GeoBIM project

Final report

10 January, 2018

3
J TUDelft I
3Dgeoinfo U/e

Ken Arroyo Ohori Thomas Krijnen
Abdoulaye Diakité

Hugo Ledoux

Jantien Stoter

Funding organisations:

A =Ny | 4 v kadaster <
Y 725855 DenHaa m S %
Loket N\ " 9 \ 594 Mi]nix(tmvnnlnﬂu:uu(murtnmilleu
REC

L vror i | GEONOVUM Gemeente Rotterdam

Project participants:

Delft University of Technology

Eindhoven University of Technology
City of The Hague

City of Rotterdam

Joris Goos

Rijkswaterstaat

Kadaster

BIM Loket

Geonovum

Ken Arroyo Ohori
Abdoulaye Diakité
Hugo Ledoux
Jantien Stoter
Thomas Krijnen

Edward de Wit
Jeroen Schilleman

Louis Smit

Herman Winkels

Marc Post
Jantien Stoter

Dik Spekkink

Friso Penninga
Jantien Stoter

contents

1 Motivation 4
2 CityGMLand IFC 6
21 CityGML e 6
22 IFC . o 7
3 Previous integration efforts S
4 'The GeoBIM project 1
41 Sampledata. 11
4.2 Initial methodology 13
4.3 Partial results and issues identified with the initial methodology 14
4.4 Finalmethodology 18
4.5 Partial results and issues identified with the final methodology . 19
5 A proposed set of IFC modelling guidelines 20
5.1 Othersourcesofguidelines 21
5.2 Georeferencing 21
5.3 Valid volumetricobjects, 23
5.4 No self-intersections or intersections between objects 24
5.5 Forming enclosed spaces that are also modelled as IfcSpaces ... 25
5.6 Consistent use of the most specific entities possible 25

6 Conclusions 26

1 Motivation

Geographic information systems (GIS) have long been used to model the envi-
ronment and to perform 2D spatial analyses of large areas. However, with the
increasing availability of computing power, advanced data acquisition meth-
ods, and automated workflows that generate detailed 3D data, GIS models
have become increasingly detailed and started to contain models of individual
buildings—the traditional domain of building information modelling (BIM).

At the same time, the increase in computing power and the availability of bet-
ter software have enabled BIM methodologies to move to the mainstream, dis-
rupting more traditional building design platforms based on 2D CAD draw-
ings. As users of BIM software want to incorporate the surrounding features
into their workflow, it is only logical that the BIM domain is currently enhanc-
ing its standards to support environmental information such as infrastructure
and that BIM users turn to existing GIS datasets containing environmental in-
formation. Both domains are thus now overlapping, increasingly modelling
the same objects, even if the data is represented and stored in rather different
ways.

While the GIS and the BIM domains clearly overlap when the modelling of
cities is concerned, each domain retains its own focus and has its own charac-
teristics. The BIM domain focuses on information about the design and con-
struction of building sites, and thus has very detailed and semantically rich
information about all the physical elements that comprise an individual build-
ing as it is designed or built. Meanwhile, GIS describe information about the
environment as captured at different points in time, thus having less detailed
but regularly updated datasets covering wide regions.

Due to the overlap in the features modelled in both domains as well as their dif-
fering strengths and weaknesses, it is widely acknowledged that the integration
of data from both domains is beneficial and a crucial step forward for future 3D
city modelling. This integration can avoid unnecessary efforts in redundant
modelling and allow for new data flows in both directions and new applica-
tions. In this way, more detailed BIM data can feed more general GIS data and
GIS data can provide the context that is usually missing in BIM data. By pursu-
ing the integration of GIS and BIM data, many new possibilities appear: with
contextual GIS information, BIM methodologies can be better applied to in-
frastructural works; more detailed 3D city models can be built by reusing BIM
data; smart city concepts can perform integrated reasoning on terrain, build-
ings and city infrastructure; and spatial analyses can support multiple levels of
detail and the complete life cycles of objects.

Yet, the disciplines of GIS and BIM are disconnected by their modelling
paradigms, software tools and open standards—respectively CityGML for GIS
(Section 2.1) and IFC for BIM (Section 2.2). Consequently, GIS and BIM datasets

differ fundamentally with respect to their semantics, geometry and level of
detail, and because of the different modelling approach of both, there is not
one optimal nor uniform conversion between the information models. Even
as researchers and practitioners have studied how to best share information
between BIM and GIS and how to address all the differences from different
perspectives (Section 3), it is still very hard (if not impossible) to share 3D in-
formation among different users throughout the life cycle of urban and envi-
ronmental processes, i.e. from plan, design and construction to maintenance.
Moreover, most of the research so far has focused on the semantic aspects of
GIS-BIM integration (e.g. mapping equivalent types), leaving the difficult task
of geometric processing on the background.

In view of these integration problems, in the beginning of 2017, we started
the GeoBIM project® (Section 4). The project is a collaboration of two re-
search groups on BIM and 3D GIS (Technical universities of Eindhoven respec-
tively Delft), the two respective national standardisation bodies (BIM Loket and
Geonovum) and several users who have a high interest in closer BIM/GIS in-
tegration, i.e. Rijkswaterstaat, Kadaster and the cities of Den Haag and Rotter-
dam.

In this project we planned to work on methodologies to process complex IFC
and CityGML models concurrently and in an automated fashion. However,
since complex architectural models are available mostly in IFC, we prioritised
using these models as our input with the aim of creating an interface that could
do operations such as performing automated tests on them and converting
them to CityGML LOD 3. We created such an interface based on IfcOpenShell?
and CGAL3, a pair of libraries respectively used to process BIM and GIS mod-
els. If time allowed, we planned to later work on processing complex CityGML
models, such as by performing automated conversions to IFC. However, this
was not possible given the time constraints of the project.

In this report we present the results of the project, which are mixed. On one
hand, we found a series of errors that seem to be pervasive in IFC models and
which make automated processing of complex architectural models very dif-
ficult, and since fully dealing with such errors would require automatic repair
algorithms, a complete working interface could unfortunately not be developed
within the timeframe of the GeoBIM project. However, we took the opportu-
nity to look into these errors and converted them into a set of recommended
guidelines that should enable the automated processing of IFC models (Sec-
tion 5). After a further explanation of the two standards CityGML and IFC in
Section 2, we describe the objectives, methodology and findings of our GeoBIM
project in Section 4. In Section 5 we describe the iFC modelling guidelines to

*https://3d.bk.tudelft.nl/projects/geobim/
2http://ifcopenshell.org
3http://www.cgal.org

https://3d.bk.tudelft.nl/projects/geobim/
http://ifcopenshell.org
http://www.cgal.org

better facilitate automated conversion from IFC to CityGML. We finish with
our conclusions from this project in Section 6.

2 CityGML and IFC

Due to a wider availability of information, ease of analysis and for pragmatic
reasons, the studies on the exchange of BIM and GIS data often focus on the
two most prominent open standards in the two domains: the OGC standard
CityGML for the (3D) GIS domain [Open Geospatial Consortium, 2012] (Sec-
tion 2.1), and the Industry Foundation Classes (IFC) for the BIM domain [ISO,
2013; Building SMART International, 2013] (Section 2.2). IFC models represent
the physical elements of single constructions in great detail, while CityGML
models represent entire cities in a simpler format that is usable for exchange,
dissemination and spatial analyses, such as solar potential and energy con-
sumption estimations. The two modelling paradigms embodied by IFC and
CityGML are representative of BIM and 3D GIS data in general, and they are
both widely used in their respective domains.

2.1 CityGML

CityGML [Open Geospatial Consortium, 2012] is the most prominent stan-
dard to store and exchange 3D city models with semantics in the GIS domain.
It presents a structured way to describe the geometry and semantics of topo-
graphic features such as buildings and roads. CityGML as a data format is
implemented as an application schema for the Geography Markup Language
(GML)4 [OGC, 2004].

CityGML contains a small number of classes structured into 12 modules, most
of which are meant to model different types of objects (e.g. Building, Bridge,
WaterBody). These classes differ in the way objects are structured into smaller
parts and the attributes that are expected for each. However, CityGML geome-
tries are essentially the same for all classes: objects are represented as surfaces
embedded in 3D and consist of triangular and polygonal faces.

CityGML supports five levels of detail (LODs). Figure 1 illustrates the five LODs
(LODo to LODg4) for the building object:

LODo is non-volumetric and is an horizontal footprint and/or roof surface
representation for buildings;

LOD1 is a block-shaped model of a building (with an horizontal roof);

4CityGML uses version 3.1.1 of GML

LOD2 adds a generalised roof and installations such as balconies;
LOD3 adds, among others, windows, doors, and a full architectural exterior;

LOD4 models the interior of the building, potentially with pieces of furniture
(CityGML does not mandate which indoor features need to be modelled,
in practice resulting in models with a different granularity [Goetz, 2013;
Boeters et al., 2015]).

Yy

L oo LOD/ LOD2 LOOD SSOA
Figure 1: A building represented in LODo to LOD4 (image from Biljecki et al.
[2016b]).
2.2 IFC

The Industry Foundation Classes (IFC)S standard is an open data model used
in the Building-information modelling (BIM) domain for the exchange of con-
struction models, often including 3D models of buildings. It has also been
adapted as the ISO 16739 international standard [ISO, 2013]. Its geometric as-
pects are however mostly defined or derived from a different standard, ISO
10303 [ISO, 2014), which also specifies the STEP Physical File (SPF) encoding
that is most commonly used in IFC files (. ifc).

IFC files can contain many types of classes (130 defined types, 207 enumeration
types, 60 select types, 776 entities, 47 functions, and 2 rules in IFC 4 Addendum
2). The geometries in them can use several different representation paradigms
which can be combined freely. In practice, most IFC objects are built using
sweep volumes, explicit faceted surface models and CSG [El-Mekawy and Ost-
man, 2010]. The representation paradigms include:

- Primitive instancing: an object is represented based on a set number of
predefined parameters. IFC uses this paradigm to define various forms of
2D profiles (Figure 2), as well as volumetric objects such as spheres, cones
and pyramids.

Shttp://www.buildingsmart-tech.org/specifications/ifc-releases

http://www.buildingsmart-tech.org/specifications/ifc-releases

- CSG: an object is represented as a tree of Boolean set operations (union,
intersection and difference) of volumetric objects (see Requicha [1982]
for more details). Half-spaces are often used to cut out the undesired parts
of surfaces or volumes.

- Sweep volumes: a solid can also be defined by a 2D profile (a circle, a rect-
angle or an arbitrary polygon with or without holes) and a curve [Wang
and Wang, 1986] along which the surface is extruded.

- B-rep: an object is represented by its bounding surfaces, either triangu-
lated meshes, polygonal meshes or topological arrangements of free-form
surfaces.

'].],7.7 °::
Y 4 =

L.

(a) (b)

Figure 2: IFC defines various types of parametric curved profiles such as (a)
those based on the characters U, L, Z, C and T and (b) those based
on trapezia, (rounded) rectangles, circles with/without holes and el-
lipses. Note the various types of tapered and curved parts of the pro-
files. These are most commonly used in extrusions such as those
shown here.

3 Previous integration efforts

The integration of BIM and GIS data is a complex topic that has been tackled
in different ways. As Liu et al. [2017] state, the integration can involve seman-
tics and/or geometry, and it can involve the conversion of BIM and GIS data
to either a unified model or to the standards of each other (either bidirectional
or only one-way). In the GeoBIM project, we instead focused on realising the
integration in practice and at the data level. By contrast, Amirebrahimi et al.
[2016] identifies how the integration can also be performed at the process and
application levels.

Most of the related work on this topic is concerned with converting IFC models
to a GIS model like CityGML because that implies simplifying and removing

details and extraneous information in the data. The inverse operation, from
GIS data to BIM, is rarely discussed as it is deemed less useful and it might in-
volve adding more details to the data. Nonetheless, there are methods to create
BIM from existing models, which can be considered as GIS to BIM; see Volk
et al. [2014] for an overview. One use case for the conversion from GIS to BIM
is to be able to import GIS data about the environment into BIM software so
that designers can consider the environment in their design. An example is
converting data about the geological subsurface (defined in GIS formats) into
IFC [Diakité and Stoter, 2017].

El-Mekawy et al. [2011] and El-Mekawy et al. [2012] propose to combine infor-
mation from both domains and create a unified model in which all the seman-
tic properties of IFC and CityGML are present, and they propose using bidi-
rectional mappings for all the semantic classes relevant to IFC and CityGML.
However, they extract the geometries separately from the two models and need
manual editing to enrich the result. The resulting unified model does not ac-
knowledge the particularities of the two different communities, and their focus
is mostly LOD4 since all the features are mapped to LOD4. Amirebrahimi et al.
[2016] extends the data model of GML (and not CityGML) to create a unified
model supporting two specific applications (visualisation and flood damage as-
sessment to specific buildings).

When the geometry is considered, most existing conversion algorithms from
BIM to GIS convert all the geometries (from one of the 4 paradigms listed in
Section 2.2), which yields GIS models having poor usability in practice. Using
these geometries in software for simulations or spatial analyses requires a huge
amount of manual work [McKenney, 1998]. Little attention has been paid to a
more meaningful conversion which requires not only selecting the appropriate
classes, but also performing spatial operations (such as Boolean operations)
to select only the features, or part of these, that are appropriate in the other
model. One concrete example is how in CityGML the buildings in LOD2 and
LOD3 should be modelled using only their surfaces that are visible from the
outside, while a simple conversion of all the BIM classes (in most cases) will
yield walls that have a thickness and thus interior and exterior surfaces. As
Benner et al. [2005] remarks, the surfaces forming the exterior of a building
are not explicitly marked as such in an IFC file and cannot be deducted directly
from the semantics of the objects.

A few programs offer the possibility to convert IFC models into CityGML mod-
els. Three examples are: the Building Information Modelserver®, IfcExplorer’
and Safe FME3. All of them allow the users to convert IFC models to CityGML at
different LODs. The users can in some cases choose which IFC objects should

Shttp://bimserver.org
7http://iai-typo3.iai.fzk.de/www-extern/index.php?id=1566&L=1

Shttp://www.safe.com

http://bimserver.org
http://iai-typo3.iai.fzk.de/www-extern/index.php?id=1566&L=1
http://www.safe.com

be used. However, all the features are converted, without any selection or post-
processing to keep only the relevant ones. Different projects use such approach
to obtain integrated datasets useful for visualisation-based analysis, e.g. Rafiee
et al. [2014]. Observe here that for visualisation converting all the geometries
is not a major hindrance since the ones that are indoor will simply be not dis-
played. The size of the dataset will however increase and slow down the visual-
isation process.

Hijazi et al. [2010] built an open-source web-GIS in which IFC objects can be
imported after having been converted to b-rep models. Unfortunately, only
sweep-volume objects can be converted and all the geometries are kept (thus
resulting in non-manifold building models). De Laat and van Berlo [2011] de-
veloped an CityGML ADE (application domain extension) called GeoBIM?, so
that new semantic classes defined in IFC are added in a CityGML model. How-
ever, no geometric manipulation is performed.

There have been different attempts at converting IFC models to CityGML
LOD2/3 models by processing the geometries. Benner et al. [2005] describe the
general steps needed to convert an IFC file to an alternative data model closely
related to CityGML (the QUASY model). They first map the semantics from
IFC to QUASY and select the relevant boundary objects, and then the outer vis-
ible surfaces are extracted by selecting a subset of the input objects. For the
(equivalent of) the LOD3 model, they discard geometries inside the building
by projecting each floor of a building to horizontal and vertical ‘footprints’ and
keeping only those touching the envelope. This technique may yield building
models having holes/gaps in the exterior envelope. Moreover, while the out-
put models appear to be LOD3 models, the walls and the roof are volumetric.
Deng et al. [2016] converts IFC to the different LODs of CityGML. To obtain the
exterior envelope of each building, they use a ray-tracing algorithm: they de-
fine a few points-of-view and determine whether a given surface is visible from
them. If so, it is assumed to form part of the exterior boundary. This method
will however yield buildings with several holes as several surfaces (e.g. those for
a roof overhang, or small ones near a window sill) will not be visible from the
finite set of points of view. Donkers et al. [2016] convert IFC models to LOD3
models by selecting a subset of the objects and then extracting the exterior en-
velope by using a series of Boolean set operations in 3D. Their algorithm does
not yield holes/gaps if the input does not contain any and they can close small
gaps by buffering all primitives; this however introduces artefacts in the whole
model. However, in their implementation the semantics of the objects cannot
be stored and thus different tricks are used to imply it in the final model.

Recently, the Open Geospatial Consortium carried out a research on the use of
IFC and CityGML in Urban Planning [Kalantari, 2017]. This project was done
in the context of the Future City Pilot Phase 1. Their main conclusions align

9http://www.citygmlwiki.org/index.php/CityGML_GeoBIM_ADE

http://www.citygmlwiki.org/index.php/CityGML_GeoBIM_ADE

to our findings. They firstly conclude that the architecture design processes of-
ten do not require georeferencing, which seriously hinders re-use of the data
in GIS environments. Instead, the geographical coordinate system of IFC file
should be set in advance. Secondly, the OGC project identified several incon-
sistencies in coding IFC elements that made transformation to CityGML com-
plicated. Therefore they conclude that for adopting IFC in urban planning a
clear set of specification needs to be set for the preparation of IFC files. This
is line with our findings (see further). However, we go one step further and
actually propose such guidelines from our findings in Section s.

4 The GeoBIM project

To make further steps in the BIM and GIS integration, we started a joint re-
search project called GeoBIM. For a successful integration of GIS and BIM data
in the project, we considered that two aspects are important. First, data experts
from both domains should be involved in the integration endeavour in order to
deeply understand the integration issues—most researchers are experts in one
of'the domains; rarely in both. The second aspect is to have a close involvement
of users and use cases to assure that the solution is more than an academic or
theoretical standardisation exercise. Applications from practice should define
which BIM data is exactly needed in GIS applications and vice versa, and the
integration should be implemented accordingly.

The partners in the project are: GIS/CityGML experts from TU Delft, BIM/IFC
experts from TU Eindhoven, Geonovum as the Dutch national organisation for
GIS data standardisation, BIM-loket as the Dutch national organisation for BIM
standardisation, and several users: the Cities of Rotterdam and The Hague as
well as Kadaster and Rijkswaterstaat, the Dutch government entity responsible
for public works and water management.

The GeoBIM project is an experiment- and use case-driven scoping study and
has two aims: (1) to develop a CityGML/IFC interface for reusing GIS data in the
BIM domain and vice versa and (2) to formulate recommendations for further
integration, such as modelling guidelines for bidirectional integration based
on the main issues identified and the preferred solutions to these.

4.1 Sample data

We have focused our experiments on three IFC files from the City of The Hague
(Figures 3-5). These are complex models with several thousand objects each and
which use all the main representation paradigms that are possible in IFC.

Figure 3: CUVO Ockenburghstraat KOW

Figure 4: Rabarberstraat 144

Figure 5: Witte de Withstraat

4.2 Initial methodology

Initially, we attempted to parse and process every object in an IFC file inde-
pendently using a modified version of IfcOpenShell*®, where we substituted
its Open CASCADE'-based kernel for a new one based on CGAL (Figure 6).
The aim of this approach was to use spatial analysis algorithms from the GIS
domain and the robust Boolean set operations on Nef polyhedra available
in CGAL in order to solve various use cases [Bieri and Nef, 1988; Nef, 1978;
Hachenberger, 2006]. We chose for this approach since our previous experi-
ence showed that the Boolean set operations in Open CASCADE are not as ro-
bustas those available in CGAL (Figure 7). For instance, compliance with height
regulations in 3D zoning maps can be checked using Boolean intersections of
the model and the polyhedra generated from zoning maps.

Parsing and I/O sEmEnE .-
D L e CiyGML

N »
,,, ¢ Y

Ifc input ﬂ
2 AT :
O G A J Z Conversion and

Geometric operations use cases

Figure 6: The initial methodology

The main IFC entity types were thus converted into appropriate CGAL-based
representations for points, polygonal curves, polygons with holes, planes, etc.
In this process, implicit and parametric curves, surfaces and volumes were in-
terpreted into explicit boundary representations and discretised into polygonal
curves and polygonal meshes (Figure 2). All placements and transformations
in IFC are converted into 3D affine transformations defined by a matrix, which
can then be recursively applied to each object as necessary. In this manner, we
obtained a polyhedral representation of every volumetric object and store it as
a CGAL Polyhedron_3.

Some IFC entity types however required additional processing, such as the CSG
solid, half-space and Boolean result representations which are obtained by first
converting a polyhedron to a CGAL Nef_polyhedron_3 and then performing
Boolean set union, intersection or difference operations.

°http://ifcopenshell.org
https://www.opencascade.com

http://ifcopenshell.org
https://www.opencascade.com

(a) (b) (c)

Figure 7: A method to get the semantically labelled outer surfaces of (a) a simple
IFC model in a manner suitable for CityGML LOD3 could involve (b)
computing the Boolean set union of certain IFC entities (e.g. IfcSlabs)
and (c) extracting the outer envelope and classifying surfaces using
their normals [Boeters et al., 2015; Donkers et al., 2016].

4.3 Partial results and issues identified with the initial
methodology

This methodology yielded good initial results (Figures 8-10), being able to
parse and generate CGAL geometries for a rapidly increasing number of the
objects present in our test IFC models.

However, we found that invalid objects are widespread in the IFC models we
received as part of this study—something that is consistent with our previous
experience with BIM and GIS data and with the experience of other practition-
ers we spoke to; see for instance Biljecki et al. [2016a]. Self-intersections and
intersections between objects were the most common errors (Figures 11 and 12),
but there are also uneven surfaces that are supposed to be planar and discon-
nected objects that are modelled as one. One of the most interesting errors we
found were objects that are seemingly valid and form topological 2-manifolds
(as checked by making sure that surfaces join in pairs along common edges),
but in reality contain self-intersections (Figure 13). Note that this is something
explicitly disallowed by the IFC standard!?, but not enforced by most current
implementations.

Since invalid objects would often cause our processing methods to crash, we
attempted to catch and correct as many errors as possible, and so we added a
series of validation tests on every object and to its openings (if any). These are
done at appropriate places during the construction of every object, before the

2http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcgeometricmodelresource/
lexical/ifcfacebasedsurfacemodel.htm

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcgeometricmodelresource/lexical/ifcfacebasedsurfacemodel.htm
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcgeometricmodelresource/lexical/ifcfacebasedsurfacemodel.htm

Figure 10: Witte de Withstraat

/

Figure 11: A prismatic polyhedron with an obvious self-intersection. The self-
intersecting top and bottom faces of the polyhedron are not shown.

Figure 12: A self-intersecting representation of a beam.

conversion of a CGAL Polyhedron_3 to a Nef_polyhedron_3, and before it is
triangulated for the generation of a file used for visualisation (the simple OBJ
format). Among others, we tested for:

- combinatorial validity (2-manifoldness),
- surfaces that enclose a space,

- crashes/failures of CGALs triangulation algorithm (e.g. when a surface
self-intersects),

- self-intersections,
 CGAL crashes/failures when converting to a Nef_polyhedron_3.

In order to make sure that every face is perfectly planar, we also triangulated
the non-triangular faces of every object whenever we need to create a Nef poly-
hedron. This ensured that the conversion from a CGAL Polyhedron_3 to a

Figure 13: A topological manifold that contains non-obvious geometric inter-
sections. The bottom of the polyhedron, seemingly composed of
three rectangular faces, actually has only two rectangular faces that
overlap along the middle third. The top of the polyhedron (not visi-
ble) has the same problem. Typical validation tests commonly return
that such a shape is valid.

Nef_polyhedron_3 is able to compute a plane passing through every face. An-
other possibility would have been to compute the best fitting plane per face and
then snap a vertex to the intersection of the planes of its incident faces [Arroyo
Ohori, 2016].

An issue we identified is the potential for differing results in the generation
of discrete and explicit b-rep linear geometries (e.g. polygons and polygonal
meshes) from the implicit and curved geometries in IFC. Explicit geometries
will invariably yield different b-rep representations according to the chosen
discretisation method and its parameters. For instance, we discretise ellipses
into closed polygonal curves using a customisable number of equal-angle in-
tervals, and we discretise spheres into icosahedral approximations with a cus-
tomisable number of refinements. However, alternative methods could involve
discretising ellipses using equal-length line segments and spheres using equal
angle rectangular patches.

From a more practical standpoint, we also found that the available features
of CGAL are not enough to comfortably model all the complex features of
IFC—something that is also true for many other geometric processing libraries.
For instance, CGAL Nef polyhedra do have support for half-space representa-
tions as long as an extended kernel is used, which incorporates polynomial
representations of various classes such as planes. However, extended CGAL
kernels appear to be incompatible with various parts of the Polygon mesh

processing package, which we use for triangle-triangle intersection tests, 2-
manifoldness tests, stitching the faces of a polyhedron together, and reversing
normals among other functions. Another example is that Nef polyhedra do not
offer a quick way to construct meshes that do not enclose a volume or to create
a Polyhedron_3 from such a mesh stored in a Nef polyhedron. While we have
found (and partly implemented) workarounds around these CGAL problems,
these involve very complex code, are too slow for practical use or do not cover
all the many cases commonly present in IFC files.

Unfortunately, while trying to fix all the errors present in the model, it thus be-
came clear that getting all IFC entities to work correctly using this conversion
methodology was going to be a significantly more time-consuming undertak-
ing than the project’s allotted time allowed.

4.4 Final methodology

After running against the time constraints for the project and due to the un-
solvable issues identified with the initial methodology, we applied a simplified
process that minimised the complex interaction between CGAL and IfcOpen-
Shell (Figure 14). The idea was to sidestep the limitations of CGAL in repre-
senting certain geometries and avoid many of the CGAL crashes caused by the
interplay between invalid geometries in the IFC files and the stricter geometry
requirements of CGAL compared to Open CASCADE.

A’ l‘ IfcO Shell 'Obj Output
—_ cOpenShe —_
«V » with semantics

Ifc input Geometric \
. . /:’4 //'—?1 ,ﬂ T
operations with (| A T .

(/AN
\\;U 4"“(| \.\‘\

v

S CityGML
Use cases Conversion

Figure 14: The final methodology

In this final methodology, we wrote a script that used the standard version
of IfcOpenShell (with its Open CASCADE kernel) to export a series of Wave-
front .obj files containing all relevant objects present in the IFC files. For
this, we mainly looked at the subentities of IfcBuildingElement, which ac-
cording to the IFC standard define a ‘major functional part of a building’,
those being: IfcBeam, IfcBuildingElementComponent, IfcBuildingElement-
Proxy, IfcChimney, IfcColumn, IfcCovering, IfcCurtainWall, IfcDoor, IfcFoot-
ing, IfcMember, IfcPile, IfcPlate, IfcRailing, IfcRamp, IfcRampFlight, IfcRoof,
IfcShadingDevice, IfcSlab, IfcStair, IfcStairFlight, IfcWall, IfcWindow. Thus, all
geometries in every IFC file were extracted to an easily-parsable format while
preserving the most relevant semantic information present in the original in-
put file.

Afterwards, we created a different program that parsed the individual .obj files
and created a CGAL Nef polyhedron for every object. The parsed objects were
processed using the same defensive programming methods and validation tests
described for the initial methodology. The obtained Nef polyhedra were then
selectively processed together using Boolean set operations so as to obtain a
single Nef polyhedron containing all of the relevant parts of a building for a
given spatial analysis.

4.5 Partial results and issues identified with the final
methodology

The simplified processing pipeline in the final methodology resulted in a more
workable methodology for the time frame of our project. All objects in our three
test IFC datasets were able to be exported correctly to .obj and appeared to be
visually correct. Moreover, many of the problems present in the IFC files could
indeed be sidestepped by using the Open CASCADE Kkernel of IfcOpenShell,
resulting in a significantly smaller number of problematic objects (e.g. such as
a very complex staircase with many self-intersections), which could in general
be disregarded for our purposes.

By using Boolean set operations we were also able to correctly handle overlap-
ping objects, and by combining these with Minkowski sums we also found rea-
sonable solutions to many of the remaining problems in the IFC files. For in-
stance, non-manifolds could be converted into manifolds by finding the non-
manifold edges and vertices in an object, applying a Minkowski sum of these
with a small volumetric kernel, and subtracting the result from the original ob-
jects using a Boolean set difference. Similarly, small gaps between objects that
would cause the interiors of a space (e.g. a room) not to be enclosed could be
fixed by applying a Minkowski sum with a small kernel of a width equivalent
to a snapping threshold between adjoining volumes. As another example, some
CGAL crashes could be avoided by applying an iterative process where program

Guideline Purpose

Georeferencing Link IFC model to real-world coordinates
Valid volumetric objects Create processable objects that enclose a space
No intersections Avoid ambiguity and processing problems
Enclosed spaces Unambiguous definitions of empty spaces
Consistent specific entities Ease of processing and conversion

Table 1: Summary of our proposed IFC modelling guidelines

crashes are caught, and an object that otherwise causes a crash is processed by
applying a Minkowski sum with a small kernel until the object can be handled
properly.

Unfortunately, even as managed to process significantly more objects using the
final methodology, we were still not able to fix all outstanding issues in the time
allotted for the project, and thus were not able to process all objects in the IFC
files. This is a problem, since the automated tests we considered (e.g. zoning
and shadow casting) cannot yield authoritative results if the models have miss-
ing objects. Similarly, meaningful conversions from IFC to CityGML cannot
be performed when spaces that should be well enclosed are not, due to missing
objects at their boundaries.

5 A proposed set of IFC modelling guidelines

The development process of the two methodologies pointed to a series of issues
that are common in IFC files, including in the files we received for this project.
We thus looked further into these issues and produced a set of guidelines to
avoid them, which are summarised in Table 1. If properly followed, they would
greatly simplify the automated processing of IFC files.

Many rules and recommendations regarding the proper use of IFC are already
given in the IFC standard, implementation guidance, and external guidelines,
among others. These range from fundamental aspects, such as how each IFC
entity is defined and the possible values for each attribute, to common-sense
practical rules, such as schemes for the consistent naming of objects. We make
a brief summary of what is specified in each of these in Section 5.1.

However, during the course of this project and based on previous experiences,
we have found that the above mentioned sources of rules and recommenda-
tions are not always followed fully and do not cover certain desirable aspects,
resulting in a series of issues that make processing IFC models less than ideal.
We therefore propose in Sections 5.2-5.6 a series of recommendations that aim
to improve their reusability in Geo applications.

5.1 Other sources of guidelines

The official IFC standard*3 is the main source of IFC documentation. It defines
the fundamental concepts and assumptions underlying the standard, such as a
project (i.e. a structure containing the context and objects of a model), the ob-
ject definition and association (i.e. links to other sources), product and product
type shapes (i.e. the geometry and topology of objects) and composition (i.e. hi-
erarchies of objects).

Most importantly, the standard defines all IFC entities and their attributes,
which are specified in a set of separate schemas. These form a hierarchy,
which includes core schemas (which are used throughout the standard), shared
schemas (which are not in the core, but are still used in other parts of the
standard), and domain schemas (which are self-contained and based on a spe-
cific field). In addition, there are resource schemas that define supporting data
structures that can be used by all IFC entities.

buildingSMART provides a series of resources that are meant as implementa-
tion guidance for IFC2x3'4 and IFC4%5. These include an implementers guide
for IFC2x3'°, which describes in detail the logic behind the main entities of
IFC2x3 and how they can be implemented, a series of implementer agree-
ments'’, which cover aspects that can be unclear in the standard, and links to
useful tools and examples.

External sets of guidelines for IFC are also available, such as the BIM Basic
IDM*3 (BIM basis ILS). Among other aspects, this document recommends the
use of a certain format for names, the correct use of entities, avoiding duplicate
or intersecting objects, and filling in the values for certain important proper-
ties.

5.2 Georeferencing

Properly georeferencing an IFC file makes it possible to link the coordinates in-
side an IFC model with its real-world coordinates and thus to place the model
of a single building or construction within the virtual environment. For this,

Bhttp://www.buildingsmart-tech.org/ifc/IFC4/final/html/

M4http://www.buildingsmart-tech.org/implementation/ifc-implementation

Shttp://www.buildingsmart-tech.org/implementation/ifc4-implementation

6http://www.buildingsmart-tech.org/downloads/accompanying-documents/guidelines/
IFC2xModelImplementationGuideV2-0b.pdf

7http://www.buildingsmart-tech.org/implementation/ifc-implementation/
ifc-impl-agreements

8http://bimloket.nl/BIMbasisILS

http://www.buildingsmart-tech.org/ifc/IFC4/final/html/
http://www.buildingsmart-tech.org/implementation/ifc-implementation
http://www.buildingsmart-tech.org/implementation/ifc4-implementation
http://www.buildingsmart-tech.org/downloads/accompanying-documents/guidelines/IFC2x Model Implementation Guide V2-0b.pdf
http://www.buildingsmart-tech.org/downloads/accompanying-documents/guidelines/IFC2x Model Implementation Guide V2-0b.pdf
http://www.buildingsmart-tech.org/implementation/ifc-implementation/ifc-impl-agreements
http://www.buildingsmart-tech.org/implementation/ifc-implementation/ifc-impl-agreements
http://bimloket.nl/BIMbasisILS

it is possible to use the IFC entity IfcSite, which defines an area where con-
struction works are undertaken, and optionally allows for storage of the real-
world location of a project using the RefLatitude, RefLongitude and RefElevation
attributes.

The latitude and longitude are defined as angles with degrees, minutes, sec-
onds, and optionally millionths of seconds with respect to the world geodetic
system WGS84 (EPSG:4326). Positive values represent locations north of the
equator, west of the geodetic zero meridian (nominally the Greenwich prime
meridian) in IFC2x3, or east of the zero meridian IFC4. Negative values rep-
resent locations south of the equator, east of the zero meridian in IFC2x3, or
west of the zero meridian in IFC4. These angles are expressed according to the
type IfcCompoundPlaneAngleMeasure and all components (i.e. degrees, min-
utes, seconds and millionth-seconds of arc) should have the same sign. Ac-
cording to the IFC standard, the geographic reference given might be the exact
location of the origin of the local placement of the IfcSite or it might be an ap-
proximate position for informational purposes only. The elevation is defined
according to the datum elevation relative to sea level.

In addition, IfcSite contains a couple of other attributes that allow for an ap-
proximation of the real-world location to be given. The LandTitleNumber can
store the designation of the site within a regional system (e.g. a cadastral record
ID), and the SiteAddress can store the postal address of the site.

The IFC entity IfcGeometricRepresentationContext is used to define the co-
ordinate space of an IFC model in 3D and optionally the 2D plan of such a
model. This entity can be used to offset the project coordinate system from
the global point of origin using the WorldCoordinateSystem attribute, it defines
the Precision under which two given points are still assumed to be identical, and
it defines the direction of the TrueNorth relative to the underlying coordinate
system. The latter attribute defaults to the positive direction of the y-axis of the
WorldCoordinateSystem.

In theory, the use of the latitude, longitude and altitude values in the IfcSite
with an optional offset and true North direction given by the IfcGeometri-
cRepresentationContext, should make it possible to precisely georeference an
IFC model. In fact, in our experience most IFC files do fill in the requisite val-
ues in the IfcSite. However, these values are almost always set to zero, to a com-
pletely wrong location or to a very rough approximation of the real location
(e.g. a point in the same city). This is unfortunately compounded by the mis-
matched definitions of the positive direction for the longitude in IFC2x3 and
IFCy4.

We therefore recommend that IFC files set their precise real-world location us-
ing the latitude, longitude and altitude values in the IfcSite taking into ac-
count the offset given by the WorldCoordinateSystem of the IfcGeometricRep-
resentationContext for the 3D model and the 2D plan (if used). Due to prac-

tical difficulties, it cannot be expected that these values match the reality with
the Precision given in the IfcGeometricRepresentationContext, but the val-
ues should be easy to set to within a few meters of the real location. In addi-
tion, if the y-axis of the WorldCoordinateSystem in the IfcGeometricRepresen-
tationContext does not match the true North direction, the TrueNorth attribute
should be set as well.

5.3 Valid volumetric objects

There are many possible IFC entities that are subtypes of IfcRepresenta-
tionItem and can be used to define the geometries of the objects in an
IFC model. Given easily verifiable valid attributes (e.g. having a positive
value), some of these entities always form valid objects, such as the paramet-
ric IfcBlock, IfcBoundingBox, IfcRectangularPyramid, IfcRightCircular-
Cylinder, IfcRightCircularCone and IfcSphere, but most others are prone
to various types of problems.

Some of these could be minor and non-consequential, such as a IfcBoolean-
ClippingResult or IfcHalfSpaceSolid thatresultsin empty space or performs
point set intersections with empty spaces. These problems result only in ineffi-
ciencies when processing. In our experience, such minor errors are rare in IFC
files since it is most often used as an exchange format and such errors are gen-
erally not exported even when these operations are performed in software.

Many others of the most commonly used IFC entities are designed in a way that
they mostly create valid volumetric objects. The sweeps of IfcExtrudedArea-
Solid, IfcRevolvedAreaSolid and IfcSurfaceCurveSweptAreaSolid should
create a valid volume given a valid profile definition (i.e. the curve or surface
that is swept). This means that the profile should not self-intersect. Somewhat
more care needs to be taken with sweeps that allow for arbitrary sweep curves,
such as IfcSectionedSpine and IfcSweptDiskSolid, where the combination
of the spine curve and the planar cross-sections can cause the volume to self-
intersect.

More common errors are found with entities with a more complex definition,
such as with the b-rep creation of shells that self-intersect or do not enclose vol-
umes. This includes other entities such as IfcFacetedBrep and IfcFaceted-
BrepWithVoids only enforce the creation of a volumetric object in their defini-
tion but can be easily used to create objects that are not closed and thus have
no well-defined volume. Note that this is distinct from other entities such as
IfcOpenShell, which are meant to create non-volumetric objects.

Finally, another common validity constraint is that certain b-rep entities most
be composed of smooth 2-manifolds. In particular, IfcFacetedBrep and Ifc-
FacetedBrepWithVoids require a finite and non-zero extent, non-duplicate

faces that are 2-manifold embeddable in the plane within the domain of the
face, non-intersecting faces (except at their boundaries), consistent normal ori-
entations, and compliance with a version of the Euler equation. Perhaps most
importantly, the manifoldness constraint is defined combinatorially, such that
‘each edge along the boundary of a face is shared by at most one other face in
the assemblage’. In our experience, most of these propositions, although pre-
scribed by the standard, are frequently not tested by IFC software. Duplicate
and intersecting faces are quite common.

While all of the subtypes of IfcRepresentationItem have different uses, we
recommend that practitioners use volumetric objects as much as possible, test
that they conform to their entity definition and take care to make sure these are
watertight when using b-rep representations.

5.4 No self-intersections or intersections between objects

IFC entities generally disallow self-intersections in their definition, such as the
examples of IfcFacetedBrep and IfcFacetedBrepWithVoids presented previ-
ously. Among others, IfcSectionedSpine states that ‘non [sic] of the cross
sections, after being placed by the cross section positions, shall intersect, If-
cArbitraryClosedProfileDef that ‘the OuterCurve shall not intersect, and Ifc-
SweptDiskSolid that ‘the Directrix shall not be based on an intersecting curve’.
However, these sort of restrictions are easier to test with some entities than oth-
ers and are often not enforced in software. Consequently, software can produce
invalid IFC models, without any warnings,

To the best of our knowledge, the standard is not explicit about limiting inter-
sections between objects and in practice most IFC files have small intersections
between objects—sometimes below the model’s precision but sometimes above.
The smallest of such intersections are often caused by numerical errors when
adjacent objects are processed separately. Larger intersections can be caused by
the manual manipulation of adjacent objects, or deliberately in order to reduce
modelling work.

These kinds of intersections might not seem problematic when IFC models are
only used for visualisation purposes, but they do harm more complex auto-
mated processing efforts. Among other problems, they cause ambiguous mod-
els (which can be interpreted differently by different users) and can cause dif-
ferent results when used in different processes. It is worth noting that even
small intersections below the precision threshold can cause small problems
when processing since this precision can be dealt with in different ways.

We therefore recommend that users ensure that there are no self-intersections
or intersections between objects, much like the BIM Basic IDM disallows inter-
sections between objects by stating: ‘There are no duplicates or intersections

permitted. Make sure this is checked in IFC. Among others, the Solibri Model
Checker?® and the simplebim Space Boundary add-on?° are able to detect over-
lapping objects.

5.5 Forming enclosed spaces that are also modelled as IfcSpaces

While intersections between objects are undesirable, gaps between objects that
are supposed to be adjacent are also a problem. Whereas BIM applications
mostly focus on the built space, many Geo applications focus on the empty
space between the objects modelled in a BIM file, such as explicit rooms, hall-
ways, stairways, and so on.

Because of the above, we recommend that the necessary objects so as to form
enclosed spaces should be modelled, and these objects should fit properly with
each other and without gaps between them. In addition, we recommend that
enclosed spaces are also modelled explicitly and with their precise geometry as
IfcSpaces. Simpler applications that make straightforward use of these Ifc-
Spaces can then avoid more complex geometry processing.

5.6 Consistent use of the most specific entities possible

IFC provides several entities that are used to mark specific expected elements of
amodel including the subtypes of IfcBuildingElement for buildings (IfcBeam,
IfcChimney, IfcColumn, IfcCovering, IfcCurtainWall, IfcDoor, IfcFooting,
IfcMember,IfcPile, IfcPlate, IfcRailing, IfcRamp, IfcRampFlight, IfcRoof,
IfcShadingDevice, IfcSlab, IfcStair, IfcStairFlight, IfcWall, IfcWindow),
and less importantly IfcCivilElement, IfcDistributionElement, IfcElemen-
tAssembly, IfcElementComponent, IfcFeatureElement, IfcFurnishingEle-
ment, IfcGeographicElement, IfcTransportElement, IfcVirtualElement and
their subtypes.

However, we have found a couple of problems with the use of these entities: (i)
they are not always used consistently between models (or even sometimes in a
single model), and (ii) they often involve the use of the generic IfcBuildin-
gElementProxy rather than one of the other more specific entities. While both
of these are minor problems when processing models manually, they make it
needlessly difficult to perform automated processing (e.g. deducing the correct
entity types from names and descriptions).

We therefore recommend that users take care to always use the most specific
entity type possible, to use such entity types consistently across all objects of a

Yhttps://www.solibri.com/faq/using-the-space-validation-rule-to-ensure-model-accuracy/
2%http://datacubist.com/support/addon-spaceboundary.html

https://www.solibri.com/faq/using-the-space-validation-rule-to-ensure-model-accuracy/
http://datacubist.com/support/addon-spaceboundary.html

model, and to ensure that all related geometries of an object are marked as such.
Additionally, when conversions to CityGML are concerned, it is worth focusing
on entities that have a direct mapping to CityGML classes, such as IfcSlab.

6 Conclusions

Based on the results of the project, it can be concluded that a full integration
of GIS and BIM data is far from straightforward given current practice. From
a data perspective, this is mainly because existing BIM models contain many
geometrical and topological errors which need to be properly handled and of-
ten fixed before a conversion can be successful. These may not be problematic
when used in a BIM environment because of a few reasons: many more geom-
etry types are usually natively supported in BIM software than in GIS software;
geometric errors (e.g. self-intersections) are often found in places that are in-
conspicuous or invisible from the outside; data is often only used for visualisa-
tion purposes, which does not require geometric and topological correctness;
or the errors only show after the implicit and parametrised types have been con-
verted into explicit geometries (which is during the conversion to IFC). How-
ever, the errors are very problematic in many applications that involve the au-
tomated processing of IFC data, such as in GIS operations that perform spatial
analyses, which often involve complex operations such as Boolean set opera-
tions. Therefore, functionalities to validate the geometry of a BIM model are
required; see Ledoux [2013] for an equivalent for 3D GIS datasets.

Another conclusion that can be drawn is that it is unrealistic to develop a ro-
bust process for all IFC geometry entity types within a small project. In our
experiments, we have so far developed a solution for only a subset of the IFC
standard. It would take years to extend our efforts to cover all entities and in
practice many of them are rarely used. From a GIS perspective, a related conclu-
sion is that with IFC there are many different ways to model an object, and that
supporting all of them is a problem in practice, especially for researchers and
small developers, which hinders adoption of the standard and standardisation
in the community. Ideally, standards that are intended for exchange should
define only one way to model something—this both fosters data exchange and
makes it easy to create compliant implementations of the standard. Therefore
we recommend to formulate and agree on guidelines to standardise the way a
specific situation should be modelled in IFC.

The history of data exchange and its accompanying problems is also much
longer in the GIS domain. As also concluded by Liu et al. [2017] from Cerovsek
[2011], the relatively younger concept of BIM and its standard IFC have not
satisfied the requirements of standards yet: competitiveness, conformity, and

connectivity. BIM has to further develop in this respect, including paying at-
tention to formal definitions for correct geometries, adhering to these and de-
veloping functionality to validate models.

Many academic research has showed successful IFC-CityGML transformations.
However, they mostly develop their own optimal solution, based on the use case
or data at hand. A transformation from IFC to CityGML that works in prac-
tice, requires a standardised transformation as there are currently many differ-
ent interpretations of how to best transform an IFC file into CityGML. From
a geometric perspective, this diversity in transformation is mainly due to the
many classes of IFC that need to be converted into the relatively few classes of
CityGML. The processing needed to make explicit geometries from implicit
geometries and to change geometry classes (like conversion of volumes in IFC
into surfaces in CityGML for walls) can result in different outcomes in differ-
ent implementations. For a sustainable information chain that supports the
life cycle of objects, this is unwanted, and therefore there is a need to define
one uniform and standardised transformation.

From our experiments we can also conclude that additional information for
building modellers is needed in order to support a better automated process-
ing pipeline for IFC geometries in a GIS environment. We believe that our
guidelines are a good first step in this direction, which should help to create
CityGML/GIS-ready IFC datasets. However, additional efforts are needed since
the export process from other BIM formats to IFC is rather opaque and the im-
plementation of the guidelines is not straightforward.

More understanding is also needed in order to find out how BIM data are used
in GIS applications and vice versa. For example, we wonder about how IFC
designs are checked against the existing physical world and against a 3D zoning
plan (both GIS data): is this done in BIM software, and thus GIS data is imported
and localised in BIM software; or is this done in GIS software, and thus BIM
design data needs to be imported in GIS software and properly georeferenced.

BIM data is usually much more detailed than what is expected from GIS data.
It is thus very unlikely that all the details of a BIM dataset will be integrated
into GIS data. Instead, a generalised version of the BIM model (with relevant
attributes for the GIS world) will be converted into a GIS model. A 3D city model
may serve as a connection between the two, with unique identifiers and update
mechanisms in order to keep the separated BIM models consistent with their
generalised counterparts.

References

Sam Amirebrahimi, Abbas Rajabifard, Priyan Mendis, and Tuan Ngo. A BIM-
GIS integration method in support of the assessment and 3D visualisation of
flood damage to a building. 61(2):317-350, April 2016.

Ken Arroyo Ohori. Higher-dimensional modelling of geographic information. PhD
thesis, Delft University of Technology, apr 2016.

J Benner, A. Geiger, and K. Leinemann. Flexible generation of semantic 3D
building models. In G. Groger and T. H. Kolbe, editors, Proceedings 1st Inter-
national Workshop on Next Generation 3D City Models, pages 17-22, Bonn, Ger-
many, 2005.

H. Bieri and W. Nef. Elementary set operations with d-dimensional polyhedra.
In Hartmut Noltemeier, editor, Computational Geometry and its Applications,
volume 333 of Lecture Notes in Computer Science, pages 97-112. Springer Berlin
Heidelberg, 1988.

Filip Biljecki, Hugo Ledoux, Xin Du, Jantien Stoter, K. H. Soon, and V. H. S.
Khoo. The most common geometric and semantic errors in CityGML
datasets. volume IV-2/W1 of ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, pages 13-22, Athens, Greece, 2016a. doi:
http://dx.doi.org/10.5194/isprs-annals-1V-2-W1-13-2016.

Filip Biljecki, Hugo Ledoux, and Jantien Stoter. An improved LOD specification
for 3D building models. Computers, Environment and Urban Systems, 59:25-37,
2016b.

Roeland Boeters, Ken Arroyo Ohori, Filip Biljecki, and Sisi Zlatanova. Automat-
ically enhancing CityGML LOD2 models with a corresponding indoor ge-
ometry. International Journal of Geographical Information Science, 29(12):2248-
2268, December 2015.

Building SMART International. Industry Foundation Classes (IFC), IFCy4,
2013. Available from: http://www.buildingsmart-tech.org/specifications/ifc-
releases/summary.

Tomo Cerovsek. A review and outlook for a ‘building information model’
(BIM): A multi-standpoint framework for technological development. Ad-
vanced Engineering Informatics, 25:224-244, 2011.

Ruben de Laat and Léon van Berlo. Integration of BIM and GIS: The devel-
opment of the CityGML GeoBIM extension. In T. H. Kolbe, G. Kéning,
and C. Nagel, editors, Advances in 3D Geo-Information Sciences, Lecture Notes
in Geoinformation and Cartography, pages 211-225. Springer-Verlag, Berlin
Heidelberg, 2011.

Yichuan Deng, Jack C P Cheng, and Chimay Anumba. Mapping between BIM
and 3D GIS in different levels of detail using schema mediation and instance
comparison. Automation in Construction, 67:1-21, July 2016.

Abdoulaye Diakité and Jantien Stoter. Eindrapport scoping studie voor inte-
gratie geotop en bim: Als input voor de ontwikkeling van basis registratie
ondergrond. Technical report, Delft University of Technology, jun 2017.

Sjors Donkers, Hugo Ledoux, Jungiao Zhao, and Jantien Stoter. Automatic con-
version of IFC datasets to geometrically and semantically correct CityGML
LOD3 buildings. Transactions in GIS, 20(4):547-569, 2016.

Mohamed El-Mekawy and Anders Ostman. Semantic mapping: an ontology
engineering method for integrating building models in IFC and CityGML.
Proceedings of the 3rd ISDE Digital Earth Summit, pages 12-14, 2010.

Mohamed El-Mekawy, Anders Ostman, and Khurram Shahzad. Towards in-
teroperating CityGML and IFC building models: A unified model based ap-
proach. Advances in 3D Geo-Information Sciences, pages 73-93, 2011.

Mohamed El-Mekawy, Anders Ostman, and Thab Hijazi. A unified building
model for 3D urban GIS. ISPRS International Journal of Geo-Information, 1:120-
145, July 2012.

Marcus Goetz. Towards generating highly detailed 3D CityGML models from
OpenStreetMap. International Journal of Geographical Information Science, 27
(5):845-865, May 2013.

Peter Hachenberger. Boolean Operations on 3D Selective Nef Complexes Data Struc-
ture, Algorithms, Optimized Implementation, Experiments and Applications. PhD
thesis, Saarland University, 2006.

Thab Hijazi, Manfred Ehlers, and Sisi Zlatanova. @ BIM for geo-analysis
(BIM4GEOA): set up of 3D information system with open source software
and open specifications (OS). In Proceedings s5th International 3D Geoinfo con-
ference, pages 45-49, Berlin, Germany, 2010.

ISO. Industry Foundation Classes (IFC) for data sharing in the construction and fa-
cility management industries. International Organization for Standardization,
March 2013.

ISO. Industrial automation systems and integration - Product data representation
and exchange. International Organization for Standardization, August 2014.

Mohsen Kalantari. Future city pilot-1: Using ifc/citygml in urban planning en-
gineering report. Ogc engineering report, Open Geospatial Consortium, jun
2017.

Hugo Ledoux. On the validation of solids represented with the international
standards for geographic information. Computer-Aided Civil and Infrastructure
Engineering, 28(9):693-706, 2013. ISSN 1467-8667. doi: http://dx.doi.org/10.
1111/mice.12043.

Xin Liu, Xiangyu Wang, Graeme Wright, Jack Cheng, Xiao Li, and Rui Liu. A
State-of-the-Art Review on the Integration of Building Information Model-
ing (BIM) and Geographic Information System (GIS). ISPRS International Jour-
nal of Geo-Information, 6(2):53, February 2017.

Dan McKenney. Model quality: The key to CAD/CAM/CAE interoperability.
Technical report, International TechneGroup Incorporated, 1998.

Walter Nef. Beitrdge zur Theorie der Polyeder. Herbert Lang, Bern, 1978.

OGC. Geography markup language (GML) encoding specification. Open
Geospatial Consortium inc., 2004. Document 03-105r1, version 3.1.1.

Open Geospatial Consortium. OGC City Geography Markup Language
(CityGML) Encoding Standard 2.0.0. Technical report, April 2012.

Azarakhsh Rafiee, Eduardo Dias, Steven Fruijtier, and Henk Scholten. From
BIM to geo-analysis: View coverage and shadow analysis by bim/gis in-
tegration. Procedia Environmental Sciences, 22:397-402, 2014. ISSN 1878-
0296. doi: http://dx.doi.org/10.1016/j.proenv.2014.11.037. URL http://www.
sciencedirect.com/science/article/pii/51878029614001844.

A.A.G. Requicha. Representation of rigid solids—theory, methods and systems.
ACM Computing Surveys, 12(4):437-464,1982.

Rebekka Volk, Julian Stengel, and Frank Schultmann. Building information
modeling (BIM) for existing buildings—Iliterature review and future needs.
Automation in Construction, 38:109-127, 2014.

WP Wang and KK Wang. Geometric modeling for swept volume of moving
solids. Computer Graphics and Applications, IEEE, 6(12):8-17, 1986.

http://www.sciencedirect.com/science/article/pii/S1878029614001844
http://www.sciencedirect.com/science/article/pii/S1878029614001844

	Motivation
	CityGML and IFC
	CityGML
	IFC

	Previous integration efforts
	The GeoBIM project
	Sample data
	Initial methodology
	Partial results and issues identified with the initial methodology
	Final methodology
	Partial results and issues identified with the final methodology

	A proposed set of IFC modelling guidelines
	Other sources of guidelines
	Georeferencing
	Valid volumetric objects
	No self-intersections or intersections between objects
	Forming enclosed spaces that are also modelled as IfcSpaces
	Consistent use of the most specific entities possible

	Conclusions

