function allows for assessing the algorithm performance by defining the
error between the prediction ŷ and the ground truth y. The loss function L is defined
for a single training example, whereas the cost function J does it for the entire training
set, averaging the sum of the loss function applied to each training example.

The cost function can have different definitions. A regression model—estimating a
variable value based on the other—can employ a regression cost function: for example,
mean error (ME), mean squared error (MSE), or mean absolute error (MAE). A convex
function can be used to enhance the optimization problem, such as the logistic loss
function, illustrated below with its corresponding cost function J :

L(ŷ, y) = −(ylog(ŷ) + (1 − y)log(1 − ŷ)), and J(w, b) =
1
m

m

∑
i=1

L(ŷ(i), y(i)) (2)

where ŷ is the predicted label, y is the ground truth, m the number of training
examples, w and b the parameters considered.

Performance on multi-classes can be estimated through the cross-entropy (CE)
function or binary cross-entropy in the case of two output categories. In all cases, the
aim is to determine the parameters w and b that minimize the overall cost function J.
For this, w and b are initialized, and the model is trained to learn these parameters by
converging to a global optimum.

Combination of loss functions. Duque-Arias et al. 2021 highlights that loss
functions can be categorized into two types: statistical and geometrical ones. Jaccard
index (Jaccard 1912) and Dice loss (Sørensen 1948), applied to semantic segmentation
evaluation, are considered as geometrically-based, since they perform a pixel-based
evaluation of the predictions, as shown in equations 3 and 4. On the contrary, CE and
categorical-focal-loss (CFL) are statistically-based since penalizing more or less pixels
based on the difficulty to classify them, solving therefore class imbalance issues.

Complementary of both types is beneficial for segmentation tasks suffering from
classes’ imbalance and where classification performance at pixel-level is crucial (cf, IoU
explanation in 3.4.1). Such combined loss functions have been implemented by
Yakubovskiy 2019, openly available on “segmentation models” repository that is used
for the experiments of part 4.3. Calculations are applied as follows:

Dice loss = (1 + β2)
precision · recall

β2 · precision + recall
(3)

where precision and recall are expressed in function of true positives (TP), false positives
(FP) and false negatives (FN) as illustrated in figure 2.3, and β a precision coefficient;

Jaccard loss = L(A, B) = 1 − A ∩ B
A ∪ B

(4)

where A is the prediction and B the ground truth for a given class.

CFL = L(gt, pr) = −gt · α · (1 − pr)γ · log(pr) (5)
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Legend:

prediction A

ground truth B

A ∩ B

+=

FP  TP  FN

+=

=

Dice Index Jaccard Index

1 -

FP  +   TP   +  FN

 TP

Precision Recall

TP   +  FN

 TP TP

FP  +   TP

Figure 2.3: Geometrical loss functions, based on TPs, FP, and FNs

where gt is the ground truth, pr the prediction, α is a weighting factor (default value
0.25) and γ a module factor (default value 2.0).

2.2.4 Optimization algorithms

For converging to this optimum, a gradient descent algorithm can be applied. It is
composed of a for- and backpropagation sequence. The latter goes back through the
layers, computing the gradients of the loss function J with respect to the weight
parameters on the whole training set. The derivatives allow computing the slope of
the cost function J at the current state of the parameters. Then, those variables are
incremented or decremented accordingly, permitting steps towards the steepest
descent until convergence. The parameter α, called “learning rate”, allows controlling
the step amplitude between each elevation.

In logistic regression the two parameters are updated as follows:

w := w − α
dJ(w, b)

dw
, and b := b − α

dJ(w, b)
db

, (6)

where α is the learning rate, dJ(w,b)
dw is the derivative of J with respect to w and dJ(w,b)

db
is the derivative of J with respect to b.

Other optimization algorithms include Stochastic Gradient Descent (SGD), gradient
descent with momentum, Root Mean Square propagation (RMSprop), and the Adaptive
Moment Estimation (Adam). The latter, widely used, combines the effects of gradient
descent with momentum and RMSprop. Although several parameters are involved, the
learning rate α is common to them and needs to be adjusted by the practitioner.

2.3 Convolutional Neural Networks
Computer Vision (CV) domain uses DL extensively for image recognition tasks such
as image classification (predicting a label per image) and object detection (figuring out
the location of an object and drawing a bounding box around it). However, images
provide countless input features, and training such a network would require too much
computational power. Therefore, convolutional networks (ConvNets) have been
developed, based on three types of layers: the Convolutional layer (Conv), the Pooling
layer (Pool) and the Fully Connected layer (FC).

2.3.1 Convolutional Layer

The first type of layer relies on the “convolution operation” which “convolves” a filter
on the pixels of the image by sliding this window (“filter” or “kernel”) from one-pixel
position to another. The filter—usually of size 3x3, 5x5 or 7x7—contains values allowing
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to detect a specific kind of feature on the image. The operation applied between the
input pixel and the filter, denoted by an asterisk in figure 2.4, consists of an element-wise
multiplication followed by the summation of the values obtained.

* =

3    0    1    2    7   4
1    5    8    9    3   1
2    7    2    5    1   3
0    1    3    1    7   8
4    2    1    6    2   8
2    4    5    2    3   9

-5

6x6 input image 3x3 filter 4x4 output

3x1+1x1+2x1+0x0+5x0+7x0+1x-1+8x-1+2x-1 = -5

1    0   -1
1    0   -1
1    0   -1

Figure 2.4: Convolution operation; adapted from Ng 2021

In figure 2.5, the 3x3 filter allows to detect vertical edges. The intuition is that the
filter detects contrasts between the left (bright pixels) and right side (dark pixels) of the
central pixel considered. This kernel rotated by 90 degrees would allow the detection
of horizontal edges. Similarly, different filter types can be employed to detect various
features. To enhance network performance kernel values can be learned instead of
manually entered.

* =

* =

0   30  30  0
0   30  30  0
0   30  30  0
0   30  30  0

10  10  10  
10  10  10 
10  10  10
10  10  10
10  10  10
10  10  10

1    0   -1
1    0   -1
1    0   -1

0   0   0
0   0   0
0   0   0
0   0   0
0   0   0
0   0   0

Figure 2.5: Convolution operation using a vertical edge detection filter; adapted from Ng 2021

Basic convolution operations can be altered through padding and strides. The first
adjoins additional pixel rows (one or several) to the input image to prevent it from
shrinking when implementing convolution. A padding size p of one would add one row
of pixels all along (figure 2.6). Therefore, convolution can be “valid” if no padding is
applied; or “similar” (“same” convolution) if the output image is of equal size to the
input. On the other hand, the stride s impacts the sliding distance of the kernel between
two operations. The higher the stride value is, the smaller the output size.

* =

6x6 input image, p =1 3x3 filter 6x6 output

0
0
0
0
0
0
0
0

0    0    0    0    0    0    0
0
0
0
0
0
0
0    0    0    0    0    0    0

Figure 2.6: Padding operation, example of padding value p equal to one

Convolution operation can also be applied to a multi-dimensional input such as an
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RGB image. In that case, the filter has the same number of channels (or dimensions)
as the input. The number of filters used results in the channels’ quantity in the output
(figure 2.7). Consequently, an RGB image convolved with a single 3x3 filter would result
in a one-channel image. To turn the operation into a ConvNet, a non-linearity function
(like ReLU) and a bias should be applied to the convolved activations from the previous
layer, yielding the final layer outcome. The outputs from different filters are stacked
together to form a Conv layer.

* =

* =

6x6x3

4x4x2

3x3x3 first filter

3x3x3 second filter

Figure 2.7: 3D Convolutional operation using two filters; adapted from Ng 2021

To summarize, a Conv layer is characterized by the filter size, its padding, its stride,
and the number of filters used (with each kernel having the same number of channels as
the input). The values of the filters stacked together correspond to the weights (used
for linear operation), and the bias is unique per filter.

2.3.2 Pooling Layer

Although a CNN may only use Conv layers, Pools and FCs are usually also implemented.
Pools allow to reduce the representation size, speeding up the computation and making
feature detection more robust. Essentially, the input is divided into regular regions,
based on a filter size and stride value, and the maximum value (Max Pooling, figure 2.8)
or average value (Average Pooling) per region is kept. The intuition is that by keeping
a statistically meaningful value per piece, the features detected are preserved. Pools
have some hyperparameters (filter size and stride) but no parameters to learn, and the
operation preserves the number of dimensions. By convention, a Conv layer followed by
a pooling operation forms only one layer since only a layer having weights is reckoned.

1    3    2    1
2    9    1    1
1    3    2    3
5    6    1    2

9    2
6    3

Figure 2.8: Example of MaxPooling; adapted from Ng 2021

2.3.3 Fully Connected Layer

An FC layer contains units similar to those previously described, densely connected to
the activations’ output from the previous layer. Therefore, FCs have a lot of parameters.
On the contrary, Conv layers use shared parameters (that are the values in a filter), and
their connections are sparse, making them advantageous. As illustrasted in figure 2.9,
Conv layers followed by Pool layers, with FC at the end, before a softmax activation
function, is a common pattern for CNNs.
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32x32x1 28x28x6 14x14x6 10x10x16 5x5x16 120 84

softmax
...

... ŷ
5x5
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f=2
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FCavg pool.
avg 
pool. FC

Figure 2.9: Typical ConvNet; adapted from LeNet-5 network (Le Cun et al. 1998)

2.4 CNN architectures
The three building blocks, Conv, Pool, and FC, are combined to form architectures,
which the CV community is researching to reach better performances. This subsection
introduces some relevant for this research.

First of all, LeNet-5, illustrated in figure 2.9, has been developed for document
recognition purpose (Le Cun et al. 1998). In 2012, AlexNet extended LeNet-5 into a
deeper CNN, achieving great performance on image classification tasks (Krizhevsky
et al. 2012). A few years later, the very deep network VGG-16 was created for
large-scale image recognition tasks, 16 referring to the number of weighted layers the
network contains (Simonyan and Zisserman 2015). The uniformity of this
architecture—with systematic rates of size decrease and channel increase between
layers—makes it attractive. However, it contains a large number of parameters to
train.

2.4.1 ResNets

Very deep networks are hard to train because of the problem of vanishing and/or
exploding gradients, making the training error get worse in deep layers. To tackle this
issue, skip connections have been researched, allowing to pass the activations functions
from one layer to another deeper in the network. Residual blocks using this concept
(figure 2.10) have been proposed by He et al. 2015. A ResNet is built by stacking
together several of these blocks.

Figure 2.10: Building block using residual learning; source: He et al. 2015

2.4.2 Network in Network

The concept of “Network in Network” was developed by Lin et al. 2014, inspiring many
architectures later on, including the Inception architecture (Szegedy et al. 2014). The
idea is to use a 1x1 convolutional layer (also called Network in Network), allowing to
modify of the number of channels according to the number of filters, but not the size
(height and width) of an image (figure 2.11). If the number of filters corresponds to the
number of input channels, then 1x1 Conv is useful to learn more complex functions.
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=*

6x6x32 1x1x32 one filter 6x6x number of filters

Figure 2.11: 1x1 Convolutional layer; adapted from Ng 2021

2.5 Encoder-decoder network architectures
This section has described classification networks so far, that go deeper through feature
detection layers to output a label class for the whole image. However, for semantic
segmentation, the final output has a size similar to the one of the input image, assigning
a probability per class per pixel. For this purpose, a second “decoding” part is stacked
to the “encoding” part of the network. The first part refers to image pixels’ encoding
into low-level feature maps detected through filters (e.g. lines, textures), resulting in the
increase of channel number. Whereas decoding refers to the opposite process, decoding
the features back to the image size, allowing high-level, global information detection (e.g.
object classification as a whole). The decoder part projects the encoder information on
the pixel space to output a dense segmentation.

The Fully Convolutional Network (FCN), extending ConvNets image classification
purpose to segmentation tasks, has been defined to combine deep semantic
information and shallow appearance information through the use of skip connections
(Long et al. 2015). The authors introduce the concept of deconvolution to upsample
the image back to its original size, allowing pixel-wise prediction (figure 2.12). The
final prediction layer is linked to lower layers permitting local and dense predictions to
be coherent with the global structure.

forward/inference

backward/learning pixelwise predicti
on

segmentation g.t.

Figure 2.12: FCN architecture, allowing pixel-wise prediction; source: Long et al. 2015

2.5.1 U-Net

U-Net, built upon FCN, elaborates on the decoding part. It uses transpose convolutions
for the upsampling process, making the network symmetric (Ronneberger et al. 2015).
The shape of the figure 2.13, illustrating U-Net’s functioning, has given its name to
the network. For simplification purposes, each rectangle represents the height (vertical
axis) and the number of channels of the image (horizontal axis), whereas its width is
omitted. Therefore, the evolution of the image size and the number of channels can
easily be understood. This concept can be applied to different backbone architectures,
such as vgg19 or ResNet.
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Figure 2.13: U-Net architecture; source: Ronneberger et al. 2015

2.6 Multimodal network architectures
Another aspect of the research on network performances involves multimodalities.
Those refer to different data types: image, sound, video, etc. Their combination
within NNs opens new and countless possibilities to improve networks’ performance
since these diverse inputs offer complementary information. Multimodal NNs offer
various possibilities: e.g., modeling two modalities jointly, generating a modality from
another one, or using a modality as a label for the second one (eg, the sound of a
video, labeled by the corresponding images) (Dean 2017).

In the case of RS and 3D city modeling, modalities include aerial images, hyperspectral
data (HIS, capturing light within wider bands of the electromagnetic spectrum than
RGB images), Light Detection And Ranging (LiDAR) point clouds, and semantic 3D
models. As reviewed by Yuan et al. 2021, several works have researched multimodalities
to improve semantic segmentation of aerial images. Some of them use HIS data fusion
to enhance land-cover classification (Roy et al. 2020) or roof material identification
(Nimbalkar et al. 2018).

2.6.1 Height data fusion to CNNs

LiDAR point clouds (PC) provide discrete 3D data acquired by measuring the range
of light pulses emitted by a laser-scanning device. Usage of those points in ML can
either be achieved through 3D architectures like 3D CNN (an application of CNN
theory to 3 dimensions (Guo et al. 2020)) or through converting it to 2D information
by means of raster representation. For this, points can be projected to depict a
“height map” in case of parallel data or “depth map” in case of perspective data. The
first implementation case allows 3D shape classification, object detection, or point
segmentation (Guo et al. 2020), whereas the second allows enhancement of 2D
segmentation results by providing complementary data. This subsection explores some
techniques of the second approach.

Combining RGB and height data can be achieved through data fusion, implemented
for the first time by Hazirbas et al. 2017 for RGB-Depth camera images. Gu et al. 2021
distinguishes two types of data fusion to the network architecture. The most frequent
one adopts a bottom-up approach (figure 2.14, left), where the additional data type
is encoded through another branch of the network. The top-down approach (figure
2.14, right) feeds encoded information of the different branches to their corresponding
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Figure 2.14: Two different fusion approaches: left, the bottom-up and right, the top-down fusion
methods; adapted from Gu et al. 2021

2.6.2 Bottom-up Fusion Network architectures

Hazirbas et al. 2017 implemented depth data fusion for the purpose of perspective image
segmentation. The author tested stacking depth information on an additional channel.
And fusing it through a parallel encoder (or “auxiliary branch”), which activations are
aggregated to those of the main RGB branch before decoding (figure 2.15). Data fusion
yielded better results.

Figure 2.15: FuseNet architecture encoding
auxiliary data to the main datasource;
source: Audebert et al. 2018 adapted from
Hazirbas et al. 2017

Figure 2.16: Virtual-FuseNet architecture, a
symmetric version of data fusion; source:
Audebert et al. 2018

Similarly, for land-cover classification, other authors tested height data fusion to RGB
images: Digital Terrain Model (DTM), Digital Surface Model (DSM), and normalized
DSM (nDSM), which depicts height data relative to ground level. For instance, Virtual-
FuseNet was developed to fuse nDSM, DSM, or NDVI (difference between visible and
near-infrared) data to aerial images, tackling the asymmetry issue of FuseNet (Audebert
et al. 2018). Both inputs are not hierarchized anymore, thanks to the use of a third
“virtual” branch, aggregating activations of both branches through fusion layers (figure
2.16).

Another author compared land-cover classification performance of a network using
respectively additional Digital Terrain Model (DTM), Digital Surface Model (DSM),
normalized DSM (nDSM) and standardized nDSM (StdnDSM) fused to RGB images
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(figure 2.17, Zhou et al. 2019). In StdnDSM, height values are rescaled within the bounds
of RGB values present on the image (0 to 255), so both RGB and height information
have an equal impact on the network output. Fusion of StdnDSM yielded better results.

Figure 2.17: Comparison of height data sources: a) DTM, b) DSM, c) nDSM and d) standardized
nDSM; source: Zhou et al. 2019

Accordingly, Mulder 2020 concluded that height information fused to the network,
rather than stacked, improves land-cover semantic segmentation results on RGB images
for some classes (buildings but not water surfaces). The best results are reached using
relative height, obtained through DTM pixel-level subtraction from DSM.

2.6.3 Top-down Fusion Network architectures

Gu et al. 2021 developed a light-weighted Top-down Pyramid Fusion Network
(TdPFNet), tackling the issue of information loss during the decoding phase,
happening in usual multi-branches fusion approaches, as well as the complexity of such
networks. Their solution allows guiding the fusion of low-level texture information (in
shallow layers) with the high-level semantics of deeper layers. It is possible through
fusion layers at each network depth, gathering information from the different encoder
branches and feeding them to the corresponding decoding depth (figure 2.14, right).
Finally, cumulated high and low feature information from multi-levels are arranged
and fused to obtain dense segmentation results. Tests yield the best segmentation
results for Potsdam land-use classification when fusing the Open Street Map (OSM)
dataset. It also showed that TdPFNet is less complex than other state-of-the-art
models (FuseNet, V-FuseNet, etc.), being, therefore, easier to train.

More recently, Yan et al. 2022 developed an “Efficient Depth Fusion Transformer
for Aerial Image Semantic Segmentation” (called EDFT) that decreases the number of
parameters, computational and memory costs through downsampling techniques applied
to depth information for feature extraction.

2.7 Roof superstructure detection and modelization
Although (multimodal) CNNs have been extensively researched for land-cover,
land-use and perspective view semantic segmentation and prove satisfying results, they

14
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are seldom employed for roof segmentation tasks and even less for roof superstructure
detection. It can be explained by the necessity of high-resolution (HR) input data and
the need for large training datasets requiring extensive preparation work.

2.7.1 Input data resolution and availability

Roof superstructure detection through the DL method requires (Very) High-Resolution
(V-HR) images and/or LiDAR data.

In remote sensing, HR to VHR satellite images involves a representation from 30cm
to 5m per pixel according to Kraetzig 2021. In the first case, a chimney would
approximately be represented by 4 pixels, illustrating the need for VHR images for
roof superstructure detection. Since the launch of the first HR satellite sensor in 1999
(Ikonos), finer multispectral and panchromatic images are acquired each year
(Marcello and Eugenio 2019). It yields corresponding research and development of
various use-cases. Marcello and Eugenio 2019 gathers such works and mentions,
among other processes, image segmentation and classification, that facilitates change
detection, land monitoring, and urban mapping. Although VHR images exist for
multiple areas, they are not always publicly available nor provided as orthophotos,
making them complex to use as combined with other datasets.

Additionally, LiDAR data acquisition requires extensive work since airborne laser
scanners require their plane to fly over broad areas. Then, point processing and
classification are necessary to make them usable for different purposes. The
availability and quality of such datasets are therefore limited or very recent. Despite
these challenges, European countries are increasingly investing in their acquisition.
For example, in the Netherlands, the fourth national LiDAR dataset (AHN4) will be
fully available by the end of 2022 with a resolution of 10 to 12 points/m2 (AHN 2022).
In France (13 times larger than the Netherlands), a LiDAR national dataset is being
acquired since 2021, fully available by 2026 with an average resolution of 10 points/m2

(IGN 2022). In Germany, to our knowledge, no national LiDAR dataset is available,
but Bavaria proposes one of at least four points/m2 (LDBV 2021b) that will be used
for this research.

2.7.2 Roof superstructures’ detection through CNNs

Semantic segmentation applied to RGB images at the scale of buildings’ depiction has
been practiced for several purposes but, to our knowledge, not for superstructure
detection in general.

First of all, it has been used for geometrical purposes: to detect building footprints
(Wei et al. 2020), extract roof segments (surfaces with their orientation) (Lee et al. 2019)
or roof edges (Ahmed and Byun 2019). The latter can be used to model buildings in
3D: Alidoost et al. 2020 use DL to extract nDSM and rooflines from mere RGB input
to reconstruct LOD2 buildings.

Secondly, DL methods applied on roof images have been used for specific application
cases. For instance, PV-mapping by detecting solar panels already installed on roofs
(Ioannou and Myronidis 2021), or roof material analysis using various spectral data
input (Nimbalkar et al. 2018). However, to our knowledge, no DL method has been
developed to detect simultaneously all types of roof installations. Therefore, no training
data have been found for such a purpose, and manual labeling was required to carry
out experiments.
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2.7.3 Roof superstructures’ modelization

Once detected, roof superstructures can be modeled in 3D. The four LODs described
by CityGML standards have been refined by Biljecki et al. 2014 to describe nuances of
such models. Each subdivided LOD depicts a model suitable for different application
purposes. 3D city models are available in Europe at different LODs, but mostly LOD1 or
LOD2 (e.g. Bavaria). Availability of LOD2.2 models that include dormers is rare in large
areas since complex to generate automatically. To our knowledge, the Netherlands is the
only country that has such a model nationally available (3D BAG) (tudelft3d 2021).
A 3D cadastral dataset has been researched, downloadable since 2021 in 3 different
LODs—1.2, 1.3 and 2.2 (tudelft3d 2021). Peters et al. 2021 describes the method used
for the automatic generation of 3D buildings based on cadastral and AHN LiDAR PC
datasets: although the process requires building edges detection, no ML technique is
used.

The method of photogrammetry is commonly used to reconstruct buildings in 3D
from photographs taken at different angles (e.g. Google Earth). However, Kudinov
2021a proposes a ML-based method developed upon R-CNN (Gkioxari et al. 2020) to
reconstruct 3D-mesh buildings including roof superstructures from mere orthophotos
(Kudinov 2021a, Kudinov 2021b). Input data include RGB images and nDSM, whose
efficiency is tested separately and combined. The latter provides the best results
(figure 2.18), allowing even to model overhangs, therefore reaching LOD2.3
representation according to Biljecki et al. 2014. However, it tends to smooth out the
edges, is sensitive to image noises, to shadows, and does not include semantics. As a
result, the use-cases of such a mesh model are limited. Nonetheless, it illustrates the
potential of ML for accurate and detailed 3D modelization.

Figure 2.18: 3D mesh-reconstruction (right) obtained by fusing RGB aerial image (left) and nDSM
(middle); source: Kudinov 2021b

2.8 Current status of the pipeline
Finally, the way ML theory is implemented in the existing pipeline for buildings’ PV
potential assessment is described in parallel with the different works carried out in the
frame of the project. Implementation details and results until 2021 are provided by
Krapf et al. 2021.

2.8.1 Pipeline overview

Figure 2.19 illustrates the whole pipeline for PV potential assessment. It includes the
estimation of the physical suitability of roofs for PV panel installation based on radiation
data and roof geometrical potential. Furthermore, the pipeline also considers technical
aspects of PV installations and electricity prices on the market.
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Figure 2.19: General pipeline for PV potential assessment; adapted from Prummer 2021

The geometrical assessment consists of two aspects: roof azimuth and roof surface
available. Each is estimated by means of a DNN applied to RGB aerial images. The
azimuth categorizes the roof orientation into 16 classes: North, East, South, West, and
the variations. Secondly, to estimate the roof surface available, the processing steps
involve the detection of roof superstructures through DNN and their subtraction from
the total roof surface. Roof superstructures include all visible elements from aerial
views, varying from architectural specificities (chimneys, dormers, windows, etc.) to
technical ones (PV installations, ventilation, etc.).

2.8.2 Geometrical assessment implementation

First of all, segmentation of the roofs into azimuth (figure 2.20) has been implemented by
Kemmerzell 2020, based on Lee et al. 2019, using a U-Net architecture with a ResNet-
152 backbone. The same author has also implemented PV technical and economic
assessment.

Figure 2.20: From left to right: Google aerial photographs, segments ground truth and segments
detected by the network; source: Syed 2020

Then, roof superstructures detection is implemented by Syed 2020, using a U-Net
architecture. It results in a single and a multi-class segmentation as illustrated in figure
2.21. Both CNNs use images obtained through Google API as input and focus on the
city of Wartenberg (Bavaria), from which training, validation, and test datasets are
generated. Since no training dataset is publicly available for roof superstructures, the
latter have been manually labeled by the team, and its extension and improvement is
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an ongoing process since 2018 (Krapf et al. 2021). Next, Prummer 2021 carries out a
data-centric approach to improve the network performance.

PV module dormer window ladder chimney unknown shadow tree

Google AP Multi-class labels (cf.legend) Single-class labels

Figure 2.21: Roof superstructure detection into multi-classes (center) and single-class (right)

Finally, in parallel with this work, an automatic generation of training data for roof
azimuth segmentation based on the 3D model available is researched (Faltermeier
2022). For this, several encoder backbones are evaluated within a U-Net architecture
implementation. Additionally, a thesis is carried out to model in 3D the chimneys and
dormers detected by the network for superstructure segmentation (Bruhse 2022).

2.9 Conclusion on the State-of-the-Art
To conclude, this research aims to improve the current U-Net implementation for
segmentation of roof superstructures by migrating to an architecture allowing height
data fusion.

As demonstrated, numerous architectures have been developed, seeking the best data
fusion process, both through results’ performance and computational power efficiency.
Each month new publications are released, proposing various methods for the fusion of
multimodalities. For height or depth map fusion, FuseNet stays a common reference
and new approaches are often developed upon it. This thesis, therefore, employs this
architecture, focusing on evaluating the performance of different height data fused to
the network, following a data-centric approach. Several height maps are generated at
a building scale, and their performance is assessed to determine which is more efficient
for roof superstructure segmentation. This purpose, which requires finer geometrical
information and image understanding than land-cover or land-use classification, has
been hardly explored until now.
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3 Methodology and development
The previous chapter provided a scientific background for building up a methodology.
This section elaborates on the approach determined to answer the research question.

First, an overview defines the research’ general sequence, highlighting the scope of the
work. Then, the procedure is detailed through several steps, justifying their necessity
and implementation. It includes training data and height data preparation, height data
incorporation, and application of the model and pipeline to another test area. Next,
the processing pipeline to generate height maps is specified, and their resulting content
is analyzed. The final subsection explains the quantitative evaluation of CNN results.

3.1 Research process overview
Figure 3.1 describes the research’ sequence.

First, datasets are selected, and the annotations are reviewed. Then, height data
maps are prepared to be compatible with RGB images: having similar sizes, value
extents [0–255], and coinciding patterns. The existing U-Net implementation is run
with different settings, and the model resulting in the best predictions is kept for
further comparison. Next, a fusion architecture is tested with various height data
inputs: absolute and normalized height, each with different interpolation methods.
Results are assessed by comparing them to those obtained through CNN merely based
on aerial images. Predictions from each data type are also compared to one another to
identify their specificities. Finally, the most performant model is applied to another
geographic area for which predictions are modeled in 3D using the algorithm designed
by Bruhse 2022.
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PredictionsData fusionHeight data
Preparation

3D extrusionPolygonization

processbold
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RGB APs height maps
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Figure 3.1: Overview of the research process

3.2 Research steps

3.2.1 Training data preparation

First, available datasets are explored to determine which suit best the research needs.
Height data derived from LiDAR appears to relate to the Digital orthophotos (DOPs)
but not to Google aerial photographs (APs) (cf. figure 3.2). Therefore, the non-ortho-
rectified labels are reviewed to coincide with DOPs and height data. Secondly, only
relevant superstructure classes are kept. Shadow and tree classes are discarded since
the first ones should be learned by the network through height data input, whereas
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the seconds correspond to trees hanging over the roofs but are no superstructures. The
final six classes, from which is computed the model loss, comprise PV modules, dormers,
windows, ladders, chimneys and unknown.

PC overlaid on non-ortho-rectified AP PC overlaid on ortho-rectified AP

Figure 3.2: Rasterized PC overlaid on non-ortho-rectified and ortho-rectified aerial images

Overall, one can justify DOP usage by several factors. First, to correlate height and
image data; Second, when new and higher-resolution APs are available, labels can be
reused; finally, the project aims at scalability, which is possible with DOPs since it has
a universal definition. When new DOP datasets are published, APs of diverse years
could be incorporated and associated with similar labels to create more training data.

All datasets used for the research include DOPs, classified LiDAR PC, and the
LOD2.0 model of Bavaria used for relative height computation and the final model’s
enhancement.

3.2.2 Height data preparation and assessment

Datasets available are processed to generate rasterized height data. First, absolute
building heights are extracted from the classified LiDAR PC (LAS classification 6);
second, height values are normalized. Subtracting the terrain to the buildings’ height
would result in accuracy loss since the ground first needs to be interpolated at each
building pixel before being subtracted to the absolute building heights. Therefore,
normalization is achieved per building using the 3D model available for Bavaria: a new
height value is assigned to each point following the concept illustrated in figure 3.3.
Ortho-projected LiDAR points within the semantic model footprint get a new elevation
value, whereas others have “no data”. If both 3D representations correlate in height,
the new value is zero; if the point is higher than the 3D model, it gets a positive value;
whereas below, it obtains a negative one.

Original LAS file,
absolute height

New LAS file,
relative height

LOD2 model

vertical d no-data

-d

+dvertical d
min. d

Figure 3.3: Concept for relative height calculation. d = distance

Then, interpolation methods are applied to obtain a similar resolution for height
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maps than featured by the aerial images. For this, the 3D points are projected on a
raster grid, and three different interpolation methods are applied and named as
follows in the whole paper: no interpolation means that only cells containing a point
are given a height value, whereas other cells have no data; nn interpolation refers to
the nearest-neighbor (NN) interpolation, where each cell is assigned the height value
of the nearest point—if this distance is not too high; idw interpolation describes the
inverse-distance-weighting (IDW) interpolation, that assigns to each cell a height value
inverse-squared proportional to the distance between the cell and the points contained
within a chosen radius. idw interpolation can be differently tuned, but standard
parameters are implemented: an inverse proportion to the distance power to two and a
radius of 1.5 meters. The algorithm to generate this data is set publicly available at
Apra 2022 and described in 3.3.

Finally, the height maps’ information content can be evaluated and compared thanks
to an Information Entropy (IE) criteria as described by Zhou et al. 2019 who compares
this way nDSM with standardized DSM.

3.2.3 Height data integration

Height data fusion experiments employs FuseNet, implemented in PyTorch, which
functioning is illustrated in figure 3.4 (Hazirbas et al. 2017). It uses a vgg16 backbone,
that is initialized prior RGB and depth encoding. Only RGB is decoded, whereas
depth activations are concatenated to RGB ones during the encoding phase.
Concatenation of the activations from the two branches composes the fusion module.
A sparse approach is used, meaning that fusion is inserted only once per layer, before
pooling (Hazirbas and Aygun 2018).

RGB encoder

Depth encoder
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Conv + BN + ReLU (CBR) Fusion Dro- Pooling Unpooling Score

fusion zoomed in
...

...
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Figure 3.4: FuseNet functioning; source: adapted from Hazirbas and Aygun 2018

The model is fitted with the newly labeled data and run for the Wartenberg test
dataset using different height inputs and training parameters. The experiments allow
determining the height data source yielding the best predictions. The results are
evaluated through confusion matrices, accuracy calculations, and observation.

3.2.4 Dutch test location

The most performing model and input data type are then applied to a test dataset
from another geographical location. It is chosen in the Netherlands because all
necessary input datasets are openly available. A qualitative analysis of the predictions
is performed to refine the research outcomes. Moreover, this step proves the scalability
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of the pipeline, although the training data should be reviewed to offer the expected
results.

3.2.5 3D model generation and application

The detected superstructures for the Netherlands are extruded in 3D, using the
implementation of Bruhse 2022. And added to the existing GML model available in
LOD2. The extrusions, including semantics describing the superstructure types, allow
the user to determine the roof area still available for PV installations. A
demonstration employs the enhanced Wartenberg 3D model obtained from modeling
the labels. The enhanced model can be employed for other applications.

3.3 Height-data processing
The algorithm is composed of two main parts: computation of points’ height relative
to the LOD model (further called “relative height”), and generation of raster grids
with different interpolation methods, corresponding to the RGB images. The latter is
applied to both absolute and relative height (cf. figure 3.5). Finally, the TIF images
obtained are converted to PNG of datatype unsigned integer 8 (uint8), so that their
values’ extent coincide with those of the RGB images [0–255].
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Figure 3.5: Height data preparation: overview of the pipeline

3.3.1 Relative height

Roof polygons’ extraction. Since the semantic 3D model is encoded in GML format,
roof polygons can be extracted using the geo-database management tool 3DCityDB
(Yao et al. 2018). The whole model for Wartenberg is loaded in the database using
the corresponding “importer/exporter” tool. SQL queries indicated in the snippet 1 are
carried out to retrieve the roof surfaces and their corresponding geometries projected in
2D with PostGIS function “st-force2d”. The resulting table, containing roof polygons’
unique id, 3D and 2D WKT geometries, is exported as CSV file.
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CREATE TABLE wartenberg.query1 AS
(SELECT sg.id, sg.gmlid , sg.parent_id , sg.geometry AS geom
FROM wartenberg.surface_geometry sg,

wartenberg.thematic_surface ts
WHERE ts.lod2_multi_surface_id = sg.parent_id

AND ts.objectclass_id = 33);

CREATE TABLE wartenberg.query2 (geom_3d_id , geom_3d , geom_2d) AS
(SELECT id, geom, st_force2d(geom)
FROM wartenberg.query1);

SELECT geom_3d_id AS poly_id ,
ST_AsText(geom_3d) AS geom_3d ,
ST_AsText(geom_2d) AS geom_2d

FROM wartenberg.query2;

-----> export resulting table

DROP TABLE wartenberg.query1 , wartenberg.query2;

Listing 1: Extraction of roof polygons from Wartenberg GML 3D City model using SQL

A semantic model encoded in CityJSON format (like the 3D model of the
Netherlands, tudelft3d 2021) requires another parsing solution. However, since
json-based encoding aims to facilitate information extraction, more practical solutions,
directly through Python, could probably be established.

Relative height calculation. The polygon file is further processed through a Python
script that also parses LiDAR points with laspy module. The underlying polygon of
each point is retrieved in 2D through a “polygon contains point” test. If the point
has no underlying polygon, it is assigned a new height value no data. Otherwise, the
distance between the 3D point and its corresponding 3D roof polygon is computed.

The distance can be either “vertical” or “minimum” (min). The first one corresponds
to the altitude difference between the point (zactual) and its expected elevation given its
x and y coordinates and the equation of the roof plane. It differs from the minimum
distance, which is the distance of this point to the roof surface along the plane’s normal
axis passing through it.

vertical distance = zactual − zexpected (7)

Distances are negative if the points lie under the polygon. Moreover, the steeper the
roof plane is, the higher the vertical distance is than the minimum one. In the case of
horizontal planes, both lengths are similar.

The first height type is preferred since most installations, like chimneys, are installed
along a vertical axis. The algorithm generates a new LAS file with these distances
replacing height values z. Interpolations are applied to both original and new LAS files
to obtain absolute and relative height grids, respectively.

3.3.2 Interpolation

The input LAS files are merged, if applicable. The resulting file is cropped into
mini-PC corresponding to the boundaries of the TIF images. Each of them is then
parsed using laspy library and rasterized to obtain height maps. Point Data
Abstraction Library (PDAL) pipelines are used to perform no and idw interpolations,
whereas nn is computed “manually” with Python. No interpolation is achieved by
applying a radius search equal to the cell half-diagonal, resulting in more cells with
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3.3 Height-data processing

height information than there actually should be. However, a smaller radius search
results in information loss. Hence, the first option, although not perfect, is kept.

Image conversion. Conversion from float to uint8 is achieved through normalization
of all values per image. First, the algorithm subtracts the lowest image value from each
pixel; then, it divides all of them by the maximal value; finally, it multiplies all results
by 255.

data =
data − min(data)

max(data)
× 255 (8)

3.3.3 Height data content evaluation

Figure 3.6 presents some result’s visualization, whereas the split maps in figure 4.6
depicts images missing height information.

Relative height, vertical:

Absolute height:      AP No interpolation Nn interpolation Idw interpolation

Figure 3.6: Height maps’ visualization for an example building

Qualitative assessment. Absolute height data grids provide more context for building
understanding than relative heights. The latter is highly dependent on how the LOD2
model was generated and its simplification principles. As a result, more reliefs appear
than there are in reality. Typical examples are due to roof overhangs: the LOD2
model does not represent overhangs, but LiDAR points capture them, resulting in height
differences located at the border between two buildings (cf. figure 3.7, bottom). Other
examples are at buildings’ junctions: gabled-roof intersections are sometimes simplified,
and the crossing between two building roofs is captured in relief in the relative height
dataset (cf. figure 3.7, top). As a result, the network could wrongly interpret it as a
dormer.

In relative height datasets, dormers and chimneys obtain positive values, whereas
some windows are located beneath the roof surface. Glass surfaces, due to their shiny
appearance, hardly reflect laser pulses back to the sensor, yielding data gaps. It might
give no interpolation dataset a chance for the network to detect windows more
accurately than interpolated datasets since lacking local height information at the
place of windows. However, as observed, PV modules’ surfaces reflect laser pulses
more than windows and do not lack height data. Height differences are rare for this
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3.3 Height-data processing

1) Buildings junction

2) Roof overhang

Reality: DOP & PC LOD2 model absolute height relative height

Figure 3.7: Examples of wrong height interpretation in relative height dataset (black arrow)

class, only when panels are forming an angle with the roof plane.

Temporal mismatches and height information lack. The LiDAR data being older
than the APs, some tiles have inconsistent height data. Figure 3.8 illustrates an image
missing height information for a building (left). The right images illustrate the opposite
case: if a building was destroyed between the two datasets’ acquisition or ground points
were wrongly classified. The first case is recurrent, and the split maps in figure 4.6
depict 63 tiles fully missing height information.

AP APHeight map, abs nn Height map, abs nn

Figure 3.8: Examples of height data mismatch with the RGB image

Additionally, small reliefs like chimneys are sometimes missing since their surfaces
are reduced and were not hit by any laser pulse. In any case, chimneys’ surfaces
observed on the height maps are smaller than those on the RGB images. On the other
hand, figure 3.9 shows a rare example of missing dormers, probably due to PC
acquisition issues.

Information Entropy. Information entropy (IE) allows for objective assessment of
the information content of an image by means of a kernel. The Python implementation
described in Maucher 2013 is used and applied to all height datasets, with a kernel size
of 3. The filter is applied to each input pixel, and cell values within the considered
region of 3× 3 are assessed by computing their entropy E. For this, the probability p of
each value that occurs within the kernel is calculated, forming the set of probabilities
P; then, E is computed as:
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3.3 Height-data processing

AP APHeight map, abs nn

Absence of chimney Absence of dormer

Height map, abs nn

Figure 3.9: Examples of height data lack

E = ∑
p∈P

log2(
1
p
) (9)

All height datasets, including those of minimum height, are assessed, and results are
gathered in table 3.1: the mean IE is first calculated per height image encoded in uint8.
Values of zero are ignored for mean computation since numerous cells have no data.
Then all means are averaged per dataset. The aim is to observe if there are correlations
between a dataset IE and the results obtained later through the corresponding dataset
fusion to the network.

height type dataset kernel-size mean IE
absolute no interpolation 3 × 3 1.36
absolute nn 3 × 3 1.32
absolute idw 3 × 3 1.89
relative, min no interpolation 3 × 3 1.09
relative, min nn 3 × 3 1.16
relative, min idw 3 × 3 1.78
relative, vertical no interpolation 3 × 3 1.09
relative, vertical nn 3 × 3 1.17
relative, vertical idw 3 × 3 1.79

Table 3.1: Mean IE per height dataset, based on 100 corresponding building images

To conclude, absolute height generally contains more information than relative height.
Regarding the different interpolation methods, idw contains richer features, whereas nn
contains the least information for absolute height and no interpolation the least for
relative height.

Additionally, IE per pixel can be visualized for qualitative comparison: figure 3.10
depicts corresponding images from different datasets. Figure 3.11 and mean IE values,
indicate that datasets with minimum and vertical distances comprise comparable
information. It can be explained by the conversion process to uint8, smoothing out
their differences. Since vertical height shows a slightly broader value range and makes
more sense regarding the installations’ axis, it is kept for the experiments. Therefore,
“relative height” refers further to the vertical one.
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3.4 Evaluation and comparison of the network’s results

Absolute height IE: Nn interpolation Idw interpolationNo interpolation

Relative height IE:

Figure 3.10: IE visualization for an example building, absolute and relative height with different
interpolation methods

Relative height, min.:   AP No interpolation Nn interpolation Idw interpolation

Relative height, vertical:

Figure 3.11: Example zoomed in to compare minimum and vertical distances converted to uint8

3.4 Evaluation and comparison of the network’s results
Segmentation results are analyzed pixel-wise through confusion matrices, considering
model predictions for each class separately. Since classes are imbalanced, with a large
majority of the background (no superstructure), such a matrix is a relevant assessment
tool. It is two-dimensional, as illustrated in figure 3.12. Each cell contains a number
of pixels corresponding to the ground truth (GT) class (read on the y axis) and to the
predicted class (read on the x axis). Following the x axis, a column corresponds to the
number of pixels the model predicted as belonging to this class. However, only those
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3.4 Evaluation and comparison of the network’s results

pixels whose y axis class is similar are correctly classified. They are called True Positives
(TPs). The other values of that column are False Positives (FPs) since the GT shows
they belong to another category. Finally, reading from the y axis, all the values of a
row that do not correspond to the same class on the x axis are called False Negatives
(FNs) since the model did not predict them as belonging to the proper category.
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Figure 3.12: True Positives, False Positives and False Negatives in a confusion matrix

3.4.1 Image level and dataset level evaluation

The results of each image tested can be evaluated. As a result, the approach to
prediction evaluation on the whole dataset can be two folds. The micro approach to
the dataset consists in summing up all the image confusion matrices before computing
the accuracies from it. In contrast, the macro one consists in calculating the accuracies
for each image individually before deducing global accuracy values as the mean of that
of all images. The first approach considers each pixel in the final accuracy results,
whereas the second synthesizes information at the image level. The first approach
providing a more accurate global evaluation with no previous generalization is chosen.

Similarly, the evaluation on the image level can be two folds: the micro approach to
the image consists in summing up all occurrences of TPs, FPs, and FNs to compute
accuracies; whereas the macro one calculates the accuracies per class before averaging
them. The second approach is adopted to calculate the accuracies per class and the IoU
score. The latter is based on a micro dataset approach and a macro image approach.

For each class, accuracies can be calculated, either based on the TPs and FPs
(prediction accuracy) or the TPs and FNs (accuracy on GT). Each combination
independently corresponds to the total number of pixels on the image.

• Prediction accuracy. By combining TPs and FPs to evaluate the prediction, the
percentage of pixels detected in a class that actually belong to it can be calculated.
For each column, the accuracy is calculated as:

prediction accuracy =
TPs

TPs + FPs
(10)

The result is called “prediction accuracy” in the rest of the paper and
corresponds to the last row of the confusion matrices, scaled from 0 (0 %
accuracy) to 1 (100 % accuracy).

• Accuracy on ground truth. Combining TPs and FNs allows to evaluate, given
the GT, what percentage of the actual pixels per class are detected as belonging
to this class by the model. For each row, the accuracy is calculated as:

28



3.4 Evaluation and comparison of the network’s results

accuracy on GT =
TPs

TPs + FNs
(11)

The result is called “prediction on GT” in the rest of the paper and corresponds
to the last column of the confusion matrices, scaled from 0 (0 % accuracy) to 1
(100 % accuracy).

• Overall accuracy. Overall Accuracy (OA) requires a micro approach and
corresponds to the total number of TPs over the total number of pixels. It is not
a determining criterion in the present case since it does not consider class
imbalance, making the background class too impactful. Confusion matrices of
the results chapter indicate that this value is always between 0.98 and 1.
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Figure 3.13: Accuracy computation from confusion matrices

3.4.2 Intersection over Union

Intersections over Unions (IoU) refers to the number of pixels correctly classified
according to the GT, over the union of all the classification results, as follows:

IoU =
TPs

TPs + FPs + FNs
(12)

In this calculation, information is synthesized, but the denominator is higher than
the total number of pixels, resulting in accuracy decreases. This operation is used in
experiments to compute IoU evolution. However, for more accurate analyses, the two
accuracy criteria are also considered independently through confusion matrices.

Accuracy on GT IoU

FP  +   TP   +  FNTP   +  FN

 TP  TP  TP

FP  +   TP

Legend:

prediction A

ground truth B

A ∩ B

+=

FP  TP  FN

+=

=

Prediction accuracy

Figure 3.14: Illustration of accuracies and IoU score based on TPs, FP, and FNs
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4 Implementation and experiments
The preceding chapter defined the methodology, its scope, and processing steps. This
section presents implementation details, the datasets used for DL experiments, and
investigations using DL frameworks. It aims at defining the most performing settings
for height data incorporation through FuseNet.

First, an overview of the pipeline is provided together with the required tools.
Secondly, input datasets are listed, including their resolution and geographical
location. The content of training data is described and statistically analyzed. Then,
an algorithm is implemented to distribute the annotated data into sets used in the
following experiments. The second part introduces U-Net experiments, their scope,
and results, followed by the FuseNet experiments allowing to determine the best
parameters for height data fusion.

4.1 Implementation overview
Height data processing is achieved through Python scripts and using the C++ library
PDAL. Extraction of roof polygons from the GML 3D model and geometry projection
in 2D is done with SQL, using 3DCityDB (Yao et al. 2018) and PostGIS functions
(PostGIS 2022). The final tables for polygons and LAS files are inputs for the following
processing scripts.

ML is achieved in Python language. First, as base for later fusion comparison, a
U-Net implementation is carried out, using Keras API built upon TensorFlow (Chollet
et al. 2015). The existing project repository is used for training and prediction. For
data fusion, FuseNet implementation within PyTorch framework is employed (Hazirbas
and Aygun 2018).

Furthermore, model training is done on a remote server, using Graphics Processing
Units (GPU), speeding up the process up to 20 times in comparison to a Central
Processing Unit (CPU). All requirements are set up by means of Docker containers:
one for height data processing requiring GDAL (Geospatial Data Abstraction Library,
Rouault et al. 2022) and PDAL (PDAL Contributors 2020), one for ML and GPU
leverage. The whole process is illustrated in figure 4.1.

4.2 Datasets
The project aims at using datasets openly available, so the processes can be applied to
other geographic areas. This subsection introduces Wartenberg datasets used for the
experiments, labeling, and Dutch datasets used to apply the final model to a different
geographic area.

4.2.1 Wartenberg datasets

Open datasets for Bavaria are available on LDBV 2021c for Bavaria. However, the
LOD2 3D model is not freely available, but was specially provided for research purpose
by the State Office for Digitization, Broadband and Surveying (LDBV). Nonetheless,
in other countries like the Netherlands, this model is openly available and the method
developed in this work can be applied (tudelft3d 2021).

Among available datasets, this thesis utilizes the three following:

• APs. RGB photographs can be downloaded through Web Map Service (WMS)
from the Bavarian geoservices portal (LDBV 2021c). Although they are provided
as true orthophotos, their resolution is only of 20cm/pixel, which is less than
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Figure 4.1: Implementation: overview of the pipeline and tools

Google Application Programming Interface (API) images (10cm/pixel), that are
not ortho-rectified.

• LiDAR PC. According to LDBV 2021b, it has been acquired for Bavaria between
2011 and 2021. The training data area is part of the Taufkirchen zone, which has
been acquired in 2012. The resolution is of at least 4 points/m2. The points
are divided into seven classes (last pulse) and eight classes (first pulse) including
ground, building, water bodies, objects and bridges (LDBV 2016).
The first pulse dataset contains points which laser emission has been first reflected,
whereas last pulse consists of the last reflections. Therefore, first pulse is mostly
suitable to study the canopy of vegetation, whereas last pulse contains more points
lying under the canopy, i.e. soil and low buildings’ roof. Last pulse is therefore
chosen for the current study since containing more building points.

• Semantic LOD2 model (CityGML). Existing since 2012 for Bavaria, it has
been generated from the building footprints of the cadastral map combined with
the PC. The latest model was generated between 2016 and 2021 depending on
the location in Bavaria. Buildings are fitted to one of the 13 typical roofshapes
described in the ALKIS information system (LDBV 2021a). If height information
is missing due to temporal data acquisition mismatches, the roofs are modeled flat
with a height dependent on the roof size (more or less than 25 m2).

4.2.2 Training data preparation

Existing data has been annotated on the city of Wartenberg, Bavaria (figure 4.2),
since it offers standard data conditions and would ensure the project is scalable for the
whole state. 1880 buildings have been annotated during the last three years, based on
Google API image dataset of 2018. In the scope of this thesis, new labels are manually
drawn for the same area but based on DOPs.
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200km 1km

Germany

Bavaria

Figure 4.2: Wartenberg location in Germany, state of Bavaria

APs. Image extents are chosen based on a roof-centered approach. Since buildings
are studied, it is preferred to generate an image per building, using its center point
extracted from Open Street Map (OSM), rather than a regular grid of images. In the
latter case, most images would not contain buildings. Roof-centered approach has also
the advantage of not cutting buildings on several images but displaying the would roof on
the same image. However, it has the disadvantage to provoke overlaps between images.
This has to be taken into account when splitting the datasets to avoid data leakage which
impact has been studied by Prummer 2021. If similar images are encountered in several
of the three datasets—training, validation, test—final accuracies wrongly increase.

Georeferenced images in TIF format are obtained through WMS request.
Georeferencement is crucial to correlate height data extracted from the LiDAR
datasets. However PNG format is then used for training, since it is a more common
encoding. Previous image size per image for the project was of 512 × 512 pixels. Due
to resolution loss provoked by changing from Google APs to DOPs, the image size
decreases accordingly, reaching 256 × 256 pixels. They have three channels: Red,
Green, and Blue.

Labels. QGIS software is used to draw vector polygons that are further rasterized with
Python using GDAL. The resulting masks have the same size as the APs, and are in
PNG format with 7 channels, corresponding to the 6 classes and the background.

Proportions of the new labels are illustrated in figure 4.4. As observed the
occurrence of a class (polygon count) is proportionally contrasting with the pixel
count for that class. For instance, the number of PV modules represents only 8% of
the labeled polygons, however, it represents about half of the labeled pixels. In
contrast, chimneys are numerous but represent only few pixels.

The total number of annotated pixels is equal to 256 × 256 × 1880 and the total
number of pixels belonging to one of the 6 classes is 29849. Therefore, background
class represents 99.98% of the total amount of pixels:

32



4.2 Datasets

Background class = (256 × 256 × 1880 − 29849)/256 × 256 × 1880 = 99.98% (13)
This imbalance represents a major challenge for semantic segmentation and is taken

into account both by weighting classes to compute the loss function, and by measuring
accuracies while omitting the background class.

Since labeled pixels only add up to 0.02%, the importance of accurate annotation is
highlighted. However, the identification of superstructures and their boundary
delimitation is not straightforward given the low image resolution and the contrasts
making objects not recognisable in shadows. Moreover, the rasterization process into
masks increases inaccuracies. Roofs are not aligned with the raster grid, creating
aliased superstructure masks, as depicted in figure 4.3.

AP, Wartenberg Vector mask Raster mask

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 4.3: Examples of vector labels and raster masks

A way to improve this issue is to implement label uncertainty, as described by
Bressan et al. 2021. This factor is applied to the labeled pixel based on their distance
to the label border: the smaller is that distance, the less certain is the label. Due to
time restriction, this concept has not been carried out.

Content of the classes. Given the wide variety of superstructures’ types, labeling
is not straightforward. Dormers are the most easily recognisable, and have three main
architectural typologies in the dataset: gabled, shed and eyebrow. Some buildings’
extension might look similar to dormers because of their gabled-shape. However they are
identifiable since not located within the buildings’ outline but extending the footprint.
Such expansions are not classified.

PV modules and windows are not always differentiable and might be interchanged.
The ladder class includes stairs yielding from roof edges (or from windows) to

chimneys, but also horizontal path linking chimneys together (figure 4.5). Ladders are
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Figure 4.4: Roof superstructures: class occurrence (left), pixel count per class (right)

very common in Bavaria due to a law stipulating their necessity for secure access to
chimneys.

Figure 4.5: Examples of ladders

The unknown class is mainly composed of snow fences, that are discernible because
of their linear aspect and distance to the roof edge—unlike gutter which are directly on
the edge, and therefore not taken into account. Another element of the unknown are
the satellite dishes. Overall, this class is very heterogeneous.

Finally, the chimney class contains also ventilation installations.

4.2.3 Data split for training, validation, test

The training set includes 60% of these annotations, whereas 20% is used for validation
and the remaining 20% for model testing. An algorithm avoiding overlaps between
datasets is designed, available on github (Apra 2022). It uses a queue data-structure,
adding recursively the overlapping images to the same dataset as the image currently
considered. This image is removed from the queue whereas overlapping images are
added to it, to be examined for overlaps as well. Whenever the queue is empty and the
desired amount of images is not yet reached, a random image is added to it.

Given that the labeled dataset is located on a reduced and relatively densely urbanised
geographic area, most of the images are overlapping and only few gaps occur. Moreover,
since the dataset is already very limited, discarding any content is avoided. Therefore,
running the algorithm several times to obtain the desired percentage for the data split
always yields similar training dataset, and only few possible configurations for validation
and test.

Two distributions, used for the following experiments are illustrated and referred to
as “split-01”, and “split-02” in the following chapters.
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100mLegend: training dataset validation dataset test dataset DOP 20cm/pixel

Split-01 extents Split-02 extents

missing height data

Figure 4.6: Datasets’ splits

4.2.4 Dutch datasets

To test the final model on an different geographical area, a location in the Netherlands
is elected. The district of Holten within the commune of Rijssen-Holten is chosen (figure
4.7) since it offers comparable rural characteristics to Wartenberg. However, this test
set comprises more than 4000 buildings which is ten times more than the Bavarian
village previously studied.

50km 1km

Netherlands

Overijssel

Figure 4.7: Holten location in the Netherlands, province of Overijssel

All necessary datasets are openly available in the Netherlands, including a 3D city
model, APs and a LiDAR PC. They are obtained as follows:

• Semantic LOD2 model. First, 3D model tiles of the corresponding area are
downloaded from 3D BAG registry (tudelft3d 2021). It is converted to GML
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format and imported to a database from where the coordinates of buildings’ centers
are extracted.

• APs. Then, aerial images centered on those coordinates are obtained through
WMS requests from the PDOK server, which offers HR ortho-images (PDOK
2021, layer “Actueel-orthoHR”). They are queried with the necessary image size
of 256 × 256 pixels, with 20cm resolution.

• LiDAR PC. Besides, an HR LiDAR dataset is downloaded from AHN 2022.
The third AHN version (2014-2019), captured in 2017 for the studied area, is
utilized since AHN4 is not yet available for the eastern part of the Netherlands.
Once building points are extracted, the absolute height idw interpolation dataset
is obtained by applying the pipeline aforementioned in 3.3.

Additionally, the final model is trained on all annotation data available, involving a new
split of only training and validation data from Wartenberg.

4.3 U-Net experiments
First of all, experiments using the existing U-Net implementation are carried out on
DOPs in order to evaluate later the added value of height data fusion. For this,
ultimate parameters are determined, based on previous works achieved on
non-ortho-rectified images. The best results are chosen as reference for ulterior
height-data fusion evaluation. Results are conveyed through matrices, and summed up
in tables comprising mean prediction accuracies (mean Pr.Acc), mean accuracies on
GT (mean Acc.GT) and IoU scores. Both accuracies take only the 6 classes into
account, thus excluding the background to lower the impact of imbalance classes in
the evaluation phase.

4.3.1 Scope of U-Net experiments

Based on previous works by Krapf et al. 2021, Prummer 2021 and Bruhse 2022,
fundamental settings are applied: Adam, as optimization algorithm, softmax as
activation function, a learning rate of 0.001 and batch-size of 8. Other parameters are
tested in a reduced range as indicated in table 4.1.

Parameter Tested values
epoch [40:80]
batch-size 8
α 0.001
optimizer Adam
activation softmax
loss function CFL + Jaccard, CFL + Dice
backbone vgg19, resnet152

Table 4.1: U-Net parameters to test

4.3.2 Model tuning

Loss function. Statistically-based and geometrically-based functions can be employed
to evaluate the model loss (2.2.3). For semantic segmentation tasks, their association
is recommended. The implementation of Yakubovskiy 2019 is used for the following
experiments in which Dice loss and Jaccard index, respectively combined with CFL, are
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compared. Additionally, Krapf et al. 2021 suggests that best performance on non-ortho-
rectified data is achieved by combining both Dice and Jaccard index to CFL. Such a
combination is also evaluated (table 4.2, id-3).

id split epoch loss base mean
Acc. GT

mean
Pr.Acc.

IoU

1 01 40 CFL+Dice vgg19 0.47 0.53 0.45
2 01 40 CFL+Jaccard vgg19 0.43 0.58 0.45
3 01 40 0.5(CFL+Dice)

+0.5(CFL+Jacc.)
vgg19 0.43 0.61 0.44

Table 4.2: U-Net experiments, parameters and accuracy results: loss function experiments

With rounding to 2 digits, performances are comparable between the diverse loss
functions. Since it is computationally more efficient to keep only one geometrical
index, CFL+Jaccard index is kept for the next experiments.

Backbone. Network trainings are carried out to determine the best backbone
between vgg19 and resnet152. For this, standard values for different parameters are
used, and a different backbone is tested on both split-01 and split-02. Table 4.3
presents the results. It is determined that vgg19 produces the best results on both
splits and is therefore kept as backbone for the following steps.

id split epoch loss base mean Acc.
GT

mean
Pr.Acc.

IoU

2 01 40 CFL+Jaccard vgg19 0.43 0.58 0.45
4 01 40 CFL+Jaccard resnet152 0.40 0.53 0.43
5 02 40 CFL+Jaccard vgg19 0.44 0.63 0.46
6 02 40 CFL+Jaccard resnet152 0.42 0.62 0.45

Table 4.3: U-Net experiments, parameters and accuracy results: backbone experiments

Epoch. The number of epochs working best is determined by running 80 of them and
plotting the evolution of IoU score and loss function (figures 4.9 and 4.8). These
curves allow to determine the finest epoch value by identifying the loss minimum and
IoU maximum. Both loss and IoU values stabilize around 40 epochs, and no more
improvements is observed afterwards. Accordingly, table 4.4 indicates that mean
accuracies are not better but similar after 80 epochs than after 40. Therefore, this
number is determined as best compromise and kept in the following experiments.

Validation
Train

Figure 4.8: Loss evolution through
80 epochs, split-01

Validation
Train

Figure 4.9: IoU score evolution through
80 epochs, split-01
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id split epoch loss base mean Acc.
GT

mean
Pr.Acc.

IoU

7 01 80 CFL+Jaccard vgg19 0.42 0.62 0.45
8 02 80 CFL+Jaccard vgg19 0.46 0.64 0.47

Table 4.4: U-Net experiments, parameters and accuracy results: experiments on epoch number

Data augmentation. Finally, in order to increase training data and the model’s
robustness, augmentation data is implemented, in a way that images stay realistic.
Transformations involve slight saturation, contrast and luminosity modifications as well
as image rotations varying from -30 to +30 degrees. Such transformations are illustrated
in figure 4.10. Input dataset is shuffled after each epoch, meaning that augmentation is
applied randomly again.

Example 1: Example 2: Example 3: Example 4:

Figure 4.10: Examples of data augmentation

Data augmentation is applied by keeping all previously determined parameters, to
determine the impact of increased dataset. First, only the training and validation
datasets are transformed, whereas the test dataset is left as original. Then, the tested
data is also transformed. As illustrates table 4.5, results are slightly improved regarding
the prediction accuracy but not regarding accuracy on GT, meaning that the model
identifies less superstructure pixels but also makes less mistakes on the ones that it
detects. The dormer class is the one benefiting the most from data augmentation.

Furthermore, improvements are higher when the test dataset is not augmented,
because not enough transformed data has been encountered when training. Although
50% of images encountered has been transformed, several modifications happen with a
probability of 50% as well. Therefore, only few tenth of images with each type of
change has been encountered (e.g. positive saturation change versus negative
saturation change, etc.). For further exploration, more epochs and higher probabilities
per change should be applied.

Overall, this illustrates the potential of data augmentation, which is especially useful
if test datasets have different sources than the ones for training and validation. This
is the case when we apply the final model to a test area outside Bavaria. For this,
data augmentation is implemented for RGB training data to match the characteristics
of Dutch APs.
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4.3 U-Net experiments

id split epoch loss base augmentation mean
Acc.
GT

mean
Pr.Acc.

IoU

9 01 40 0.5(CFL+Dice)
+0.5(CFL+Jacc.)

resnet152 Train Val. 0.48 0.58 0.47

10 01 40 0.5(CFL+Dice)
+0.5(CFL+Jacc.)

resnet152 Train Val. Test 0.46 0.58 0.46

Table 4.5: U-Net experiments, parameters and accuracy results: data augmentation experiments

4.3.3 U-Net conclusion

Settings’ performance. Prediction accuracies are usually higher than accuracies on
GT, meaning that most classified pixels are correctly segmented. However, a large
number of pixels expected to be identified as superstructures have been allocated to the
background, resulting in low accuracies on GT.

Settings yielding best accuracies on split-01 and split-02 are gathered in table 4.6.
The best confusion matrices on the first split, illustrated in 4.11 and 4.12, are kept as
reference for further comparison with data fusion results.

id split epoch loss base augm. mean
Acc.
GT

mean
Pr.Acc.

IoU

1 01 40 CFL+Dice vgg19 None 0.47 0.53 0.45
7 01 80 CFL+Jaccard vgg19 0.42 0.62 0.45
5 02 40 CFL+Jaccard vgg19 None 0.44 0.63 0.46

Table 4.6: U-Net experiments, parameters and accuracy results. augm. = data augmentation

Figure 4.11: Confusion matrix split-01, id-1 Figure 4.12: Confusion matrix split-01, id-7

U-Net performance per split. Results’ quality varies between splits. This can be
explained because of the different regions covered by validation and test datasets and
therefore the different types of buildings encountered in each case. Split-02 obtains
better performances than split-01 in most classes, except from PV modules and
dormers.

U-Net performance per class. Boxplots obtained from concatenated IoU per class
per image (figures 4.13 and 4.14) illustrate the imbalanced results obtained per class as
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4.4 FuseNet experiments

well as the wide range of predictions’ quality. In average, best predictions are achieved
for PV modules, chimneys and windows, whereas the two worst classes are the unknown
and ladder ones. However, for the best detected class, PV modules, half of the results
IoU scores are spanning from 0.22 to 0.9 (split-01), resulting in a median value much
lower than the mean. On the opposite, mean value for dormer detection is much higher
than the median, probably due to a large amount of IoU scores of zeros and few very
high scores.

Figure 4.13: Boxplot IoU per class, split-01, id-1 Figure 4.14: Boxplot IoU per class, split-02, id-5

To conclude, height data has potential to improve chimney, dormer and window
detection, whereas PV modules are already well identified. Unknown and ladder
classes are the most challenging ones to improve.

4.4 FuseNet experiments

4.4.1 Scope of FuseNet experiments

The main experiments are carried out with FuseNet architecture implemented in
PyTorch (Hazirbas and Aygun 2018). First, through the choice of one height dataset,
ultimate parameters—listed in table 4.7—are narrowed down. Due to time limitation,
only one dataset is used to figure out best parameters. Nn interpolation dataset is
chosen from the absolute height datasets, since it has the lowest IE mean. Hence, it
might be the most challenging one to use.

Parameter Tested values
classes’ weights td
epoch [0:1000]
batch-size [4, 8, 16]
α [0.001, 0.05, 0.01]
optimizer SGD, Adam
loss function Weighted CE, Dice+CE
normalization Batch normalization

Table 4.7: FuseNet parameters to test or to determine (td)

40



4.4 FuseNet experiments

Only quantitative assessment is used to determine the best settings. Then, different
height datasets are consecutively fused using the resulting parameters. Their results are
displayed and analyzed (quantitatively and qualitatively) in the next chapter.

4.4.2 Model setup

A deterministic approach is used, so the model’s results stay comparable when fed
with similar input data. A manual seed of zero is implemented and calculation is
carried out with GPU support.

Input data. All input datasets are in uint8 type. Aerial images have three bands for
RGB, whereas the height branch has only one channel. Masks are on one band, which
values vary from 0 to 6.

Pretraining. For computation efficiency, a pre-trained model is used, initializing
weights. Those are taken from PyTorch vision for vgg16 backbone.

4.4.3 Weight per class determination

Since the classification task is highly imbalanced, weights are applied per class for loss
computation. Experiments carried out by Bressan et al. 2021 show good results with a
weight calculated as follows:

wc =
n

C × nc (14)

where wc is the weight for the considered class, n is the total number of pixels in the
dataset, C is the number of classes, and nc is the number of pixels in that class.

Values are then normalized on the sum of all dataset pixels, so the sum of all 7
weights is equal to one. Resulting weights are shown in table 4.8.

Class Weight
PV module 0.025
dormer 0.053
window 0.094
ladder 0.38
chimney 0.28
unknown 0.18
background [0.000003, 0.01, 0.02, 0.03]

Table 4.8: Weights per class applied to FuseNet loss calsulation. Several background weights are tested.

Applying no weights results in all pixels predicted as background. Therefore
background class should have almost no impact but rather all other classes, in
inverted order of their pixel occurrence. However, a weight of 0.000003 (resulting from
equation 14) applied to the background class yields low prediction accuracies. Since
loss calculation almost does not take background into account, prediction on this class
does not improve. Superstructures are detected on much wider areas than they
actually are, explaining the low accuracy value.
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4.4 FuseNet experiments

id split bgrd
weight

epoch α batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

1a 01 .000003 100 0.01 dc25 8 SGD CE 0.65 0.09 0.17
4b 01 0.02 100 0.01 dc25 4 SGD CE 0.47 0.51 0.44
5a 01 0.03 100 0.01 dc25 4 SGD CE 0.43 0.53 0.42
6 01 0.01 100 0.01 dc25 4 SGD CE 0.44 0.52 0.43

Table 4.9: Experiments on FuseNet using absolute nn interpolation dataset: background weight
experiments. bgrd = background, dc = decay

Therefore, it is decided to higher this value so it has still the lowest impact on loss
calculation but enough weight to be improved through epochs. Results are compared
in table 4.9 after 100 epochs, when assigning a weight of 0.01, 0.02 and 0.03 for the
background class. The middle value, yielding the best results, is kept for following
experiments.

4.4.4 Model tuning

Epoch. First, 1000 epochs are run with standard parameters to determine the lowest
loss value and highest IoU. This time consumption is tolerable because of the low image
resolution (256 × 256) and the reduced training dataset size.

Figure 4.15 illustrates that the loss function decreases until 400 epochs on the training
dataset before reaching a plateau. On the other hand, IoU continuously increases until
600 epochs on the training dataset but reaches the best scores on the test dataset at
around 200 epochs, which illustrates a data overfit. Learning rate is explored to fix this
issue, whereas epoch number is identified as optimal around 150 to 200 epochs.

Figure 4.15: Loss evolution through
1000 epochs, split-01

Figure 4.16: IoU score evolution through
1000 epochs, split-01

Batch size. Batch sizes 4, 8, and 16 are tested. Table 4.10 indicates that smaller size
yields the best results. A batch of 4 is therefore kept for the following experiments.
Illustration 4.17 shows the evolution of IoU score until epoch 50, using similar
parameters but 3 different batch sizes.

id split bgrd
weight

epoch α batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

2 01 0.02 50 0.01 dc25 8 SGD CE 0.44 0.45 0.40
3 01 0.02 50 0.01 dc25 16 SGD CE 0.42 0.37 0.36
4a 01 0.02 50 0.01 dc25 4 SGD CE 0.45 0.52 0.42

Table 4.10: Experiments on FuseNet using absolute nn interpolation dataset: batch-size experiments
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4.4 FuseNet experiments

Train, batch-size 8
Test, batch-size 8
Train, batch-size 16
Test, batch-size 16

Train, batch-size 4
Test, batch-size 4

Figure 4.17: IoU score evolution through 50 epochs with different batch-sizes, split-01

Learning rate. Values of 0.01, 0.005 and 0.001 are tested with decays each 10, 20, 25
or 50 epochs. The smallest learning rate value requires too many epochs to start giving
meaningful results as demonstrated by experiment 9; it is therefore discarded. On the
other hand, after many epochs with a higher rate, data overfitting occurs. Hence, table
4.11 indicates that a value of 0.01 with a decay every 50 epochs (and without decay)
constitutes the best compromise.

id split bgrd
weight

epoch α batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

4c 01 0.02 144 0.01 dc25 4 SGD CE 0.48 0.54 0.45
7b 01 0.02 111 0.01 dc50 4 SGD CE 0.47 0.56 0.46
7c 01 0.02 140 0.01 dc50 4 SGD CE 0.49 0.55 0.46
7d 01 0.02 144 0.01 dc50 4 SGD CE 0.50 0.53 0.46
13b 01 0.02 135 .01 no-dc 4 SGD CE 0.48 0.57 0.46
13c 01 0.02 143 .01 no-dc 4 SGD CE 0.51 0.56 0.46

Table 4.11: Experiments on FuseNet using absolute nn interpolation dataset: learning rate experiments

Optimizer. Both Stochatic Gradient Descent (SGD) with momemtum of 0.9 and
Adam with a momentum term of 0.5 are tested. The first one produces the best
results.

Loss. Combined with an appropriate learning rate, the loss function has the most
impact. The statistically-based loss function Cross-Entropy (CE) is applied since it
allows to assign weights to classes. A loss computation combining Dice and weighted
CE is implemented to include a geometric assessment to the statistical one. However,
table 4.12 shows that results are not improved. Therefore, the next experiments keep a
mere weighted CE function.

id split bgrd
weight

epoch α batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

11 01 0.02 300 .005 dc20 4 SGD Dice+CE 0.42 0.52 0.42
12b 01 0.02 100 0.01 dc20 4 SGD Dice+CE 0.49 0.32 0.35
12c 01 0.02 150 0.01 dc20 4 SGD Dice+CE 0.45 0.32 0.35

Table 4.12: Experiments on FuseNet using absolute nn interpolation dataset: loss function experiments

Normalization. Batch-normalization is used with a momentum of 0.9.
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4.4 FuseNet experiments

4.4.5 FuseNet setting conclusion

Setting’s performance. As a compromise between the two accuracy types, best
performances are reached with experiment 7 nearby 150 epochs, with a learning rate
of 0.01. Similar settings are applied to the second split. Experiments 7 and 13, both
yielding the best results on split-01, are displayed in table 4.13 with the best
performance on split-02.

id split bgrd
weight

epochα batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

7c 01 0.02 150 0.01 dc50 4 SGD CE 0.47 0.60 0.45
13c 01 0.02 143 .01 no-dc 4 SGD CE 0.51 0.56 0.46
14 02 0.02 130 0.01 dc50 4 SGD CE 0.54 0.51 0.46

Table 4.13: Experiments on FuseNet: parameters and accuracy results using absolute nn interpolation
height dataset. bgrd = background, dc = decay

Figure 4.18: Loss evolution through 150 epochs,
split-01, id-7c

Figure 4.19: IoU score evolution through 150
epochs, split-01, id 7-c

Absolute nn, performance per split. Split-02 has better accuracies on GT than
split-01, but significantly lower prediction accuracies. Overall, the IoU value is higher
for the second split than for the first one. As a result, split-01, more challenging, is
kept for the final experiments.

Absolute nn, performance per class. PV module, window, and chimney detection
improves through time, whereas ladders and unknowns stay confusing for the model.
This is highlighted by the next chapter presenting confusion matrices and visualization
of predictions. For this purpose, the six different height data inputs are consecutively
fused, using previously determined parameters, and applied to the first data split.
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5 Results and analysis
The previous chapter determined the best settings for FuseNet implementation. First,
it presented the datasets employed. Next, it provided us with results from U-Net
implementation on new labels. Then, FuseNet was experimented with the nn
interpolation dataset, narrowing down the best parameters for performing height data
fusion.

This section aims to determine the best height data input for optimal results. First, it
comprises predictions for the other height datasets: remaining interpolation types from
absolute and relative elevation grids. Next, qualitative and quantitative analyses are
carried out. Finally, the best model is applied to another test area from the Netherlands,
and predictions are modeled in 3D.

In form, the analysis of FuseNet results consists of a quantitative assessment through
confusion matrices and IoU scores, followed by a qualitative one via observation of
sample predictions. In substance, the section evaluates FuseNet related to U-Net’s
performance and the impacts of the different height data incorporation. Consequently,
the best height data type for fusion is determined. Then, the network is trained with the
corresponding dataset, using optimal settings on all the labeled data. The subsequent
model is applied to a test area in the Netherlands. Predictions obtained are modeled in
3D, and a use-case of the resulting semantic model is demonstrated.

5.1 FuseNet Results

5.1.1 Absolute height data fusion

Performance scores are obtained for each absolute height dataset input, using similar
settings but assessed at the most appropriate epoch number. Table 5.1 gathers the
results.

id height
data

epoch α batch-
size

optimizer mean Acc.
GT

mean
Pr.Acc.

IoU

i no 160 0.01 dc50 4 SGD 0.40 0.51 0.40
ii nn 143 .01 no-dc 4 SGD 0.51 0.56 0.46
iii idw 164 0.01 dc50 4 SGD 0.49 0.56 0.46

Table 5.1: FuseNet parameters and accuracy results using absolute height datasets.

Based on all accuracy criteria and IoU score, nn interpolation produces the best fusion
results with absolute height datasets.

5.1.2 Relative height data fusion

Similarly, relative height maps are fused to the network. Again, mean prediction
accuracies are higher than those of accuracies on GT. The best results are obtained
with the idw dataset, yielding an IoU score of 0.45.

id height
data

epoch α batch-
size

optimizer mean Acc.
GT

mean
Pr.Acc.

IoU

iv no 225 0.01 dc50 4 SGD 0.27 0.54 0.34
v nn 168 0.01 dc50 4 SGD 0.51 0.51 0.45
vi idw 155 0.01 dc50 4 SGD 0.46 0.57 0.45

Table 5.2: FuseNet parameters and accuracy results using relative height datasets.
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Figure 5.1: Nn fusion’s best results,
absolute height

Figure 5.2: Idw fusion’s best results,
absolute height

Figure 5.3: Nn fusion’s best results,
relative height

Figure 5.4: Idw fusion’s best results,
relative height

5.2 FuseNet Analysis
First, this section analyzes the input dataset’s influence, including data resolution and
manual labeling. Then, the network’s results are evaluated quantitatively, based on
confusion matrices and IoU scores. And qualitatively through observation of predicted
masks versus U-Net’s output.

First of all, results from FuseNet experiments (absolute and relative) are compared
to the U-Net reference confusion matrices by subtracting their corresponding values,
allowing an assessment of the fusion performance per class (cf. figure 5.5).

FuseNet U-Net Difference

Figure 5.5: Subtraction concept to compare U-Net and FuseNet confusion matrices

Secondly, visualization of prediction masks allows identifying the source of scores’
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improvements or decreases. For both evaluation processes, the fusion network and U-
Net are compared to one another, followed by a comparison of results obtained through
the different height datasets’ incorporation.

5.2.1 Impact of resolution and labels

Resolution of input datasets. The low resolution of the images impacts the
quantitative assessment of the predictions. Some superstructure areas are small, and
their boundary shifted from a few pixels decreases their accuracy by tenths percent. It
principally affects compact superstructure types such as chimneys. In these cases, the
network seems to predict correctly, whereas quantitative assessments based on a pixel
approach are uncompromising. Although both ortho-rectified, the alignment of height
data derived from LiDAR and images might vary from a few pixels, making boundary
shifts more probable.

Labeling impact. Visualizing images with low IoU scores shows labeling mistakes,
thereby highlighting the subjectivity of such a process. First of all, mislabeling might
occur because of the building-centered approach: the annotation was accomplished
building per building and not image per image. Therefore some constructions located
on the borders of images occasionally lack labels, as illustrated in figure 5.6 left.
Additionally, the definition of a class might not be straightforward. For instance,
“horizontal ladders” could rather be interpreted as unknown.

In both cases, the network accomplished its task better than what was achieved
through annotation since it predicted some windows and chimneys from a building on
the image corner and classified the horizontal path as ladder (cf. figure 5.6).

Superstructure classes: pvmodule dormer window ladder chimney unknown

Mask labeled Mask labeledPrediction FuseNet, abs nn Prediction FuseNet, abs nn

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.6: Examples of labeling mistakes (black circles), better predicted by the network than
annotated

The dormer class offers a similar example since its definition is not straightforward
based on APs’ observation. In figure 5.7 bottom, the network predicts some dormers
that are not annotated on the GT. However, it is hardly discernible to an observer
how they should be classified. Since this superstructure class is wide, numerous pixels
are penalized.
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AP Mask labeled U-Net prediction FuseNet prediction, abs nn

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.7: U-Net versus FuseNet predictions: dormer and chimney classes

5.2.2 Quantitative analysis

The IoU score, considering all classes with the background, provides a synthetic tool
to assess the network’s performance. However, to conduct an in-depth analysis, the
whole confusion matrices provide more nuances thanks to their accuracy criteria
focusing on superstructure evaluation class per class.

Height data fusion versus U-Net. The nn dataset achieves the finest scores and is
compared to the best U-Net scores by subtracting U-Net’s confusion matrices from it.
The resulting matrices highlight the classes with score improvement through the green
color scale (figures 5.8 and 5.9).

Figure 5.8: Absolute nn fusion’s best results
compared to U-Net’s results, id-1

Figure 5.9: Absolute nn fusion’s best results
compared to U-Net’s results, id-7

Six FuseNet models scoring 0.45 and higher are gathered in table 5.4 and compared
class by class to the two most performing U-Net models with no data augmentation
(table 5.3). These U-Net references offer complementary characteristics since one has

48



5.2 FuseNet Analysis

high prediction accuracies, the other high accuracies on GT.

id split epoch loss base augmentation mean Acc.
GT

mean
Pr.Acc.

IoU

1 01 40 CFL+Dice vgg19 None 0.47 0.53 0.45
7 01 80 CFL+Jaccard vgg19 None 0.42 0.62 0.45

Table 5.3: Most performing U-Net models: parameters and accuracy results

id split bgrd
weight

epoch α batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

4c 01 0.02 144 0.01 dc25 4 SGD CE 0.48 0.54 0.45
7b 01 0.02 111 0.01 dc50 4 SGD CE 0.47 0.56 0.46
7c 01 0.02 140 0.01 dc50 4 SGD CE 0.49 0.55 0.46
7d 01 0.02 144 0.01 dc50 4 SGD CE 0.50 0.53 0.46
13b 01 0.02 135 .01 no-dc 4 SGD CE 0.48 0.57 0.46
13b 01 0.02 143 .01 no-dc 4 SGD CE 0.51 0.56 0.46

Table 5.4: Best experiments on FuseNet using absolute height, nn interpolation dataset

Both U-Net’s confusion matrices are subtracted from those of FuseNet. The
differences obtained are plotted together in one figure 5.10, enabling the definition of
an overall trend. (All the values used for this graph are indicated in appendix 6.4.)
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Figure 5.10: Difference between best absolute nn scores and U-Net models (id-1 and 7)

The combination of figures 5.8, 5.9 and 5.10 show that GT accuracies are significantly
enhanced for dormers and chimneys, with 11% and 12% gain in average. The window
class is slightly ameliorated, whereas remaining categories are not improved.

On the other hand, prediction accuracies show no improvement except from ladders,
increasing by 17% in average. Dormers and chimneys’ prediction accuracy decreases
because their surfaces are predicted too large. It is noticed in the confusion matrices
5.8, 5.9, where a lot of background pixels are erroneously classified. It can be related
to the mismatches between RGB and height datasets, making the boundaries of small
superstructures less clear.

Overall, mean accuracies on GT are significantly improved, whereas prediction
accuracies present an ambivalent evolution. In conclusion, superstructure types are
better recognized through height data fusion, but not their outlines. The most
significant increases concern chimneys and dormers. Additionally, given the broad
data span obtained for the ladder class, this category offers less reliable outcomes.
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5.2 FuseNet Analysis

Height type. The plots in figure 5.11 show absolute and relative height data results
compared to the same two U-Net results, allowing us to compare both elevation types
with one another. (All the values used for this graph are indicated in appendix 6.4.)

According to the mean values observed, both datasets yield comparable results
related to U-Net. Only the ladder class presents different outcomes since the network
detects less of them through normalized height data. Other categories offer similar
results. However, the IoU scores obtained through absolute height data fusion are
slightly higher than those obtained from relative height.
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Figure 5.11: Difference between best scores of absolute and relative height data fusion compared to
the U-Net models, id-1 and 7

Interpolation type. Among the three types tested, no interpolation dataset yields
the worst results. It can be explained by the heterogeneity of values, especially the large
amount of no data (zeros), making the structure hardly understandable to the network.
This outcome is coherent with IE criteria since this dataset had the lowest score.

On the other hand, nn and idw yield comparable results. As a result, a high IE score
does not seem to be correlated to more efficient information for the network since idw
has greater IE values than nn.

5.2.3 Qualitative analysis

For observation-based analysis, prediction masks are visually compared to U-Net’s
output and to GT data (RGB and height map). This part compares U-Net with
FuseNet’s predictions and different height data fusion results.

Height data fusion versus U-Net.

AP Height map, abs nn U-Net prediction FuseNet prediction, abs nn

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.12: U-Net versus FuseNet predictions: example of inaccuracies specific to each network
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FuseNet presents advantages over U-Net: no matter the data type, height input helps
the network identify the buildings’ boundaries and localize superstructures only on
them. It acts thereby as construction footprint information. On the opposite, U-Net
sometimes identifies superstructures on the ground (cf. figure 5.12, black circle).

Moreover, volumetric classes (chimneys and dormers) are generally better recognized
by FuseNet. Figure 5.13 illustrates that U-Net does not identify some dormers at all.

FuseNet also presents disadvantages: figure 5.12 (red circles) shows that it sometimes
detects roof installations that are not visible on the images, probably due to outlier
points from the LiDAR dataset.

AP U-Net predictionHeight map, abs nn FuseNet prediction, abs nn

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.13: U-Net versus FuseNet predictions: example of volumetric classes better detected by
FuseNet

Another weakness of FuseNet relates to height information lack.

AP U-Net prediction FuseNet prediction, abs nnHeight map, abs nn

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.14: U-Net versus FuseNet predictions: examples of height data missing
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Figure 5.14 shows first an image where height data is absent. In this case, U-Net detects
superstructures better, especially dormers. On the second example, the central building
misses height data its chimneys. In this situation, although they are detected by both
networks, U-Net performs better regarding their boundaries and the ladder class.

Finally, FuseNet tends to cluster more background pixels to the predictions. It
explains the decrease in prediction accuracies since the matrices indicate high values in
the background entries. Qualitatively, it is observable through the superstructures’
boundaries. Especially the chimneys, which areas are superior through FuseNet
segmentation than U-Net’s one. This is observable in figure 5.13.

Height type. Absolute data indirectly instruct slope knowledge. It is not the case of
relative elevations. Therefore in the first case, the network can learn from more
structural information. As a result, figure 5.15 illustrates that detection from absolute
height is more accurate for ladders and dormers. The yellow circle shows an incorrect
ladder identified using relative height. Absolute height is favorable for ladders
recognition because this class is usually perpendicular or parallel to the slope. And
missing dormers detection can be caused by the 3D model used for normalization that
includes some of them already.

FuseNet prediction, rel nnHeight map, abs nn Height map, rel nnFuseNet prediction, abs nn

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.15: Absolute versus relative height predictions: better detection of ladders (yellow circle) and
dormers based on absolute height data input

Interpolation type. No interpolation makes the network understand local reliefs.
However, it is not able to understand the scale of the superstructure and therefore
misclassifies these reliefs. Figure 5.16 shows small areas wrongly segmented as dormers
and chimneys (black circles).

Nn depicts more clearly superstructure boundaries than idw interpolation. However,
their surfaces are more limited, making this interpolation technique more rigid.
However, since FuseNet has an asymmetric architecture prioritizing the RGB branch
over the height one, the difference between the two interpolation techniques cannot be
generalized. Another architecture conferring more weight to the elevation data should
be used to determine which one is the best.
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.16: Comparison of results from the different interpolation techniques

Conclusion. To conclude, chimneys and dormers are better recognized by FuseNet
than U-Net. Nevertheless, more surrounding background pixels are clustered with the
predictions. Moreover, absolute height is preferred over relative one since it provides
more structural context (like slope). Furthermore, interpolated height data is more
favorable than no interpolation since it gives a better understanding of superstructures’
scale and shape.

5.2.4 Comparison to previous results on non-ortho-rectified dataset

Previous work on the chair were carried out on non-ortho-rectified photos of resolution
512× 512, resulting in 4 times more pixels classified. Moreover, classes included shadows
and overhanging trees, increasing the number of labeled pixels in comparison to the
background. The annotations used are different and drawn by other people, thereby
adding subjective factors. Additionally, the data split is different from the one employed
in the current research. As demonstrated in part 4.3 when comparing split-01 and split-
02, this distribution has a considerable impact on the results. Therefore, drawing a
comparison is not fully reliable.

Nevertheless, at the time of this publication, the best results are achieved by Bruhse
2022 who obtains an IoU score of 0.45, using a Feature Pyramid Network (FPN) with
a loss function combining weighted Jaccard and focal loss. Per class, comparable
accuracies are obtained between the two projects, except on the chimneys, as indicated
by the matrix 5.18, confirming the added value of height data fusion.

Figure 5.17: Confusion matrix from
Bruhse 2022 showing only classes of interest

Figure 5.18: FPN from Bruhse 2022 - FuseNet (id-
13)
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5.3 Dutch test area

5.3 Dutch test area
The fusion models yielding best performance employ absolute height data with nn or idw
interpolation. The latter is chosen with parameters of experiment iii. It is trained on
the whole labeled data to be applied to buildings from another geographic area chosen
from the Netherlands: Holten. Sample images of the city are visible in figure 5.19.

Holten, reference images (test set):

Figure 5.19: Sample images of Holten test dataset

5.3.1 Data augmentation

RGB images. Wartenberg images appear more contrasted and saturated but darker
than Dutch images. To counterbalance this phenomenon, transformation factors are
applied to the whole dataset: saturation (0.52), contrast (0.6), brightness (1.4), and
sharpness (2). Figure 5.20 illustrates such modifications. Although the resulting tones
look comparable to the new test set, Holten’s images remain sharper. Favorably, the
shadows’ orientation is almost similar between the two datasets.

Training set, original APs Training set, transformed APs

Transformation

Contrasts * 0.6
Brightness * 1.4
Saturation * 0.52

Sharpness * 2

Figure 5.20: Transformation of training data to match the appearance of the test dataset

Height maps. Figure 5.21 considers the correlation between elevation data and RGB
images, highlighting mismatches on building boundaries (black circles). These
examples illustrate that the correspondence between height and images is superior for
the Bavarian training dataset than for Holten. Therefore, augmentation with shifts
could have improved the model performance on Holten. But due to time constraints,
it has not been implemented.
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5.3 Dutch test area

Holten (test set):Wartenberg (training set):

Legend: superstructure misalignmentbuilding boundary misalignment

16.7m

23.4

461m

473

LiDAR PC, no interpolation

Figure 5.21: Comparison of Wartenberg and Holten input images related to their corresponding PC

5.3.2 Qualitative analysis

Since no labels are available for this region, only a qualitative analysis is carried out.

AP U-Net, with augm. FuseNet, no augm. FuseNet, with augm.

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.22: Comparison between U-Net and FuseNet predictions for Holten. augm. = augmentation
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5.3 Dutch test area

Segmentation results are compared to U-Net predictions on the same test set. Then,
an analysis per class regarding FuseNet outcomes is carried out. No ladders or snow
fences (included in the unknown class for Wartenberg) are visible in the area
considered. Finally, the 3D model is generated and related to the 3D-BAG available
at LOD2.2 for this location.

U-Net versus FuseNet. chimneys are better recognized by FuseNet, whereas
dormers present only slight improvements (figure 5.22, two first examples). On the
other hand, windows amd PV modules seem better recognized by U-Net (figure 5.22,
third and fourth example). Ladders are absent from the samples observed, and
unknown is very limited for both models.

FuseNet performance per class. The height data information appears qualitative,
resulting in a fine detection of chimneys (figure 5.23).

AP Height map FuseNet, no augm. FuseNet, with augm.

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.23: Examples of FuseNet dormer predictions for Holten, with and without data augmentation

However, dormers are hardly recognized. It is understandable through the different
architectural typologies between the Bavarian training data and the Dutch test set.
Most of Wartenberg dormers are gabled, whereas Holten’s ones are flat boxes (figure
5.24). Moreover, their scale and orientation according to the roof segment are different.

Typical dormers in Wartenberg (training set): Typical dormers in Holten (test set):

Figure 5.24: Comparison of typical dormers from each dataset

Wartenberg’s dormers are narrower and perpendicular to the main roof axis, whereas
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5.3 Dutch test area

those of Holten are elongated and parallel to it. As a result, the network clearly
identifies the narrow dormer of the second row in figure 5.24, but not the others.
Thirdly, their colors and contrasts are different. Wartenberg presents mostly dormers
whose material and shades are similar to the roof. On the other hand, Holten’s
architecture often employs a grey coating contrasting with the roof material. As a
result, they are sometimes confused with PV modules (figure 5.23, second example).

Windows are overall well detected. However, they also include unknown elements due
to shadowing effects. The training data was less sharp, involving such confusion.

Differently, the model hardly detects PV modules. This class shows the worst
evolution in comparison to the Wartenberg test set. The different photographic
conditions can explain this deterioration since Holten’s PV modules appear mainly
black or shiny. Also, the panels’ scale seems slightly different between the datasets
(figure 5.25). However, the cars on the images confirm that both datasets have
comparable scales. Besides, figure 5.22 (last two examples) show that data
augmentation does not improve predictions for that class.

Typical pvmodules in Wartenberg: Typical pvmodules in Holten:

Figure 5.25: Comparison of typical PV modules from each dataset

Conclusion. Even on a test area presenting different architectural typologies and
datasets’ quality, FuseNet improves chimney and dormer detection over U-Net.
Nevertheless, detected chimneys and other classes rather correspond to RGB input
pixels than those of height maps (figure 5.26). It is due to the asymmetry of FuseNet,
prioritizing RGB over height data.

Height and RGB 

Height maps with predictions

RGB images with predictions

coincidence -
Height and RGB 
coincidence +

Superstructure classes: PV module dormer window ladder chimney unknown

Figure 5.26: Coincidence of input data with the chimney predictions of FuseNet with augmentation

The activations from the height data branch are concatenated to the RGB ones during
the encoding phase, whereas only the RGB branch is decoded. As a result, in the case of
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5.4 3D model generation and application

data mismatch, U-Net and FuseNet seem to perform similarly, whereas, if data coincide,
FuseNet has a superior performance.

Given the quality of Holten’s height maps (dormers are easily recognizable), a
symmetric network such as the one proposed by Audebert et al. 2018 might be more
suitable. However, it might be less tolerant with input data mismatches, which
represents a disadvantage. Due to time constraints, the latter was not implemented.

5.4 3D model generation and application
Finally, the best predictions are vectorized and modeled in 3D. Superstructures’
geometry and semantics are added to the LOD2 model available for Bavaria. This step
is enhanced through the usage of ortho-rectified labels since superstructures
correspond better to the buildings’ footprint than those obtained from Google APs.

5.4.1 3D model generation

The model refinement through superstructure modelization was carried out by Bruhse
2022 using 3DCityDB. Chimneys and dormers are modeled volumetrically, whereas
other classes are polygons parallel to the roof surfaces, as illustrated in figure 5.27. All
include a semantic description. On top of geometrical modelization, the algorithm solves
the issue of duplicate structures’ detection, which occurs due to overlapping images.

dormers chimneys PV modules windows ladders unknown

Volumetric classes Planar classes

Figure 5.27: Superstructure representations in 3D

Both 2D polygonization and 3D modelization processes involve simplification
mechanisms, affecting the reality of the final representation. At the current
development stage, dormers can depict several typologies, whereas chimneys are
extruded to a one-meter height above the roof plane. Other planar superstructures are
modeled parallel to the corresponding roof segment. All are modeled as
“BuildingInstallations” geometries. The included semantics enhance the model, but
geometrical nuances are missing.

First, Dutch superstructures from Holten are modeled. The result can be compared
to the existing detailed LOD available from 3D BAG (tudelft3d 2021). Then,
ortho-labels from Wartenberg are employed to illustrate optimal results and their use
case for PV-potential assessment.

Holten 3D model from predictions. Figure 5.28 and 5.29 compare the GT AP
with the 3D model refined from predictions and the 3D model depicted by 3D-BAG as
LOD2.2. The first figure illustrates a global example, where roofs and dormers appear
coherent with the GT AP.
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5.4 3D model generation and application

3D BAG, LOD2.2 modelGT, Holten Modelization of predictions, Holten

Figure 5.28: Visualization of Holten 3D model derived from predictions

Figure 5.29 shows two building examples zoomed-in. Dormers and chimneys are
quite accurately detected by FuseNet. The second example shows that 3D-BAG
represents a dormer exactly at the same location as detected by FuseNet since they are
overlapping on the model.

3D BAG, LOD2.2 modelGT, Holten Modelization of predictions, Holten

Erve Teeselink 40, 7451WE Holten

Pastoriestraat 29, 7451ER Holten

Figure 5.29: Visualization of Holten 3D model derived from predictions: successful examples

Wartenberg 3D model from predictions and labels. Wartenberg test set presents
more qualitative predictions. They are constructed in 3D as well. Figure 5.30 displays
an extract of the village.
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5.4 3D model generation and application

Figure 5.30: Visualization of Wartenberg 3D model derived from predictions of Bruhse 2022

Next, 3D modelization of the labels shows the case of perfect predictions (figure
5.31). Network and input refinements aim for such a 3D model. It is further used for
the buildings’ PV-assessment (Willenborg 2022).

Figure 5.31: Visualization of Wartenberg 3D model derived from ortho-labels

5.4.2 3D model application

A use case of the resulting model, not depicting the superstructure geometries precisely,
consists of buildings’ PV-potential assessment. Once ortho-predictions (or labels) are
modeled in 3D, the potential solar panels’ layout based on the roof azimuth combined
with its available surface can be carried out. The distribution and size of superstructures
impact the panels’ organization, whereas the azimuth affects the power generated per

60



5.4 3D model generation and application

unit surface. Figure 5.32 illustrates the PV-potential of Wartenberg based on ortho-
labels’ depiction.

Figure 5.32: Example of buildings’ PV potential assessment applied to Wartenberg model, visualization
Cesium. Source: Willenborg 2022

Figure 5.33 depicts a sample building for which the superstructures largely impact
the panels’ distribution. Moreover, the predictions were qualitative compared to the
original labels, confirming the potential of this research.

PV-potentialGT, Wartenberg Predictions, Wartenberg Labels, Wartenberg

Figure 5.33: PV potential assessment for an example building
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6 Conclusion, discussion and future work
The research demonstrates that building height data fused to RGB aerial images by
means of a CNN improves the prediction accuracies and IoU scores for semantic
segmentation of roof superstructures. Chimneys and dormers show the most
significant enhancement.

Accuracies are improved for specific classes through height data fusion, whereas
other classes do not benefit from this additional input. On the other hand,
superstructure boundaries are harder to detect when based on several input datasets.
Therefore, fusion network results include more background pixels classified within
superstructures than predictions only based on aerial images.

Thereby, the hypotheses can be partly validated:

• Improvement for some classes only. This assumption is verified since
installations with a relief (chimneys and dormers) show accuracy improvements,
unlike other segmented classes. Additionally, the window class shows a slight
improvement. However, the enhancement of ladder detection occurring through
absolute height data fusion was not foreseen but can be explained by the indirect
slope information integrated.

• Absolute versus relative height. Absolute height incorporation produces
slightly higher scores than height data normalized through an available LOD
model. The first dataset includes slope information indirectly, which benefits
some classes. Additionally, absolute height requires a simpler processing
pipeline, and relative elevation data include erroneous elevation due to the 3D
model simplification mechanisms.

• Interpolation methods. The difference in performance between nn and idw
interpolation techniques could not be determined using an asymmetric network
prioritizing RGB input. However, no interpolation generated the worst results.
This confirms the supposition that interpolated data is more efficient, which is
explained by the enhanced understanding of superstructure scale and shape.

6.1 Discussion
Process efficiency can be assessed in addition to the result’s quality. For this purpose,
three main aspects are discussed: impact of labeling, resolution and timeframe of the
input datasets, and practical implementation of the process.

First of all, labels were manually drawn on low-resolution images. Therefore,
superstructure types and boundaries are hard to identify and annotation involves
personal interpretations and decision-making.

Moreover, the classes were derived and determined based on the specific geographic
area studied: a Bavarian village. Defining global superstructure classes is not
straightforward due to local architectural characteristics. Hence, labels can hardly be
used to train a network applied later to a different region. This was experimentally
proven by using labels of Bavaria to test a Dutch dataset. Furthermore, defining
classes within a single location is ambiguous: some entities could have been
distinguished from the unknown class (e.g. snow fences).

Additionally, the robustness of the model is limited since training and validation
datasets are extracted from the same area, and the number of labeled images is reduced
to 1880. Furthermore, since the data is acquired for a village, it is mainly residential and
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6.1 Discussion

entails only a few tertiary or industrial buildings. Extending the training data would
involve determining more classes or expanding the definitions of current ones. In both
cases, labeling and predictions become more challenging.

Finally, the labeled classes are imbalanced due to the dominant background.
Accordingly, the superstructure surfaces are reduced to few pixels, especially the
chimney class compared to dormers or PV modules. A way to deal with this issue is to
implement label uncertainty that confers more importance to pixels located at the
center of labeled areas than the ones positioned at their boundaries (Bressan
et al. 2021).

Another aspect involves the resolution and acquisition timeframe of the datasets
employed.

Firstly, the resolution of aerial images used, 20cm/pixel, turns out to be critically low
for the task of roof superstructure segmentation.

Secondly, LiDAR and DOPs suffer from temporal mismatches. In the case studied,
this resulted in an empty height raster for 63 buildings over 1880. Collecting and
processing LiDAR data is time-consuming and costly. Therefore, time-lapses between
different records are higher than those of aerial images. Building points are one of the
LAS classifications the most affected by these time intervals since constructions change
at a fast pace, and probably their superstructures even more. For the location used,
Wartenberg, the PC is dating from 2012, reaching almost 10 years difference from the
APs.

Also to consider, LiDAR datasets contain both first and last pulse records. The
latter was chosen in order to access information underlying the canopy. However, both
datasets present advantages, and combining them seems promising since first pulses
tend to better detect volume edges and outlines, and last pulses contain information on
elements covered by overhanging trees. Other preprocessing ideas include processing
the LiDAR PC before generating height maps (e.g. filtering points, exaggerating their
elevation values based on some criteria, etc.), and exploring various parameters for
interpolation methods.

Lastly, the 3D city model is derived from the LiDAR record combined with
cadastral data. Its generation involves simplification algorithms that alter real
building shapes. This has detrimental consequences on the relative height, which is
obtained by comparing LiDAR PC to the 3D model.

The last aspect relates to ML implementation and process.
First of all, the data split is crucial, and in this work was impacted by the use of

roof-centered images that overlap each other. This building-centered approach was
motivated by the focus on building scale and was possible since datasets are extracted
from a village where most houses are independent. However, in more urbanized areas,
grid images should be used since constructions are contiguous. It would prevent pictures
from overlapping, although they might lack buildings when captured at the borders of
metropolitan areas. An additional disadvantage of using a regular photography grid is
that buildings might be cut over several images and their corresponding height data
interpolation might be affected.

To solve the issue of overlapping images, an algorithm was implemented to obtain
independent training, validation, and test datasets of 60%, 20%, and 20% respectively,
with a 3% margin. As a result of density distribution in the village, the training dataset
does not include buildings from urban borders and therefore almost no industrial ones.
With more dispatched labeled data, the split would yield more randomness. However,
this also implies that one cannot control which buildings are used to train, whereas
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6.2 Contributions

some of them might be particularly relevant to learn from. As a result of this data split,
the test dataset was reduced to 344 images on Wartenberg. Drawing conclusions from
such a small set might not be fully reliable.

Furthermore, an asymmetric height data fusion implementation was used, which
prioritizes RGB input over height maps. Such an architecture is a mid-way between
stacking height data to the RGB input and maintaining distinct branches during the
decoding phase as well. Different network architectures might come up with a refined
conclusion, especially regarding the efficiency of nn and idw, respectively. However,
more symmetric networks might be less tolerant with data input mismatches.

Finally, data fusion implies a more complex pipeline than CNN applied to simple
aerial images. The datasets’ preparation is time-consuming, computationally
expensive, and requires the area of interest to dispose of both LiDAR data and
qualitative APs. Relative height, besides involving more processing steps, necessitates
an additional input (a 3D model) that is seldom openly available. Finally, model
fitting involves more parameters and is, therefore, more computationally expensive.
With twice the resolution used—which would be more suitable for superstructure
detection—four times more pixels need to be classified, involving training parameters
and computational costs to be accordingly extended.

6.2 Contributions
This research contributes to improving knowledge regarding semantic segmentation
tasks performed at a building scale:

• Added value of height data. The investigations carried out with an ML fusion
architecture confirm that interpolated height data benefit semantic segmentation
for specific superstructure classes.

• Labeling. The work proved that labels on ortho-rectified data should be used
for 3D data incorporation. The network learns better from inputs with coinciding
patterns. Moreover, the classes used for this segmentation task are crucial. Two
categories of annotations can be distinguished: the volumetric superstructures,
improved through height data fusion, and the planar ones. Relevant classes should
be defined accordingly.

• Height data type. The experiments conclude that interpolated height yields
better performance than no interpolation dataset. Moreover, values extracted
from a raw PC are preferred over normalized ones. They present more structural
information, including insights on slope gradients. Additionally, their processing
steps are smoother, and relative elevations are biased by the 3D model employed
for their normalization.

6.3 Future work
Research can be pursued in multiple ways:

• Roof superstructure definition can be refined and categorized into two types,
differentiating volumetric and planar installations. Fusion networks could be
applied to the first category only. Pixel uncertainty of labels should be
implemented to obtain a more accurate evaluation of the results and to better
deal with low-resolution datasets and imbalanced classes.
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• The pipeline to generate height data grids can be improved, both in terms of
workflow and speed.

• Training and test data should be enlarged from other geographic areas.
Augmentation, including height grids’ transformations, can also be further
explored to increase the robustness of the model.

• Other network architectures derived from the state-of-the-art should be tested to
improve segmentation results. For example, the lightweight model EDFT achieves
promising results on the ISPRS 2D dataset by developing another fusion module
(Yan et al. 2022). Symmetric fusion architectures, such as Virtual-FuseNet, allow
to equally balance RGB and height-data input instead of prioritizing aerial images
over height maps (Audebert et al. 2018).

• The benefit of other dataset types can be evaluated. Regarding height data, PCs
obtained from photogrammetry could be considered, although seldom available in
large areas. Their color information is of interest. Other datasets different from
height can be explored, such as infra-red to detect vegetation or HSRI for roof
material identification.

• The pipeline and quality of the 3D city model refinement can be further
improved. Superstructures’ polygonization process could be enhanced to obtain
more realistic shapes, e.g. by adjusting outlines that should be parallel to roof
segments’ delineation. An overall pipeline, from detection to modelization, could
be elaborated.

6.4 Reflection
This thesis concludes a Master of Science in Geomatics. Consequently, this part
reflects on two aspects: first, the work integration within the geomatics framework
(data and methods); second, the research process efficiency and challenges
encountered (product, process, and planning).

The work combines multiple aspects of geo-informatics: various input data sources
and processing techniques.

First, data georeferencement is crucial to combine several sources: aerial images
with their corresponding PC. Experiments based on different geographical locations
highlights the system interoperability. Moreover, all types of geo-data are employed:
vector (drawing of labels), raster (APs and height data interpolation), and PC
(elevation source). Therefore, the research demonstrates the advantages and
complementarity of each sort.

Secondly, the process is built upon tools learned during the past two years:
programming languages (Python, SQL, C++), database management system
(3DCityDB), city and terrain modeling (GML format, LODs, interpolation
techniques), etc. However, the courses do not commonly include DL, although its
principles are increasingly applied to georeferenced 2D and 3D data, thereby
illustrating one of the application domains of geomatics.

The work process is analyzed chronologically: goal definition, planning, reason for its
adjustments, and retrospective.

The aim was defined as improving the CNN detection of roof superstructures through
3D data integration to RGB. This enhanced output benefits different purposes while
inscribing itself in the program specialized in the Built Environment.
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6.4 Reflection

Planning evolved through the process due to the intricacy and time consumption
to generate appropriate input data for DL. As a result, a learning output is that for
DL, data preparation is a fundamental part whose time consumption should be correctly
estimated. However, adapting the existing frameworks and running tests and predictions
were fast enough to catch up on the lost time. A benefit of data low-resolution and small
training set is that one FuseNet training with GPU lasted around 8 hours, enabling
several of them per week. Nevertheless, experiments tested only one fusion architecture,
unlike scheduled at the beginning.

More specifically, a challenge encountered was the heaviness of geo-data that are
therefore complicated to process on large scales. As a result, the speed of data
preprocessing could have been improved. Since time efficiency was not a priority, some
parts remain ineffective, involving algorithms to run for hours. Accordingly,
characteristics specific to geo-data should be further explored (e.g. spatial indices,
database management combined with files), and a compiled language (like C++)
could have been more extensively employed. Additionally, the labeling process could
gain efficiency. The adaptation of existing labels (for non-ortho-rectified images) to
DOPs was not straightforward. Different distortions were involved throughout the
dataset, preventing from automatizing the process.

Looking back, since most labels were drawn again, another location with more
qualitative datasets could have been chosen instead of Wartenberg.

Finally, the cooperation between the two universities grants both sides a vision of
different perceptions and geo-data usages. The project in Munich is a collaboration
between two faculties (Geo-informatics and Automotive Engineering). On the other
hand, Delft specializes in the Built Environment. These overlaps between fields highlight
the broad societal need for geo-data analyses.
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A.1. Reproducibility criteria

Figure A.1: Reproducibility criteria; source: Nüst et al. 2018
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A.2. Reproducibility assessment
The research is motivated by its reproducibility potential, which is partly possible since
based on open data and implementation frameworks. Reproducibility scores based on
Nüst et al. 2018 (figure A.1) are indicated in table A.1.

Part Component Score (out of 3)
1a. Input data Aerial images 0 — unavailable
(Wartenberg) LOD2 model 0

LiDAR PC 0
Training data 0

1b. Input data Aerial images 3 — available, open, permanent
(the Netherlands) LOD2 model 3

LiDAR PC 3
2. Methods Preprocessing 2 — available

Method 1 — documented
Analysis 1 — documented
Processing (DL implementations) 3 — available, open
DL frameworks 3
Computational environment 1 — documented

3. Results Quantitative results 1 — documented
Qualitative results 1

Table A.1: Reproducibility scores

First, DL frameworks and implementation employed are public. Second, the algorithm
for height data preparation is available on GitHub, whereas the method and analysis
are documented.

Regarding input data, Bavaria does not propose its HR datasets open-source,
contrarily to the Netherlands. They are set available to the University of Munich for
research purposes. Therefore, the two locations present opposite scores. The
detrimental consequence of unavailable datasets for Bavaria is that labels, combined
with their corresponding APs, cannot be shared.

Favorably, the European directive INSPIRE (INfrastructure for SPatial InfoRmation
in Europe) provides a legal framework for a “Europe spatial data infrastructure”
(INSPIRE 2022). Therefore, these APs and other datasets should be open in the
coming years. Increased datasets’ availability and quality would benefit environmental
policies, research communities, and economic growth. Accordingly, works developed
on open datasets become increasingly appropriate and integrated into societal needs.
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B. Quantitative results U-Net
id split epoch loss base augmentation mean

Acc.
GT

mean
Pr.Acc.

IoU

1 01 40 CFL+Dice vgg19 None 0.47 0.53 0.45
2 01 40 CFL+Jaccard vgg19 None 0.43 0.58 0.45
3 01 40 0.5(CFL+Dice) +0.5(CFL+Jacc.) vgg19 None 0.43 0.61 0.44
4 01 40 CFL+Jaccard resnet152 None 0.40 0.53 0.43
5 02 40 CFL+Jaccard vgg19 None 0.44 0.63 0.46
6 02 40 CFL+Jaccard resnet152 None 0.42 0.62 0.45
7 01 80 CFL+Jaccard vgg19 None 0.42 0.62 0.45
8 02 80 CFL+Jaccard vgg19 None 0.46 0.64 0.47
9 01 40 0.5(CFL+Dice) +0.5(CFL+Jacc.) resnet152 Train Val. 0.48 0.58 0.47
10 01 40 0.5(CFL+Dice) +0.5(CFL+Jacc.) resnet152 Train Val. Test 0.46 0.58 0.46

Table B.1: U-Net experiments, parameters and accuracy results. “Id” is the experience id used for
easier referencing. In blue, best results, reference for later comparison.

Figure B.1: Confusion matrix split-01, id-3 Figure B.2: Confusion matrix split-01, id-4

Figure B.3: Confusion matrix split-02, id-6 Figure B.4: Confusion matrix split-02, id-9
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C. Quantitative results FuseNet

id split bgrd
weight

epoch α batch-
size

optimizer loss mean
Acc.GT

mean
Pr.Acc.

IoU

1a 01 0.000003 100 0.01 dc25 8 SGD CE 0.65 0.09 0.17
1b 01 0.000003 400 0.01 dc25 8 SGD CE 0.60 0.13 0.23
2 01 0.02 50 0.01 dc25 8 SGD CE 0.44 0.45 0.40
3 01 0.02 50 0.01 dc25 16 SGD CE 0.42 0.37 0.36
4a 01 0.02 50 0.01 dc25 4 SGD CE 0.45 0.52 0.42
4b 01 0.02 100 0.01 dc25 4 SGD CE 0.47 0.51 0.44
4c 01 0.02 144 0.01 dc25 4 SGD CE 0.48 0.54 0.45
5a 01 0.03 100 0.01 dc25 4 SGD CE 0.43 0.53 0.42
5b 01 0.03 200 0.01 dc25 4 SGD CE 0.45 0.54 0.44
6 01 0.01 100 0.01 dc25 4 SGD CE 0.44 0.52 0.43
7a 01 0.02 50 0.01 dc50 4 SGD CE 0.43 0.56 0.43
7b 01 0.02 111 0.01 dc50 4 SGD CE 0.47 0.56 0.46
7c 01 0.02 140 0.01 dc50 4 SGD CE 0.49 0.55 0.46
7d 01 0.02 144 0.01 dc50 4 SGD CE 0.50 0.53 0.46
8 01 0.02 50 0.05 dc10 4 SGD CE 0.42 0.35 0.34
9 01 0.02 750 .001 dc50 4 SGD CE 0.17 0.26 0.21
10 01 0.02 50 0.01 dc25 4 SGD Dice+CE 0.43 0.52 0.42
11 01 0.02 300 .005 dc20 4 SGD Dice+CE 0.42 0.52 0.42
12a 01 0.02 50 0.01 dc20 4 SGD Dice+CE 0.43 0.25 0.29
12b 01 0.02 100 0.01 dc20 4 SGD Dice+CE 0.49 0.32 0.35
12c 01 0.02 150 0.01 dc20 4 SGD Dice+CE 0.45 0.32 0.35
13a 01 0.02 100 .01 no-dc 4 SGD CE 0.48 0.41 0.39
13b 01 0.02 135 .01 no-dc 4 SGD CE 0.48 0.57 0.46
13c 01 0.02 143 .01 no-dc 4 SGD CE 0.51 0.56 0.46

Table C.1: Experiments on FuseNet: parameters and accuracy results using absolute nn-interpolation
height dataset. bgrd = background, dc = decay, “id” refers to the experiment id with a letter meaning
similar parameters but accuracies measured for different epochs

Figure C.1: Confusion matrix split-01, id-1b Figure C.2: Confusion matrix split-01, id-12b

70



D. Comparison U-Net versus FuseNet
Difference between best FuseNet absolute height confusion matrices and U-Net id-1

Figure D.1: FuseNet (id-4c) - U-Net (id-1) Figure D.2: FuseNet (id-7b) - U-Net (id-1)

Figure D.3: FuseNet (id-7c) - U-Net (id-1) Figure D.4: FuseNet (id-7d) - U-Net (id-1)

Figure D.5: FuseNet (id-13b) - U-Net (id-1) Figure D.6: FuseNet (id-13c) - U-Net (id-1)
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Difference between best FuseNet confusion matrices absolute height and U-Net id-7

Figure D.7: FuseNet (id-4c) - U-Net (id-7) Figure D.8: FuseNet (id-7b) - U-Net (id-7)

Figure D.9: FuseNet (id-7c) - U-Net (id-7) Figure D.10: FuseNet (id-7d) - U-Net (id-7)

Figure D.11: FuseNet (id-13b) - U-Net (id-7) Figure D.12: FuseNet (id-13c) - U-Net (id-7)
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Difference between best FuseNet confusion matrices relative height and U-Net id-1

Figure D.13: FuseNet (id-v) - U-Net (id-1) Figure D.14: FuseNet (id-vi) - U-Net (id-1)

Difference between best FuseNet confusion matrices relative height and U-Net id-7

Figure D.15: FuseNet (id-v) - U-Net (id-7) Figure D.16: FuseNet (id-vi) - U-Net (id-7)
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E. Qualitative results, Wartenberg

AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

AP U-Net FuseNet, abs nn FuseNet, rel nn

Figure E.1: U-Net (id-1) versus FuseNet (id-13c), samples 1/2
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

AP U-Net FuseNet, abs nn FuseNet, rel nn

Figure E.2: U-Net (id-1) versus FuseNet (id-13c), samples 2/2
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

FuseNet, rel nnHeight map, abs nn Height map, rel nnFuseNet, abs nn

Figure E.3: Absolute versus relative height (FuseNet id-13c and v), samples 1/2
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

FuseNet, rel nnHeight map, abs nn Height map, rel nnFuseNet, abs nn

Figure E.4: Absolute versus relative height (FuseNet id-13c and v), samples 2/2
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

AP FuseNet, abs nnFuseNet, abs no FuseNet, abs idw

Figure E.5: No interpolation versus nn interpolation versus idw interpolation (FuseNet id-i, ii, and iii)
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

Height map, abs idw FuseNet, abs idwHeight map, abs nn FuseNet, abs nn

Figure E.6: Nn interpolation versus idw interpolation (FuseNet id-i and iii), samples 1/2
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AP FuseNet prediction, abs nnFuseNet prediction, abs no FuseNet prediction, abs idw

Superstructure classes: PV module dormer window ladder chimney unknown

FuseNet, rel nnHeight map, abs nn Height map, rel nnFuseNet, abs nn

Figure E.7: Nn interpolation versus idw interpolation (FuseNet id-i and iii), samples 2/2
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F. Qualitative results, Holten

AP U-Net, with augm. FuseNet, no augm. FuseNet, with augm.

Superstructure classes: PV module dormer window ladder chimney unknown

Figure F.1: Predictions on Holten dataset, predictions related to RGB images, samples 1/2
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AP Height map FuseNet, no augm. FuseNet, with augm.

Superstructure classes: PV module dormer window ladder chimney unknown

Figure F.2: Predictions on Holten dataset, predictions related to height images, samples 1/2
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AP U-Net, with augm. FuseNet, no augm. FuseNet, with augm.

Superstructure classes: PV module dormer window ladder chimney unknown

Figure F.3: Predictions on Holten dataset, predictions related to RGB images, samples 2/2

83



AP Height map FuseNet, no augm. FuseNet, with augm.

Superstructure classes: PV module dormer window ladder chimney unknown

Figure F.4: Predictions on Holten dataset, predictions related to height images, samples 2/2
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G. Qualitative results 3D, Holten

3D BAG, LOD2.2 modelGT, Holten Modelization of predictions, Holten

Pastoriestraat 29, 7451ER Holten

Diessenplasstraat 34, 7451DD Holten

Nagelhoutstraat 47, 7451ED Holten

Erve Teeselink 40, 7451WE Holten

Figure G.1: Visualization of Holten 3D model from predictions, samples 1/2
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Erve Joost 13, 7451VP Holten

Diessenplasstraat 32, 7451DD Holten

Ab Jansenstraat 6, 7451EB Holten

3D BAG, LOD2.2 modelGT, Holten Modelization of predictions, Holten

Deventerweg 25, 7451BX Holten

Kieftenbelt 29, 7451VJ Holten

Figure G.2: Visualization of Holten 3D model from predictions, samples 2/2
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