
EssentialMeans for Urban Computing:
Specification ofWeb-Based Computing

Platforms for Urban Planning, a
Hitchhiker’s Guide

Pirouz Nourian Carlos Martinez-Ortiz
Ken Arroyo Ohori

This is an author’s version of the paper. The authoritative version is:

Essential Means for Urban Computing: Specification of Web-Based
Computing Platforms for Urban Planning, a Hitchhiker’s Guide. Pirouz
Nourian, Carlos Martinez-Ortiz and Ken Arroyo Ohori. Urban Planning 3(1),
March 2018, pp. 47–57. ISSN: 2183–7635.
doi: 10.17645/up.v3i1.1299

This article provides an overview of the specifications of web-based computing
platforms for urban data analytics and computational urban planning practice.
There are currently a variety of tools andplatforms that can be used in urban com-
puting practices, including scientific computing languages, interactive web lan-
guages, data sharing platforms and still many desktop computing environments,
e.g., GIS software applications. We have reviewed a list of technologies consid-
ering their potential and applicability in urban planning and urban data analyt-
ics. This review is not only based on the technical factors such as capabilities of
the programming languages but also the ease of developing and sharing complex
data processing workflows. The arena of web-based computing platforms is cur-
rently under rapid development and is too volatile to be predictable; therefore,
in this article we focus on the specification of the requirements and potentials
from an urban planning point of view rather than speculating about the fate of
computing platforms or programming languages. The article presents a list of
promising computing technologies, a technical specification of the essential data
models and operators for geo-spatial data processing, and mathematical models
for an ideal urban computing platform.

1

http://dx.doi.org/10.17645/up.v3i1.1299


1 Introduction

In this article we focus on the applications
of urban computing in Smart Cities Plan-
ning practice (as proposed by Batty et al.
[2012]). They suggest that there is a need for
a paradigm-shift in urban planning, from
focus on the built environment problems
to social problems such as deprivation, and
their relations to space, spatial distributions
and spatial planning. Considering the com-
plexity of cities, they imply that there is
a need to develop “a new science of hu-
man [spatial] behaviour”. This paradigm
shift towards developing new [spatial] sci-
ences of cities can be facilitated by the so-
called urban computing practices, e.g., by
facilitating access to large datasets on hu-
man spatial behaviour. This article seeks
to illustrate what are the essential means of
urban computing practice from a method-
ological point of view, i.e., computational
requirements for 1. developing scientific
knowledge in the form of validated ana-
lytic/simulation models using spatial data
and spatial relations; and 2. informing
planning actions using the insight gained
from analytic/simulation models on effec-
tiveness of actions.

1.1 What is Urban Computing?

It is difficult, and perhaps even futile, to
provide a comprehensive definition of the
emerging fields of Urban Computing (e.g.,
as referred to in Kindberg et al. [2007];
Zheng et al. [2014]) and the closely related
field of Urban Informatics (e.g., as referred
to in Foth et al. [2011b]). These two are
umbrella terms for describing diverse prac-
tices involving geo-spatial data analysis re-
lated to cities and citizens. While the for-
mer has a technical connotation related to
sensing, analysis and actuation technolo-
gies [Kindberg et al., 2007], the latter is
more focused on the computational social
sciences applied to analysis of cities. With-
out attempting to provide a comprehensive
definition, we choose to use the term ur-
ban computingwith a broader scope to refer
to all data-intensive ‘computational work-
flows’ that can be used for improving ur-

ban planning and urban decision-making
by providing the means of data acquisi-
tion, analysis and simulation, e.g., to reduce
traffic congestion or energy consumption.
From a technical point of view, urban com-
puting can involve acquisition, integration,
and analysis of (big) data generated by di-
verse sources such as sensing technologies
and large-scale computing infrastructures
in the context of urban spaces. The vol-
ume, velocity and variety of such data of-
ten requires the use of cloud computing in-
frastructure and software services [Hashem
et al., 2015]. Urban Computing is applicable
in a variety of fields, namely:

• environmental studies (e.g., Shang et al.
[2014]; Zheng et al. [2013]);

• modelling energy use/generation (e.g.,
Simão et al. [2009]);

• transport modelling (e.g., Zheng et al.
[2011]);

• monitoring health (e.g., Varshney
[2007]);

• epidemiology (e.g., Lopez et al. [2015]);

• social informatics (e.g., Foth et al.
[2011a]; Pires and Crooks [2017]);

• criminology (e.g., Bogomolov et al.
[2014]); and

• participatory planning (e.g., Robinson
and Johnson [2016]; Tenney and Sieber
[2016]).

1.2 Why Is Urban Computing
needed inUrban Planning?

In Urban Planning, we are often interested
in analysing the so-called what-if scenarios
using simulations and projections [Batty
and Torrens, 2001]. Traditionally, the geo-
spatial analysis of intervention scenarios,
urban plans, and urban data is done by
means of Geographic Information Systems
(GIS), Planning Support Systems (PSS; see
Batty [2007]; Harris and Batty [1993]) and
Spatial Decision Support Systems (SDSS).
The PSS and SDSS systems are typically
stand-alone desktop applications that have

2



a database, a library of computationalmeth-
ods for geo-spatial data processing, and an
interface. Despite the technical similar-
ities in using a spatial database, the two
categories are different in that the SDSS
are geared towards operational decision-
making whereas the PSS are geared towards
strategic planning that often involves land-
use planning and thus requiring the consid-
eration of land-use transport interactions
(the distinction between PSS and SDSS from
Geertman and Stillwell [2009]). In these
systems, there exist someworkflows for spa-
tial analysis of urban data, which do not
require new ground-breaking technology.
However, the prospect of urban computing
is the potentials of the web-based comput-
ing platforms for developing a new gener-
ation of shareable and editable geo-spatial
data processing workflows for informing
decisions in urban planning. From urban
computing applications listed in Section 1.1,
it can be seen that so far urban comput-
ing technologies have been mostly applied
in the operational and managerial contexts
(based on the definition of urban planning
actions [Couclelis, 2005]). For awider adop-
tion of urban computing practices in strate-
gic urban planning, urban computing plat-
forms must provide the essential means of
analysis and simulation procedures needed
in PSS.

Although most of the scholarly works in
the area of PSS are focused on land-use
change, there are other aspects of urban dy-
namics that could be modelled computa-
tionally; that is to say, the broader discus-
sion is on what changes can be explained,
anticipated, and taken into account when
making strategic decisions on spatial plans,
this broader field of research and devel-
opment is called Urban Modelling [Batty,
2009]. Considering the nature of outcomes
of planning processes, (e.g., land-use plans)
we can observe that the spatial relations
between land-use distributions and a vari-
ety of phenomena need to be considered
while making strategic planning decisions:
for instance, land-use and transport inter-
actions and their effects on energy use in
transport (see Keirstead et al. [2012]) and
the effect of land-use distribution on bio-
diversity and the use of natural resources

(especially water) should ideally be consid-
ered when proposing plans. From a prag-
matic point of view, however, the adoption
of PSS in practice is not high [Geertman and
Stillwell, 2009]:

“It is disturbing, in fact, to observe
the extent to which new computer-
based support systems are developed
by researchers to the point of adoption
but are never implemented in plan-
ning practice or policy making. Simi-
larly, there is evidence to indicate that
systems which are made operational
are not extensively used, after the ini-
tial novelty has passed, by those plan-
ning organizations for which they have
been developed in the first instance.
In terms of application, it is possi-
ble to point to more failures than suc-
cesses, i.e., to more cases where systems
have not been implemented than ex-
amples where they are used routinely.
Moreover, many state-of-the-art sys-
tems appear to take a long time to
reach the ‘market’ and this is often a
process requiring considerable finan-
cial resources.”

We suggest that the research and devel-
opment culture of Spatial Planning and
Decision Support Systems (SPDSS, termi-
nology of Geertman and Stillwell [2009])
must adopt open-source and agile develop-
ment principles for effective ‘market’ up-
take and ensuring the viability of the R&D
products [Crowston and Howison, 2005;
Hey and Payne, 2015; Pressman, 2009; von
Krogh, 2003]. By adopting urban com-
puting practices, utilization of scientific
knowledge in planning practice will be
eased; because web-based computing plat-
forms facilitate rapid prototyping, develop-
ment, release, sharing, and test of SPDSS
(incorporating a variety of Urban [Analy-
sis/Simulation] Models).

1.3 Problem Statement

Althoughmuch canbe said about the graph-
ical user interfaces of GIS applications, we

3



do not focus on them; because these in-
terfaces are generally geared towards man-
ual operations. Instead our focus is on
the essential means for developing ‘geo-
spatial computing workflows’. Workflows
can be as simple as routines of sequential
actions or more sophisticated procedures
with flow-control mechanisms, which are
better known as algorithms (see Figures 1
and2 forworkflowexamples). There are two
types of challenges in using the currently
available GIS desktop applications for in-
novative inter-disciplinary research in Ur-
ban Computing applied in Urban Plan-
ning (i.e., Design and Development of Web-
Based SPDSS):

• Data-Related Challenges:

Data-Availability how easy is it to ac-
quire a relevant dataset?

Data-Interoperability how easy is it to
read/write datasets from/tofile for-
mats?

Data-Mergeability how easy is it to
overlay multiple datasets?

• Workflow-Related Challenges:

Workflow Comprehensibility to what
extent is the whole workflow un-
derstandable?

Workflow Editability how easy is it to
modify the workflow explicitly?

Workflow Repeatability how easy is to
repeat a certain data processing
workflow?

Workflow Shareability how easy is it
to share a workflow from one sys-
tem to another?

Workflow Scalability how easy is to
process large datasets with a work-
flow?

Workflow Sustainability to what ex-
tent is the workflow modular and
recyclable?

A rather neglected matter about SPDSS is
the very social/human process of develop-
ing them. These systems can be devel-
oped by Research Software Engineers1. A
1http://rse.ac.uk/who/

typical research software developer is not
necessarily a software engineer, but usually
a domain-specific researcher who can de-
velop software or computational workflows.
A typical research software engineer, often
does not have the means of a software ven-
dor to develop a large application with a
custom-made GUI. The core of the work of
research software development is on devel-
oping analytic workflows2.

2 What DoWeNeed for
UrbanComputing?

We argue that there are three determining
factors to consider with regards to ‘the suit-
ability of a computing technology for urban
computing’, i.e. the availability and quality
of:

1. Visual Data Flow Programming

2. Spatial Computing Libraries

3. Internet of Things (IoT) APIs3

2.1 Visual DataflowProgramming

It is well known that the time spent on
research and development is often much
more valuable than the computation time.
Therefore, we need to consider human in-
terface requirements with regards to the
ease of ideation-development-test cycles
(prototyping). We propose that using a
dataflow programming platform, the user
can interact with the platform knowing
only a common programming language
to edit the nodes (blocks of code) and
only a handful of UI manoeuvres to get
started; without the problem of learning a
sophisticated UI. In processing big data,
there are two generic approaches, namely:

2http://www.commonwl.org/
3Application Programming Interfaces

4

http://rse.ac.uk/who/
http://www.commonwl.org/


take a long time to reach the ‘market’ and this is often
a process requiring considerable financial resources.

We suggest that the research and development cul-
ture of Spatial Planning and Decision Support Systems
(SPDSS, terminology of Geertman & Stillwell, 2009) must
adopt open-source and agile development principles for
effective ‘market’ uptake and ensuring the viability of
the R&D products (Crowston & Howison, 2005; Hey
& Payne, 2015; Pressman & Roger, 2009; von Krogh,
2003). By adopting urban computing practices, utiliza-
tion of scientific knowledge in planning practice will be
eased; because web-based computing platforms facili-
tate rapid prototyping, development, release, sharing,
and test of SPDSS (incorporating a variety of Urban [Anal-
ysis/Simulation] Models).

1.3. Problem Statement

Although much can be said about the graphical user in-
terfaces of GIS applications, we do not focus on them;
because these interfaces are generally geared towards
manual operations. Instead our focus is on the essential

means for developing ‘geo-spatial computing workflows’.
Workflows can be as simple as routines of sequential ac-
tions ormore sophisticated procedureswith flow-control
mechanisms, which are better known as algorithms (see
Figures 1 and 2 for workflow examples). There are two
types of challenges in using the currently available GIS
desktop applications for innovative inter-disciplinary re-
search in Urban Computing applied in Urban Planning
(i.e., Design and Development of Web-Based SPDSS):

• Data-Related Challenges:

– Data-Availability: how easy is it to acquire a
relevant dataset?

– Data-Interoperability: how easy is it to
read/write datasets from/to file formats?

– Data-Mergeability: how easy is it to overlay
multiple datasets?

• Workflow-Related Challenges:

– Workflow Comprehensibility: to what extent
is the whole workflow understandable?

Figure 1. Two examples of geo-spatial data processing workflows from QGIS Processing Modeller1 (top) and ArcGIS Model
Builder2 (bottom), respectively made for calculating area of water within 25 metres of urban roads (tutorial), and finding
suitable locations for urban parks (tutorial).

1 http://gracilis.carleton.ca/CUOSGwiki/index.php/Automating_Vector_and_Raster_Workflows_using_the_Graphical_Modeler_in_QGIS#Introductions
2 http://resources.esri.com/help/9.3/ArcGISengine/java/doc/bab90fcc-320b-4b33-902d-a00afd18cfcb.htm

Urban Planning, 2018, Volume 3, Issue 1, Pages X–X 3

Figure 1: Two examples of geo-spatial data processing workflows from QGIS Processing
Modeller4 (top) and ArcGIS Model Builder5 (bottom), respectively made for cal-
culating area ofwaterwithin 25metres of urban roads (tutorial), andfinding suit-
able locations for urban parks (tutorial).

batch processing and real-time process-
ing [Hashem et al., 2015]. Considering
the real-time data processing requirement,
especially in dealing with managerial and
operational planning actions, we can con-
clude that the Dataflow Programming6 is
an appropriate paradigm for setting up
an R&D/prototyping environment [Black-
stock and Lea, 2014; Szydlo et al., 2017].
Considering that the sustainability and the
repeatability of the workflow, it is prac-
tical to adopt a modularization and stan-
dardization approach to workflow devel-
opment. Standardization is important for
reusability. Specifically, the code-blocks

4http://gracilis.carleton.ca/CUOSGwiki/
index.php/Automating_Vector_and_Raster_
Workflows_using_the_Graphical_Modeler_in_
QGIS#Introduction

5http://resources.esri.com/help/
9.3/ArcGISengine/java/doc/
bab90fcc-320b-4b33-902d-a00afd18cfcb.htm

6https://stackoverflow.com/questions/461796/
dataflow-programming-languages/2035582

(alias nodes, blocks, or subsystems) of a
workflowmust input and output data in for-
mats readable for one another. Of course,
having a visual overview of the workflow is
of high added value, as it makes the work-
flow as intuitive as a flowchart. The idea
of a visual dataflow programming language
is to represent the high-level logic of a pro-
gram/workflow as a graph of nodes, which
are blocks of (reusable/shareable) code. The
representation of the high-level logic as a
graph makes it easy to focus on the complex
big-picture for a group of developers work-
ing on a workflow. Instead of developing a
complete software applicationwith a graph-
ical user interface, a research software engi-
neer can focus on the core of the workflow,
model the workflow, test it, share it, and re-
lease it as a functional prototype.

If the workflow description language is a
(de facto) standard, the intended user does
not need to learn a new interface to inter-

5

http://gracilis.carleton.ca/CUOSGwiki/index.php/Automating_Vector_and_Raster_Workflows_using_the_Graphical_Modeler_in_QGIS#Introduction
http://gracilis.carleton.ca/CUOSGwiki/index.php/Automating_Vector_and_Raster_Workflows_using_the_Graphical_Modeler_in_QGIS#Introduction
http://gracilis.carleton.ca/CUOSGwiki/index.php/Automating_Vector_and_Raster_Workflows_using_the_Graphical_Modeler_in_QGIS#Introduction
http://gracilis.carleton.ca/CUOSGwiki/index.php/Automating_Vector_and_Raster_Workflows_using_the_Graphical_Modeler_in_QGIS#Introduction
http://resources.esri.com/help/9.3/ArcGISengine/java/doc/bab90fcc-320b-4b33-902d-a00afd18cfcb.htm
http://resources.esri.com/help/9.3/ArcGISengine/java/doc/bab90fcc-320b-4b33-902d-a00afd18cfcb.htm
http://resources.esri.com/help/9.3/ArcGISengine/java/doc/bab90fcc-320b-4b33-902d-a00afd18cfcb.htm
https://stackoverflow.com/questions/461796/dataflow-programming-languages/2035582
https://stackoverflow.com/questions/461796/dataflow-programming-languages/2035582


act with the workflow. In other words, in-
stead of focusing on optimizing a new soft-
ware application in terms of its interface
and the computational efficiency, more at-
tention can be paid to the effectiveness of
the workflow itself. In addition, if the work-
flow is also cloud-based, then it will be eas-
ier to share them and collaborate on-line in
real-time.

In short, adopting a visual cloud-based
dataflow processing language (and ecosys-
tem) brings about a few advantages:

• Automation of repetitive tasks for data
cleansing, validation, etc.;

• Informal and yet sustainable standard-
ization based on common-practices
and bottom-up emergence of workflow
patterns7;

• Sharing workflow pattern solutions in-
stead of re-inventing the wheel;

• The possibility of interdisciplinary col-
laboration;

• Ultimate modularization of workflows
based on sharing nodes/blocks of code;

• Agile development-test-release cycles;

• Promotion of Open-Source develop-
ment practices and therefore rapid
progress;

• Ensuring re-usability and repeatabil-
ity of workflow-based practices such as
spatial analyses;

• Saving time by significantly reducing
the time and effort in re-inventing in-
terfaces;

• Raising the level of comprehensibility
of analytic workflows by providing a
glass-box view of the process (as op-
posed to black-box SPDSS); and

• The possibility of public participation
in planning processes by means of
rapid development and integration of
apps (e.g. using Node-RED8, a visual
data-flow programming tool for wiring
together hardware devices, APIs and
online services, see Figure 2).

7http://www.workflowpatterns.com/
8https://nodered.org/

 

2.2 Spatial Computing Libraries

Herewe provide an overview of the require-
ments of a software application for urban
computing; and focus on the specific func-
tionalities that deal with geo-spatial data.
Geo-spatial data can be analysed in at least
five spatial forms from the most concrete to
the most abstract:

Geographical Data Models geographically
positioned points, lines, polygons, and
polyhedrons

Geometrical Data Models points, lines,
polygons, and polyhedrons (in local
coordinate systems)

Topological Data Models vertices,
edges, faces, and bodies (alge-
braic/combinatorial topology)

Graphical Data Models objects and links
(Graph Theory)

Spectral Data Models eigenvectors and
eigenvalues

The use of the last category of data models
is relatively newer than the other types of
themodels and is used formodelling the dy-
namics of diffusion flows and Markov Pro-
cesses in networks [Nourian, 2016; Nourian
et al., 2016; Volchenkov and Blanchard,
2007; Wei and Yao, 2014]. Performing
spectral analyses requires using a com-
putational linear algebra library such as
NumPy9. Generally, considering the inter-
disciplinary nature of urban computing, ev-
ident in the breadth and variety of prac-
tices mentioned in Section 1.1, we propose
that scientific and numerical computing li-
braries must be available in an ideal plat-
form for urban computing.

In Figure 3, we have shown the compu-
tational modules required to make spa-
tial analysis and spatial simulation mod-
els, which are, in other words, the essential
data-models and operations in geo-spatial

9http://www.numpy.org/

6

http://www.workflowpatterns.com/
https://nodered.org/
http://www.numpy.org/


Figure 2. Data processing workflow examples, respectively from top left, clockwise, node-RED, editable by JavaScript (pic-
ture from Boyd, 2015), QGIS Graphical Modeller8, Anaconda Orange39, and ArcGIS Model Builder10, all of which offer
Python APIs. The GIS dataflow programming environments make it easy to automate routines, share them, and use stan-
dard modules; however, the installation procedures, their domain specific nature and their UI make them much less ac-
cessible than the two all-purpose data-flow programming environments shown.

processes by means of rapid development and in-
tegration of apps (e.g., using Node-RED11, a visual
data-flow programming tool for wiring together
hardware devices, APIs and online services, see
Figure 2).

2.2. Spatial Computing Libraries

Here we provide an overview of the requirements of
a software application for urban computing; and focus
on the specific functionalities that deal with geo-spatial
data. Geo-spatial data can be analysed in at least five spa-
tial forms from the most concrete to the most abstract:

• Geographical Data Models: geographically posi-
tioned points, lines, polygons, and polyhedrons;

• Geometrical Data Models: points, lines, polygons,
and polyhedrons (in local coordinate systems);

• Topological Data Models: vertices, edges, faces,
and bodies (algebraic\combinatorial topology);

• Graphical Data Models: objects and links (Graph
Theory); and

• Spectral Data Models: eigenvectors and eigenval-
ues.

The use of the last category of data models is rela-
tively newer than the other types of the models and is
used for modelling the dynamics of diffusion flows and
Markov Processes in networks (Nourian, 2016; Nourian,
Rezvani, Sariyildiz, & van der Hoeven, 2016; Volchenkov
& Blanchard, 2007; Wei & Yao, 2014). Performing spec-
tral analyses requires using a computational linear alge-
bra library such as NumPy12. Generally, considering the
inter-disciplinary nature of urban computing, evident in
the breadth and variety of practices mentioned in Sec-
tion 1.1, we propose that scientific and numerical com-

8 https://docs.qgis.org/2.8/en/docs/user_manual/processing/modeler.html?highlight=workflow
9 https://orange.biolab.si/screenshots/
10 http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
11 https://nodered.org
12 http://www.numpy.org/

Urban Planning, 2018, Volume 3, Issue 1, Pages X–X 5

Figure 2: Data processing workflow examples, respectively from top left, clockwise, node-
RED, editable by JavaScript (picture from [Boyd, 2015]), QGIS Graphical Mod-
eller10, Anaconda Orange311, and ArcGIS Model Builder12, all of which offer
PythonAPIs. TheGISdataflowprogramming environmentsmake it easy to auto-
mate routines, share them, and use standard modules; however, the installation
procedures, their domain specific nature and their UI make them much less ac-
cessible than the two all-purpose data-flow programming environments shown.

data processing for urban computing. Cen-
tral to this schema are the three distinct
ways of modelling space as:

Manifolds 13 (often approximated as sim-
plicial complexes)

Grids (a.k.a. 2D/3D raster data models, see
Zlatanova et al. [2016])

Networks (a.k.a. [directed/weighted]
graphs)

10https://docs.qgis.org/2.8/en/docs/user_
manual/processing/modeler.html?highlight=
workflow

11https://orange.biolab.si/screenshots/
12http://pro.arcgis.com/en/pro-app/help/

analysis/geoprocessing/modelbuilder/
what-is-modelbuilder-.htm

13http://mathworld.wolfram.com/Manifold.html

In Table 1, we have categorized the specif-
ically required functionalities for spatial
computing as to the previously introduced
fields of application of urban computing.
There we have shown an overview of exem-
plary types of analysis or simulationmodels
for planning support workflows, their typ-
ical goals and required data models related
to the previously listed areas of applications
of urban computing.

2.3 Internet ofThings APIs

Internet of Things (IoT) for smart environ-
ment is defined by Gubbi et al. [2013] as fol-
lows:

“Interconnection of sensing and ac-

7

https://docs.qgis.org/2.8/en/docs/user_manual/processing/modeler.html?highlight=workflow
https://docs.qgis.org/2.8/en/docs/user_manual/processing/modeler.html?highlight=workflow
https://docs.qgis.org/2.8/en/docs/user_manual/processing/modeler.html?highlight=workflow
https://orange.biolab.si/screenshots/
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://mathworld.wolfram.com/Manifold.html


Table 1: A list of typical goals, required spatial data types, and analytic (mathematical) or
simulation (computational) modelling approaches of urban computing

Goal Typically Required
Spatial Data Models

3D? Exemplary / Poten-
tially Applicable Mod-
elling Methodologies

[Land-Use &]
Transport Mod-
elling

understanding
potentials (ac-
cessibility) and
predicting the
dynamics of mo-
bility [& land-use
change]

road network lines,
land-polygons,
cellular phone
network data, GPS
trajectories, etc.

po
ss

ib
ly

be
n
efi

ci
al

Discrete-Choice Mod-
elling, Gravity Models,
Agent-Based Mod-
elling (ABM), Cellu-
lar Automata (CA),
Markov Chains, Oper-
ations Research

Sociometrics &
Econometrics

understanding
potentials, and
dynamics of so-
cial and economic
interactions

demographic data
attributed to build-
ing, block, district,
city, or region
polygons, crowd-
sourced geo-tagged
data points, etc.

pr
ob

ab
ly

un
n
ec

es
sa

ry

Markov Chains,
Markov Chain Monte
Carlo (MCMC), Net-
work Centrality, Ar-
tificial Intelligence,
Statistical Modelling,
Predictive Analytics

Criminology &
Crime Prevention

understanding
potentials, and
dynamics of crime
in cities

road-networks,
demographics
attributed to build-
ing, & city poly-
gons, geo-tagged
(positioned) spatial
crime data, etc.

po
ss

ib
ly

be
n
efi

ci
al

Statistical Modelling,
Predictive Analytics,
Agent-Based Mod-
elling (ABM), Cellu-
lar Automata (CA),
Markov Chains, Monte
Carlo Simulation

Energy Modelling understanding
potentials, and
dynamics of en-
ergy use and [re-
newable] energy
generation

3D polyhedral
models of build-
ings, point clouds

n
ec

es
sa

ry

Solar Irradiance Sim-
ulation (requiring
geometric intersec-
tions), Computational
Fluid Dynamics (CFD,
requiring raster and
vector fields and dif-
ferential operators),
Monte Carlo Methods

Environmental
Modelling

understanding
potentials, and
dynamics of envi-
ronmental threats
& opportunities
(air pollution,
noise, vegetation,
etc.)

aerial photos, point
clouds, vector
maps, raster maps

n
ec

es
sa

ry

Analytic Models and
Simulation Models
(e.g. CA and ABM),
Complex System Dy-
namics, Hydrology,
Complex Adaptive
Systems

8



Pixel

Voxel

Geographical Mapping Opera!ons

CRS Transforma!ons

Spa!al Query

Spa!al Join

Raster Map Algebra

Vector Feature Intersec!on

Spa!al Overlay

Scalar Fields

Raster 2D

Raster 3D

Vector 2D

Vector Fields

Vector 3D

Vector
Grid 2D

Vector
Grid 3D

Grid Space

Line

Geometrical

Point

Polygon

Polyhedron

Edge

Topological

Vertex

Face

Body

Object Data Models

1D Simplical
Complex

Complexes

2D Simplical
Complex

3D Simplical
Complex

Manifold Space

Adjacency
List

Graphical

Adjacency
Matrix

Network Space

Figure 3. Essential mapping operations and data models required for geo-spatial computing.

Interconnection of sensing and actuating devices pro-
viding the ability to share information across plat-
forms through a unified framework, developing a
common operating picture for enabling innovative ap-
plications. This is achieved by seamless large scale
sensing, data analytics and information representa-
tion using cutting edge ubiquitous sensing and cloud
computing.

IoT applications can be used for acquisition of data from
sensors. They can also be used to directly control some
dynamics of cities such as traffic lights. The devices
needed for enabling control of physical things are called
actuators or actuating devices. The electronic devices
that can connect sensors and actuators to internet could
be micro-controllers or micro-computers, some of which
are open devices popular among amateur enthusiasts
such as Arduino14 and Raspberry Pi15. The capabilities of
a computing technology for interactingwith such devices
can be a key factor inmaking itmore pervasive among en-
thusiast makers and academic software developers, due
to the accessibility of such devices in terms of low prices
and ease of learning.

Operational planning actions can especially benefit
from actuators and sensors in urban environments. For
instance, traffic lights can be actuated (controlled) by a
controller systemconnected tomanyof both sensors and
actuators in real-times (thus having a real-time overview
of a city) continuously analysing the data coming from
sensors sensing the volume of traffic. In other words,
IoT devices can facilitate (real-time) operational plan-
ning actions. With regards to the IoT potentials for Ur-
ban Computing, it is logical to assume that Web-based
GIS services (alias webmapping) are necessary for urban
computing. In addition, moving all workflows from desk-
top applications to web-based platforms makes it eas-

ier to share (standardized) workflows and collaborate on
them. In the next section we focus on the potentials of
four programming languages for setting up web-based
computational workflows for geo-spatial data analytics
and simulations.

3. Promising Technologies for Urban Computing

We have identified a few promising technologies for ur-
ban computing, based on Python, Java, JavaScript and
R-Spatial languages. From a practical perspective, we
consider their potential in terms of ease of prototyping,
geo-spatial mapping, 3D visualization, handling big data,
and numerical computing (computational linear algebra).
From amathematical/computational point of view, all re-
quiredmodels mentioned in Figure 3 can be rather easily
developed on top of a robust computational linear alge-
bra library. Apart from numerical capabilities, we argue
that for a research software engineer, the visualization
and mapping capabilities are essential to consider while
making technical choices.

3.1. Python

This programming language is used for example in the
Geoda-Web16, that is the web-based version of CAST17

with its spatial analysis library PySal18 seems to be a
promising open-source project. Python is the de facto
language of open-source development in the field of Geo
information science, e.g., in QGIS, Rasterio19 and Fiona20.
Python provides a wide range of libraries for numerical
and scientific computing such as NumPy, SciPy and Pan-
das, which facilitates development. Interactive develop-
ment environments such as IPython (Interactive Python)
(Perez & Granger, 2007) and web-based Jupyter note-
books (Shen, 2014) seems to be a promising technology

14 https://www.arduino.cc/
15 https://www.raspberrypi.org
16 http://spatial.uchicago.edu/geoda-web
17 https://geodacenter.github.io/CAST/
18 http://pysal.readthedocs.io/en/latest/users/tutorials/dynamics.html
19 https://github.com/mapbox/rasterio
20 https://github.com/Toblerity/Fiona

Urban Planning, 2018, Volume 3, Issue 1, Pages X–X 7

Figure 3: Essential mapping operations and data models required for geo-spatial comput-
ing. In Table 1, we have categorized the specifically required functionalities for
spatial computing as to the previously introduced fields of application of urban
computing. There we have shown an overview of exemplary types of analysis or
simulation models for planning support workflows, their typical goals and re-
quired data models related to the previously listed areas of applications of urban
computing.

tuating devices providing the ability
to share information across platforms
through a unified framework, develop-
ing a common operating picture for
enabling innovative applications. This
is achieved by seamless large scale
sensing, data analytics and informa-
tion representation using cutting edge
ubiquitous sensing and cloud comput-
ing.”

Internet of Things (IoT) applications can
be used for acquisition of data from sen-
sors. They can also be used to directly con-
trol some dynamics of cities such as traf-
fic lights. The devices needed for enabling
control of physical things are called actua-
tors or actuating devices. The electronic de-
vices that can connect sensors and actuators
to internet could be micro-controllers or
micro-computers, some of which are open
devices popular among amateur enthusi-
asts such as Arduino14 and Raspberry Pi15.
The capabilities of a computing technol-
ogy for interacting with such devices can
be a key factor in making it more per-
vasive among enthusiast makers and aca-
demic software developers, due to the ac-
cessibility of such devices in terms of low
prices and ease of learning.

14https://www.arduino.cc/
15https://www.raspberrypi.org/

Operational planning actions can espe-
cially benefit from actuators and sensors in
urban environments. For instance, traffic
lights can be actuated (controlled) by a con-
troller system connected to many of both
sensors and actuators in real-times (thus
having a real-time overview of a city) con-
tinuously analysing the data coming from
sensors sensing the volume of traffic. In
other words, IoT devices can facilitate (real-
time) operational planning actions. With
regards to the IoT potentials for Urban
Computing, it is logical to assume thatWeb-
based GIS services (alias web mapping) are
necessary for urban computing. In addi-
tion, moving all workflows from desktop
applications to web-based platforms makes
it easier to share (standardized) workflows
and collaborate on them. In the next sec-
tion we focus on the potentials of three
programming languages for setting up web-
based computational workflows for geo-
spatial data analytics and simulations.

3 Promising Technologies for
Urban Computing

We have identified a few promising tech-
nologies for urban computing, based on
Python, Java and JavaScript languages.

9

https://www.arduino.cc/
https://www.raspberrypi.org/


From a practical perspective, we consider
their potential in terms of ease of prototyp-
ing, geo-spatial mapping, 3D visualization,
handling big data, and numerical comput-
ing (computational linear algebra). From
a mathematical/computational point of
view, all required models mentioned in
Figure 3 can be rather easily developed on
top of a robust computational linear algebra
library. Apart from numerical capabili-
ties, we argue that for a research software
engineer, the visualization and mapping
capabilities are essential to consider while
making technical choices.

Python This programming language is
used for example in the Geoda-Web16,
that is the web-based version of CAST17

with its spatial analysis library PySal18
seems to be a promising open-source
project. Python is the de facto lan-
guage of open-source development in
the field of Geo information science,
e.g. in QGIS, Rasterio19 and Fiona20.
Python provides a wide range of li-
braries for numerical and scientific
computing such as NumPy, SciPy and
Pandas, which facilitates development.
Interactive development environ-
ments such as IPython (Interactive
Python) [Perez and Granger, 2007] and
web-based Jupyter notebooks [Shen,
2014] seems to be a promising tech-
nology for prototyping and interactive
computing. Some universities have
started facilitating the use of Jupyter
interactive documents as a common
means of exchanging reproducible re-
search products, e.g. on JupyterHub21,
NBViewer22, or SURF-sara [Templon
and Bot, 2016] provide hosting and
viewing services for sharing Jupyter
notebooks. A few options which stand
out for simple 3D visualization in
Python are: MatPlotLib23, Mayavi24 or

16http://spatial.uchicago.edu/geoda-web
17https://geodacenter.github.io/CAST/
18http://pysal.readthedocs.io/en/latest/users/

tutorials/dynamics.html
19https://github.com/mapbox/rasterio
20https://github.com/Toblerity/Fiona
21https://github.com/jupyterhub
22https://nbviewer.jupyter.org/
23https://matplotlib.org/index.html
24http://docs.enthought.com/mayavi/mayavi/

VisPy25, while more high-performance
applications can be built in OpenGL
using PyOpenGL26. Web mapping
in Python is possible by means of
GeoDjango27.

Java This programming language is used
for example in a web-GIS for environ-
mental analyses by Zavala-Romero et al.
[2014]. The FIWARE platform [Za-
hariadis et al., 2014] offers an “Appli-
cation MashUp Generic Enabler”, i.e.
the WireCloud28 for visual program-
ming and prototyping web applica-
tions. Another flow-based program-
ming environment for Java develop-
ment supported by Apache Hadoop29

is NiFi30. Java can also provide for in-
teractivity and 3D visualization. The
OpenGeoSpatial foundation (aka OS-
Geo31) also provides an open source
GIS toolkit for Java called GeoTools32.
Considering the might of Hadoop for
big data analytics and the support of
OSGeo Java seems to be a fertile lan-
guage for urban computing. One op-
tion for 3D visualization in Java is
JogAmp33, while a more advanced op-
tion is JOGL34.

JavaScript : This programming language is
used for example in OpenLayers35 and
Carto36 SaaS (Software as a Service, for-
merly known as CartoDB37) to provide
user-friendly Web-GIS tools, which can
moreover be deployed as desktop ap-
plications with tools like Electron38.
However, neither of them supports
explicit workflow development. The

25http://vispy.org/index.html
26http://pyopengl.sourceforge.net
27https://docs.djangoproject.com/en/dev/ref/

contrib/gis/
28https://catalogue.fiware.org/enablers/

application-mashup-wirecloud
29http://hadoop.apache.org/
30https://hortonworks.com/apache/nifi/
31http://www.osgeo.org/
32http://www.geotools.org/
33http://jogamp.org/
34http://jogamp.org/jogl/www/
35http://openlayers.org/
36https://carto.com/blog/

how-to-use-spatial-analysis-in-your-site-planning-process/
37https://cartodb.github.io/training/

intermediate/columbia-sipa.html
38https://electronjs.org

10

 http://spatial.uchicago.edu/geoda-web
https://geodacenter.github.io/CAST/
http://pysal.readthedocs.io/en/latest/users/tutorials/dynamics.html
http://pysal.readthedocs.io/en/latest/users/tutorials/dynamics.html
https://github.com/mapbox/rasterio
https://github.com/Toblerity/Fiona
https://github.com/jupyterhub
https://nbviewer.jupyter.org/
https://matplotlib.org/index.html
http://docs.enthought.com/mayavi/mayavi/
http://vispy.org/index.html
http://pyopengl.sourceforge.net
https://docs.djangoproject.com/en/dev/ref/contrib/gis/
https://docs.djangoproject.com/en/dev/ref/contrib/gis/
https://catalogue.fiware.org/enablers/application-mashup-wirecloud
https://catalogue.fiware.org/enablers/application-mashup-wirecloud
http://hadoop.apache.org/
https://hortonworks.com/apache/nifi/
http://www.osgeo.org/
http://www.geotools.org/
http://jogamp.org/
http://jogamp.org/jogl/www/
http://openlayers.org/
https://carto.com/blog/how-to-use-spatial-analysis-in-your-site-planning-process/
https://carto.com/blog/how-to-use-spatial-analysis-in-your-site-planning-process/
https://cartodb.github.io/training/intermediate/columbia-sipa.html
https://cartodb.github.io/training/intermediate/columbia-sipa.html
https://electronjs.org


other promising JavaScript platform for
spatial analysis is MapBox39, which of-
fers access to the Turf library40. Node-
RED [Blackstock and Lea, 2014], based
on IBM BlueMix (a.k.a. IBM Cloud)41,
seems to be a promising technology in
terms of visual programming and the
ease of prototyping Internet of Things
(IoT) applications. Node-RED is dis-
tributed as part of an open-source soft-
ware ecosystem called node package
manager or NPM42, that is managed
by the Node.js43 foundation. Interac-
tive visualization in web-browsers is
well supported in JavaScript, and ar-
guably more advanced than compara-
ble libraries in Python, thanks to the
D3.js library, by Mike Bostock44 [Bo-
stock et al., 2011]. In addition to D3 for
interactive graphics, there is three.js45
for WebGL rendering in the browser.
Other JavaScript libraries which should
not go unnoticed for urban computing
are Leaflet46 (mobile-friendly interac-
tive maps providing access to OSM47)
and Cesium48, the latter providing for
quality 3D visualization.

R Spatial : R is a programming language
that is part of the R Project for Sta-
tistical Computing49, which includes
a complete set of vector algebra oper-
ations and functions to create graph-
ics such as plots. The statistical func-
tions in R are much more complete
than those available in other languages
(e.g. Python). The R Spatial50 function-
ality includes the more relevant parts
for urban computing, such as represen-
tations for raster and vector data, deal-
ing with coordinate systems and cre-
ating 2D maps. Spatial.ly51 shows sev-

39https://www.mapbox.com/help/
how-analysis-works/

40http://turfjs.org/
41https://www.ibm.com/cloud/
42https://www.npmjs.com/
43https://nodejs.org/en/
44https://bl.ocks.org/mbostock
45https://threejs.org/
46http://leafletjs.com/
47http://www.openstreetmap.org
48https://cesiumjs.org
49https://www.r-project.org/
50http://www.rspatial.org
51http://spatial.ly/r/

eral examples of the more advances vi-
sualisation functions in R, including
3D visualisation and animated globes.
Shiny52 is a tool to build web apps with
R. There are also other ways in which
web sessions of R can be deployed, such
as with Rweb53 and rApache54. Similar
to Python, Jupyter notebooks can also
be used thanks to the IRkernel55.

4 Conclusion

In response to this question: “What are
the essential means for urban computing?”,
we have provided an overview of specific
data models and functionalities required
in dealing with geo-spatial data processing
(spatial analysis and spatial simulation), re-
ferred to as spatial computing in Figure 3
and Table 1, which we deem as the essen-
tial means for urban computing. We have
considered three programming languages
and their promising aspects for urban com-
puting. They all come with their own ad-
vantages and shortcomings. It is difficult
(and perhaps futile) to point to one of these
languages as the most promising language
for urban computing. We stress that these
technologies arenotmutually exclusive, but
they can (in some cases) be used in com-
bination with each other. For example, a
web-based GIS system could use a Python
backend with Flask56 and a JavaScript fron-
tend with a 3D visualiser based on Cesium,
or a processing pipeline could use Python
to fetch data from the web using a tool like
BeautifulSoup57, use Java to parse and pro-
cess the data, use R to do statistical analy-
sis on it, and then visualize the results in a
browser using JavaScript. However, it can be
said that each of them is stronger in a cer-
tain direction, respectively: Java in server-
side tools, R Spatial in statistical and math-
ematical operations, Python in the avail-
ability of GIS tools, and JavaScript in IoT

52https://shiny.rstudio.com
53http://pbil.univ-lyon1.fr/Rweb/
54http://rapache.net
55https://irkernel.github.io
56http://flask.pocoo.org
57https://www.crummy.com/software/

BeautifulSoup/

11

https://www.mapbox.com/help/how-analysis-works/
https://www.mapbox.com/help/how-analysis-works/
http://turfjs.org/
https://www.ibm.com/cloud/
https://www.npmjs.com/
https://nodejs.org/en/
https://bl.ocks.org/mbostock
https://threejs.org/
http://leafletjs.com/
http://www.openstreetmap.org
https://cesiumjs.org
https://www.r-project.org/
http://www.rspatial.org
http://spatial.ly/r/
https://shiny.rstudio.com
http://pbil.univ-lyon1.fr/Rweb/
http://rapache.net
https://irkernel.github.io
http://flask.pocoo.org
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/


and web visualisation. Their respective
strengths can be combined by using the best
language for each task.

In addition, it is perhaps noteworthy
to mention that in the related field of
computer-aided design (CAD), there is an
active movement towards development of
visual programming languages and con-
necting them together by means of a cloud
platform, e.g. Flux58, initially sponsored by
Google59. Considering the attractiveness of
aligning urban design and urban planning
actions, it would be ideal to work in an
environment where planners, designers,
and research software engineers could
all work and share their workflows, for
example, a 3D city modelling SaaS such as
Möbius60 [Janssen et al., 2016], Tygron61

or CityZenith62 could potentially become
such a shared development environment.

Acknowledgements

We thank Dr. George Jennings for kindly
performing the final proofreading of this
paper. We are grateful for the meticu-
lous comments of the anonymous review-
ers. KenArroyoOhori has received funding
from the European Research Council (ERC)
under the European Union’s Horizon 2020
research and innovation programme (grant
agreement No 677312 UMnD).

References
M. Batty. Urban Modeling, pages 51–58. Else-

vier, 2009.

M. Batty, K. W. Axhausen, F. Giannotti,
A. Pozdnoukhov, A. Bazzani, M. Wachow-
icz, G. Ouzounis, and Y. Portugali. Smart
cities of the future. The European Phys-
ical Journal Special Topics, 214(1):481–518,
2012.

58https://flux.io/
59https://bimandintegrateddesign.com/2014/10/

24/googles-bim-busting-app-for-design-and-construction/
60https://phtj.github.io/mobius/
61http://www.tygron.com/
62http://www.cityzenith.com/smartworld

Michael Batty. Planning support systems:
progress, predictions, and speculations
on the shape of things to come. In Plan-
ning Support Systems for Urban and Regional
Analysis, 2007.

Michael Batty and Paul M. Torrens. Mod-
elling complexity : The limits to predic-
tion. Cybergeo: European Journal of Geogra-
phy, 2001.

Michael Blackstock and Rodger Lea. Toward
a distributed data flow platform for the
web of things (distributed node-red). In
WoT ’14 Proceedings of the 5th International
Workshop on Web of Things, pages 34–39.
ACM, 2014.

Andrey Bogomolov, Bruno Lepri, Jacopo
Staiano, Nuria Oliver, Fabio Pianesi, and
Alex Pentland. Once upon a crime: To-
wards crime prediction fromdemograph-
ics and mobile data. In ICMI ’14 Pro-
ceedings of the 16th International Conference
on Multimodal Interaction, pages 427–434.
ACM, 2014.

Michael Bostock, Vadim Ogievetsky, and
Jeffrey Heer. D data-driven docu-
ments. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2301–2309,
2011.

Bryan C. Boyd. Build a connected-car iot
app with geospatial analytics. Available at
https://www.ibm.com/developerworks/
library/mo-connectedcar-app/index.
html, 2015.

Helen Couclelis. “where has the future
gone?” rethinking the role of integrated
land-use models in spatial planning. En-
vironment and Planning A: Economy and
Space, 37(8):1353–1371, 2005.

Kevin Crowston and James Howison. The
social structure of free and open source
software development. First Monday, 10
(2), 2005.

Marcus Foth, Laura Forlano, Christine
Satchell, and Martin Gibbs. From Social
Butterfly to Engaged Citizen: Urban Infor-
matics, Social Media, Ubiquitous Comput-
ing, and Mobile Technology to Support Citi-
zen Engagement. MIT Press, 2011a.

12

https://flux.io/
https://bimandintegrateddesign.com/2014/10/24/googles-bim-busting-app-for-design-and-construction/
https://bimandintegrateddesign.com/2014/10/24/googles-bim-busting-app-for-design-and-construction/
https://phtj.github.io/mobius/
http://www.tygron.com/
http://www.cityzenith.com/smartworld
https://www.ibm.com/developerworks/library/mo-connectedcar-app/index.html
https://www.ibm.com/developerworks/library/mo-connectedcar-app/index.html
https://www.ibm.com/developerworks/library/mo-connectedcar-app/index.html


Marcus Foth, JazHee jeongChoi, andChris-
tine Satchell. Urban informatics. In
CSCW ’11 Proceedings of the ACM 2011 con-
ference on Computer supported cooperative
work, pages 1–8. ACM, 2011b.

Stan Geertman and John Stillwell. Plan-
ning support systems best practice and new
methods, volume 95 of GeoJournal Library.
Springer Netherlands, 2009.

J. Gubbi, R. Buyya, S. Marusic, and
M. Palaniswami. Internet of things
(iot): A vision, architectural elements,
and future directions. Future generation
computer systems, 29(7):1645–1660, 2013.

Britton Harris and Michael Batty. Loca-
tional models, geographic information
and planning support systems. Journal
of Planning Education and Research, 12(3):
184–198, 1993.

Ibrahim Abaker Targio Hashem, Ibrar
Yaqoob, Nor Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, and Samee Ul-
lah Khan. The rise of “big data” on cloud
computing: Review and open research
issues. Information Systems, 47:98–115,
2015.

Tony Hey and Mike C. Payne. Open science
decoded. Nature Physics, 11:367–369, 2015.

Patrick Janssen, Ruize Li, and Akshata Mo-
hanty. MÖbius, a parametric modeller
for the web. In S. Chien, S. Choo, M. A.
Schnabel, W. Nakapan, M. J. Kim, and
S. Roudavski, editors, Living Systems and
Micro-Utopias: Towards Continuous Design-
ing, Proceedings of the 21st International
Conference of the Association for Computer-
Aided Architectural Design Research in Asia
CAADRIA 2016, pages 157–166. TheAssoci-
ation for Computer-Aided Architectural
Design Research in Asia (CAADRIA),
2016.

James Keirstead, Mark Jennings, and Aruna
Sivakumar. A review of urban energy sys-
tem models: Approaches, challenges and
opportunities. Renewable and Sustainable
Energy Reviews, 16(6):3847–3866, 2012.

Tim Kindberg, Matthew Chalmers, and Eric
Paulos. Guest editors’ introduction: Ur-
ban computing. IEEE Pervasive Computing,
6(3):18–20, aug 2007.

Daphne Lopez, M. Gunasekaran, B. Senthil
Murugan, Harpreet Kaur, and KajaM. Ab-
bas. Spatial big data analytics of influenza
epidemic in vellore, india. In 2014 IEEE
International Conference on Big Data. IEEE,
2015.

P. Nourian, S. Rezvani, I. S. Sariyildiz, and
F. D. van der Hoeven. Spectral modelling
for spatial network analysis. In Ramtin
Attar, Angelos Chronis, Sean Hanna, and
Michela Turrin, editors, Proceedings of
the Symposium on Simulation for Archi-
tecture and Urban Design (simAUD 2016).
SimAUD, 2016.

Pirouz Nourian. Configraphics: Graph The-
oretical Methods for Design and Analysis of
Spatial Configurations. PhD thesis, Delft
University of Technology, 2016.

Fernando Perez and Brian E. Granger.
Ipython: A system for interactive scien-
tific computing. Computing in Science &
Engineering, 9(3), 2007.

Bianica Pires and Andrew T. Crooks. Mod-
eling the emergence of riots: A geosimu-
lation approach. Computers, Environment
and Urban Systems, 61(A):66–80, 2017.

Roger S. Pressman. The manifesto for
agile software development. Available
at http://nlp.chonbuk.ac.kr/SE/ch05.
pdf, 2009.

Pamela J. Robinson and Peter A. Johnson.
Civic hackathons: New terrain for local
government-citizen interaction? Urban
Planning, 1(2), 2016.

Jingbo Shang, Yu Zheng, Wenzhu Tong, Eric
Chang, and Yong Yu. Inferring gas con-
sumption andpollution emission of vehi-
cles throughout a city. In KDD ’14 Proceed-
ings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data
mining, pages 1027–1036. ACM, 2014.

Helen Shen. Interactive notebooks: Sharing
the code. Nature, 515:151–152, nov 2014.

Ana Simão, Paul J.Densham, and
Mordechai (Muki) Haklay. Web-based
gis for collaborative planning and public
participation: An application to the
strategic planning of wind farm sites.

13

http://nlp.chonbuk.ac.kr/SE/ch05.pdf
http://nlp.chonbuk.ac.kr/SE/ch05.pdf


Journal of Environmental Management, 90
(6):2027–2040, 2009.

Tomasz Szydlo, Robert Brzoza-Woch,
Joanna Sendorek, Mateusz Windak, and
Chris Gniady. Flow-based programming
for iot leveraging fog computing. In IEEE
26th International Conference on Enabling
Technologies: Infrastructure for Collabo-
rative Enterprises (WETICE), 2017. IEEE,
2017.

Jeff Templon and Jan Bot. The dutch na-
tional e-infrastructure for research. In In-
ternational Symposium on Grids and Clouds
(ISGC) 2016. Proceedings of Science, 2016.

Matthew Tenney and Renee Sieber. Data-
driven participation: Algorithms, cities,
citizens, and corporate control. Urban
Planning, 1(2), 2016.

Upkar Varshney. Pervasive healthcare
and wireless health monitoring. Mobile
Networks and Applications, 12(2–3):113–127,
2007.

D. Volchenkov and Ph. Blanchard. Random
walks along the streets and canals in com-
pact cities: Spectral analysis, dynamical
modularity, information, and statistical
mechanics. Physical Review E, 75(2), 2007.

G. von Krogh. Open-source software.
MIT Sloan Management Review, 44(3):14–
18, 2003.

Xuebin Wei and Xiaobai A. Yao. The ran-
dom walk value for ranking spatial char-
acteristics in road networks. Geographical
Analysis, 46(4):411–434, 2014.

Theodore Zahariadis, Andreas Papadakis,
Federico Alvarez, Jose Gonzalez, Fer-
nando Lopez, Federico Facca, and Yahya

Al-Hazmi. Fiware lab: Managing re-
sources and services in a cloud feder-
ation supporting future internet appli-
cations. In IEEE/ACM 7th International
Conference on Utility and Cloud Computing
(UCC), 2014. IEEE, 2014.

Olmo Zavala-Romero, Arsalan Ahmed,
Eric P. Chassignet, Jorge Zavala-Hidalgo,
Agustin Fernández Eguiarte, and Anke
Meyer-Baese. An open source java web
application to build self-contained web
gis sites. Environmental Modelling &
Software, 62:210–220, 2014.

Yu Zheng, Yanchi Liu, Jing Yuan, and Xing
Xie. Urban computing with taxicabs. In
UbiComp ’11 Proceedings of the 13th interna-
tional conference on Ubiquitous computing,
pages 89–98. ACM, 2011.

Yu Zheng, Furui Liu, and Hsun-Ping Hsieh.
U-air: when urban air quality inference
meets big data. In KDD ’13 Proceedings of
the 19th ACM SIGKDD international confer-
ence on Knowledge discovery and data min-
ing, pages 1436–1444. ACM, 2013.

Yu Zheng, Licia Capra, Ouri Wolfson, and
Hai Yang. Urban computing: Concepts,
methodologies, and applications. ACM
Transactions on Intelligent Systems and Tech-
nology (TIST) - Special Section on Urban
Computing, 5(3), 2014.

S. Zlatanova, P. Nourian, R. Gonçalves, and
A. V. Vo. Towards 3d raster gis: on devel-
oping a raster engine for spatial dbms. In
ISPRS WG IV/2 Workshop: Global Geospa-
tial Information and High Resolution Global
Land Cover/Land Use Mapping, 2016.

14


	Introduction
	What is Urban Computing?
	Why Is Urban Computing needed in Urban Planning?
	Problem Statement

	What Do We Need for Urban Computing?
	Visual Dataflow Programming
	Spatial Computing Libraries
	Internet of Things APIs

	Promising Technologies for Urban Computing
	Conclusion

