MSc thesis in Geomatics

Automatic building permits checks

by means of 3D city models

Jialun Wu
2021

; <\B‘

——

sidig pam

MSc thesis in Geomatics

Automatic building permits checks by means of
3D city models

Jialun Wu

September 2021

A thesis submitted to the Delft University of Technology in partial
tulfillment of the requirements for the degree of Master of Science in
Geomatics

Jialun Wu: Automatic building permits checks by means of 3D city models (2021)
@@® This work is licensed under a Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

1,!U Delft 3D geoinformation group

3Dgeoinfg et University of Technology

Supervisors: Dr. Francesca Noardo
Dr. Ken Arroyo Ohori
Co-reader: Prof.dr. J.E. Stoter

http://creativecommons.org/licenses/by/4.0/

Abstract

Most construction work requires building permit checks. Therefore, to promote sustainable and high-
quality urban development, it is necessary to improve the building permit application process and ac-
celerate the digital process of building permit checks.

Many studies about the digitalization of building permitting use the Building Information Modeling
(BIM), mainly coded in its reference open standard Industry Foundation Classes (IFC) by A worldwide
industry body driving the digital transformation of the built asset industry (buildingSMART), to check
compliance. However, many regulations need to consider some building context that is not supported
by the current buildingSMART. This will affect the permit checks of these building contexts. The use of
3D city models for building permit checks is an alternative to BIM. 3D city models are powerful tools for
city-level analysis and they can do extensions on different City Objects which able to cover the building
context in the regulation, therefore it has good applicability to problems related to urban planning.

At present, there are little researches on building permit inspection based on 3D city models, so this
study aims to provide an approach to use 3D city models and its extensions to support digital building
permit checks. CityJSON has advantages over the CityGML data format in the development process, so
it was selected as the 3D city model used in this study.

The first step is to choose the regulations for building permit checks. This involves the interpretation
of the regulations, formalization process. In this study, the use case research method was selected, and
the parking standards for cars and bicycles in Rotterdam were selected as the research object. We built
a logic-based mechanism to map the content of the law to the corresponding 3D model. Next, we built
the City]SON conceptual model, which included four types of urban objects and expanded them. Then,
the data we obtained and the data model will be stored and extended in a CityJSON model and then
used for calculation and analysis in the developed tool.

Finally, through the tools developed, we successfully carried out a parking legal building permit inspec-
tion on the new building test data and stored and visualized the results. By using the framework and
tool developed in this research, we can replicated the process to different places and regulations.

Acknowledgements

I would like to express my heartfelt thanks to those who have been supporting and encouraging the
development of this thesis.

First of all, my sincere gratitude goes to my mentors Francesca Noardo and Ken Arroyo Ohori. They
gave me a lot of guidance and support during my thesis period, and they will patiently and kindly
give me advice when I encounter difficulties. Although we are unable to communicate with each other
face to face due to the epidemic, the weekly meetings and social apps have brought us closer. They are
not only my mentor but also my good friend. I'm happy to meet them and have precious memories. I
still remember meeting Francesca at the faculty last September. We discussed the content of the thesis
together and happily took a selfie and hugged. I hope we will meet again in the future.

I would like to thank my co-reader Jantien Stoter and the delegate Huib Plomp, for their valuable com-
ments in the phased meetings.

In addition, I would like to thank my friends, classmates of Geomatics, friends in China, they will listen
to my troubles and help me. Special thanks to my boyfriend, his company and care give me a lot of
strength. Thank him for always making good dishes for me.

Finally, I would like to thank my parents and family. Their unreserved support and love for me is the
driving force for me to study abroad in the Netherland.

vii

Contents

1 Introduction
1.1 Background and motivation L L L o
1.2 Researchobjectives
1.3 Researchscopeand challenges
14 Thesisoutline
2 Related work
2.1 Digital building permit
2.2 Translation theregulations o o o
23 3DCityModel
231 Background of 3D citymodel Lo
2.3.2 Representing and Exchanging 3D City Models
24 Researchgap e
3 Methodology
3.1 Interpretation and formalization of regulations,
3.1.1 Interpretation of regulations L L.
3.1.2 Formalization of regulations
32 Usecasesforregulations L
3.21 Regulationselections L L
3.2.2 Interpretation of parking regulation
3.2.3 Formalization of parking regulation
3.2.4 Formalization of bicycle parking regulation
3.2.5 Formalization of car parking regulation
3.3 Construction of conceptual model in City]SON,
33.1 CityGML versus CityJSON,
3.3.2 Datapre-processing e
3.3.3 Build conceptual model L
3.4 Extension of 3D city model by using CityJSON extension
341 Extensions e
3.4.2 Construction of schema of extensions and validity checks
3.5 Development of a program for permit checks automation
4 Implementation
41 Toolsand Datasets Used
411 Software
412 Hardware e
413 Datasets
42 Overview of experiments
421 Datapre-processingandinput
422 Bicycle parking regulation (For existing buildings and new buildings)
423 Car parking regulation (For existing buildings and new buildings)
424 Validationand Evaluation
425 GUIprogramapplication
5 Experiments and Results
51 Thedeveloped City]SON extension
5.2 Results of building permit checking of parking regulation.

B QO e

ix

Contents

53 Demooftool e
54 Toolperformance

6 Discussion
6.1 Limitation e
6.2 Contributions and application L L L

7 Conclusion and future work

7.1 Overviewofresearch e
72 Conclusion e
7.3 Futurework

A Reproducibility self-assessment
A.1 Marksforeachofthecriteria
A2 Self-reflection e

B Diagrams and texts
B.1 Specifications of urban planning extensions L0 L.
B2 Tablesofrules
B.3 City]SON urban planning extensionschema

List of Figures

1.1 A Pre-Permit and Permit System Eirinakietal. [2018]
1.2 An online application and notification platform, Municipality of The Hague
1.3 Various application of 3D city models [Biljecki etal., 2015]

2.1 Building permit procedures in Turkey [Guler and Yomralioglu, 2021]
2.2 Reformative framework that combine 3D city model and building permit process [Guler
and Yomralioglu, 2021]
2.3 Comparison between the rule-making process of a logic-based system and the traditional
method Lee etal. [2016] e
2.4 An example of mapping information to BIM model [Lee et al., 2016]
2.5 Overview of the UML diagram for the core of CityGML [Gerhard Groger, Thomas H.
Kolbe, Claus Nagel, 2012]
2.6 Data Experiment Examples of the Urban Planning CityGML ADE [Ishimaru et al., 2020] .
2.7 A LCC viewer to evaluate the topologically reconstructed CityJSON files [Vitalis et al.,
20191 .

3.1 Workflow of methodology
3.2 Workflow of the interpretation and formalization of regulations
3.3 Find regulation applied in the Netherlands on Ruimtelijkeplannen.nl
3.4 Regional divisionof Rotterdam L L ...
3.5 Comparison on the size between CityGML file and City]JSON file [Ledoux et al., 2019] . .
3.6 The implemented City]SON classes, they are divided into two levels [Ledoux et al., 2019]
3.7 Visual example of the refined LOD:s for a residential building [Biljecki et al., 2016]
3.8 7 members of a City]SON Extensionfile,

41 Workflow of the implementation process
42 Georeferencing the digitalmap
4.3 1. Test area 2. Different zones of test area 3. The buildings and city objects located in test

ATEA . . o . e e
4.4 Bulffer analysis on transportation L L L L L L Lo
45 Componentsof UL.

51 UML diagram of the CityJSON extension
52 UMLdiagramof Building,
53 UMLdiagramofRoom
54 UMLdiagramofLanduse
55 UMLdiagramof Regulation,
5.6 Resultof anindustrialbuilding o o Lo
5.7 Loadtheresultsin QGIS e
5.8 Result of an new building of cateringuse 0 0L
5.9 Load the results of new buildingsinQGIS,
5.10 How to use the tool by building developers or government officials

6.1 Richpictureoftheresearch
A.1 Reproducibility criteriatobeassessed. L Lo L.

B.1 Extensionvalidityresults L.

10
11

12

13
15
16
17
20
21
22
23

xi

List of Tables

3.1
3.2

4.1

5.1
52
5.3

7.1
Al

B.1
B.2
B.3

Some situations that can deviate or be exempt from parking requirements 17
Formalization of bicycle parking regulation 19
Information that need to be involve for building permission checking 27
The meaning of extended building attributes 36
The meaning of extended regulation attributes 38
Overview of datasets used intheresearch 40
Overview of mainresults 49
Reproducibility evaluation according to the criteria 53
Exemption from parking requirement for proximity to public transport 56
Formalization of car parking regulation 58
Standards table for car non-residential functiono 0L 59

xiii

Acronyms

BIM Building Information Modeling o A
GIS geographical informationsystem L L L o 26
GUI graphical userinterface L 14
IFC Industry FoundationClasses A

buildingSMART A worldwide industry body driving the digital transformation of the built asset indus-

Y o e e e e v
EUnet4DBP European Network for Digital Building Permits 2
BAG Basisregistratie Adressenen Gebouwen L L Lo 4
0SM OpenStreetMapo 4
AEC architecture, engineering, and construction L L L L L L. 5
CAD computer-aided design 6
BERA Building Environment Ruleand Analysis 6
vccl Visual Code Checking Language 6
ADE Application domain extension L L L L 10
API Application Programming Interface L L L o oL 10
Lcc Linear Cell Complex 11
LoD Levelsof Detail 21
QGIS Quantum GIS e e 25
cul Command-Line Interface L 26
GFA grossfloorarea 27

XV

List of Tables

GCP Ground Control Point

UML Unified Modeling Language

Xvi

1 Introduction

1.1 Background and motivation

Most construction work requires a building permit. This includes constructing, modifying, or demol-
ishing buildings or changing their use [Eirinaki et al., 2018]. In the Netherlands, municipalities issue
building permits, supervise construction work and inspect permit applications for new development
projects under the Building Decree [Decree et al., 2012]. In actual situations, in the face of more com-
plex construction work, permit applicants may need to spend a lot of time studying relevant laws and
regulations, application procedures, and required documents. This process is complicated and inef-
ficient [May, 2005]. For the government, the review of building permits requires the cooperation of
multiple departments. The slow work process will cause unreasonable waste of resources, which in-
creases the risk of inadequate building supervision and ultimately affects public safety [Agyeman et al.,
2016]. Therefore, to promote the sustainable and high-quality development of the city, it is necessary to
improve the process of building permit checks.

The traditional way for doing building permit checks is based on the manual work of experts to review
building permits of documents and 2D plans presented in paper or PDF formats. This method consumes
a lot of manpower and material resources and cannot efficiently obtain results.

Permit-
related I
data Permit
Pre-permit & Permit Department
System Frontend
@D«—w o ”
End User an .
&) Planning
Department

Permit Ul
clickstream

User feedback

City officials

Figure 1.1: A Pre-Permit and Permit System Eirinaki et al. [2018]

With the development of computer technology, automated process based on computer technology with
models has become a trend. The digital building permit is an application of 3D city data management.
Currently, some cities provide online permitting platform for users to submit applications and inquiries
online. For example, the platform of online application and notification of The Hague in the Netherlands
which shows in figure 1.2. On this platform, you can quickly apply for permits or reports digitally, and
you can also inquire whether permits are required for related construction work. Digitizing the building
permit inspection process can improve work efficiency and provide more objective results. In figure 1.1,
it shows a Pre-Permit and Permit System which simplifies the process required for building permits
to benefit the end-user. With the advancement of technology and human cognition, regulations are

1 Introduction

also being updated at the same time. For a new building in some cases, in order to obtain a building
permit, it must be verified whether it meets the new standards as expressed by regulations. However,
different standards in various places and different interpretations of the regulations make the automated
checking of building permits a very challenging issue [Eastman et al., 2009].

In the framework of automating the inspection of building permits, the ambitions/specification of
European Network for Digital Building Permits (EUnet4DBP) aims to accelerate the digital transforma-
tion of the building permit process [EUnet4DBP, 2020]. Its vision is also the direction of the digital
transformation of building permit inspection. One of the ambitions is to make regulation simple and
machine-readable to achieve standardization of interpretation and eliminate unnecessary ambiguity
[Barberis et al., 2019]. Machine-readable data is data that can be read and interpreted by a computer
automatically. It must be structured data [Open Knowledge Foundation, 2019]. In an increasingly digi-
talized world, the storage and interpretation of laws and regulations are still based on human language.
Because there is no unified standard, different people can have different interpretations of the same laws
and regulations. This makes the administration and application of regulations complex and ambiguous.

. High Contrast | login
Environment counter
online
Private
Home \ What is Milieuloket online? ~ Thesteps My overview
login
Orw\jr?e p.ermit application and \ Log in with DigiD
notification ,' B For residents of the
&‘ Netherlands

Request a permit or report quickly and
digitally, for example for a new dormer Log in with eIDAS
windov, new business premises, installation of & For foreigners with

sheeting or an activity on or on a dike. It is European login means

possible with Milieuloket online. .
Login for foreigners without a
Eu gin means

You must log in to the online
environment counter:

»> L) = Foranew
request/notfication

« To track submitted
applications

Permit check Request/report
Want to know quickly whether you Applying for a permit or making 2 Quick start
need a permit for your work or report starts here. Have your login ’
whether you need to regart it? details ready.
Then do the permit check first. N
-
start a new application/nofification
Femnit éheck R L

©On paper

Prefer a paper application? Then

choose compose paper form . You
More information? For substantive questions, plesse an also do the permit check first
ipality, water board or province. and then switch to a paper form.

oMi 2 offers information and tips

the Online Environment Desk.

Information

Figure 1.2: An online application and notification platform, Municipality of The Hague

Another vision is to ensure the openness and reusability of data by using common storage and exchange
formats. By doing this, it allows officials to visualize and check the buildings follow the open standards.
Many studies about the digitalization of building permitting use the BIM, mainly coded in its refer-
ence open standard IFC by buildingSMART, to check compliance [Noardo et al., 2020c]. However, many
regulations need to consider some building context that is not supported by the current buildingSMART.
buildingSMART tries to solve this problem by leaving jurisdictions free to add local information require-
ments and implement their own checklists and rules which are still under construction now !. Therefore,
we need an alternative way to do it. 3D city models are digital representations of 3D geometric entities
found in urban environments, such as buildings, roads, rivers, bridges, vegetation, and city furniture
[Billen et al., 2021]. In comparison to typical 2D maps, 3D city models can depict realistic city scenarios
with texturing capability Wendel et al. [2017]. Urban visualization can be achieved with 3D city mod-
els by simulating the urban building environment and it can be used in many applications. Figure 1.3
shows various application of 3D city models. Therefore, 3D city models are powerful tools for city-level

https:/ /www.buildingSMART.org / regulatory-information-requirements-activity-proposal-out-for-consultation /

1.2 Research objectives

analysis and they can do extensions on different City Objects which able to cover the building context
in the regulation, therefore it has good applicability to problems related to urban planning [Stoter et al.,
2010].

Visibility analysis

—

Energy demand estimation

Solar potential estimation

i

Emergency response

b 8
b

Noise propagatien I 5

Indoor navigation

Shadow estimation

Utility management %

Figure 1.3: Various application of 3D city models [Biljecki et al., 2015]

This study aims to provide an approach to deals with the digitization and automation of the building
permits checks under the guidance of EUnet4DBP. To automate this process, this study uses the 3D city
model and uses its extensions to support automated building permit inspections. The purpose of final
output results is to supporting government officials to check building permits through automatic tools
in real situations, which will improve work efficiency, speed up the working process and save costs with
better management. The results can also be used for reference to architectural design and developers,
and to participate in the process of architectural design.

To achieve building permit checks using a 3D city model, several aspects need to be taken into account.
Before conducting building permit checks, we need to choose the regulations for inspection. This in-
volves the interpretation of the regulations, formalization process. Then, the data we obtained and the
data model will be stored and extended in a 3D city model and then used for calculation and analysis
in the developed tool. After getting the checking results, the final data visualization is also realized.
These aspects together constitute the main content of this research, and they are integrated into a tool
for automated inspection eventually. By using the framework and tool developed in this research, we
can be replicated the process to different places and regulations.

1.2 Research objectives

This research aims to use CityJSON format to construct an urban building data model and develop its
extensions to support automated building permit inspections. The data model store the building infor-
mation which is needed in further calculation and inspection process. There can be different city objects
according to different regulations. The main research question of this research is :

e How to do building permit checks automatically by developing a tool in form of the 3D city
model?

To achieve the automation of building permits check using tools, the following sub-questions are de-
rived:
¢ How to select and obtain the information needed by building permit checks?

¢ How to store and extend the information needed by building permit checks?

1 Introduction

* How to test the 3D city model-based tool for the building permit regulation checking?

1.3 Research scope and challenges

The scope of this research is to use 3D city models to check the regulations for building permits issuing,
rather than some commonly used building models such as BV, IFC, because the 3D city model covers a
larger spatial extent and can model a variety of City Objects in 3D.

Another difficulty in this research is to interpret the regulation and translate it into machine-readable
language. In the process, this research will explain how to interpret and formalize specific regulations
and the corresponding operations. However, human interpretation will produce misunderstandings
and deviations, leading to different calculation results. For the ambiguous rules in the regulation, they
need to be consulted the officials or the expert who makes the regulation.

On the other hand, the available datasets sources are relatively few, basically from the Basisregistratie
Adressen en Gebouwen Basisregistratie Adressen en Gebouwen (BAG) data which provides information
on the main registered address and buildings in the Netherlands and OpenStreetMap (OsM) data. They
lack the necessary attribute information to check certain regulations, which makes the research unable to
expand to more regulation at this stage. To solve this problem, the project will be limited to case studies
in Rotterdam and start with a few regulations. In this study, we selected the parking regulation on the
minimum number of parking spaces for bicycles and cars of Rotterdam as the target. Useful information
related to building permit checks (such as different City Objects and their attributes) involved in the
regulations will be stored in the 3D city model. However, this step may involve undefined City Objects
and new attributes in the existing 3D city model. This can be solved by extending the existing model
with the CityJSON extension.

1.4 Thesis outline

The paper consists of 6 parts and is structured as follows:

¢ Chapter 2 reviews the technologies and research related to this research. Most of the concept and
definition is explained here. It focuses on the development of the automation of building permit
check and the extension of the 3D city model;

¢ Chapter 3 gives the research methodology and the whole pipeline of how to carry out the build-
ing permit automated checking process. A detailed description of each step is elaborated with
diagrams and formulas;

¢ Chapter 4 provide the use cases of this study to test the methodology;
¢ Chapter 5 described the conceptual model of City]SON format;

¢ Chapter 6 focuses on the implementation process of the research, tools and data sets used, as well
as the functions and commands used in the process of realizing building permit automation is
present;

¢ Chapter 7 shows the main results of the research and provides relevant analysis and discussion;

e Chapter 8 gives the conclusion of the research and answers all research questions together with
the future work.

2 Related work

The purpose of this chapter is to provide relevant knowledge and work related to building permit checks
and 3D city models, which are the key technical points for completing this research. The chapter is
structured as follows: Section 2.1 explains what a building permit is and the significance of digitalization
of building permits. Some research related to building permits is also introduced. Section 2.2 focuses
on the translation of regulations related to building permits for the purpose of the automatic building
permit checks process. Section 2.3 provides a brief overview as well as two major open data models
and sharing formats for storing and distributing virtual 3D city models. Finally, section 2.4 presents the
research gap.

2.1 Digital building permit

Urban planning is based on the premise of development vision, scientific demonstration, and expert
decision-making to plan the development of urban economic structure, spatial structure, and social
structure, such as land use control and natural environment protection [March and Kornakova, 2017]. It
has been promoting the creation of a sustainable urban climate, avoiding urban chaos, and supporting
infrastructure development. To cope with new social issues, regional places need sustainable growth,
which necessitates effective urban management [Akahoshi et al., 2020].

According to Mouratidis [2021], there is a connection between the built environment and city quality
of life. Buildings, as one of the city’s most critical components, may provide valuable data for urban
planning. A building permit is a permit required for building activities involved in Building Decree
[Decree et al., 2012]. A building permit must be obtained for most construction work. A permit is
needed to build, modify or demolish a building or change its use, regardless of whether the structure
is to be used as a dwelling and whether or not it has foundations. A standard application is used
nationwide. Even simple construction projects may require multiple permits. Once the building permit
is issued, construction work can start. Figure 2.1 shows the building permit procedures in Turkey. It is
also a legal offense to undertake construction work without a building permit if one is required. This can
result in a fine or in certain circumstances an order for the building to be returned to its pre-construction
state. Therefore, in order to avoid potential safety hazards, the inspection of building permits needs to
be supervised by the government. Since the process of building permit inspection involves different
laws and requires the joint participation of many departments, it also has many problems, such as low
work efficiency, complicated and slow work procedures for permit application generation, and difficult
to track Eirinaki et al. [2018].

Therefore, the automation and digitalization of building permits procedures are important since they
can improve the quality of permits checks thus the quality of buildings. Many countries give importance
to the improvement of the building permit processes. One of the most significant developments in this
regard is the European Union’s 2002 action plan, which recommends the automation and digitalization
of the public services to improve its efficience [Guler and Yomralioglu, 2021]. The digitalization of
building permits mainly goes through BIM and related open format IFC, building information can be
stored maintained, and queried using these model [Beetz et al., 2010; Mazairac and Beetz, 2013].

In the architecture, engineering, and construction (AEC) industries, comprehensive research has been
performed on automated and semi-automated regulatory enforcement inspections in recent years.

Manual inspections of building designs are required in most of countries such as the United Kingdom,
based on a collection of constantly evolving and increasingly complex building regulations. For builders
and departments in charge of implementing building codes, this is a huge challenge. As a consequence,

2 Related work

\ Building Permit Procedures }

Figure 2.1: Building permit procedures in Turkey [Guler and Yomralioglu, 2021]

there is always uncertainty, contradictory estimates, and financial loss. As the AEC industry moves
from 2D ccomputer-aided design (CAD) drawings to more semantically rich building knowledge mod-
els, automated compliance inspection systems for building codes become feasible BIM [Malsane et al.,
2015].

According to the findings of Malsane et al. [2015], the IFC format is well suited to automated enforcement
tests, they created a semantic-rich object model specific of building fire regulations to meet the needs of
automatic enforcement checks in England and Wales.

Dimyadi and Amor [2013] pointed out that due to high-performance personal computers, efficient web-
based technologies, and new initiatives in legal knowledge representation modeling, commercial com-
pliance checking systems could be more feasible than ever.

Software reviews that are automated have the ability to save a lot of time and money. It was proposed
that the client or architecture firm create the building’s procedural criteria and specify basic rules as part
of the project design and construction planning and review standards. Eastman et al. [2009] provides a
general framework for the implementation of rule-checking systems. It uses a method that translating
terms in written statements into the logic of testing conditions and obtains the properties and relations
needed for rule queries.

Lee [2011] developed Building Environment Rule and Analysis (BERA), a computer programming lan-
guage that can be used to help define, interpret, and evaluate rules during the design process, to resolve
the issues with the building model.

Preidel and Borrmann [2015] established the minimum criteria for automating regulatory compliance
checks and introduced a new approach for automating the process known as Visual Code Checking
Language (VCCL).

However, the unified approach to seeking industry recognition does not seem to be over yet. Noardo
et al. [2020a] states: "It is widely recognized that a multidisciplinary, multi-stakeholder, and interna-
tional approach is needed to achieve relevant outcomes in a reasonable amount of time through the
exchange of results, expertise, and efforts”. With the ambitions and visions, EUnet4DBP was developed
in early 2020, bringing together experts from all over Europe in BIM, 3D city modeling, building regu-
lations, urban design, and software development [EUnet4DBP, 2020; Noardo et al., 2020a].

In the framework of automating the inspection of building permits, the ambitions/specification of the
EUnet4DBP aims to accelerate the digital transformation of the building permit process. Through exchang-
ing experiences and accumulating information, they aim to develop flexible, scalable, and re-usable dig-
ital and (semi-) automated building permit resources and methods in a collaborative effort and under
the umbrella of an open science system [EUnet4DBP, 2020; Noardo et al., 2020a].

As part of their research, the 3D geoinformation group at TU Delft developed a tool and methodology
to help the municipality of Rotterdam with building permit regulation tests using digital solutions in

2.2 Translation the regulations

the project GeoBIM for building permits !, starting with digital standardised databases, in 2020. To
resolve the building permit problems, they used a combination of BIM and 3D city models [Noardo
et al., 2020c¢,b].

Guler and Yomralioglu [2021] provides a reformative framework in Turkey that intends to enhance
building permit procedures, 3D property ownership registration, and update 3D city models. It is pro-
posed to link the building permit procedure, the 3D registration of property ownership, and the 3D
city model through the effective use of the 3D digital building model to become a new system concept.
The reformative framework for building permit procedures, creating 3D city models, and registering
property ownership in Turkey is depicted in figure 2.2.

Reformative Framework
()

Construction phase

Building Permit Issuing Process

ermi [N\
report, Y€

D 0,0 S
& — A Nl
RN [] : Yes Is there any No
Regulations Computer-readable Building design Building model IFC, CityGML hanges in design?
rules checking submission building model
| Municipalities and Local Agencies |
A A

Turkey National
Cadastral |
Database

3D Registration of
Property Ownership

Is the as-built
project acceptable?

A
Y

A
> 1

: §o
Approved G
5

3D modeling of Submission of Model check Registration of A ! .
As-built model legal rights property ownership by registry office models to national Approval of occupancy permit
in IFC, CityGML, models to registry office cadastral database
LandInfra
[General Directorate of Land Registry and Cadastre |
~ J

Figure 2.2: Reformative framework that combine 3D city model and building permit process [Guler and
Yomralioglu, 2021]

2.2 Translation the regulations

One of the difficulties in conducting building permit inspections is the process of interpreting, formal-
izing the law, and translate the law into machine-readable language. Machine-readable data is data that
can be read and interpreted by a computer automatically. Therefore, it must be data that is organized
[Open Knowledge Foundation, 2019].

The inherent inconsistencies in the rules, as well as the breadth of circumstances to which they must
apply, are major roadblocks to effective rule testing. There are many ways to code the process and lots
of rules that can be defined, it's important to systematize the rules which help users to test on them.
Using criteria that extend across all current facets of automated rule testing, the author develops a
general classification of rules across program domains [Solihin and Eastman, 2015].

1 https:/ /3D.bk.tudelft.nl/projects/rotterdamgeobim_bp /

2 Related work

To interpret the regulations, Lee et al. [2016] invented a logical rule-based mechanism, refining the
objects/properties and predicates of sentences from the Korean Building Act into a database known
as the "logic meta database.” They identify each object and its related properties in accordance with the
Korean Building Act. A test server framework has been set up to ensure that this technique complies
with the most recent building permit legislation. Figure 2.3 shows the comparison between the rule-
making process of their logic-based system and the traditional method.

Implicit

Sentence P . ;) Hard coded !
Interpretation . = Parameterized ...
_ Architect/ software
£= Building Act " RuleExpert Developer Rule-checking tool
Natural Language o Design reporting
Buildin | i ass
qui Intermediate Code \
In Korean -
L]
- =

o

KBimCode

Explicit &
Executable Form

Former approach: Knowledge embedded in Rule-checking tool
——> |n this research: Knowledge accumulated in KBimCode DB

Figure 2.3: Comparison between the rule-making process of a logic-based system and the traditional
method Lee et al. [2016]

In Noardo et al. [2020c], they also provide a reference to formalize the regulation, through definitions
and rules designated as true for building permit inspections to translate regulations into codes that can
be used for building permit requirements. They both mapped the mechanisms between regulation-
specific objects/properties and those in standards (e.g. IFC, BIM, and other 3D city models) needed as
shown in figure 2.4.

* Parameterization of Sentence

{processed) Atomic Sentence ALU (Arithmetic Logic Unit)

BuildingStories >=6

—_— . .
WalkingDistance <= 30m

Left Operand {Operator) Right Operand -> Return

* Classification of Methods

ObjectQuery

* getObject ()
* isExist()
— ¢ getObjectCount ()

Simple query of object Object Mapping
_ * getProperty()

| Cject: PropestyQiisey ‘—E * getObjectHeight ()

Geometry calculation, * isAccessible()

Distance, Direction, Circulation, etc..

* Given BIM model

Figure 2.4: An example of mapping information to BIM model [Lee et al., 2016]

2.3 3D City Model

2.3 3D City Model

2.3.1 Background of 3D city model

Biljecki et al. [2015] said that “A 3D city model is a representation of an urban environment with a three-
dimensional geometry of common urban objects and structures, with buildings as the most prominent
feature”.

The 3D city model needs to collect the information of various features in the city and then build the
model. In Suveg and Vosselman [2004]; Haala and Kada [2010]; Tomljenovic et al. [2015]; Blaschke
[2010], they used photogrammetry and laser scanning to build a 3D city model. You can also use existing
building models and city drawing data to build models [Donkers et al., 2016; Yin et al., 2008; Lewis
and Séquin, 1998]. Use extrusion from 2D footprints get applied in [Ledoux and Meijers, 2011; Arroyo
Ohori et al., 2015]. Besides the above methods, there are more other technologies together support the
construction of 3D city models. Extrusion from 2D footprints to get the 3D model was adopted in this
research. We get the footprint from BAG data source and get height information from 3D BAG data to
do extrusion.

3D city models are used in a wide range of applications. In Batty et al. [2001], Batty’s team provide
a conceptual study on the use of 3D city models, focused on visualization and spatial planning. The
visualized virtual simulation of the 3D city model presents the real scene, which can observe the entire
city in a macroscopic view. It also supports various analysis functions based on visualization, which is
of great help to urban planning and urban construction. They have helped urban development in many
areas.

Ross’s team offers a taxonomy of 3D use cases as well as a list of applications: (1) applications based
solely on geometry; (2) analyses based on geometry and semantic data; and (3) analyses based on
domain-specific extensions and external data [Ross, 2011].

3D city models have become useful for a variety of purposes other than visualization and urban plan-
ning, and they are used in a wide range of fields. For instance, Sinning-Meister et al. [1996] investigate
the applications of 3D city models for CAAD-supported analysis and design of urban areas. Shiode
[2000] talks about digital mapping and rendering of urban environments in three dimensions. Ulm
[2010] studied satisfaction through sustainability using Virtual 3D City Models. Besides, Ahmed and
Sekar [2015] using volumetric analysis of 3D city model in everyday urban planning processes. Lem-
mens [2011] analyzed the 3D city model that can be used to calculate the sunlight and shadow of the
building.

From the above application scenarios, we can find that 3D city models are powerful tools for city-level
analysis, so they can be used in building permit inspections. In Guler and Yomralioglu [2021], they
proposed a framework including building permit procedures, 3D registration of condominium, and
update of 3D city model.

2.3.2 Representing and Exchanging 3D City Models

We need to provide a common description of the basic entities, attributes, and relations of a 3D city
model and store it in order to represent and exchange 3D city models [Kolbe, 2009]. Here, two main
open data models and exchange formats for storing and exchanging virtual 3D city models and their
extensions will be introduced.

CityGML

CityGML is an open data format for storing and exchanging virtual three-dimensional city models. For
various thematic areas, it includes a geometry model and a thematic model. It recursively decomposes
a city into semantic objects in CityGML 2.0.0. It describes the groups that are most commonly found

2 Related work

in a city or an area. Each class in CityGML has five levels of detail, enabling practitioners to use ac-
ceptable city representations depending on the application [Gerhard Groger, Thomas H. Kolbe, Claus
Nagel, 2012; Ledoux et al., 2019]. The geometry of the objects is realized using a subset of the ISO
191073 geometry concepts [ISO, 2003]. It is possible to add new classes to the list, as well as define
new attributes. Application domain extension (ADE) is a method for accomplishing this, and it entails
developing new XML schemas that inherit from the CityGML schemas [Ledoux et al., 2019]. Figure 2.5
provides overview of the UML diagram for the core of CityGML. The public site of CityGML is available
athttp://www.citygml.org/.

=<Feature>>
gml::_Feature
<<DataType=>

£y gen::_genericAttribute
gen::_genericAtiribute *

jen::_genericAtiibute
+name : xs::siring [1] gena

<<Featura>> f-’} -
gml:._FeatureCollection [| |
a <<DataType>> <<DataType>> <<DataType>>
gen::stringAtiribute genzintAttribute gen::doubleAttribute
+value : xszstring [1] +value - xszinteger[1] | | [+value : xs:double [1]
=<Feature>> 0 0.1
y S
CityModel g <<DataType>> <<DataType=> <<DataType>>
i gen:uritwibute [T ibuteSet
+value - xszdate [1] +value - xs-anyURI [1]] | [+eodeSpace : xs:anyURI 0.1
cityObjectMember
g 'y s
<<Feature>> gen:measureAttribute
«\| app-appearanceMember _CityObject [#ualue : gmi:MeasuraType [1]
<<Feature>> +creationDate : xs:date [0..1] -
— pp:App: \;”PP BPpearance.. |+terminationDate - xs::date [0_1] -
Htheme - xs=siring [0_1] : 7 |#relativeToTemain : RelstiveToTemsinType [0.1] [~ gorcoizezTe
+relativeToWater : RelativeToWaterType [0..1]
<<Geometry>>
':F‘ - gmi::_Surface

<<Feature>s
luse::LandUse

<<Feature>>
veg::_| ionObj

<<Features>
wtr::_WaterObject

<<Feature>>
dem::ReliefFeature

<<Features>
fm::City

<<Geomelry>>
gmi::OrientableSurface
+orientation : gmi=SignType [0.1]

<<Geomatry>>
tex::TexturedSurface

Figure 2.5: Overview of the UML diagram for the core of CityGML [Gerhard Groger, Thomas H. Kolbe,
Claus Nagel, 2012]

<<Feature>>
gen::GenericCityObject

<<Feature>>
_site

<<Feature>>
tran::_TransportationObject

<<Festure>>
grp::CityObjectGroup

“<Featurs>> <<Feature>> <<Featura>>
bidg::_AbstractBuilding | | tun:_AbstractTunnel | | brdg::_AbstractBridge

CityJSON

A subset of the OGC CityGML data model is encoded in CityJSON, a JSON-based encoding (version
2.0.0). It specifies how digital 3D models of cities and landscapes should be stored. A City]SON file
includes a City]JSON object, the type of which is always “City]SON,” and the minimum acceptable
City]JSON object must have the four elements listed below:

{
“type”: ”City]SON”,
"version”: ”"1.07,
"CityObjects ”: {},
“vertices”: []

The value of the member ”CityObjects” is a set of key-value pairs, with the key being the object’s ID and
the value being one City Object. A City Object’s ID should be unique. For compression purposes, the
member “vertice” holds a global collection of 3D vertex coordinates. The aim of CityJSON is to provide
an alternative to CityGML’s GML encoding. It is built to be lightweight (with real-world datasets, it has
a compression factor of around six) and friendly for web and mobile growth. CityJSON strives to be easy
to use, both for reading and writing datasets. It was created with programmers in mind, allowing for
the rapid development of tools and Application Programming Interface (API) to support it. Via the use
of a simplified JSON encoding, City]SON significantly reduces the difficulty of designing applications
for the CityGML data model. JSON is a basic data exchange format that many programming languages,

10

http://www.citygml.org/

2.3 3D City Model

including JavaScript, Python, and Ruby, support natively. In chapter 4, you'll find some tools for creat-
ing, parsing, visualizing, editing, and validating City]SON files [Ledoux et al., 2019]. The public site of
CityJSON is available at http://www.cityjson.org/.

Extension of 3D city model

In some urban planning applications, attributes or new urban objects that aren’t specified in the CityGML
data model may be required. CityGML proposed the idea of ADE to enable users to add new attributes
or artifacts to the data model. It creates new classes by inheriting the classes that make up the CityGML
data model, and it modifies existing classes by introducing new geometric shapes and complex at-
tributes, for example. It saves all of this information in an additional XSD file [Gerhard Groger, Thomas
H. Kolbe, Claus Nagel, 2012].

CityJSON describes extensions in a similar way. The extension is a JSON file that describes how to
expand CityJSON’s core data, and it is used to validate the CityJSON file [Ledoux et al., 2019]. Their
core is to allow users to record in a standardized manner and to validate files with extensions. Following
that, current CityGML ADE and CityJSON extensions will be discussed.

In the information infrastructure of i-Urban Revitalization built by the Japanese government, for better
urban planning, they used the CityGML ADE mechanism to combine urban semantic information with
three-dimensional information to realize the visualization and analysis of the current situation of the
city [Akahoshi et al., 2020]. In order to store the data related to urban planning-specific semantics in-
formation, they expand the existing data model of CityGML. The data involved in this infrastructure is
called i-UR data and they made 3 different data modules for urban objects, urban function and statistical
grid. The infrastructure is constructed by make extension of the existing modules for city objects such
as building, land use, transportation or create new city object from core::CityObject. They also explored
ways to scale the data model globally to compare the development of different cities [Ishimaru et al.,
2020]. Figure 2.6 shows some data experiment examples of the Urban Planning ADE which confirmed
that the buildings in the area are basically in line with the zoning plan.

b. Overlaid buildings (Color: Usage of the bldg.

a. Zoning plan

Figure 2.6: Data Experiment Examples of the Urban Planning CityGML ADE [Ishimaru et al., 2020]

Similar to CityGML ADE, City]SON extensions also support the extensions to the core data model of
CityGML for specific applications and use-cases. But the existing CityJSON extensions are still relatively
few. 3D geoinformation group of TU Delft developed a City]SON extension that allows topological
information of a city model to be stored as a Combinatorial Map-based Linear Cell Complex. The
findings show that the proposed CityJSON extension can accurately reflect all geometric information in
a city model while also providing additional topological information for the model’s artifacts [Vitalis
et al., 2019]. Figure 2.7 shows the Linear Cell Complex (LCC) viewer used to evaluate the topologically
reconstructed CityJSON files.

11

http://www.cityjson.org/

2 Related work

Figure 2.7: A LCC viewer to evaluate the topologically reconstructed CityJSON files [Vitalis et al., 2019]

2.4 Research gap

A gap in current research is how to develop a tool that using 3D city models for building permits checks.
At present, the digitization of building permits is mainly done through BIM and the related open format
IFC. This study proposes an alternative method of using 3D city models. There is also a gap in the
CityGML ADE, the urban planning CityGML ADE published by the Japanese government, which stores
data for urban master planning and promotes city revitalization on a large scale [Akahoshi et al., 2020].
But specific urban planning applications are not yet available, such as building permit checks that relate
to specific regulations and other needs of users. It require a useful data structure to store the necessary
information. In addition, there are few applications for the City]JSON extension, so it is also a challenge
to explore the application of the extension in different application fields.

Therefore, this research focuses on this research gap in using 3D city models to complete building permit
inspections, and develops tools to complete this process.

12

3 Methodology

This part gives the overview of the methodology to be used in this research as shown in figure 3.1. The
key point of this research is to using 3D city models to complete building permit checks and develops
tools to automate the process.

Section 3.1 describes the interpretation and formalization of regulations. This step aims to translate the
regulation of natural language into algorithms for further automated computation and analysis. Then,
Section 3.2 gives use cases on how to interpret and formalize the parking standard for bicycles and cars.
The comparison of CityGML and City]SON is presented in Section 3.3, After evaluation, this research
chose to use City]SON to build a conceptual model. We then utilize the model in building permission
check applications. It will store, evaluate, and verify the final results. Followed by a description of
extending 3D city model by using the City]SON extension in Section 3.4. Finally, Section 3.5 briefly
describes the working steps of the tool as the final result, which can automatically complete building
permit inspections based on specific regulations.

This research will be carried out with a specific case study, by selecting a small area of the research area
in Rotterdam and specific regulations to conduct the research as test scenarios, and then try to test the
possibility of extending it to the realization of more regulations.

—_—

Interpretation
Regulation needs to
be translate into
machine-readable
rules first
3D City Objects Formalization

S——

i v

Constraints/conditions
BAG data and 3d - e
[F ---------<4 related to build
“ LBAH‘ data (bullding) { e ‘ { o } permit checks

permit checks
| |

Bmclidtlycglr;-;‘eeat: ,a cll 3d City)SON extensions
extension schema/specifications

h 4

A

Data preparation -
improve the development

— process from the test resulis

L4
E—
Develop tools to . .
test and automate test scenarios
the process

Figure 3.1: Workflow of methodology

13

3 Methodology

3.1 Interpretation and formalization of regulations

Before interpreting and formalizing the regulations, it is necessary to sort out the regulations that affect
the research area, develop methodology through the selected regulations and design corresponding
building permit checking tools. For the selection of regulations and the interpretation and formalization
of specific use cases, it refer to chapter 3.2.

3.1.1 Interpretation of regulations

The first part is about the interpretation of regulations, which means to understand and summary the
regulation. The project ‘GeoBIM for building permits” of 3D geoinformation group at TU Delft pointed
out that there are ambigraphical user interface (GUl)ties in the interpretation of regulations in natural
language. Their solution is to eliminate the ambiGUIty in the interpretation of the rules with the help
of municipal officials and experts [Noardo et al., 2020c]. Through the interpretation of the regulations,
we can better understand the meaning of the regulations and how to apply them to building permit
inspections. Although different people may have different interpretations of the same regulation, this
research will be interpreted as close to the original regulation as possible based on its description. For
the uncertain part, relevant experts were contacted for consultation.

3.1.2 Formalization of regulations

To minimize the deviation caused by manual interpretation of the regulations and provide correspond-
ing basis support for the interpretation of the regulations for this study, the formalization of the nature
language regulations will be based on logic through definitions and rules designated as true for building
permit inspections. The process of formalization also called rule-making process. The significance of
formalization in translating them into machine-readable language is to support tools that automatically
check building permits. The formalization process specifies the attribute information that needs to be
obtained, as well as logical relationships and related calculation requirements.

In the studies discussed in section 2.2, it is mentioned that the information of the building model is
mapped into the formalization process. To effectively enforce the methods, mapping mechanisms be-
tween regulation-specific objects/properties and those in standards (e.g. IFC, BIM, and other 3D city
models) are needed. With the relations between regulation and 3D city models, we can then construct
the new building data models with CityJSON which can be find in section 3.3.

Although the theme and constraints of different regulations vary, by summarizing their commonalities
and concluding from the regulations that have been explained, a working process that can be extended
to other regulations is proposed which is shown in the figure 3.2. After a preliminary assessment of the
possibility of formalizing the code, we will complete the permit inspection of the building by interpret-
ing and formalizing the provisions of the regulation.The steps are concluded as follow:

1. Manually interpret the regulations and consult local experts if there is any ambiGUIty.
2. Disassemble the legal text as: object + attributes, function, conditions and constraints
3. Transformed the regulations into algorithms.

4. Mapping the object/attribute with 3D city models.

14

3.2 Use cases for regulations

Rgﬂmﬁm Ieloted 40
bA}anI\J permisin ohaky
BB E

\L

nature lnrﬂmﬂae
T fert [chart

\L Logic — based.
adiei i ~— Inechanism

meanm
N| pe
L

i Db“]a;l- -+ orttibites -
. Store, Rules o Yequlston
» Functon ~ / ™

+ (noppg WTHh 34 c‘rﬁ vl b‘{w’t machie-readsble form

Figure 3.2: Workflow of the interpretation and formalization of regulations

3.2 Use cases for regulations

3.2.1 Regulation selections

Zoning plans, structural visions and general rules implemented in Rotterdam can be found on this web-
site: https://www.ruimtelijkeplannen.nl/.It is the national portal for spatial plans of the Nether-
lands. In this website, you will find zoning plans, structural visions and general rules made by mu-
nicipalities, provinces and the national government. They can be classified according to administrative
levels and theme:

¢ The administrative level: Gemeente, Provincie, Rijk(municipality, province, country).
* Theme: Environmental (water,wind), Spatial related, Transport, Vision.

This study needs to sort out these regulations to select the regulation that can be used for building
permit inspection. In Ruimtelijkeplannen portal as shows in figure 3.3. Enter an address or place, and
you can see the regulations implemented by the municipality, province, and national government where
it is located. Clicking on the corresponding regulation will redirect you to a detailed page describing
the content. Determine the selected regulation of the study by screening the regulations that applicable
to Rotterdam.

It was decided to start this research and focus on the regulations related to the spatial planning since
they are easier to start and implement. these regulations were chosen because they have more clearer
description and they don’t need so much different external data. Also, the calculation can be easier.

15

https://www.ruimtelijkeplannen.nl/

3 Methodology

We can check them with the data available and by building suitable analysis tools based on the 3D city
model. Use them to see if the approach developed in this study is practicable, after which it can be
applied to other areas of regualtions. In Rotterdam, the municipality government announced a policy
regulation on parking standards for bicycles and cars based on different building functions. It focuses
on the spatial planning itself, so that it is easier to get started and get the desired results than other
regulations that covering more themes (such as environmental protection). This regulation applies to
the whole city of Rotterdam and has a good application prospect for urban planning traffic and trans-
portation. Therefore, it becomes the use case for validating the methodology.

Environmental regulation South =]

< Ruimtelijkeplannen.nl e
Jkep LAY ® Holland - Course 2020
ADDRESS PLAN NAME OR NUMBER ,";,?m ™ province south-Holland
\ e provincial ordinance
Rotterdam X . Hillegersberg .
Schelken . design (2020-10-06)
% Zesvenhoven
MUNICIPALITY (5) PROVINCE (26) RICH (32) LOCATION INFO DOCUMENTS CHARACTERISTICS
Kralingse
Crooswik ot
REGULATIONS Biidomsepoider | AIMesebU Kratingen Documents o
. I Jati h Out i A Rotterdam
o Environmental regulation Sout| ud-Mathenesse ester RNUM| OTHER INFORMATION
Holland - Course 2020 Tussendijken kol
provincial ordinance Delfshaven
design (2020-10-06) MM;;;:'M(| cards ~
Maashaven Oud-iJs:
South Holland environmental Heijplaal, “"'”m,,,_ Yool Displayed map
..... Inbinn Pernis % Zuidplein
STRUCTURAL VISIONS !Q Wielewaal 1: Changes to map 2 Provincial waterways
" Lombardiiery
A Hide plans i + O 2: Changes to map 5 Environmental protection area
Geenvliet Hoogvliet it > O 3: Changes to map 6 Quiet areas
N4g2
Poonugas) -\ B cht O 4: Changes to map 7 NatuurNetwerk Nederland

2km

Figure 3.3: Find regulation applied in the Netherlands on Ruimtelijkeplannen.nl

The regulations mentioned here is about calculating the minimum number of bicycle parking spaces
and car spaces required in Rotterdam buildings. The regulations’ aim is to ensure that enough parking
space for cars and bicycles is available for the expected functions in the construction of new buildings.
The regulations identify ”sufficient parking spaces” as parking spaces for cars and bicycles that achieve
the best balance between different municipal policy objectives in order to carry out good space planning.
The detail information of this regulation can be find at this website !. To meet the needs of Rotterdam’s
urban planning, new buildings must meet the reasonable number of parking spaces mentioned in the
regulation for people to use when checking building permits. With the increasing use of bicycles, in
addition to parking spaces for cars, the regulation also included bicycle parking facilities for the first
time.

3.2.2 Interpretation of parking regulation

The Rotterdam City Government’s policies and regulations on parking standards for cars and bicycles
describe the background, reasons, and purpose of the policy for implementing the law. The policy
contains three strategies, namely general policy regulations for cars and bicycles, additional vehicle
policies, and additional bicycle policies. The competent authority also stipulated in the regulations that
building requirements that can completely or partially deviate from the parking requirements. They
are divided into the following situations as shows in table 3.1. For example, if the area of a residential
building is less than the designated area (300m2), it can be exempted from car parking spaces.

The parking standard provides standard tables that specify the calculation requirements for the parking
capacity of bicycles and cars to be realized during the construction of buildings with different func-
tions. These tables respectively indicate the calculation of car parking spaces for residential functions,
car parking spaces for non-residential functions, bicycle parking spaces for residential functions, and

1https: / /1okaleregelgeving.overheid.nl/CVDR486392/ 1#noot_id1-3-2-4-91-1-7-1-2-1-2

16

3.2 Use cases for regulations

Rules I§ it ansidered Why it is.not involved
in this study? in this study?
Close to parking facilities NO No calculable conditions are provided in the law
The building area is less than YES]

the designated area can be exempted
If the parking facilities of the building
can be used for multiple functions, NO Complex content
the parking requirements can be reduced
Different degrees of special

exemptions are available YES -
for nearby public transportation stations
Deviation from nursing home NO Individual exceptions are not considered

Separate parking standards

] . NO Individual exceptions are not considered
for social rental housing

Table 3.1: Some situations that can deviate or be exempt from parking requirements

bicycle parking spaces for non-residential functions. The tables in the regulation can be found in the ap-
pendix. For reasonable space planning, Rotterdam is divided into three different zones in the regulation
which can be seen in figure 3.4. The calculation of car parking spaces for buildings located in each area
is different while the calculation of the number of bicycle parking spaces is not affected by the area. The
function of the building also determines the number of parking spaces.

To simplify and speed up the calculation and inspection process, it is necessary to check whether the
building meets the exemption conditions. If it meets the requirements, the next step of calculation will
not be performed. The table to check each exemption condition is also shown in the appendix. For the
exemption conditions for small-area buildings, we only need to check whether the area of the building
meets the requirements. For the transportation stations in Rotterdam, public transportation is more
convenient, so buildings located near the transportation stations can get parking space reduction. In
this regard, we need to extract the corresponding traffic stations from the OSM data and perform buffer
analysis according to the requirements given in the table. If the building falls in the corresponding
buffer zone, different degrees of exemption can be obtained.

After completing the screening of parking spaces exempt buildings, the next step is to calculate the
minimum number of parking spaces based on the four different forms provided by the law. According
to regulations, bicycle parking spaces and car parking spaces in each building have different computer
systems, so they will be discussed separately in the following formalization sections 3.2.3.

Figure 3.4: Regional division of Rotterdam

17

3 Methodology

3.2.3 Formalization of parking regulation

According to the calculation formula provided by the regulation, the minimum number of parking
spaces for bicycle and cars can be obtained. A more clear calculation formulas and condition constraints
tables are given in the appendix. Based on the interpretation information, the steps of checking bicycle
and car regulation can be summarized together as the following steps:

1. Determine what needs to be defined and its attributes. Such as defining the building, building
function, room, room area, and the zone where the building footprint is located.

2. Check whether the building meets the parking space exemption conditions, check its area and
whether it is located near a traffic stop.

3. Filter the types of building functions, residential buildings will be calculate first according to the
formula table.

4. For non-residential buildings, determine which type of non-residential building they belong to, query
the table and get the result.

5. Compare the calculation result with the number of parking spaces in the building design plan to get
the building permit inspection result.

3.2.4 Formalization of bicycle parking regulation

For bicycle parking spaces calculation, the same calculation applies to all three zones in the bicycle
parking standard. As for building functions, the calculation of residential buildings and non-residential
buildings is different:

¢ The number of parking spaces in a residential building depends on the number of rooms of differ-
ent areas in the building.

¢ The number of parking spaces in non-residential buildings depends on the number of recom-
mended parking spaces given by different functional types (e.g. office, shops).

Based on the known knowledge, the formalization of the bicycle regulation can be summarized as
shown in the following table 3.2. We first determine what needs to be defined and its attributes as
"Definitions’ in the table. For the convenience of expression, we use abbreviations to represent each
"Definitions” and give an explanation in the second column of the table. We then use a series of condi-
tional statements to make judgments and calculate the results. Finally, we use the discriminant of the last
line in the table to determine whether the new parking spaces meet the requirements. The terminology
used in this formalization process is based on [Noardo et al., 2020c].

3.2.5 Formalization of car parking regulation

For the car parking space calculation, the calculation result depends on which zone of the building is
located. As for building functions, the calculation of residential buildings and non-residential buildings
is also different:

¢ The number of parking spaces in a residential building depends on the number of rooms of differ-
ent sizes in the building and the zone where the building is located.

¢ The number of parking spaces in non-residential buildings depends on the number of recom-
mended parking spaces given by different functional types (e.g. office, shops), the building area
and the zone where the building is located.

Based on the known knowledge, the formalization of the car parking spaces regulation can be summa-
rized as shown in the following table B.2.

18

3.2 Use cases for regulations

Table 3.2: Formalization of bicycle parking regulation

Definitions and rules from regulation

Definitions

For residential buildings:

BUH40 = Count BU (function.”home”)
AND (A(BU) 40 m2)

BUH40-65 = Count BU (function.”home”)
AND (40 A(BU) 65 m2)

BUH65-85 = Count BU (function.”home”)
AND (65 A(BU) 85 m2)

BUHS85 = Count BU (function.”home”)
AND (85 m2 A(BU))

Rules (must be true)

IF BU(function) = “home”THEN
MinNPP= (BUH40*2) + (BUH40-65*3)

+ (BUH65-85*4) + (BUHS85*5)
NewParkings > sum(MinNPP) + sum((MinMQPP/parkingArea))

For non-residential buildings:

BUH40 = Count BU (function.”home”)
AND (A(BU) 40 m2)

BUH40-65 = Count BU (function.”home”)
AND (40 A(BU) 65 m2)

BUH65-85 = Count BU (function.“home”)
AND (65 A(BU) 85 m2)

BUHS85 = Count BU (function.”home”)
AND (85 m2 A(BU))

Rules (must be true)

BU(function) != “home”

IF BU(function) = “Office”
THEN MinMQPP = 1.7 * A(BU)/100

ELSE IF BU(function) = “Industry”
THEN MinMQPP = 1* A(BU)/100

ELSE IF BU(function) = “Retaill”
THEN MinMQPP = 2.7* A(BU)/100

ELSE IF BU(function) = “Supermarket”
THEN MinMQPP = 2.9* A(BU)/100

ELSE IF BU(function) = “Gym”
THEN MinMQPP = 2.5* A(BU)/100

ELSE IF BU(function) = “Museum”
THEN MinMQPP = 0.9* A(BU)/100

ELSE IF BU(function) = “Cinema”
THEN MinMQPP = 7.8* A(BU)/100

ELSE IF BU(function) = “catering I”
THEN MinMQPP = 9* A(BU)/100

ELSE IF BU(function) = “catering II1”
THEN MinMQPP = 18* A(BU)/100

ELSE IF BU(function) = “catering IV”
THEN MinMQPP = 18* A(BU)/100

ELSE IF BU(function) =n “universities”
THEN MinMQPP = 13* A(BU)/100

ELSE IF BU(function) = “Hospital”
THEN MinMQPP = 0.9* A(BU)/100

NewParkingArea > sum(MinMQPP) + sum((MinNPP*parkingArea))

BU = Building unit, single dwelling
BUH-= function “home”
BUO-= function “Office”
BUI= function “Industry”
BUR= function “Retaill”
BUS= function “Supermarket”
BUG= function “Gym”

BUM-= function “Museum”
BUC= function “Cinema”
BUC1= function “catering I”
BUC2= function “catering III"”
BUC2= function “catering IV”
BUU= function “universities”

BUH-= function “Hospital”

BU(function) = attribute ‘function’
related to each building unit (room) .

A (BU) = attribute’area’related to
each building unit

MinNPP = Minimum number of
parking places.

MinMQPP = Minimum parking places
per 100 square meters

19

3 Methodology

3.3 Construction of conceptual model in CityJSON

After the interpretation and formalization of the regulations, we need to build a 3D city data model
and construct a mechanism like extensions to extends different city objects. City Objects related to
the regulations will be stored in a data model, which records the attributes and geometry of each city
object. In chapter 2, we introduced two types of open data models and exchange formats for storing
and exchanging 3D city information that are CityGML and City]SON. By analyzing the advantages and
disadvantages of these two methods, and based on this research situation, the most suitable data format
modeling is selected.

3.3.1 CityGML versus CityJSON

CityGML's GML coding is complicated and hard to understand, so it is unfriendly to developers. The
difficulty of decoding CityGML files, describing all of the various ways of storing geometry, solving
XLink, managing different CRS, and adding support for ADE has made CityGML support more difficult
for developers. As a result, the number of tools and software that can support CityGML processing is
limited, which dampens researchers” enthusiasm for the standard and is particularly detrimental to the
creation of small independent standards and projects, such as the scope of this study. An alternative to
CityGML is needed to reduce the difficulty of research and to provide a better user experience [Ledoux
etal., 2019].

By using a simplified JSON encoding, CityJ]SON significantly reduces the difficulty of designing appli-
cations for the CityGML data model. JSON is a basic data exchange format that is supported by a wide
range of programming languages. City]SON is a CityGML data model based on JSON encoding that
can perform the majority of CityGML's functions. On the basis of the preceding, CityJSON does not
require the development of a parser in the same way that CityGML does. Parsing City]JSON files is
typically a one-line process, and querying the created data tree is simple with standard functions. This
reduces the risk of errors in the parsing and compilation process. The files encoded with City]JSON are
more compact than CityGML. In the test showed in figure 3.5, the City]JSON files are shown to be six
times more compact. In practice, this feature makes it easier and more versatile, which is beneficial for
users manipulating datasets [Ledoux et al., 2019]. Therefore, in this reseach, CityJSON will be used to
build a urban planning data model.

CityGML CityJSON
Sizeld! Mo space’™ LoD Texture Size-float'™ Size-int!d Compr.®
Den Haag! 23 MB 18 MB 2 Material 3.1 MB 29 MB 6.2
Montréal? 56 MB 42 MB 2 Yes 57 MB 54 MB 78
New York® 590 MB 574 MB 2 No 110 MB 105 MB 55
Railway" 45 MB 34 MB 3 Yes 45MB 43 MB 81
vienna®®! 37 MB 36 MB 2 No 56 MB 53 ME 68
Zirich® 435 VB 423 MB 1 No 127 MB 100 MB 44

Figure 3.5: Comparison on the size between CityGML file and City]SON file [Ledoux et al., 2019]

3.3.2 Data pre-processing

The data and models in this study are all based on City]SON format, so different source data need to
be converted into City]SON file first. Here, the source data is from BAG 3D BAG and 0sM data (The
detail information of data can be found in chapter 4). It contains building information that is needed for
the analysis. Since they are all of geojson file, we need to covert them into CityJSON data according to
the City]JSON Specifications 1.0.2 which can be find at https://www.cityjson.org/specs/1.0.2/. We
then covert the building data, room data and other city objects data into CityJSON format and extract
the data of Rotterdam.

20

https://www.cityjson.org/specs/1.0.2/

3.4 Extension of 3D city model by using CityJSON extension

3.3.3 Build conceptual model

1st-level city objects 2nd-level city objects
Building —————— ~
Bridge T~ BuildingPart
CityObjectGroup 7 BuildingInstallation
CityFurniture
GenericCityObject
LEGHEIEE BridgePart
PlantCover .)
Railwa BridgeInstallation

Y BridgeConstructionElement

Road
SolitaryVegetationObject
TINRelief
TransportSquare | TunnelPart
Tunnel __——"_ TunnelInstallation
WaterBody

Figure 3.6: The implemented City]SON classes, they are divided into two levels [Ledoux et al., 2019]

Next, different city object data can be combined to form the conceptual model of urban building. Their
attributes and geometry will be stored in the data model. Some city object classes have been defined in
CityJSON as shows in figure 3.6. They are divided into 1st-level objects and 2nd-level objects according
to whether they can exist alone. City Objects of 1st-level can exist by themselves while 2nd-level ones
need to have a parent.

CityGML include 5 well-defined consecutive Levels of Detail (LOD) which is used for represent ob-
jects in different fields. In Biljecki et al. [2016], they provide a sequence of 16LODs (4 refined LOD for
each of the LOD0-3), allowing for less ambiGUIty and assisting practitioners in standardizing their data
through a better characterization of model complexity. Figure 3.7 shows a visual example of the refined
LOD. In our research, the LoD of the building is “lod” = 1.2. City objects at different levels of detail in
UML diagrams contain different elements at a specific LOD. The city object inherits all the attributes of
core:: _cityObject, and defines its own attributes that need to be included and the specified geome-
try class. To build conceptual model, we need to follow the specification of CityGML [Gerhard Groger,
Thomas H. Kolbe, Claus Nagel, 2012].

3.4 Extension of 3D city model by using CityJSON extension

We used City]SON’s existing city object classes to complete the preliminary data model construction.
However, for some objects that do not exist in CityJSON'’s defined city object classes and some additional
object attributes, we need to extend the data model as mentioned in section 2.3.2.

CityJSON Extension is a JSON file that allows us to record how to extend the core data model of City]-
SON and verify CityJSON files. Although the flexibility of extension is not as good as CityGML ADE,
CityJSON Extensions can be read and processed by any software that supports CityJSON, which is con-
venient and friendly for developers [Ledoux et al., 2019].

The data model built in the previous step will be included in the CityJSON extension, which extends
different city objects according to the rules of the City]SON extension to ensure data interoperability. To
verify the validity of the data model, a corresponding schema needs to be written, and then the data
and model is validated with cjio and val3Dity.

3.4.1 Extensions

By adhering to the CityJSON extension mechanism, the data model was created to be compatible with
City]SON. According to the approach mentioned in Akahoshi et al. [2020], we can map the method

21

3 Methodology

LOD x.0 LOD x.1 LOD x.2 LOD x.3

Figure 3.7: Visual example of the refined LODs for a residential building [Biljecki et al., 2016]

to the CityJSON extension modeling. That is, basic city planning items that are already specified in
CityJSON can be reused, while items that are not defined in the CityJSON specification are modeled
according to the City]JSON extension rules.

First, we classify all the city objects covered by the regulations:

* Objects and properties already defined in City]SON
* New objects and properties which is not defined

Objects and properties that are not defined are classified according to their theme can be roughly divided
into two categories:

* Extension of existing city objects (e.g. buildings, rooms)
* Virtual city objects (e.g. regulation, storing its constraints)

In City]JSON specifications, it already defined some city objects showned in figure 3.6. City objects like
building and landuse are already defined here, so they can be directly reused in our data model and
add some new attributes if needed. For objects that are not defined in the specification (e.g. regulation),
we need to create a new city object for it which inherited from core:: _cityObject.

In Ledoux et al. [2019], three ways of extending the core data model are specified:
¢ Add new attributes to existing city objects
¢ Create new city objects and define their geometry
* Add new attributes at the root of the document

For the case of this study, the first and second methods are mainly used. For buildings and landuse,
besides its basic attributes, we need to add new attributes according to the regulations by add them as
“extraAttributes”. An extra attribute must start with a ”+” to show that it comes from the extensions.
For room and regulation, we need to create a new City Object for them and define its attributes and

22

3.5 Development of a program for permit checks automation

geometry. They are define in the “extraCityObjects” property in extension file. A new City Object must
be begin with a ”+”. The UML model of CityJSON model can be found at section 5.1.

3.4.2 Construction of schema of extensions and validity checks

As we extend City]SON’s existing data model, a new schema is needed for better interoperability. This
schema should document the data model and sets specifications for how to extend different City Ob-
jects and will be used to verify the validity of the data model. According to City]SON specification,
7 members need to be specified in the extension file, as shown in the figure 3.8. Because the exten-
sion file is also a CityJSON file, in order to ensure that it conforms to the specification, it needs to
be validated. A small validation script is used to check its syntax, which can be found at https:
//github.com/cityjson/misc-example-code/tree/master/validate-extension.

After we finished writing the extension schema and have some City]SON files that containing exten-
sions, we also need to check the validity of those files using the schema. The tools required for valida-
tion are mentioned in chapter 4. For syntax validity, we use cjio for validation by specify path of the
extension file. It is available at: https://github.com/cityjson/cjio. As for 3D primitives, val3Dity is
used for geometry checking. These two programs will automatically complete the verification process
by setting the parameters [Ledoux, 2018].

Bxtensin ~ File
"type * extraRoot operties
« hame

. - exfmaptiributel
o
+ vetsion .

, e&mcrg ome

+ description

Figure 3.8: 7 members of a CityJSON Extension file

3.5 Development of a program for permit checks automation

After understanding and formalize the regulation into machine-readable language, we aim to develop
a tool to automate building permit inspections process. As mentioned in chapter 1, this research intends
to develop a tool for building developers and government officials to use to make it easier and simpler
to complete the inspection of building permits. The tool can automate the entire inspection process
and has a user interface for better interactivity.This GUI program includes the code to complete the
automated inspection of building permits. The user specifies the input file and output file. The program
will automatically run the corresponding functions, perform calculations and check. Using the PyQt
module in python to develop a desktop application with a graphical interface is the solution in this
research. We design the Ul framwork to include the required UI components, such as adding buttons,
text boxes, and so on. We define the behavior and content of each component through scripts. The
button defines the event that will respond when the button is clicked through the clicked.connect()
function, where the response is a function to calculate the minimum parking space of each building.
The text component defines the content displayed in the text box, where the progress of the program

23

https://github.com/cityjson/misc-example-code/tree/master/validate-extension
https://github.com/cityjson/misc-example-code/tree/master/validate-extension
https://github.com/cityjson/cjio

3 Methodology

running and the result of the validity check of the final file will be displayed. The GUI program has the
following structure:

24

Create icons and widgets that are displayed to users, and organize them in screen windows. This
program is a tool for building permit inspections for new buildings.

Define the function that will handle user and application events, here is the calculation of parking
spaces.

Associate specific user events with specific functions (for example, clicking the button for the final
calculation).

Write the main code for regulation inspection in the program, which includes the processing and
calculation of the input data and the verification of the syntax and geometric validity of the final
result. In the final GUI program interface, users only need to import different data sets that need
to be used for calculations to get the final CityJSON file containing the building permits checking
results, and they can view the final results in a flexible way. The working process of this tool is
introduced in section 4.2.5.

4 Implementation

This chapter describes the implementation of doing building permission checking by using a CityJ]SON
extension in details. The theory related to the topic has been introduced in Chapter 3. The working
process of implementation shows in figure 4.1.

Urban building data
model

Convert into
City)JSON file

¥

Calculation and
analysis
\. .x

Store

h 4
Result: CityJSON file , Validate and
visualize the results

Figure 4.1: Workflow of the implementation process

The tools used to implement the methods are described in section 4.1, which includes the software,
language, hardware, and datasets used in the experiments. Section 3.2 describes the use cases of 2
regulations to validate the methodology in details. The specifics of each phase in the implementation
are detailed in section 4.2. The source codes is published on GitHub which available at https://github.
com/Gallon229/Building-permit.

4.1 Tools and Datasets Used

4.1.1 Software

In this research, many tools will be used to read, process and validate 3D building information data and
CityJSON files. The following softwares, tools and libraries is used to implement the methodology:

¢ Quantum GIS (QGIS)

QGlIs is a desktop GIS application that is free and open source. It is a powerful program for pro-
cessing geographic data that provides display, editing, and analysis functions for geographic data.
It has a number of functions that will aid in the data processing portion of this study. Simulta-
neously, it has a large number of plug-ins that can be downloaded to extend compatibility and
perform more complex functions. The viewing and pre-processing of data will be carried in QGIS.

25

https://github.com/Gallon229/Building-permit
https://github.com/Gallon229/Building-permit

4 Implementation

Toolkits for vector data processing will be frequently used, as well as plugins for viewing City]-
SON files: CityJSON Loader, a simple QGIS plugin to load City]SON files has been developed in
Python [Ledoux et al., 2019].

¢ Python

We complete the code implementation part of this research through the Python programming lan-
guage. The first usage is to read the data of buildings and other features in datasets from different
sources, write code to calculate and create GUI programs for building permit inspections. As for
the coding part, Python will be used and some packages deals with geographical information
system (GIS) geometries and attributes are included. For example, Fiona and Shapely. Calling
functions of these packages can implement different tasks. The version of python used in this
research is 3.7 and PyCharm is used as the IDE of python.

* (Cjio and val3dity

Since we need to convert the geojson file into City]JSON file and write the extension schema in
CityJSON format, the data need to be validated by JSON schema validator. Validation of a City]-
SON dataset means that one must ensure that it respects the standardized specifications and def-
initions as given in the City]JSON specification. Here cjio and val3dity are used for the validity
check of syntax and geometric of datasets to ensure the City]SON file meets the specification. Cjio
is a python Command-Line Interface (CLI) to process and manipulate CityJSON files. Val3dity do-
ing validation of 3D primitives according to the international standard 1SO19107 [Ledoux, 2018].
They are developed by Hugo Ledoux, available athttps://github.com/cityjson/cjioand https:
//github.com/tudelft3D/val3dity.

* Cesium and Cesium-cityjson

The 3D visualization part can be implemented with cesium-cityjson that is a viewer for City]SON
and CityGML files based on Cesuim. Cesuim is an open framework for software applications that
use 3D data. It can query the global 3D terrain and buildings, and quickly create 3D tiles. It is
open source and can be used for accurate 3D visualization on the web. Currently, the Cesuim
web page does not support uploading and manipulating CityJSON files. There is a tool generated
with Angular CLI called cesuim-cityjson can solve this problem. With this tool, you can view the
model on the web interface, and select and filter objects and attributes. They are available at
https://cesium.com/index.html and https://github.com/limyyj/cesium-cityjson.

4.1.2 Hardware

The tests and all the implementation tasks are carried on a MSI Codex S 8RA-003XEU - Gaming Desktop
that has the following details: Intel Core i5 processor at 2,8 GHz, video card of NVIDIA GeForce GTX
1050, 8 GB of Random Access Memory (RAM), 240 GB of SSD memory with the operating system of
Window 10.

4.1.3 Datasets

The dataset used in this study is from BAG which is available at https://www.kadaster.nl/zakelijk/
registraties/basisregistraties/bag. It is a register of buildings and addresses in the Netherlands
which include the building footprints and some attributes. The BAG dataset contains information about
all buildings in the Netherlands. It records the information of 5 types of objects: buildings, residential
objects, number identification, public places and residential. These attributes include state, surface,
geometric shape, Xy coordinates, year of construction, and function of building. The free source of BAG
GeoPackage is used here which is provided by GeoParaat. The data is collected in October of 2020.
It can be found at https://geoparaat.baasgeo.com. Together with the 3D BAG, the building height
information is available which is necessary for the construction of 3D building. The dataset is available
athttp://3Dbag.bk.tudelft.nl/downloads. The detailed rules on the implementation of the parking

26

https://github.com/cityjson/cjio
 https://github.com/tudelft3D/val3dity
 https://github.com/tudelft3D/val3dity
https://cesium.com/index.html
 https://github.com/limyyj/cesium-cityjson
 https://www.kadaster.nl/zakelijk/registraties/basisregistraties/bag
 https://www.kadaster.nl/zakelijk/registraties/basisregistraties/bag
 https://geoparaat.baasgeo.com
http://3Dbag.bk.tudelft.nl/downloads

4.2 Overview of experiments

Information Explanation Sources | name in sources
7*Attributes | id Bag id of building BAG identificatie
+functi Function of buildings BAG NR_XXX
unction included in codelist (different functions)
+groundHeight | Llevationabovesealevel | 3p p o | oround 0.00

at the ground level
measuredHeight Elevation above sea level 3D BAG | roof-0.75
at rooflevel

Zone where the building | Digital

+zone ! zone
is located map
theight valid | ndicate the height 3D BAG | height_valid
is valid
Gross floor area (GFA) Calculation results
+total.area of building BAG on different attributs
. geometry type of
2*Geometry | type buildings BAG type
coordinates a lists contain BAG coordinates

[x,y,z] 3D coordinates

Table 4.1: Information that need to be involve for building permission checking

regulation involve buildings with different functional attributes, so the OsM data is also in the datasets
used in this research.

4.2 Overview of experiments

The use case regulations selected in this study aims to conduct building permit inspections on new
buildings to be constructed. For new buildings, we need to create new datasets by ourselves, which
contains all the attributes required for building permits. In addition, this research also extends the
regulation to existing buildings. Although they have been constructed, we can filter buildings that meet
the current parking regulations through our inspection. This result can be meaningful for other studies.
Therefore, in this study, the old and new buildings were inspected separately in the test area.

4.2.1 Data pre-processing and input
Obtain information from datasets

First, we need to collect data. For old buildings, we can get building attributes and geometry informa-
tion from BAG data and 3D BAG data. The BAG data and 3D BAG data cover many attributes. To speed
up the operation process, we only need to extract the required attributes for completing the building
permit inspection. According to the interpretation and formalization of regulations, we need to ob-
tain the properties of the building as shown in the table 4.1. The building in BAG data and 3D BAG
data can be joined together by the same id. To get the gross floor area (GFA) of a building, we need
to access the components of the building, which are called "Rooms” in this study. They make up the
entire building. The "bag_snapshot_pand" layer in the bag data represents the building body, and the
"bag_snapshot vbo" layer represents the room object. The room object has the area of each room. The
GFA can be obtained by adding up all the room areas that belong to the same building. The BAG data
includes data of different administrative levels. We extract data with an administrative level equal to
8, which represents the municipality level. In connecting BAG data and 3D BAG data, it is found that
the amount of 3D BAG data is less than that of BAG data. This is because the elevation data of some
buildings are missing and the corresponding 3D data cannot be generated. Therefore, here we exclude
buildings without elevation data.

27

4 Implementation
Georeferencing the digital version of the zone classification map

The regulation specifies 3 zones of Rotterdam and provides a digital TIFF map for the zones. The rules
of each zone are different, so we need to obtain the vector map of the partition as the input of our
data. Through the location relationship between the building and each zone, confirm the zone where
each building is located, and add it to the properties of the building. To get a vector file of zones and
use it for further analysis, we need to do georeference on the raster map. First, using Ground Control
Point (GCP) to do georeference in QGIS, then create a new vector file to store three zones together, finally
output them as geojson files. The comparison between the original map and the vector zone file is
shown in figure 4.2.

Figure 4.2: Georeferencing the digital map

Create new building datasets

To complete the building permit check for the new building, we need to manually create a file containing
the new building. By creating a new vector file in QGIS, and drawing a new polygon we can get datasets
for those new buildings. According to the attributes mentioned in the table 4.1, we need to add the
corresponding attributes to the attribute list in the new building file and specify the attribute data type.
We created two datasets for the new building, one is a building with a single function, and the other is
a building with two functions. By generating arbitrary point elements in the polygon to represent parts
of different functions, we can simulate buildings with multiple functions. In this process, we got a new
2D building by manually drawing polygons. To extrude it into 3D, we randomly assigned the number
of floors to each building, according to the 3.5m height of each floor, and 70% of the ratio to get the GFA.
The calculation formula is as follows:

1. new building
area = 3.5 * storeys numbers * footprint area * 70
2. multiple functions

create points in polygon and assign random area values to those points (using tool ‘random points in
polygon’ in QGIS)then use these values to do the calculation

pointl_area = 0.3* total area; point2_area = 0.4 * total area

28

4.2 Overview of experiments

Query OSM data

To understand and get the function of the buildings, in addition to referring to the attributes of the BAG
data, we can also use the OSM data to obtain more information. In QGIS, different types of features can
be obtained through the overpass query in a plugin called quickOSM. For the buffer analysis of traffic
facilities, we need to query traffic-related features, such as bus stops and train stations. The overpass
query for query traffic facilities is:

Query for transportation

<osm-script output="json” timeout="25">
<union>
<query type="node”>
<has-kv k="highway” v="bus_stop”/>
<bbox-query {{bbox}}/>
</query>
<query type="node”>
<has-kv k="public_transport” v="stop_position”/>
<bbox-query {{bbox}}/>
</query>
<query type="node”>
<has-kv k="public_transport” v="platform”/>
<bbox-query {{bbox}}/>
</query>
<query type="way”’>
<has-kv k="public_transport” v="platform”/>
<bbox-query {{bbox}}/>

</query>
</union>
<!-- print results —>

<print mode="body”/>

<recurse type="down”/>

<print mode="skeleton” order="quadtile”/>
</osm-script>

For the function of auxiliary analysis of buildings, we need to query the types of features involved in
this research, such as office, industry, shops. The query in QGIS for different functions of building is:

Query for different functions of building

CASE
WHEN ”“vboheeft_kantoor_functie” = 'T’
OR(” vboheeft_kantoor_functie” is NULL
AND ”office_2” is not NULL) THEN ’Office’
WHEN ”“vboheeft_industrie_functie” = ‘T’ THEN ’'Industry’
WHEN ”“vboheeft_winkel_functie” = 'T’
AND ”shop_2” = ’supermarket’ THEN ’'Supermarket’
WHEN ”"vboheeft_winkel_functie” IS NULL
AND"shop_2” = ’supermarket "THEN ’Supermarket’
WHEN ”“vboheeft_-winkel_functie” = 'T’
AND “shop_2” is not NULL
AND ”shop_2” != ’supermarket’ THEN ’'Shop’
WHEN ”“vboheeft_winkel_functie” is NULL
AND ”shop_2” is not NULL
AND ”shop_2” != ’supermarket’ THEN "Shop’
END

29

4 Implementation

Because of the lack of data, for the old buildings, we only got four complete functional layers from
QuickOSM, namely’Office’, Industry’,'Retail’, and’Supermarket’. Therefore, for non-residential build-
ings in old buildings, currently only buildings with the above four functions can be inspected for build-
ing permits.

Extract test area

After obtaining the required data, we need to specify the test area of this research. This is because the
amount of data in Rotterdam is too large, and there are higher requirements for the computer to conduct
the research. So we select a small part of Rotterdam to validate the methodology. The test area must
cover three different zones to ensure the success of the research. Figure 4.3 shows the tests area of this
research.

Figure 4.3: 1. Test area 2. Different zones of test area 3. The buildings and city objects located in test area

Buffer analysis on transportation

This analysis is based on the special exemptions from the parking requirement in the regulation. If
development is realized in the vicinity of the public transport stations listed in the table B.1 below, the
car parking requirement will be reduced in accordance with the table. We obtain traffic facility data
through OsM and divide them into 10 different situations in accordance with the law. After analyzing
the buffer zone and merging them, a map of the buffer zone of Rotterdam’s transportation facilities can
be obtained. By associating the buffer map and the building file in the geographic space, and selecting
the association relationship as “within”, the discount coefficient of the building can be obtained. During
our inspection process, a new attribute “discount factor” will be added to the building for the next
calculation. The working process of doing buffer analysis on transportation can be summarized as:

1. Get the layer which contains bus station, train station and parking lot

2. Using the criteria to do the buffer analysis on those facilities to get the result (which will show a map
that places do not need to have parking spaces

3. join the two layers (to assign discount factor to building layer)

We can store the results of the buffer analysis as a premise, and multiply it by the corresponding discount
percentage after calculating the minimum number of parking spaces in the building.

The result of buffer analysis is shows in figure 6.1. Through the discount factor, the number of parking
spaces can be reasonably designed to maximize the use of space.

30

4.2 Overview of experiments

Buffer analysis on transportation A

Discount factor
0 7.5 15 km
merged butfer [l 0.6 [0.7 B 0.8 0.9 B 0.95 @ 1 [] Rotterdam boundary OpenStreetMap e —

o5

Figure 4.4: Buffer analysis on transportation

4.2.2 Bicycle parking regulation (For existing buildings and new buildings)

Through python programming, we can complete the calculation by computer. The idea of calculating
the minimum parking space of the new building and the minimum parking space of the old building
is the same, but they have different ways of obtaining attributes. For old buildings, we get the corre-
sponding attributes from BAG and 3D BAG data. For new buildings, we directly get the attributes from
the new vector file.

1. Residential buildings:

For residential buildings, we count the number of rooms of different areas, calculate the results accord-
ing to the formula.

Key part of code: the calculation process for residential buildings

N_40 = int(f[properties]["N_40"])
N_40_65 = int(f[properties]["N_40.65"])
N_65.85 = int(f[properties "]["N_65.85"])
N_85 = int(f[properties]["N_85"])
oneb [’ attributes]["+ min_bicycle_parking_spaces '] = int(
N40 = 2 + N_40.65 = 3 + N_.65.85 = 0.4 + N85 = 5)

2. Non-residential buildings:

For non-residential buildings, according to the function classification of the building, we obtain the
minimum number of bicycle parking spaces per 100 square meters of building area according to the
table mentioned in regulation.

Key part of code: the calculation process for non-residential buildings (e.g office function)

7.

if oneb[”attributes]['+ function '] == ’'Office
oneb[attributes]["+ min_car_parking_spaces '] = 1.7

31

4 Implementation
4.2.3 Car parking regulation (For existing buildings and new buildings)

Same as mentioned in the implementation of bicycle regulation, the idea is same for old buildings and
new buildings related to the car parking regulation. Calculating car parking spaces is more complicated,
because we need to take into account that the zone where the building located.

1. Residential buildings:

For residential buildings, we count the number of rooms of different areas, calculate the results accord-
ing to the formula.

Key part of code: the calculation process for residential buildings

N_40 = int(f[properties]["N_40"])

N_40_65 = int(f[' properties "]["N_40.65"])
N_65.85 = int(f[properties "]["N_65.85"])
N_85.120 = int(f[properties "]["N_85.120"])
N_120 = int(f[properties "J["N_120"])

if f[’properties]["zone’] == "A’":
oneb[attributes]["+ min_car_parking_spaces '] = int(
N40 = 0.1 + N_40.65 = 0.4 + N_65.85 = 0.6 + N_85.120 = 1 +
N_120 = 1.2)
if f[’properties]["zone’] == 'B”:
oneb [’ attributes]["+ min_car_parking_spaces '] = int(
N40 = 0.1 + N_4065 « 0.5 + N.6585 = 0.8 + N_85.120 = 1 +
N_120 = 1.2)
if f[’properties]["zone’] == 'C”:
oneb [attributes]["+ min_car_parking_spaces '] = int(

N40 = 0.1 + N_40.65 = 0.6 + N_65.85 = 1.4 + N_85.120 = 1.6
+ N_120 = 1.8)

2. Non-residential buildings: For non-residential buildings, according to the function and zone classifi-
cation of the building, we obtain the minimum number of car parking spaces per 100 square meters of
building area according to the table mentioned in regulation.

Key part of code: the calculation process for non-residential buildings (e.g office function)

if oneb[’attributes "]['+ function’] == ’"Office ":
if f[’properties "]["zone’] == "A”":
oneb[attributes]["+ min_car_parking_spaces '] =
round (0.76 =% oneb[’ attributes]['+ total_area '] / 100)
elif f[’properties]["zone’] == 'B’:
oneb[attributes ']["+ min_car_parking_spaces '] =
round (1 * oneb[’attributes][+ total_area '] / 100)
else:
oneb[attributes "]["+ min_car_parking_spaces '] =
round (1.2 = oneb[’attributes "]["+ total_area '] / 100)

4.2.4 Validation and Evaluation

After we get the inspection result and store it in a City]JSON file, we need to check the validity of the
file. It includes both syntax and geometry checks. The verification process will be completed through
gjio and val3dity. The verification result needs to show that the file is valid. We can query the tools to
do the checking by the following commands:

32

4.2 Overview of experiments

commands for validation

cjio path of the file validate ——folder_schema path of extension

val3dity path of the file

4.2.5 GUI program application

To reproduce the experimental results, we developed a GUI program as a tool for the automation of
building permit checking. In this program, the user only needs to provide the input data and the
specified output file path and it will automatically complete the entire building automation inspec-
tion process. During the process, the corresponding attributes are extracted from the input datasets,
the minimum car parking space and the minimum bicycle parking space are calculated according to
the formalized results of the regulation, and finally they are stored in a file of CityJSON format. The
program will also validate the file. Finally, the output result can be visualized through Cesium-cityjson
or open in QGIS. The Ul of this program is shows in figure 4.5.

» Minimum Bicycle and Car Parking Spaces for New Buildings ? X

Calculate the "
INEUT (Buffer map) minimum bicycle
and car parking
spaces for new
buildings

IHEUT (new buildings)

For parameters:

Input: Select the
layer which contains
buffer map for
dizcount, new
btuilding data.

Output - |

I 3 I

Cancel Output: Select path
to ztore the output
City 50N rezults.

Click OK/Cancel to

t et S ot or

Figure 4.5: Components of Ul

For the work steps mentioned above, the specific steps of regulation implemented in the program can
be summarized as the following 7 steps:

1. User will input the datasets which is needed for the calculations
2. The computer filters buildings based on the building function’s properties.

3. The computer check the exemptions cases, accumulates the total living area of the building through
the room area information and check if it is in the traffic station buffer map.

4. According to the formula, calculate the minimum bicycle parking space for each building.
5. According to the formula, calculate the minimum car parking space for each building.

6. Get the calculation results, and the computer stores the results in a new City]JSON file with exten-
sions.

33

4 Implementation

7. Display the results in visual form, provide the calculation results of the number of bicycle parking
spaces as a reference or compare with the actual situation, and complete the building permit inspec-
tion.

To save and shorten the calculation time, we need to set the order of code execution in the program. The
inspection of parking regulation includes several conditions. Write them as statements to determine
whether the conditions are true or false. If the previous one is satisfied, you can jump in the next
conditional judgment. In the parking regulation, there are exemptions for small projects, so the area of
the building is judged first, and if the parking space exemption is met, the subsequent calculations can
be omitted.

34

5 Experiments and Results

In this chapter, the City]SON extension data model of this research and the results of the parking regu-
lation permit checks of the building will be presented.

5.1 The developed CityJSON extension

At present, the conceptual model of City]SON urban building extension has been built as part of the
results. The 3D model is based on the Rotterdam parking standard, so it is based on this use case. The
Unified Modeling Language (UML) diagrams shows how to extend city objects in the data model used in
this study. The corresponding extension schema is also completed. Figure 5.1 shows the UML diagram
of the framework of the City]SON extension. It is developed for urban planning especially with regard
to building permit checks. In this study, we construct a 3D city model in CityJSON format with 4 City
Objects. As a result, we have completed the extension of the 4 City Objects: building, room, landuse,
and regulation. Among them, buildings and landuse are existing objects in the CityJSON model, so
we extend them by adding new attributes to their existing models. Rooms and regulation are objects
that do not exist in the CityJSON model, so we create corresponding new City Objects for them and
add them to the data model, and then add attributes and geometric information to them. In the data
model, the attributes and geometric types that each city object should contain are formulated. There-
fore, all files and objects involved in analysis and calculations need to meet the standards given by
the city model and follow the rules of the CityJSON extension mechanism to ensure data interoper-
ability.The complete schema and extension validity results can be found at appendix B.3 and figure B.1.

Permit
Extensig
«feature» «features
City]SON_Core:: <———> : i S
CityModel 01 Permit_Extension::Permitcitymode
«Feature» «Feature= «Features
Permit::Building -~~~ Permit::LandUse Permit::Regulation
i Composition
«Feature» ' — Consfraints/conditions
Permit:*Room """~ 3Dcily objects related to building
pemmit checks

Figure 5.1: UML diagram of the City]SON extension

Through the interpretation and translation of the Rotterdam parking standards, we found that the de-
tailed information about the research subject which are building, room, and the zoning involved are

35

5 Experiments and Results

Table 5.1: The meaning of extended building attributes

Attributes Meaning Source

Whether the building is a residential building. Its value range is 0 to 2.

. . . 0 - residential buildin,

+permitinon.residential 1 - non-resident build;gng with a single function BAG

2 - non-resident building with a dual function
+permit::;groundHeight Height above ground level 3D BAG
+permit::total_area Gross floor area (GFA) of building BAG
+permit::discount_factor Parking quantity discount Calculated results
+permit::min_bicycle_parking_spaces | Minimum parking spaces for bicycles Calculated results
+permit::min_car_parking_spaces Minimum parking spaces for cars Calculated results
+permit:functionl The first function of the building BAG
+permit:function2 The second function of the building, if not, it can be ignored BAG

necessary information for permitting. Therefore, in the following UML module, we define the additional
information of the City Objects necessary for the parking standard permit checks as the attributes of the
City Objects, and specify the coding format of each attribute. Next is the detailed information explana-
tion of each module:

¢ Extension of Building.

=Feature= =Feature=
core::_CityObject _AbstractBuilding
ﬁl Extension
«Features
core::_Site
«Featuras»
Building

+ measuredHeight: gml:LengthTypr[0..1]

lod 1.2
MuliiSurface * + permit::non_residential: gml:-MeasureType[0. 1]
+ permit::groundHeight: gml::MsasureType[0..1]
+ permit::total_area: gml:MeasureType[0..1]
+ permit::discount_factor: gml:-MeasureType[0..1]
+ permit::min_bicycle_parking_spaces: gml:MeasureType[0..1]
+ permit::min_car_parking_spaces: gml:MeasureType[0..1]
+ permit::function: xs:string[0..1]
+ permit::function2: xs::string[0..1]

=Geometry=
gml::MultiSurface

Figure 5.2: UML diagram of Building

This module contains the basic detailed information of buildings that are necessary for the analysis
of building permission checks in urban areas and extends the existing modules. The additional
information is related to parking standard or stores some analysis results. Figure 5.2 shows the
UML model of the building module, here the building is extended by directly adding new attributes
with prefix "+permit’. Attribute ‘measuredHeight” is the measured relative height of the building
that already defined in the model. Here, according to the formalization of parking standard, we
add 8 new attributes to ‘Building’. The meaning of each attributes is described in table 5.1.

¢ Extension of Room.

36

5.1 The developed CityJSON extension

=Feature= =Feature=
core::_CityObject _AbstractBuilding
? Extension
=Feature=

core::_Site

Consistz of Room

L 4

«Feature=
Room
lod 0 MultiPoint *
=Geometry= o
gml::MultiPoint - + permit:area: gml::MeasureType[0.1]
+ permit-building_id: xs::string[0..1]

Figure 5.3: UML diagram of Room

The BAG data contains information about different rooms/accommodations in the building, such
as area and coordinates. These can be useful when conducting permit checks that take into ac-
count rooms in a building. In the existing City Objects, BuildingPart is very close to this concept.
But the geometric definition of BuildingPart requires that it should be Solid, CompositeSolid, or
MultiSurface. Limited by the experimental data, it was decided to store this information by cre-
ating/extending a new City Object to this data model. This new City Object is called 'Room” as
figure 5.3 shows, which inherits from core:: _cityObject and contains unique id information,
the area of room area, and the corresponding building id information. The geometry is defined as
lod 0 multipoint by its two-dimensional coordinates. Therefore, the address data in BAG can be
used for creating this new City Object.

¢ Extension of Landuse.

=Feature=
core::_CityObject

Extensicn
«Feature» ™,
«Geometrys . Landuse —______lzone information is
gml::MultiSurface stored in “zone”

lod O MultiSurface * | +permit: zone: xs:string[0_.1]

Figure 5.4: UML diagram of Landuse

For CityObject 'LandUse’, we extend it by adding a new attribute to the data model. The attribute
"++permit:: zone’ refers to zoning information in the parking standard regulation. We store zon-
ing information in LandUse. When calculating the number of parking spaces for a building, we
need to first determine the zone where the building is located. The geometry is defined as lod
0 MultiSurface by the two-dimensional coordinates of polygons. Figure 5.4 shows the landuse
module.

37

5 Experiments and Results

Table 5.2: The meaning of extended regulation attributes

Attributes Meaning

+permit::Validity Document whether the regulation is in effect.

+permit::enactmentDate Document the date the law came into effect, if have.

+permit::expirationDate Document the date the law expires, if have.

+permit::adminLevel Among(municipality, province, country).

+permit::class The legal category to which it belongs, which can be of spatial planning; Environment; Tranport;
+permit::function Usage of the regulation (e.g Calculate the appropriate parking spaces for each building)
+permit:: Administration_area | Where does it apply

* Extension of regulation.

«Feature=
core::_CityObject

Some specific parameters create new
relate to regulation is Extension CityCbject to store
stored in the external file [~ 'Regulation’

«Feature:
Regulation

+ permit::Validity: xs::boolean[0..1]
«Geometrys _ lod 0 MultiSurface * | ¥ permit::adminLevel: xs::string[0..1]

ml::MultiSurface | + permit:-class: xs:string[0..1]
9 + permit: enactmentDate: xs:gYear]0.1]

+ permit:expirationDate: xs:g¥ear[0..1]
+ permit:-function: xs:string[(..1]
+ permit::Administration_area: xs::string[0..1]

Figure 5.5: UML diagram of Regulation

This study selects the parking standard regulations applicable to Rotterdam city, and conducts the
inspection of building permits according to its criteria.

These constraints and conditions have an impact on the analysis and evaluation of buildings and
other City Objects, so they also need to be recorded in the data model, that is, the conditions
involved in the regulation, and the parameters will be stored. “Regulation”, which is also inherited
from core:: _cityObject, as shown in Figure 5.5. We defined what needs to be stored in the
regulation, they are basic and important attributes. The description of each attribute can be found
at table 5.2. Here the data model is extended by creating a new City Object. This model also
applies to other regulations. But every regulation has its specific rules and constraints, which may
not be expressed through attributes. To help users understand what we did with the City Object
‘regulation’, we constructed an external file which is a specification/guideline that documents the
regulation in natural language, and we store the results of interpretation and formalization of the
regulation. The specification can be found at B.1.

After we have constructed the data model, we create the extension schema to document how the core
data model of City]JSON is extended by following the rules of CityJSON. We then use a validation script
to validate the schema file. After that, we can validate City]SON files that containing our extensions.
The complete schema and extension validity results can be found at appendix B.3 and figure B.1.

38

5.2 Results of building permit checking of parking regulation

5.2 Results of building permit checking of parking regulation

This research adopts the research method of case study, so the results will be displayed and discussed
based on the case. Because BAG and 3D BAG have a large amount of data in Rotterdam, considering the
performance of the equipment, we selected a small test area for inspection which shows in figure 4.3.

Building permit checks of old buildings

For old buildings, we developed a small calculation script for them. Table 5.3 shows the datasets chosen
in this research. We will use examples of non-residential buildings in old buildings. We combined
the function attributes in the OsM and BAG data to filter out four types of buildings with functional
purposes. They are Office, Industry, Retail, Supermarket. Then, read the file containing these building
information and add new attributes to them according to the extension. Through the corresponding
room area of each building, we can get the gross floor area of the building. When the gross floor area
of non-residential building is less than 600 square meters, the number of parking requirements can be
exempted. Next, the building function is judged, and the four different types of buildings are calculated
according to the formula, and the final result is obtained. Due to the lack of data, it is difficult to obtain
the original number of parking spaces in old buildings. In order to compare the data we calculated,
we randomly set the attribute ““+org_car_parking_spaces’ to each building, which is used to assume the
number of parking spaces in the building. Figure 5.6 shows the calculation results of car parking spaces
of the example above which store in a City]JSON file. The attributes suggest it is an industrial building
of area 974 square meters. The number of original parking spaces is randomly allocated of 48, and the
minimum number of parking spaces we calculated for the building is 19. It satisfies the condition that
the number of original parking spaces is greater than the minimum number of parking spaces, so the
building meets the building permit checks of parking standards. Figure 5.7 shows the results displayed
in QGIS using the plugin "Load CityJSON’. You can click on one specific building to access its attributes
which are the same as the figure 5.6.

Figure 5.6: Result of an industrial building

39

5 Experiments and Results

Table 5.3: Overview of datasets used in the research

. - - Number of I\-Iumbe'r of File size of
File File Size(MB) | Characteristics City Objects C.lty Objects test area(MB) Source
in test area
BAG 550.4 Building 402412 13647 38.5 geoparaat
BAG 727 4 Room 760394 24194 35.3 geoparaat
3D BAG | 644.6 Building 368590 11229 38.5 tudelft3D
OSM 2.2 Building 12642 414 1.2 OSM

Willi e sy, i

Figure 5.7: Load the results in QGIS

Building permit checks of new buildings

The main purpose of our research is to conduct permit inspections for newly constructed buildings
and provide results for reference. In this research, we created new building datasets and assign at-
tributes to them. In the real situation, the data regarding the new buildings are likely supposed to
come from the conversion of BIM delivered as part of a digital building permit from the building de-
veloper. The attribute non_residential indicates the function and purpose of the building. 0 repre-
sents a residential building, 1 represents a single-function non-residential building, and 2 represents a
multi-function non-residential building. The attribute discount_factor indicates the coefficient of the
parking quantity discount that the building can get after the traffic buffer analysis. Then the attributes
min_bicycle_parking_spaces and min_car_parking_spaces respectively represent the results of the
calculated minimum parking quantity. We created 100 new buildings in QGIS, each of which has one
or two different functions (randomly assigned from a codelist containing 12 building functions). Then
we calculate differently according to three situations. The first is a single-function residential building,
the second is a non-residential building with any single function, and the third is a random combina-
tion of two non-residential functions. In this research, we created new building datasets and assign

40

5.2 Results of building permit checking of parking regulation

attributes to them. In the real situation, the data regarding the new buildings are likely supposed to
come from the conversion of BIM delivered as part of a digital building permit from the building de-
veloper. The attribute non_residential indicates the function and purpose of the building. 0 repre-
sents a residential building, 1 represents a single-function non-residential building, and 2 represents a
multi-function non-residential building. The attribute discount_factor indicates the coefficient of the
parking quantity discount that the building can get after the traffic buffer analysis. Then the attributes
min_bicycle_parking_spaces and min_car_parking_spaces respectively represent the results of the
calculated minimum parking quantity. In the code, we first calculate the ”discount coefficient” of each
building. This is done by judging the relative position of the different discount areas in the building
and the buffer map, using the sjoin function in geopandas in python to complete the discount coeffi-
cient calculate. Then, calculate the results according to the formulas for the buildings in three different
situations. The calculation basis for 12 different functions comes from the table B.3.

Here, use one new building as example. Figure 5.8 shows the calculation results of car parking spaces
based on test data which store in a City]SON file. The attributes suggest it is a non-residential building
of ‘catering I use, its area is about 1372 square meters. It is calculated that its discount factor is 0.95.
Therefore, the calculated number of parking spaces for bicycles and cars is the result of multiplying by
0.95. It shows that the minimum number of bicycle parking spaces is 117 and the minimum number
of car parking spaces is 78. Therefore, as long as the number of parking spaces actually built is greater
than these two numbers, it can pass the parking standard building permit checks. Figure 5.9 shows the
results displayed in QGIS using plugin "Load CityJSON'.

Figure 5.8: Result of an new building of catering use

41

5 Experiments and Results

A gl
P
P
il

Fe0®

A
1

|
yeeasal st

Grenenple)

Meraprisiraat

UBNELSNIBIY

: 63__Jed
- p . an -, f -
e CI'“‘-‘"—"""-‘l'r.“a.a[B
1 - f - - 2

Figure 5.9: Load the results of new buildings in QGIS

5.3 Demo of tool

After we completed the main code for calculating the number of parking spaces in the building, we
combined it with the developed GUI program. It constitutes a tool that can calculate results through a
graphical interface program. This will make it easier for those who don’t know much about the code
to reproduce our calculation results. A video demo of the GUI program used to conduct automated
building permit inspections can be found here: https://github.com/Gallon229/Building-permit. It
shows the whole process for doing builidng permission checks by this tool.

5.4 Tool performance

The expected audience of this research is building developers, designers and government officials, who
can use the developed GUI tools to check the building permits of the parking standards of the new
buildings. This tool allows them to reproduce the results of this experiment. As shown in the fig-
ure 5.10, they only need to specify three parameters to run the tool. These tools are respectively the
buffer map of the specified discount factor generated during our experiment (the map will be placed
in the same folder as the prerequisite and the tool)), a file containing the geojson format of the new
building, and specify an output file path. Click ‘OK’ to run the program, and you can get the building
permit inspection City]SON file containing the parking standards for the new building also the valida-
tion results of the file. Finally, the result is obtained by reading the min_bicycle_parking_spaces and
min_car_parking_spaces in the file.

The results can be used for reference to architectural design, and to participate in the process of ar-
chitectural design. This result can also be used as a reference for government officials, indicating the
minimum number of parking required for the building to obtain a building permit. The results show
that the number of parking spaces in a building is affected by many parameters, such as the area of the
building, the function of the building, the area where the building is located, the distance between the
building and the transportation facilities, and the number of functions the building has. The parking
standard law states that the number of parking given in accordance with such rules is the result that can

42

https://github.com/Gallon229/Building-permit

5.4 Tool performance

best promote the healthy development of the city and facilitate the lives of the people. Therefore, the
results given by this tool will help construction developers and government officials.

How to use it?

[44 Mirirmum Bicycle and Car Parking Spaces for New Buildings

IRT (Baffer wagl

I (e besi 1dings)

Caleulate the =
minimum bicycle
and car parking
spaces for mew
buildings

For parsmsters

Input:

A buffer map we provided
(transportation buffer analysis
of Rotterdam)

new building (geojson file)
Qutput:

A CityJSON file which contain
the results

Figure 5.10: How to use the tool by building developers or government officials

43

6 Discussion

In this chapter, a discussion based on the results will be provided in different aspects.

6.1 Limitation

The method we proposed aims to complete the building permits checks related to some regulations
digitally. However, it still has some limitations. First of all, there are fewer data sources, especially new
buildings, which results in fewer types of building conditions that can be displayed (for example, for
non-residential buildings, it may have a combination of multiple functions). For old buildings, when
comparing their calculation results, they lacked data on the number of their original parking spaces, so
we can only assume an original number of parking spaces by random assignment. If there are data on
the number of parking spaces in some old buildings, our tests in this section will be more convincing.

In addition, the automation of the inspection process needs to be improved. At present, the GUI pro-
gram can be used to complete the inspection of the parking standard of the new building, but the user
needs to input the specified file for the program to calculate. In the future, we will continue to explore
how to use this tool function. More powerful functions to achieve richer visual rendering.

This study adopts the user case method and only studies the Rotterdam parking regulation, so it can
only test the application of this research method to parking law. At the same time, due to the limitation
of the performance of computer equipment, the running speed and running ability of the program need
to be improved.

In this study, because of the lack of data for the new building under design, we manually created the
layer in QGIS and completed the input of the new building data through the code assignment of at-
tributes. The advantage of this method is that it is relatively simple, you only need to specify Some
attributes related to the law do not need to consider the shape modeling of the building. The disadvan-
tage is that it simplifies the shape of the building. For some more complex building structures, the data
may not be very close to the actual situation of the building. In the future work, we expect to obtain the
model of the new building from the construction developer, which can be in BIM format or 3D model
format. With these models, subsequent calculations will be more accurate.

6.2 Contributions and application

Our work is most relevant to the work of building permit checks of the 3D geoinformation group at TU
Delft and a CityGML urban planning ADE.

In Noardo et al. [2020b], they checked the building permit through GeoBIM, which combines geographic
information with BIM. In their study, two recently designed buildings in the center of Rotterdam were
selected for relevant legal inspections. Their research also involves parking laws, but only covers the
inspection of the number of car parking in residential buildings. Our research extends the scope to non-
resident buildings and the number of bicycle parking inspections. Therefore, we have more detailed
and comprehensive analysis on parking laws. In the research of this study, we created a new building
dataset to test the feasibility of the method which provides more data for testing. Besides, we built a 3D
city model for the building permit inspection process, which can store more city information and has
stronger interoperability than BIM used in Noardo et al. [2020b].

45

6 Discussion

In research of Akahoshi et al. [2020], they constructed the CityGML ADE architecture related to urban
planning, which covers the City Objects involved in urban planning in the model, and can complete
analysis related to urban planning. Our research adopts the use of CityJSON extension to extend the 3D
city model. It has a simpler structure and a more flexible mechanism, so it can better interoperate and
integrate with other data formats. Although CityGML ADE can support inheritance and namespaces,
its flexibility may bring troubles for processing software. To make it work properly in the software,
specific code needs to be written. While CityJSON extensions usually do not need to change the parsing
code, because they can be treated as standard City]JSON files, so software that supports CityJSON can
read files containing CityJ]SON extensions normally. This provides convenience for analysis and data
processing beyond the extension.

The method proposed in this study uses a 3D city model to complete an automated inspection of build-
ing permits of parking standards and develops corresponding tools to reproduce the automated process.
The models and tools developed in this research can be used in more detailed regulation inspections,
such as the parking standards in Rotterdam that appeared in this research. When users want to apply
our tools to other cities or other regulations, they can use the CityJSON extension data model we built.
If it is the parking standards of different cities, then more attention needs to be paid to the acquisition
of building data in that city. If it is a different law, then through the interpretation and formalization
of the law, we need to summarize the City Objects and attributes that need to be added to the City]-
SON extended model. In subsequent work, this method can be applied to more regions and different
regulations to promote the healthy development of the city through efficient and high-quality building
permit inspections. It can provide support for government employees, which saves time and manpower
compared with traditional building permit inspections as shows in figure 6.1. In the rich picture, we re-
searcher aims to develop a tool to automate the building permit checks process by constructing a 3D
city model and interpret and formalize the regulation. By achieving these goals, we developed a tool
that can calculate the minimum parking spaces and give the results of the checks of buildings. By using
our tool, the building developer can know if the building is meeting the requirements then made some
modifications to the design. On the other hand, government officials can use this tool to get the permit
checks results and assist their decision making. The 3D city model constructed among them is not only
used for building permit inspections, but also for other applications related to city analysis. For exam-
ple, building energy analysis, sunlight analysis, etc., can be expanded into a more comprehensive urban
planning model.

46

Davele) & 400 to
o.ktomorte the process

Conbtuct a 3d
Yy mode

N

GrockS

Bwlomg |/
developer

6.2 Contributions and application

Tiepetate and
formalize regulating

l
Researcher

|

Stakehobders ——7 oicls

Governnent

S

Repefity/ ; provide

PO o 'cbegksregméﬂ‘l'
I proide veferenes | 1 ok il
" i{:wwm’c f\nt \ ' qsswr‘: nmm i
| NI nq":m%i _rools 0 .-
LDE b\ul‘”j_ pﬂr“_‘: DDTh& bUfllDG‘j primit
recks cuctomariaally
|
unctions
Colowlote the mmimum] | Give the checkS Store the fests
paTRIY Spaces Yesults & vichali2e it

Figure 6.1: Rich picture of the research

47

7 Conclusion and future work

The aim of this study is to use the CityJSON extension to complete the automation of building per-
mission checks. The key result will be summarized in this chapter, as well as the answers to the main
research question and sub questions. In addition, work that has not yet been completed but may be
done in the future will be addressed.

7.1 Overview of research

This study completed the inspection of the building permit through the study of Rotterdam’s parking
standard and the test building data. The experiment explained and formalized the parking standard,
thereby extracting regulation-related information and creating corresponding input data. At the same
time, the construction of a 3D city model based on the City]SON extension was completed. This model
extends the CityJSON core data model and is applicable to Rotterdam’s parking standards. The main
results of the research are shown in the table 7.1.

7.2 Conclusion

In this section, answers will be given to the research questions raised in Chapter 1. First, the sub-
questions are answered, and the answer towards to main research questions comes after. To achieve the
automation of building permission check using the CityJSON extension, the following sub-questions
are derived:

* How to select and obtain the information needed by building permit checks?

This depends on the content of the specific regulation inspection. After we have completed the
interpretation and formalization of the regulation, we can find the information needed to complete
the building permit inspection. They generally come from definitions and rules in the regulation.
For example, the regulation in this study is parking standard, which involves the functional use of
the building, the area of different parts of the building, the gross floor area of the building, and the
zone information where the building is located. There are also some basic information about the
building, such as the id of the building in the BAG datasets, the ground height and the measured
height, the geographic coordinates of the building, etc. This information is retrieved through the
datasets sources and stored in our data model. It is used for subsequent calculations.

Table 7.1: Overview of main results
Results

The chosen regulation and the formalization (parking standard of Rotterdam)
Georeferencing the digital zoning map
A GUI program tool to automate the checking process
Specification of the City]JSON extension model/Guidelines to users
The implemented demonstrator - tool performance
Results in City]SON file (building permit checking results of new buildings and old buildings)
The City]SON extension conceptual model

49

7 Conclusion and future work

* How to store and extend the information needed by building permit checks?

In order to better represent the data involved in this research and the process of exchanging data,
we have constructed a 3D model based on City]SON, and all City Objects involved in regulation
will be stored in this data model. Two situations are involved in this research. In this case, the
first is City Object that has been defined in the OGC CityGML standard, and the other is a new
object that has not been defined. For existing objects, we can directly use the definition in the
CityGML standard. As for the undefined cases, we can create new objects that inherits all the
attributes of core:: _cityObject. The second case is extend City Objects in different ways. For
defined objects, we can directly add new attributes. In our case, we want to document the function
of each building. This is a new attribute of existing City Objects so we can directly add it in
“extraAttributes” of building. For the extension of new City Objects, We can add them in one
member with the name “extraCityObjects” in the extension schema to specify new City Objects.
Regulation is a new City Objects defined in our research, it is inherits from core:: _cityObject,
we also define its attributs and geometry in the data model.

* How to test the 3D city model-based tool for the building permit regulation checking?

As mentioned in chapter 3, we have developed a method to implement this inspection process,
starting with the interpretation and formalization of the law, and converting it into a machine-
readable language. Then obtain the required information from the data model, calculate or judge
according to the checking rules, and finally get the checking results. In this study, a user case
method was adopted to test the feasibility of the entire method. The target regulation is the park-
ing standard of Rotterdam. Through the understanding, interpretation and formalization of the
parking standard, the attributes and building function required to calculate the minimum parking
quantity are obtained by mapping the required attributes to the built 3D city model. Finally, we
write a program to perform calculations and get the final CityJSON file containing the verification
results.

After reviewing all the sub-questions, we can give answers to the main research questions:
How to do building permit checks automatically by developing a tool in form of the 3D city model?

From the results and analysis above, it is concluded that this paper proposes the use of CityJSON exten-
sions to realize the automated inspection process for building permits, and develops a corresponding
tool to reproduce automated inspections. Use the features of CityJSON that it is more developer-friendly
and single-line parsing, we can store the City Objects information related to regulation inspections in
the City]SON data model and extend the existing data model. Through formalization methods based
on logical mechanisms, we can translate natural language regulations into machines-readable language.
Finally, through the development of the GUI program, the user can directly obtain the City]SON file
containing the verification result. The framework and CityJSON extension data model proposed in this
paper can also be applied to other regulations and other cities by users. If the issue is various cities’
parking rules, then greater emphasis should be devoted to the collection of building data in that city. If
the legislation is different, we must describe the City Objects and its attributes that must be added to
the CityJSON extended model through the interpretation and formalization of the law. Therefore, it has
good application value.

7.3 Future work

Putting aside the limitations of time and computer performance, we can better improve this process and
tools for automated building permit inspection and apply it in more directions. in In the future, we are
willing to continue to develop in the following directions:

In this study, a methodology starting from a specific use case was used, and only the parking standard
law in Rotterdam was studied. In the future, we hope to apply this framework of building permit
inspection to other places in the Netherlands and other fields of law. Large cities such as Amsterdam

50

7.3 Future work

and The Hague also need to improve the quality and efficiency of building permit inspections. At the
same time, laws related to environmental and spatial planning also have research value.

At this stage, the performance of computer equipment is limited. In the future, we will use more pow-
erful equipment to test the applicability of the method, transform the code and better pre-process the
data to speed up the running speed of the program and improve the ability of the program to operate.

In the future, the visual rendering of the final result will also be improved, and the web-based result
display will provide more interactive functions and filtering functions.

Improve the construction of 3D city models. Urban objects involved in different laws will be included
in the model. Therefore, the consistency and stability of the model are very important.

51

A Reproducibility self-assessment

A.1 Marks for each of the criteria

[0] unavailable (including available upon request) and
not recreatable (even if documented or with metadata)

]
i
i
IIllet Data | [1] documented (including metadata) and
| recreatable (same or similar data can be retrieved from original source)
; [2] available, but non-public licenses/no license or non-permanent websites (e.g. no DOI)
}
{~ [3]available, open and permanent (with DOI)
\
[level] Methods criteria T ””””””””””
I~ [0] unavailable (including available on request)
I
I [1] documented (text, pseudo code, workflow description,
C l’iteria fOl‘ Preprocessing ! versions, Dockerfile, Vagrantfile)
R d .bl ! [2] available (source code online, e.g. Github;
epro ucibie } referring to specific example from paper)
Research | [3] available and open (runtime image/container,
Methods | standardised metadata, open license)
N A
Method, analysis, processing -------- !
|
Computational environment —-————— same
criteria
[level] Results criteria |~~~ "~~~ """ TTT T T T T T I OT T TOOS
L [0] unavailable/insufficient
Results Jﬁ [1] documented (understandable, context provided), i.e.

reasonable statistical measures/summaries, textual descriptions, tables, maps

I
I
= [2] available, i.e. models, "output data", scripted plots/maps
|
}

[3] available, open and permanent

Figure A.1: Reproducibility criteria to be assessed.

A.2 Self-reflection

The data used in this research is publicly available, and the code related to the research can be publicly
accessed on https://github.com/Gallon229/Building-permit. When reproducing the research, we
need to use some files that we have processed, and these files can also be accessed on GitHub.

Table A.1: Reproducibility evaluation according to the criteria

Category CCriteria Comments Score
Input data All the data is open source 3
Preprocessing The preprocessing for data is needed here 2
Method, analysis, processing | The source code can be found at github 3
Sgﬁ%ﬁgﬁ?al Mainly used python and QGIS 2
Results Results and some guidelines files can be found at github | 2

53

https://github.com/Gallon229/Building-permit

B Diagrams and texts

B.1 Specifications of urban planning extensions

1. Regulation

The geometry of a City Object of type ““Regulation”” can be of type “"MultiSurface”” or *’MultiPoint””.
Example of one bicycle parking regulation of Rotterdam can be stored as:

“mim_bicycle_parking_spaces”: {

“type”: ”“Regulation”,

"attributes”: {
”"+Class”: ”spatial planning”,
"+Validity ”: “true”,
"+enactmentDate”: ”24-03-2018",
“+expirationDate”: ”none”,
“+adminLevel”: “municipality”,
"+toplevel”: "true”,
“+Administration_area”: ”“Rotterdam”

},

“geometry”: |

“"type”: “MultiSurface”,
"lod”: 0,
"boundaries”: [
(o, 3, 2, 111, [I4, 5, 6, 711, [[0, 1, 5, 4]]
]
1

}

The meaning of each attributes is:

”+Class”: The legal category to which it belongs, which can be of spatial planning; Environment; Tran-
port;

”+function”: Usage of the regulation (e.g Calculate the appropriate parking spaces for each building)
”+Validity”: Document whether the regulation is in effect.

”+enactmentDate”: Document the date the law came into effect, if have.

”+expirationDate”: Document the date the law expires, if have.

”+Administration_area”: Where does it apply

“+adminLevel”: Among(municipality, province, country).

“toplevel”: whose value is a Boolean (true = 1st-level; false = 2nd-level).

Here, besides these attributes shows in the example, more information used in the calculation will be
explained here in the specification.

“buildingarea”: It is related to ““Building”” city objects, document the total living area of each build-
ing.

55

B Diagrams and texts

“roomarea”: It is related to “”"Room”” city objects, document the area of each room in the building.

The more detailed version can be accessed at GitHub.

B.2 Tables of rules

Table B.1: Exemption from parking requirement for proximity to public transport

Public transport stop Discount factor

0 - 400 meters | 400 - 800 meters | 800 - 1200 meters
Rotterdam Central 0.5 0.6 0.7
Beurs, Blaak and Schiedam Center 0.6 0.7 0.8
Other train stations 0.7 0.8 0.9
Other RSR / metro stations within zones A and B 0.7 0.8 0.9
Other tram stops within zone A 0.7 0.8 0.9
RSR / metro stations zone C (except Hoek van Holland and Nesselande) | 0.8 0.9 0.95
Other tram stops in zone B 0.8 0.9 0.95
RSR / metro stations in Hoek van Holland and Nesselande 0.9 0.95 1
Other tram stops in zone C. 0.9 0.95 1
Alexander 1 1 1

B.3 CityJSON urban planning extension schema

"type”: ”"City]SON_Extension”,

"name”: ”“Urban_planning_extensions”,

“uri”: ”file://D:/TUD/thesis/fixed_file/test_schema.json”,
"version”: ”1.0.17,

"extraAttributes”: {
“"Building ”: {
“+height_valid”: { "type”: ”integer” },
"+groundHeight”: { “type”: “number” },
“+non_residential”: { “type”: "integer” },
“+total_area”: { “type”: “number” },
“+min_bicycle_parking_spaces”: { “type”: “number” },
“+min_car_parking_spaces”: { “type”: “number” },
“+functionl”: { “type”: ”string” },
“+function2”: { “type”: ”string” },
“+discount_factor”: { “type”: “number” }
},
“LandUse”: {
“+zone”: { "type”: ”"string”}

}

"extraCityObjects ”: {
”+Room”: {
"allOf”: |

{
"properties”: {
“type”: { "enum”: [“4+Room”] },
“toplevel”: {”type”: "boolean”},

56

"description”: ”“Extension for the urban building permit checking”,

{ "$ref”: ”../cityobjects.schema.json#/_AbstractCityObject” },

}

B.3 CityJSON urban planning extension schema

“attributes ”: {
“properties”: {
“building_id ”: { “type”: "string” },
“area”: { “type”: "number” }

}

eometry ”: {
"type”: "array”,
“items”: {
"oneOf”: |
{ "$ref”: ”../ geomprimitives.schema.json#/MultiPoint” }
|
}

}

”

}

equired”: ["type”, ”“toplevel”, “geometry”]

}
}
]

“+Regulation”: {
"allOf”: |
{ "$ref”: ”7../ cityobjects.schema.json#/_AbstractCityObject” },
{
“properties”: {
“type”: { "enum”: [”“+Regualation”] },
“toplevel”: {"type”: ”“boolean”},
"attributes ”: {
"properties”: {
“function”: { “type”: “string” },
“Validity ”: {"type”: ”“boolean”},
“enactmentDate”: { "type”: ”string” },
“expirationDate”: { “type”: ”string” },
“adminLevel”: { “type”: ”string” },
"Administration_area”: { ”“type”: ”string” }

h

}/

“geometry”: {
“type”: "array”,
"items”: {

"oneOf”: [
{ ”"$ref”: ”../geomprimitives.schema.json#/MultiSurface”
1
}
4
}

“required”: ["type”, "toplevel”, “geometry”]

}

57

B Diagrams and texts

58

Table B.2: Formalization of car parking regulation

Definitions and rules from regulation

Definitions

BUH40 = Count BU (function.”home”) AND (A(BU) 40 m2)
BUH40-65 = Count BU (function.“home”) AND (40 A(BU) 65 m2)
BUH®65-85 = Count BU (function.”home”) AND (65 A(BU) 85 m2)
BUHS85-120 = Count BU (function.”home”) AND (85 A(BU) 120 m2)
BUH120 = Count BU (function.“home”) AND (120 m2 A(BU))
Rules (must be true)

For residential buildings:

IF BU(function) = “home”

IF BU intersects Zone = "A’ THEN MinNPP= ((BUH40%0.1) + (BUH40-65*0.4)
+ (BUH65-85%0.6) + (BUH85-120*1)+ (BUH120%*1.2))* DF

ELSE IF BU intersects Zone = ‘B’ THEN

MinNPP= ((BUH40*0.1) + (BUH40-65*0.5)

+ (BUH65-85%0.8) + (BUHS85-120*1)+ (BUH120%*1.2))* DF

EISE IF BU intersects Zone = 'C’

THEN MinNPP= ((BUH40*0.1) + (BUH40-65*0.6)

+ (BUH65-85*1.4) + (BUHS85-120%1.6)+ (BUH120*1.8)) * DF

NewParkings > sum(MinNPP) + sum((MinMQPP /parkingArea))

For non-residential buildings:
Rules (must be true)
BU(function) != “home”

IF BU(function) = “Office”

IF BU intersects Zone = ’A” THEN MinMQPP = 0.76*A(BU) /100 * DF
ELSE IF BU intersects Zone = ‘B’ THEN MinMQPP = 0.76*A(BU) /100 * DF
ELSE IF BU intersects Zone = "C’ THEN MinMQPP = 0.76*A(BU) /100 * DF

ELSE IF BU(function) = “Industry”

IF BU intersects Zone = ’A” THEN MinMQPP = 0.67*A(BU) /100 * DF
ELSE IF BU intersects Zone = "B’ THEN MinMQPP = 1.2*A(BU)/100 * DF
ELSE IF BU intersects Zone = 'C’ THEN MinMQPP = 2*A(BU) /100 * DF

ELSE IF BU(function) = “Retaill”

IF BU intersects Zone = "A’ THEN MinMQPP = 0.38*A(BU) /100 * DF
ELSE IF BU intersects Zone = "B’ THEN MinMQPP = 2.5*A(BU)/100 * DF
ELSE IF BU intersects Zone = 'C’ THEN MinMQPP = 2.5*A(BU)/100 * DF

ELSE IF BU(function) = “Supermarket”

IF BU intersects Zone = "A’ THEN MinMQPP = 0.38*A(BU) /100 * DF
ELSE IF BU intersects Zone = ‘B’ THEN MinMQPP = 2.5*A(BU)/100 * DF
ELSE IF BU intersects Zone = ’C’ THEN MinMQPP = 2.8*A(BU)/100 * DF

ELSE IF BU(function) = “Gym”

IF BU intersects Zone = ’A” THEN MinMQPP = 0.08*A(BU) /100 * DF
ELSE IF BU intersects Zone = ‘B’ THEN MinMQPP = 1.7*A(BU)/100 * DF
ELSE IF BU intersects Zone = "C’ THEN MinMQPP = 2*A(BU)/100 * DF

ELSE IF BU(function) = “Museum”

IF BU intersects Zone = "A’ THEN MinMQPP = 0.02*A(BU)/100 * DF
ELSE IF BU intersects Zone = ‘B’ THEN MinMQPP = 0.4*A(BU)/100 * DF
ELSE IF BU intersects Zone = ‘C’ THEN MinMQPP = 0.7*A(BU)/100 * DF

ELSE IF BU(function) = “Cinema”

IF BU intersects Zone = 'A’ THEN MinMQPP = 0.01*A(BU) /100 * DF
ELSE IF BU intersects Zone = 'B’ THEN MinMQPP = 0.1*A(BU)/100 * DF
ELSE IF BU intersects Zone = 'C’ THEN MinMQPP = 0.2*A(BU)/100 * DF

ELSE IF BU(function) = “catering I”

IF BU intersects Zone = 'A’ THEN MinMQPP = 0.4*A(BU)/100 * DF
ELSE IF BU intersects Zone = "B’ THEN MinMQPP = 4*A(BU) /100 * DF
ELSE IF BU intersects Zone = 'C’ THEN MinMQPP = 6*A(BU) /100 * DF

ELSE IF BU(function) = “catering III”

IF BU intersects Zone = "A’ THEN MinMQPP = 0.4*A(BU)/100 * DF
ELSE IF BU intersects Zone = "B’ THEN MinMQPP = 4*A(BU) /100 * DF
ELSE IF BU intersects Zone = "C’ THEN MinMQPP = 6*A(BU)/100 * DF

ELSE IF BU(function) = “catering IV”

IF BU intersects Zone = 'A’ THEN MinMQPP = 1.6*A(BU)/100 * DF
ELSE IF BU intersects Zone = ‘B’ THEN MinMQPP = 8*A(BU)/100 * DF
ELSE IF BU intersects Zone = 'C’ THEN MinMQPP = 12*A(BU) /100 * DF

ELSE IF BU(function) =n “universities”

IF BU intersects Zone = "A’ THEN MinMQPP = 0.5*A(BU) /100 * DF
ELSE IF BU intersects Zone = ‘B’ THEN MinMQPP = 2*A(BU)/100 * DF
ELSE IF BU intersects Zone = "C' THEN MinMQPP = 3*A(BU)/100 * DF

ELSE IF BU(function) = “Hospital”

IF BU intersects Zone = A’ THEN MinMQPP = 1.1*A(BU)/100 * DF
ELSE IF BU intersects Zone = ‘B THEN MinMQPP = 1.3*A(BU)/100 * DF
ELSE IF BU intersects Zone = ‘C’ THEN MinMQPP = 1.5*A(BU)/100 * DF

NewParkingArea > sum(MinMQPP) + sum((MinNPP*parkingArea))

BU = Building unit, single dwelling
Zone = attribute describing the name
of the Parking zone to which

the area (building) belongs to.

DF = Discount factor

BUH= function “home”

BUO-= function “Office”

BUI= function “Industry”

BUR= function “Retaill”

BUS= function “Supermarket”
BUG= function “Gym”

BUM= function “Museum”

BUC= function “Cinema”

BUC1= function “catering I”
BUC2= function “catering III”
BUC2= function “catering IV”
BUU= function “universities”
BUH= function “Hospital”

BU(function) = attribute ‘function”
related to each building unit (room) .

A (BU) = attribute’area’related to
each building unit

MinNPP = Minimum number of
parking places.

MinMQPP = Minimum parking placesper 100 square meters

B.3 CityJSON urban planning extension schema

wuiialundeﬂacéook—Air:~ Gallon®529% python /Users/Gallon@529/Desktop/extension/e
xtensions/validate-extension.py /Users/Gallon@529/Desktop/extension/extensions/t

est_schema.json

—-> City]SON Extension is VALID
wujialundeMacBook-Air:~ Gallong529% I

Figure B.1: Extension validity results

Table B.3: Standards table for car non-residential function

Function Number of car parking spaces per 100 m2 GFA unless otherwise specified
Zone A Metropolitan area | Zone B City districts | Zone C Other place

To work Office 0.76 1.00 1.20
Labor-intensive / visitor-intensive company (Industry) 0.67 1.20 2.00
Shop Retail (including thrift store and pharmacy) 0.38 2.50 2.50
Supermarket 0.38 2.50 2.80
Sports and recreation Gym, indoor sports hall (incl. Squash, tennis) 0.08 1.70 2.00
Culture Museum 0.02 0.40 0.70
Cinema, theater, theater 0.01 0.10 0.20
Catering industry Cafeteria / snack bar (catering I) 0.40 4.00 6.00
Café / bar (catering III) 0.40 4.00 6.00

Restaurant (catering IV) 1.60 8.00 12.00
Education Vocational education and WO/ universities 0.50 2.00 3.00
Care Hospital 1.10 1.30 1.50

59

Bibliography

S. Agyeman, H. Abeka, and S. Assiamah. Are the challenges in the processing of building permits a
precursor for development of illegal structures in Ghana. US-China L. Rev., 13:337, 2016.

F. C. Ahmed and S. P. Sekar. Using three-dimensional volumetric analysis in everyday urban planning
processes. Applied Spatial Analysis and Policy, 8(4):393-408, 2015. ISSN 1874-4621.

K. Akahoshi, N. Ishimaru, C. Kurokawa, Y. Tanaka, T. Oishi, T. Kutzner, and T. H. Kolbe. I-urban
revitalization: Conceptual modeling, implementation, and visualization towards sustainable urban
planning using citygml. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 5(4):179-186, 2020. ISSN 21949050. doi: 10.5194/isprs- Annals-V-4-2020-179-2020.

K. Arroyo Ohori, H. Ledoux, and J. Stoter. A dimension-independent extrusion algorithm using gen-
eralised maps. International Journal of Geographical Information Science, 29(7):1166-1186, 2015. ISSN
1365-8816.

J. . Barberis, D. W. Arner, and R. P. T. A. T. T. Buckley. The regtech book : the finan-
cial technology handbook for investors, entrepreneurs and visionaries in regulation LK -
https:/ /tudelft.on.worldcat.org/oclc/1052902944, 2019. URL https://search.ebscohost.
com/login.aspx?direct=true{&}scope=site{&}db=nlebk{&}db=nlabk{&}AN=2226927https:
//rbdigital.rbdigital.comhttps://proquest.safaribooksonline.com/9781119362142https:
//onlinelibrary.wiley.com/doi/book/10.1002/9781119362197https://doi.org/10.1002/
9781119362197.

M. Batty, D. Chapman, S. Evans, M. Haklay, S. Kueppers, N. Shiode, A. Smith, and P. M. Torrens. Visual-
izing the city: communicating urban design to planners and decision-makers. 2001. ISSN 1589480112.

J. Beetz, van Lahm Léon Berlo, de R Laat, and van den P. Helm. BIMSERVER.Org -
An Open Source IFC Model Server. 2010. URL https://semanticscholar.org/paper/
c6829db2d4£95464bbdal16094c863c5a266954e0

F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Coltekin. Applications of 3D city models: State
of the art review. ISPRS International Journal of Geo-Information, 4(4):2842-2889, 2015. ISSN 22209964.
doi: 10.3390/1jgi4042842.

F. Biljecki, H. Ledoux, and]. Stoter. An improved LOD specification for 3D building models. Computers,
Environment and Urban Systems, 59:25-37, 2016. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2016.
04.005.

R. Billen, A.-F. Cutting-Decelle, O. Marina, and J.-P. De Almeida. 3D City Models and urban information:
Current issues and perspectives. edp Sciences, 2021. ISBN 2759811530.

T. Blaschke. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote
sensing, 65(1):2-16, 2010. ISSN 0924-2716.

B. Decree, K. Relations, N. Czw, H. Act, D. No, E. Communities, M. States, D. No, D. No, E. Parliament,
T.-e. R. Network, D. No, E. Parliament, A. Section, K. Relations, N. Czw, H. Decree, and A. S. Follows.
Draft Building Decree [Bouwbesluit] 2012. (April 2011), 2012.

J. Dimyadi and R. Amor. Automated Building Code Compliance Checking — Where is it at? 2013. URL
https://semanticscholar.org/paper/3e6e4b32759797acab85b1e8e6034e8£399ab654.

61

https://search.ebscohost.com/login.aspx?direct=true{&}scope=site{&}db=nlebk{&}db=nlabk{&}AN=2226927 https://rbdigital.rbdigital.com https://proquest.safaribooksonline.com/9781119362142 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119362197 https://doi.org/10.1002/9781119362197
https://search.ebscohost.com/login.aspx?direct=true{&}scope=site{&}db=nlebk{&}db=nlabk{&}AN=2226927 https://rbdigital.rbdigital.com https://proquest.safaribooksonline.com/9781119362142 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119362197 https://doi.org/10.1002/9781119362197
https://search.ebscohost.com/login.aspx?direct=true{&}scope=site{&}db=nlebk{&}db=nlabk{&}AN=2226927 https://rbdigital.rbdigital.com https://proquest.safaribooksonline.com/9781119362142 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119362197 https://doi.org/10.1002/9781119362197
https://search.ebscohost.com/login.aspx?direct=true{&}scope=site{&}db=nlebk{&}db=nlabk{&}AN=2226927 https://rbdigital.rbdigital.com https://proquest.safaribooksonline.com/9781119362142 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119362197 https://doi.org/10.1002/9781119362197
https://search.ebscohost.com/login.aspx?direct=true{&}scope=site{&}db=nlebk{&}db=nlabk{&}AN=2226927 https://rbdigital.rbdigital.com https://proquest.safaribooksonline.com/9781119362142 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119362197 https://doi.org/10.1002/9781119362197
https://semanticscholar.org/paper/c6829db2d4f95464bbda16094c863c5a266954e0
https://semanticscholar.org/paper/c6829db2d4f95464bbda16094c863c5a266954e0
https://semanticscholar.org/paper/3e6e4b32759797aca585b1e8e6034e8f399ab654

Bibliography

S. Donkers, H. Ledoux, J. Zhao, and J. Stoter. Automatic conversion of IFC datasets to geometrically
and semantically correct CityGML LOD3 buildings. Transactions in GIS, 20(4):547-569, 2016. ISSN
1361-1682.

C. Eastman, J. min Lee, Y. suk Jeong, and]. kook Lee. Automatic rule-based checking of building
designs. Automation in Construction, 18(8):1011-1033, 2009. ISSN 09265805. doi: 10.1016/j.autcon.
2009.07.002. URL http://dx.doi.org/10.1016/j.autcon.2009.07.002.

M. Eirinaki, S. Dhar, S. Mathur, A. Kaley, A. Patel, A. Joshi, and D. Shah. A building permit system
for smart cities: A cloud-based framework. Computers, Environment and Urban Systems, 70(March):
175-188, 2018. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2018.03.006. URL https://doi.org/
10.1016/j . compenvurbsys.2018.03.006.

EUnet4DBP. about @ 3d.bk.tudelft.nl, 2020. URL https://3d.bk.tudelft.nl/projects/eunet4dbp/
about.html.

K.-H. H. Gerhard Groger, Thomas H. Kolbe, Claus Nagel. Open Geospatial Consortium OGC City
Geography Markup Language (CityGML) En- coding Standard. 2012.

D. Guler and T. Yomralioglu. A reformative framework for processes from building permit issuing to
property ownership in Turkey. Land Use Policy, 101(October 2020):105115, 2021. ISSN 02648377. doi:
10.1016/j.landusepol.2020.105115. URL https://doi.org/10.1016/j.1landusepol.2020.105115.

N. Haala and M. Kada. An update on automatic 3D building reconstruction. ISPRS Journal of Photogram-
metry and Remote Sensing, 65(6):570-580, 2010. ISSN 0924-2716.

E. N. Ishimaru, C. Kurokawa, Y. Tanaka, and T. Oishi. Open Geospatial Consortium CityGML Urban
Planning ADE for i-Urban Revitalization. 2020.

I.S. O.1ISO. 19107: 2003 Geographic information-Spatial schema. International Organization for Standard-
ization, 90, 2003.

T. H. Kolbe. Representing and exchanging 3D city models with CityGML. In 3D geo-information sciences,
pages 15-31. Springer, 2009.

H. Ledoux. val3dity: validation of 3D GIS primitives according to the international standards.
Open Geospatial Data, Software and Standards, 3(1):1, dec 2018. ISSN 2363-7501. doi: 10.1186/
s40965-018-0043-x. URL https://opengeospatialdata.springeropen.com/articles/10.1186/
s40965-018-0043-x.

H. Ledoux and M. Meijers. Topologically consistent 3D city models obtained by extrusion. International
Journal of Geographical Information Science, 25(4):557-574, 2011. ISSN 1365-8816.

H. Ledoux, K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis. CityJSON: A compact
and easy-to-use encoding of the CityGML data model. arXiv, pages 0-12, 2019. ISSN 2363-7501. doi:
10.1186/540965-019-0064-0.

H. Lee, J.-K. Lee, S. Park, and I. Kim. Translating building legislation into a computer-executable format
for evaluating building permit requirements. Automation in Construction, 71:49-61, nov 2016. ISSN
(09265805. doi: 10.1016/j.autcon.2016.04.008. URL https://linkinghub.elsevier.com/retrieve/
pii/S0926580516300796.

J. Lee. Building environment rule and analysis (BERA) languageand its application for evaluat-
ing building circulation and spatial program. 2011. URL https://semanticscholar.org/paper/
0877d934c912d49fe71dc74b5b12b132aae30e38.

M. Lemmens. Applying geo-information technology. In Geo-information, pages 229-258. Springer, 2011.

R. Lewis and C. Séquin. Generation of 3D building models from 2D architectural plans. Computer-Aided
Design, 30(10):765-779, 1998. ISSN 0010-4485.

62

http://dx.doi.org/10.1016/j.autcon.2009.07.002
https://doi.org/10.1016/j.compenvurbsys.2018.03.006
https://doi.org/10.1016/j.compenvurbsys.2018.03.006
https://3d.bk.tudelft.nl/projects/eunet4dbp/about.html
https://3d.bk.tudelft.nl/projects/eunet4dbp/about.html
https://doi.org/10.1016/j.landusepol.2020.105115
https://opengeospatialdata.springeropen.com/articles/10.1186/s40965-018-0043-x
https://opengeospatialdata.springeropen.com/articles/10.1186/s40965-018-0043-x
https://linkinghub.elsevier.com/retrieve/pii/S0926580516300796
https://linkinghub.elsevier.com/retrieve/pii/S0926580516300796
https://semanticscholar.org/paper/0877d934c912d49fe71dc74b5b12b132aae30e38
https://semanticscholar.org/paper/0877d934c912d49fe71dc74b5b12b132aae30e38

Bibliography

S. M. Malsane, J. Matthews, S. Lockley, P. Love, and D. Greenwood. Development of an object model
for automated compliance checking. 2015. doi: 10.1016/J. AUTCON.2014.10.004. URL https://
semanticscholar.org/paper/e031c61ad8c203d49a656d8444d7635ecb3e4d16.

A. March and M. Kornakova. Urban planning for disaster recovery. Butterworth-Heinemann, 2017. ISBN
0128043237.

P.J. May. Regulatory implementation: Examining barriers from regulatory processes. Cityscape, pages
209-232, 2005. ISSN 1936-007X.

W. Mazairac and]. Beetz. BIMQL - An open query language for building information mod-
els. 2013. doi: 10.1016/j.aei.2013.06.001. URL https://semanticscholar.org/paper/
b7240e3028f568d587bccfe9albeed2fd8044212

K. Mouratidis. Urban planning and quality of life: A review of pathways linking the built environment
to subjective well-being. Cities, 115:103229, aug 2021. ISSN 02642751. doi: 10.1016/j.cities.2021.103229.
URL https://linkinghub.elsevier.com/retrieve/pii/S0264275121001293.

F.Noardo, G. Malacarne, V. S. Mastrolembo, L. Tagliabue, A. Ciribini, C. Ellul, D. Guler, L. Harrie, L. Sen-
ger, A. Waha, et al. Integrating expertises and ambitions for data-driven digital building permits-the
eunet4dbp. ISPRS Archives; volume 44, 4, W1, 44(4/W1):103-110, 2020a.

F. Noardo, T. Wu, K. Arroyo Ohori, T. Krijnen, H. Tezerdi, and]. Stoter. Geobim for digital build-
ing permit process: Learning from a case study in Rotterdam. ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, 6(4/W1):151-158, 2020b. ISSN 21949050. doi:
10.5194 /isprs-annals-VI-4-W1-2020-151-2020.

F. Noardo, T. Wu, K. A. Ohori, T. Krijnen, and J. Stoter. Investigating the Automation of the Building
Permits Issuing process through 3D GeoBIM information - Final Deliverable. 2020c.

Open Knowledge Foundation. ccfb4e5bb908e67ac1c8462dd3d3592fd738be30 @ opendatahandbook.org,
2019. URL http://opendatahandbook.org/glossary/en/terms/machine-readable/.

C. Preidel and A. Borrmann. Automated Code Compliance Checking Based on a Visual Language
and Building Information Modeling. 2015. doi: 10.22260/ISARC2015/0033. URL https://
semanticscholar.org/paper/8bad2035f6e35af8aaeda7bf7647933df7779dcl.

L. Ross. Virtual 3D City Models in Urban Land Management-Technologies and Applications. 2011.

N. Shiode. 3D urban models: Recent developments in the digital modelling of urban environments in
three-dimensions. GeoJournal, 52(3):263-269, 2000. ISSN 1572-9893.

M. Sinning-Meister, A. Gruen, and H. Dan. 3D City models for CAAD-supported analysis and design of
urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 51(4):196-208, 1996. ISSN 0924-2716.

W. Solihin and C. Eastman. Classification of rules for automated BIM rule checking develop-
ment. 2015. doi: 10.1016/J. AUTCON.2015.03.003. URL https://semanticscholar.org/paper/
675565c7a29e4c393b89e082f75c6a696a8eb70a.

J. Stoter, M. Reuvers, G. Vosselman, J. Goos, L. van Berlo, S. Zlatanova, E. Verbree, and R. Klooster.
Towards a 3d geo-information standard in the netherlands. In Proceedings of 5th international conference
on 3D geoinformation, Berlin, Germany, 3-4 November 2010:(ISPRS: Volume XXXVIII, part 4/W15), pages
63-67. International Society for Photogrammetry and Remote Sensing (ISPRS), 2010.

L. Suveg and G. Vosselman. Reconstruction of 3D building models from aerial images and maps. ISPRS
Journal of Photogrammetry and remote sensing, 58(3-4):202-224, 2004. ISSN 0924-2716.

I. Tomljenovic, B. Hofle, D. Tiede, and T. Blaschke. Building extraction from airborne laser scanning
data: An analysis of the state of the art. Remote Sensing, 7(4):3826-3862, 2015.

K. Ulm. Virtual 3D City Models-satisfaction through sustainability’. Geomatics World, 18(6):16-18, 2010.

63

https://semanticscholar.org/paper/e031c61ad8c203d49a656d8444d7635ecb3e4d16
https://semanticscholar.org/paper/e031c61ad8c203d49a656d8444d7635ecb3e4d16
https://semanticscholar.org/paper/b7240e3028f568d587bccfe9a0bee42fd8044212
https://semanticscholar.org/paper/b7240e3028f568d587bccfe9a0bee42fd8044212
https://linkinghub.elsevier.com/retrieve/pii/S0264275121001293
http://opendatahandbook.org/glossary/en/terms/machine-readable/
https://semanticscholar.org/paper/8bad2035f6e35af8aaeda7bf7647933df7779dc1
https://semanticscholar.org/paper/8bad2035f6e35af8aaeda7bf7647933df7779dc1
https://semanticscholar.org/paper/675565c7a29e4c393b89e082f75c6a696a8eb70a
https://semanticscholar.org/paper/675565c7a29e4c393b89e082f75c6a696a8eb70a

Bibliography
S. Vitalis, K. Ohori, and J. Stoter. Incorporating Topological Representation in 3D City Models. ISPRS
International Journal of Geo-Information, 8(8):347, 2019. doi: 10.3390/ijgi8080347.

J. Wendel, A. Simons, A. Nichersu, and S. M. Murshed. Rapid development of semantic 3D city models
for urban energy analysis based on free and open data sources and software. In Proceedings of the 3rd

ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, pages 1-7, 2017.

X.Yin, P. Wonka, and A. Razdan. Generating 3d building models from architectural drawings: A survey.
IEEE computer graphics and applications, 29(1):20-30, 2008. ISSN 0272-1716.

64

Colophon

This document was typeset using IXTEX, using the KOMA-Script class scrbook. The main font is Palatino.

%
TUDelft

	Introduction
	Background and motivation
	Research objectives
	Research scope and challenges
	Thesis outline

	Related work
	Digital building permit
	Translation the regulations
	3D City Model
	Background of 3D city model
	Representing and Exchanging 3D City Models

	Research gap

	Methodology
	Interpretation and formalization of regulations
	Interpretation of regulations
	Formalization of regulations

	Use cases for regulations
	Regulation selections
	Interpretation of parking regulation
	Formalization of parking regulation
	Formalization of bicycle parking regulation
	Formalization of car parking regulation

	Construction of conceptual model in CityJSON
	CityGML versus CityJSON
	Data pre-processing
	Build conceptual model

	Extension of 3D city model by using CityJSON extension
	Extensions
	Construction of schema of extensions and validity checks

	Development of a program for permit checks automation

	Implementation
	Tools and Datasets Used
	Software
	Hardware
	Datasets

	Overview of experiments
	Data pre-processing and input
	Bicycle parking regulation (For existing buildings and new buildings)
	Car parking regulation (For existing buildings and new buildings)
	Validation and Evaluation
	GUI program application

	Experiments and Results
	The developed CityJSON extension
	Results of building permit checking of parking regulation
	Demo of tool
	Tool performance

	Discussion
	Limitation
	Contributions and application

	Conclusion and future work
	Overview of research
	Conclusion
	Future work

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

	Diagrams and texts
	Specifications of urban planning extensions
	Tables of rules
	CityJSON urban planning extension schema

