
Visualising higher-dimensional
space-time andspace-scale objects as

projections toℝ3

Ken Arroyo Ohori Hugo Ledoux Jantien Stoter

This is an author’s version of the paper. The authoritative version is:

Visualising higher-dimensional space-time and space-scale objects as
projections to ℝ􏷢. Ken Arroyo Ohori, Hugo Ledoux and Jantien Stoter. PeerJ
Computer Science 3:e123, July 2017. ISSN: 2376–5992.
doi: 10.7717/peerj-cs.123

Related source code is available at:
https://github.com/kenohori/azul4d

Objects of more than three dimensions can be used to model geographic phe-
nomena that occur in space, time and scale. For instance, a single 4D object can
be used to represent the changes in a 3D object’s shape across time or all its op-
timal representations at various levels of detail. In this paper, we look at how
such higher-dimensional space-time and space-scale objects can be visualised as
projections from ℝ􏷣 to ℝ􏷢. We present three projections that we believe are par-
ticularly intuitive for this purpose: (i) a simple ‘long axis’ projection that puts 3D
objects side by side; (ii) thewell-known orthographic and perspective projections;
and (iii) a projection to a 3-sphere (𝑆􏷢) followed by a stereographic projection to
ℝ􏷢, which results in an inwards-outwards fourth axis. Our focus is in using these
projections from ℝ􏷣 to ℝ􏷢, but they are formulated from ℝ𝑛 to ℝ𝑛−􏷠 so as to be
easily extensible and to incorporate other non-spatial characteristics. We present
a prototype interactive visualiser that applies these projections from 4D to 3D
in real-time using the programmable pipeline and compute shaders of the Metal
graphics API.

1

http://dx.doi.org/10.7717/peerj-cs.123
https://github.com/kenohori/azul4d

Background

Projecting the 3D nature of the world down
to two dimensions is one of the most
common problems at the juncture of geo-
graphic information and computer graph-
ics, whether as the map projections in both
paper and digital maps [Snyder, 1987; Gra-
farend and You, 2014] or as part of an inter-
active visualisation of a 3D city model on a
computer screen [Foley and Nielson, 1992;
Shreiner et al., 2013]. However, geographic
information is not inherently limited to
objects of three dimensions. Non-spatial
characteristics such as time [Hägerstrand,
1970;Güting et al., 2000;Hornsby andEgen-
hofer, 2002; Kraak, 2003] and scale [Mei-
jers, 2011b] are often conceived and mod-
elled as additional dimensions, and objects
of three or more dimensions can be used to
model objects in 2D or 3D space that also
have changing geometries along these non-
spatial characteristics [van Oosterom and
Stoter, 2010; Arroyo Ohori, 2016]. For ex-
ample, a single 4D object can be used to rep-
resent the changes in a 3D object’s shape
across time [Arroyo Ohori et al., 2017] or
all the best representations of a 3D object at
various levels of detail [Luebke et al., 2003;
van Oosterom and Meijers, 2014; Arroyo
Ohori et al., 2015a,c].

Objects of more than three dimensions
can be however unintuitive [Noll, 1967;
Frank, 2014], and visualising them is a chal-
lenge. While some operations on a higher-
dimensional object can be achieved by run-
ning automated methods (e.g. certain vali-
dation tests or area/volume computations)
or by visualising only a chosen 2D or 3D
subset (e.g. some of its bounding faces or a
cross-section), sometimes there is no substi-
tute for being able to view a complete 𝑛D
object—much like viewing floor or façade
plans is often no substitute for interactively
viewing the complete 3D model of a build-
ing. By viewing a complete model, one can
see at once the 3D objects embedded in the
model at every point in time or scale as
well as the equivalences and topological re-
lationships between their constituting ele-
ments. More directly, it also makes it possi-
ble to get an intuitive understanding of the

complexity of a given 4D model.

For instance, in Figure 1 we show an ex-
ample of a 4D model representing a house
at two different levels of detail and all the
equivalences its composing elements. It
forms a validmanifold 4-cell [ArroyoOhori
et al., 2014], allowing it to be represented us-
ing data structures such as a 4D generalised
or combinatorial map.

This paper thus looks at a key aspect
that allows higher-dimensional objects to
be visualised interactively, namely how to
project higher-dimensional objects down to
fewer dimensions. While there is previ-
ous research on the visualisation of higher-
dimensional objects, we aim to do so in a
manner that is reasonably intuitive, imple-
mentable and fast. We therefore discuss
some relevant practical concerns, such as
how to also display edges and vertices and
how to use compute shaders to achieve good
framerates in practice.

In order to do this, wefirst briefly review the
most well-known transformations (trans-
lation, rotation and scale) and the cross-
product in𝑛D,whichweuse as fundamental
operations in order to project objects and to
move around the viewer in an 𝑛D scene. Af-
terwards, we show how to apply three differ-
ent projections from ℝ𝑛 to ℝ𝑛−􏷠 and argue
why we believe they are intuitive enough
for real-world use. These can be used to
project objects from ℝ􏷣 to ℝ􏷢, and if neces-
sary, they can be used iteratively in order to
bring objects of any dimension down to 3D
or 2D. We thus present: (i) a simple ‘long
axis’ projection that stretches objects along
one custom axis while preserving all other
coordinates, resulting in 3D objects that are
presented side by side; (ii) the orthographic
andperspective projections, which are anal-
ogous to those used from 3D to 2D; and (iii)
an inwards/outwards projection to an (𝑛−1)-
sphere followed by an stereographic projec-
tion toℝ𝑛−􏷠, which results in anew inwards-
outwards axis.

We present a prototype that applies these
projections from 4D to 3D and then applies
a standard perspective projection down to
2D. We also show that with the help of low-
level graphics APIs, all the required opera-

2

(A) (B)

(C) (D)

Figure 1: A 4D model of a house at two levels of detail and all the equivalences its compos-
ing elements is a polychoron bounded by: (A) volumes representing the house at
the two levels of detail, (B) a pyramidal volume representing the window at the
higher LOD collapsing to a vertex at the lower LOD, (C) a pyramidal volume rep-
resenting the door at the higher LOD collapsing to a vertex at the lower LOD, and
a roof volume bounded by (A) the roof faces of the two LODs, (B) the ridges at the
lower LOD collapsing to the tip at the higher LOD and (C) the hips at the higher
LODcollapsing to the vertex below themat the lower LOD. (D)A 3D cross-section
of the model obtained at the middle point along the LOD axis.

tions can be applied at interactive framer-
ates for the 4D to 3D case. We finish with a
discussion of the advantages and disadvan-
tages of this approach.

Higher-dimensionalmodelling of
space, time and scale

There are a great number of models of
geographic information, but most con-
sider space, time and scale separately.
For instance, space can be modelled us-
ing primitive instancing [Foley et al.,
1995; Kada, 2007], constructive solid ge-
ometry [Requicha and Voelcker, 1977]
or various boundary representation ap-
proaches [Muller and Preparata, 1978;
Guibas and Stolfi, 1985; Lienhardt, 1994],
among others. Time can be modelled
on the basis of snapshots [Armstrong,
1988; Hamre et al., 1997], space-time

composites [Peucker and Chrisman, 1975;
Chrisman, 1983], events [Worboys, 1992;
Peuquet, 1994; Peuquet and Duan, 1995],
or a combination of all of these [Abiteboul
and Hull, 1987; Worboys et al., 1990; Wor-
boys, 1994; Wachowicz and Healy, 1994].
Scale is usually modelled based on inde-
pendent datasets at each scale [Buttenfield
and DeLotto, 1989; Friis-Christensen and
Jensen, 2003; Meijers, 2011a], although
approaches to combine them into single
datasets [Gröger et al., 2012] or to create
progressive and continuous representa-
tions also exist [Ballard, 1981; Jones and
Abraham, 1986; Günther, 1988; van Oost-
erom, 1990; Filho et al., 1995; Rigaux and
Scholl, 1995; Plümer and Gröger, 1997; van
Oosterom, 2005].

As an alternative to the all these meth-
ods, it is possible to represent any num-
ber of parametrisable characteristics (e.g.
two or three spatial dimensions, time and

3

scale) as additional dimensions in a geo-
metric sense, modelling them as orthog-
onal axes such that real-world 0D–3D en-
tities are modelled as higher-dimensional
objects embedded in higher-dimensional
space. These objects can be consequently
storedusinghigher-dimensional data struc-
tures and representation schemes Čomić
and de Floriani [2012]; Arroyo Ohori et al.
[2015b]. Possible approaches include in-
cidence graphs Rossignac and O’Connor
[1989];Masuda [1993]; Sohanpanah [1989];
Hansen and Christensen [1993], Nef poly-
hedra Bieri and Nef [1988], and ordered
topological models Brisson [1993]; Lien-
hardt [1994]. This is consistent with
the basic tenets of 𝑛-dimensional geome-
try [Descartes, 1637; Riemann, 1868] and
topology [Poincaré, 1895], which means
that it is possible to apply a wide variety
of computational geometry and topology
methods to these objects.

In a practical sense, 4D topological re-
lationships between 4D objects provide
insights that 3D topological relationships
cannot [Arroyo Ohori et al., 2013]. Also,
McKenzie et al. [2001] contends that
weather and groundwater phenomena can-
not be adequately studied in less than four
dimensions, and van Oosterom and Stoter
[2010] argue that the integration of space,
time and scale into a 5D model for GIS
can be used to ease data maintenance and
improve consistency, as algorithms could
detect if the 5D representation of an object
is self-consistent and does not conflict with
other objects.

Basic transformations and the
cross-product in 𝑛D

The basic transformations (translation,
scale and rotation) have a straightforward
definition in 𝑛 dimensions, which can be
used to move and zoom around a scene
composed of 𝑛D objects. In addition, the
𝑛-dimensional cross-product can be used to
obtain a new vector that is orthogonal to a
set of other 𝑛−1 vectors inℝ𝑛. We use these
operations as a base for 𝑛D visualisation
and are thus described briefly below.

The translation of a set of points in ℝ𝑛 can
be easily expressed as a sum with a vector
𝑡 = [𝑡􏷟, … , 𝑡𝑛], or alternatively as a multi-
plicationwith amatrix using homogeneous
coordinates1 in an (𝑛 + 1) × (𝑛 + 1) matrix,
which is defined as:

𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 𝑡􏷟
0 1 ⋯ 0 𝑡􏷠
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 𝑡𝑛
0 0 ⋯ 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Scaling is similarly simple. Given a vector
𝑠 = [𝑠􏷟, 𝑠􏷠, … , 𝑠𝑛] that defines a scale factor
per axis (which in the simplest case can be
the same for all axes), it is possible to define
a matrix to scale an object as:

𝑆 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑠􏷟 0 ⋯ 0
0 𝑠􏷠 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Rotation is somewhat more complex. Ro-
tations in 3D are often conceptualised intu-
itively as rotations around the 𝑥, 𝑦 and 𝑧 axes.
However, this view of the matter is only
valid in 3D. In higher dimensions, it is nec-
essary to consider instead rotations parallel
to a given plane [Hollasch, 1991], such that a
point that is continuously rotated (without
changing the rotation direction) will form
a circle that is parallel to that plane. This
view is valid in 2D (where there is only one
such plane), in 3D (where a plane is orthog-
onal to the usually defined axis of rotation)
and in any higher dimension. Incidentally,
this shows that the degree of rotational free-
dom in 𝑛D is given by the number of possi-
ble combinations of two axes (which define
a plane) on that dimension [Hanson, 1994],
i.e. (𝑛

􏷡
).

Thus, in a 4D coordinate system defined by
the axes 𝑥, 𝑦, 𝑧 and 𝑤, it is possible to define
six 4D rotation matrices, which correspond
to the six rotational degrees of freedom in

1A coordinate system based on projective geometry
and typically used in computer graphics. An addi-
tional coordinate indicates a scale factor that is ap-
plied to all other coordinates.

4

4D [Hanson, 1994]. These respectively ro-
tate points in ℝ􏷣 parallel to the 𝑥𝑦, 𝑥𝑧, 𝑥𝑤,
𝑦𝑧, 𝑦𝑤 and 𝑧𝑤 planes:

𝑅𝑥𝑦 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑥𝑧 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos 𝜃 0 − sin 𝜃 0
0 1 0 0

sin 𝜃 0 cos 𝜃 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑥𝑤 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos 𝜃 0 0 − sin 𝜃
0 1 0 0
0 0 1 0

sin 𝜃 0 0 cos 𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑦𝑧 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑦𝑤 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos 𝜃 0 − sin 𝜃
0 0 1 0
0 sin 𝜃 0 cos 𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

𝑅𝑧𝑤 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos 𝜃 − sin 𝜃
0 0 sin 𝜃 cos 𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The 𝑛-dimensional cross-product is easy to
understand by first considering the lower-
dimensional cases. In 2D, it is possible to
obtain a normal vector to a 1D line as de-
fined by two (different) points 𝑝􏷟 and 𝑝􏷠,
or equivalently a normal vector to a vector
from 𝑝􏷟 to 𝑝􏷠. In 3D, it is possible to obtain a
normal vector to a 2D plane as defined by
three (non-collinear) points 𝑝􏷟, 𝑝􏷠 and 𝑝􏷡,
or equivalently a normal vector to a pair of
vectors from 𝑝􏷟 to 𝑝􏷠 and from 𝑝􏷟 to 𝑝􏷡. Sim-
ilarly, in 𝑛D it is possible to obtain a nor-
mal vector to a (𝑛 − 1)D subspace—probably
easier to picture as an (𝑛 − 1)-simplex—as
defined by 𝑛 linearly independent points
𝑝􏷟, 𝑝􏷠, … , 𝑝𝑛−􏷠, or equivalently a normal vec-
tor to a set of 𝑛 − 1 vectors from 𝑝􏷟 to ev-
ery other point (i.e. 𝑝􏷠, 𝑝􏷡, … , 𝑝𝑛−􏷠) [Massey,
1983; Elduque, 2004].

Hanson [1994] follows the latter explana-
tion using a set of 𝑛 − 1 vectors all start-
ing from the first point to give an intu-
itive definition of the 𝑛-dimensional cross-
product. Assuming that a point 𝑝𝑖 in ℝ𝑛 is
defined by a tuple of coordinates denoted
as (𝑝𝑖􏷟, 𝑝𝑖􏷠, … , 𝑝𝑖𝑛−􏷠) and a unit vector along
the 𝑖-th dimension is denoted as 𝑥̂𝑖, the 𝑛-
dimensional cross-product 𝑁⃗ of a set of
points 𝑝􏷟, 𝑝􏷠, … , 𝑝𝑛−􏷠 can be expressed com-
pactly as the cofactors of the last column in the
following determinant:

𝑁⃗ =
|

|

(𝑝􏷪􏷩 − 𝑝􏷩􏷩) (𝑝􏷫􏷩 − 𝑝􏷩􏷩) ⋯ (𝑝𝑛−􏷪􏷩) 𝑥̂􏷩
(𝑝􏷪􏷪 − 𝑝􏷩􏷪) (𝑝􏷫􏷪 − 𝑝􏷩􏷪) ⋯ (𝑝𝑛−􏷪􏷪) 𝑥̂􏷪

⋮ ⋮ ⋱ ⋮ ⋮
(𝑝􏷪𝑛−􏷪 − 𝑝􏷩𝑛−􏷪) (𝑝􏷫𝑛−􏷪 − 𝑝􏷩𝑛−􏷪) ⋯ (𝑝𝑛−􏷪𝑛−􏷪) 𝑥̂𝑛−􏷪

|

|

The components of the normal vector 𝑁⃗ are
thus given by the minors of the unit vectors
𝑥̂􏷟, 𝑥̂􏷠, … , 𝑥̂𝑛−􏷠. This vector 𝑁⃗—like all other
vectors—can be normalised into a unit vec-
tor by dividing it by its norm 􏿎𝑁⃗􏿎.

Previouswork on the visualisation
of higher-dimensional objects

There is a reasonably extensive body of
work on the visualisation of 4D and 𝑛D ob-
jects, although it is still more often used for
its creative possibilities (e.g. making nice-
looking graphics) than for practical appli-
cations. In literature, visual metaphors
of 4D space were already described in the
1880s in Flatland: A Romance of Many
Dimensions [Abbott, 1884] and A New
Era of Thought [Hinton, 1888]. Other
books that treat the topic intuitively in-
clude Beyond the Third Dimension: Ge-
ometry, Computer Graphics, and Higher
Dimensions [Banchoff, 1996] and The Vi-
sual Guide To Extra Dimensions: Visu-
alizing The Fourth Dimension, Higher-
Dimensional Polytopes, And Curved Hy-
persurfaces [McMullen, 2008].

In a more concrete computer graphics con-
text, already in the 1960s, Noll [1967] de-
scribed a computer implementations of the
4D to 3D perspective projection and its ap-
plication in art [Noll, 1968].

5

Beshers and Feiner [1988] describe a sys-
tem that displays animating (i.e. continu-
ously transformed) 4D objects that are ren-
dered in real-time and use colour intensity
to provide a visual cue for the 4D depth. It
is extended to 𝑛 dimensions by Feiner and
Beshers [1990].

Banks [1992] describes a system that ma-
nipulates surfaces in 4D space. It describes
interaction techniques and methods to deal
with intersections, transparency and the sil-
houettes of every surface.

Hanson and Cross [1993] describes a high-
speed method to render surfaces in 4D
space with shading using a 4D light and
occlusion, while Hanson [1994] describes
much of themathematics that are necessary
for 𝑛D visualisation. A more practical im-
plementation is described in Hanson et al.
[1999].

Chu et al. [2009] describe a system to visu-
alise 2-manifolds and 3-manifolds embed-
ded in 4D space and illuminated by 4D light
sources. Notably, it uses a custom rendering
pipeline that projects tetrahedra in 4D to
volumetric images in 3D—analogous to how
triangles in 3D that are usually projected to
2D images.

A different possible approach lies in us-
ing meaningful 3D cross-sections of a 4D
dataset. For instance, Kageyama [2016] de-
scribes how to visualise 4Dobjects as a set of
hyperplane slices. Bhaniramka et al. [2000]
describe how to compute isosurfaces in di-
mensions higher than three using an algo-
rithm similar to marching cubes. D’Zmura
et al. [2000] describe a system that displays
3D cross-sections of a 4D virtual world one
at a time.

Similar to the methods described above,
Hollasch [1991] gives a simple formula-
tion to describe the 4D to 3D projections,
which is itself based on the 3D to 2D ortho-
graphic and perspective projection meth-
ods described by Foley and Nielson [1992].
This is the method that we extend to define
𝑛-dimensional versions of these projections
and is thus explained in greater detail be-
low. The mathematical notation is however
changed slightly so as to have a cleaner ex-
tension to higher dimensions.

In order to apply the required transforma-
tions, Hollasch [1991] first defines a point
𝑓𝑟𝑜𝑚 ∈ ℝ􏷣 where the viewer (or camera) is
located, a point 𝑡𝑜 ∈ ℝ􏷣 that the viewer di-
rectly points towards, and a set of two vec-
tors 􏹎𝑢𝑝 and 􏹏𝑜𝑣𝑒𝑟. Based on these variables,
he defines a set of four unit vectors 𝑎̂, 𝑏̂, 𝑐̂
and ̂𝑑 that define the axes of a 4D coordinate
system centred at the 𝑓𝑟𝑜𝑚 point. These
are ensured to be orthogonal by using the
4D cross-product to compute them, such
that:

̂𝑑 = 𝑡𝑜 − 𝑓𝑟𝑜𝑚
􏿎𝑡𝑜 − 𝑓𝑟𝑜𝑚􏿎

𝑎̂ = 𝑢𝑝 × 𝑜𝑣𝑒𝑟 × ̂𝑑
􏿎𝑢𝑝 × 𝑜𝑣𝑒𝑟 × ̂𝑑􏿎

𝑏̂ = 𝑜𝑣𝑒𝑟 × ̂𝑑 × 𝑎̂
􏿎𝑜𝑣𝑒𝑟 × ̂𝑑 × 𝑎̂􏿎

𝑐̂ = ̂𝑑 × 𝑎̂ × 𝑏̂

Note two aspects in the equations above: (i)
that the input vectors 􏹎𝑢𝑝 and 􏹏𝑜𝑣𝑒𝑟 are leftun-
changed (i.e. 𝑏̂ = 􏹎𝑢𝑝 and 𝑐̂ = 􏹏𝑜𝑣𝑒𝑟) if they
are already orthogonal to each other and or-
thogonal to the vector from 𝑓𝑟𝑜𝑚 to 𝑡𝑜 (i.e.
𝑡𝑜 − 𝑓𝑟𝑜𝑚), and (ii) that the last vector 𝑐̂ does
not need to be normalised since the cross-
product already returns a unit vector. These
newunit vectors can thenbeused todefine a
transformation matrix to transform the 4D
coordinates into a new set of points 𝐸 (as
in eye coordinates) with a coordinate system
with the viewer at its centre and oriented ac-
cording to the unit vectors. The points are
given by:

𝐸 = 􏿮𝑃 − 𝑓𝑟𝑜𝑚􏿱 􏿮𝑎̂ 𝑏̂ 𝑐̂ ̂𝑑􏿱

For an orthographic projection given 𝐸 =
[𝑒􏷩 𝑒􏷪𝑒􏷫 𝑒􏷬], the first three columns 𝑒􏷟, 𝑒􏷠 and
𝑒􏷡 can be used as-is, while the fourth col-
umn 𝑒􏷢 defines the orthogonal distance to
the viewer (i.e. the depth). Finally, in order
to obtain a perspective projection, he scales
the points inwards in direct proportion to

6

their depth. Starting from 𝐸, he computes
𝐸′ = [𝑒′􏷩 𝑒′􏷪𝑒′􏷫 𝑒′􏷬] as:

𝑒′􏷟 =
𝑒􏷟

𝑒􏷢 tan𝜗/2
𝑒′􏷠 =

𝑒􏷠
𝑒􏷢 tan𝜗/2

𝑒′􏷡 =
𝑒􏷡

𝑒􏷢 tan𝜗/2
𝑒′􏷢 = 𝑒􏷢

Where 𝜗 is the viewing angle between 𝑥 and
the line between the 𝑓𝑟𝑜𝑚 point and every
point as shown in Figure 2. A similar com-
putation is done for 𝑦 and 𝑧. In 𝐸′, the first
three columns (i.e. 𝑒′􏷟, 𝑒′􏷠 and 𝑒′􏷡) similarly
give the 3D coordinates for a perspective
projection of the 4D points while the fourth
column is also the depth of the point.

Figure 2: The geometry of a 4D perspective
projection along the 𝑥 axis for a
point 𝑝. By analysing the depth
along the depth axis given by 𝑒􏷢, it
is possible to see that the coordi-
nates of the point along the 𝑥 axis,
given by 𝑒􏷟, are scaled inwards in
order to obtain 𝑒′􏷟 based on the
viewing angle 𝜗. Note that 𝑥̂𝑛−􏷠
is an arbitrary viewinghyperplane
and another value can be used just
as well.

Methodology

We present here three different projections
from ℝ𝑛 to ℝ𝑛−􏷠 which can be applied it-
eratively to bring objects of any dimension

down to 3D for display. We three projec-
tions that are reasonably intuitive in 4D to
3D: a ‘long axis’ projection that puts 3D ob-
jects side by side, the orthographic and per-
spective projections that work in the same
way as their 3D to 2D analogues, and a pro-
jection to an (𝑛 − 1)-sphere followed by a
stereographic projection to ℝ𝑛−􏷠.

‘Long axis’ projection

First we aim to replicate the idea behind the
example previously shown in Figure 1—a
series of 3D objects that are shown next to
each other, seemingly projected separately
with the correspondences across scale or
time shown as long edges (as in Figure 1)
or faces connecting the 3D objects. Edges
would join correspondences between ver-
tices across the models, while faces would
join correspondences between elements of
dimension up to one (e.g. a pair of edges,
or an edge and a vertex). Since every 3D
object is apparently projected separately us-
ing a perspective projection to 2D, it is thus
shown in the same intuitive way in which
a single 3D object is projected down to 2D.
The result of this projection is shown in Fig-
ure 3 for themodel previously shown in Fig-
ure 1 and in Figure 4 for a 4D model using
3D space with time.

Although to the best of our knowledge
this projection does not have a well-known
name, it is widely used in explanations
of 4D and 𝑛D geometry—especially when
drawn by hand or when the intent is to fo-
cus on the connectivity between different
elements. For instance, it is usually used
in the typical explanation for how to con-
struct a tesseract, i.e. a 4-cube or the 4D ana-
logue of a 2D square or 3D cube, which is
based on drawing two cubes and connecting
the corresponding vertices between the two
(Figure 5). Among other examples in the
scientific literature, this kind of projection
can be seen in Figure 2 in Yau and Srihari
[1983], Figure 3.4 inHollasch [1991], Figure
3 in Banchoff and Cervone [1992], Figures
1–4 in Arenas and Pérez-Aguila [2006], Fig-
ure 6 in Grasset-Simon et al. [2006], Figure
1 in Paul [2012] and Figure 16 in van Oost-
erom and Meijers [2014].

7

(A) (B) (C)

Figure 3: A model of a 4D house similar to the example shown previously in Figure 1, here
including also a window and a door that are collapsed to a vertex in the 3D object
at the lower level of detail. (A) shows the two 3D objects positioned as in Fig-
ure 1, (B) rotates these models 90∘ so that the front of the house is on the right,
and (C) orients the two 3D objects front to back. Many more interesting views
are possible, but these show the correspondences particularly clearly. Unlike the
othermodel, this onewas generatedwith 4D coordinates and projected using our
prototype that applies the projection described in this section.

(A) (B)

Figure 4: We take (A) a simple 3D model of two buildings connected by an elevated cor-
ridor, and model it in 4D such that the two buildings exist during a time inter-
val [−1, 1] and the corridor only exists during [−0.67, 0.67], resulting in (B) a 4D
model shown here in a ‘long axis’ projection. The two buildings are shown in
blue and green for clarity. Note how this model shows more saturated colours
due to the higher number of faces that overlap in it.

Conceptually, describing this projection
from 𝑛 to 𝑛 − 1 dimensions, which we here-
after refer to as a ‘long axis’ projection, is
very simple. Considering a set of points𝑃 in
ℝ𝑛, the projected set of points 𝑃′ in ℝ𝑛−􏷠 is
given by taking the coordinates of 𝑃 for the
first 𝑛 − 1 axes and adding to them the last
coordinate of 𝑃 which is spread over all co-
ordinates according to weights specified in
a customisable vector 𝑥̂𝑛. For instance, Fig-
ure 3 uses 𝑥̂𝑛 = [􏷡 􏷟 􏷟], resulting in 3D mod-
els that are 2 units displaced for every unit
in which they are apart along the 𝑛-th axis.
In matrix form, this kind of projection can
then be applied as 𝑃′ = 𝑃[𝐼 𝑥̂𝑛].

Orthographic and perspective
projections

Another reasonably intuitive pair of projec-
tions are the orthographic and perspective
projections from 𝑛D to (𝑛 − 1)D. These treat
all axes similarly and thus make it more dif-
ficult to see the different (𝑛−1)-dimensional
models along the𝑛-th axis, but they result in
models that are much less deformed. Also,
as shown in the 4D example in Figure 6, it is
easy to rotate models in such a way that the
corresponding features are easily seen.

Based on the description of 4D-to-3D or-
thographic and perspective projection de-
scribed from Hollasch [1991], we here ex-

8

Figure 5: The typical explanation for how to
draw the vertices and edges in an 𝑖-
cube. Starting from a single vertex
representing a point (i.e. a 0-cube),
an (𝑖 + 1)-cube can be created by
drawing two 𝑖-cubes and connect-
ing the corresponding vertices of
the two. Image credit: Wikimedia
Commons.

tend the method in order to describe the
𝑛-dimensional to (𝑛 − 1)-dimensional case,
changing some aspects to give a clearer ge-
ometric meaning for each vector.

Similarly, we start with a point 𝑓𝑟𝑜𝑚 ∈ ℝ𝑛

where the viewer is located, a point 𝑡𝑜 ∈
ℝ𝑛 that the viewer directly points towards
(which can be easily set to the centre or cen-
troid of the dataset), and a set of 𝑛 − 2 ini-
tial vectors 𝑣⃗􏷠, … , 𝑣⃗𝑛−􏷡 in ℝ𝑛 that are not all
necessarily orthogonal but nevertheless are
linearly independent from each other and
from the vector 𝑡𝑜 − 𝑓𝑟𝑜𝑚. In this setup, the
𝑣⃗𝑖 vectors serve as a base to define the ori-
entation of the system, much like the tradi-
tional 􏹎𝑢𝑝 vector that is used in 3D to 2D pro-
jections and the 􏹏𝑜𝑣𝑒𝑟 vector described pre-
viously. From the above mentioned vari-
ables and using the 𝑛D cross-product, it is
possible to define a new set of orthogonal
unit vectors 𝑥̂􏷟, … , 𝑥̂𝑛−􏷠 that define the axes
𝑥􏷟, … , 𝑥𝑛−􏷠 of a coordinate system inℝ𝑛 as:

𝑥̂𝑛−􏷪 =
𝑡𝑜 − 𝑓𝑟𝑜𝑚
􏿎𝑡𝑜 − 𝑓𝑟𝑜𝑚􏿎

𝑥̂􏷩 =
𝑣⃗􏷪 ×⋯× 𝑣⃗𝑛−􏷫 × 𝑥̂𝑛−􏷪
􏿎𝑣⃗􏷪 ×⋯× 𝑣⃗𝑛−􏷫 × 𝑥̂𝑛−􏷪􏿎

𝑥̂𝑖 =
𝑣⃗𝑖+􏷪 ×⋯× 𝑣⃗𝑛−􏷫 × 𝑥̂𝑛−􏷪 × 𝑥̂􏷩 ×⋯× 𝑥̂𝑖−􏷪
􏿎𝑣⃗𝑖+􏷪 ×⋯× 𝑣⃗𝑛−􏷫 × 𝑥̂𝑛−􏷪 × 𝑥̂􏷩 ×⋯× 𝑥̂𝑖−􏷪􏿎

𝑥̂𝑛−􏷫 = 𝑥̂𝑛−􏷪 × 𝑥̂􏷩 ×⋯× 𝑥̂𝑛−􏷫

The vector 𝑥̂𝑛−􏷠 is the first that needs to be
computed and is oriented along the line
from the viewer (𝑓𝑟𝑜𝑚) to the point that it
is oriented towards (𝑡𝑜). Afterwards, the vec-
tors are computed in order from 𝑥̂􏷟 to 𝑥̂𝑛−􏷡 as
normalised 𝑛-dimensional cross products
of 𝑛 − 1 vectors. These contain a mixture
of the input vectors 𝑣⃗􏷠, … , 𝑣⃗𝑛−􏷡 and the com-
puted unit vectors 𝑥̂􏷟, … , 𝑥̂𝑛−􏷠, starting from
𝑛−2 input vectors andoneunit vector for 𝑥̂􏷟,
and removing one input vector and adding
the previously computed unit vector for the
next 𝑥̂𝑖 vector. Note that if 𝑣⃗􏷠, … , 𝑣⃗𝑛−􏷡 and
𝑥̂𝑛−􏷠 are all orthogonal to each other, ∀0 <
𝑖 < 𝑛 − 1, 𝑥̂𝑖 is simply a normalised 𝑣⃗𝑖.
Like in the previous case, the vectors
𝑥̂􏷟, … , 𝑥̂𝑛−􏷠 can then be used to transform an
𝑚×𝑛matrix of𝑚𝑛Dpoints inworld coordi-
nates 𝑃 into an𝑚×𝑛matrix of𝑚 𝑛D points
in eye coordinates 𝐸 by applying the follow-
ing transformation:

𝐸 = 􏿮𝑃 − 𝑓𝑟𝑜𝑚􏿱 􏿮𝑥̂􏷟 ⋯ 𝑥̂𝑛−􏷠􏿱

As before, if 𝐸 has rows of the form
[𝑒􏷩 ⋯ 𝑒𝑛−􏷪] representing points, 𝑒􏷟, … , 𝑒𝑛−􏷡
are directly usable as the coordinates
in ℝ𝑛−􏷠 of the projected point in an
𝑛-dimensional to (𝑛 − 1)-dimensional
orthographic projection, while 𝑒𝑛−􏷠 repre-
sents the depth, i.e. the distance between
the point and the projection (𝑛 − 1)-
dimensional subspace, which can be used
for visual cues2. The coordinates along
𝑒􏷟, … , 𝑒𝑛−􏷡 could be made to fit within a
certain bounding box by computing their
extent along each axis, then scaling appro-
priately using the extent that is largest in
proportion to the extent of the bounding
box’s corresponding axis.

For an 𝑛-dimensional to (𝑛−1)-dimensional
perspective projection, it is only necessary
to compute the distance between a point
and the viewer along every axis by tak-
ing into account the viewing angle 𝜗 be-
tween 𝑥̂𝑛−􏷠 and the line between the 𝑡𝑜 point
and every point. Intuitively, this means
that if an object is 𝑛 times farther than an-
other identical object, it is depicted 𝑛 times
2Visual cues can still be useful in higher dimen-

sions. See http://eusebeia.dyndns.org/4d/vis/
08-hsr.

9

http://eusebeia.dyndns.org/4d/vis/08-hsr
http://eusebeia.dyndns.org/4d/vis/08-hsr

(D) (E) (F)

(A) (B) (C)

Figure 6: (A–C) The 4D house model and (D–F) the two buildings model projected down
to 3D using an orthographic projection. The different views are obtained by ap-
plying different rotations in 4D. The less and more detailed 3D models can be
found by looking at where the door and window are collapsed.

smaller, or 􏷠
𝑛 of its size. This situation

is shown in Figure 7 and results in new
𝑒′􏷟, … , 𝑒′𝑛−􏷡 coordinates that are shifted in-
wards. The coordinates are computed as:

𝑒′𝑖 =
𝑒𝑖

𝑒𝑛−􏷠 tan𝜗/2
, for 0 ≤ 𝑖 ≤ 𝑛 − 2

The (𝑛 − 1)-dimensional coordinates gener-
ated by this process can then be recursively
projected down to progressively lower di-
mensions using this method. The objects
represented by these coordinates can also
be discretised into images of any dimen-
sion. For instance,Hanson [1994] describes
how to perform many of the operations

that would be required, such as dimension-
independent clipping tests and ray-tracing
methods.

Stereographic projection

A final projection possibility is to apply a
stereographic projection from ℝ𝑛 to ℝ𝑛−􏷠,
which for us was partly inspired by Jenn 3D3

(Figure 8). This program visualises poly-
hedra and polychora embedded in ℝ􏷣 by
first projecting them inwards/outwards to

3http://www.math.cmu.edu/~fho/jenn/

10

http://www.math.cmu.edu/~fho/jenn/

Figure 7: The geometry of an 𝑛D perspec-
tive projection for a point 𝑝. By
analysing each axis 𝑥̂𝑖 (∀0 ≤ 𝑖 <
𝑛−1) independently together with
the final axis 𝑥̂𝑛−􏷠, it is possible
to see that the coordinates of the
point along that axis, given by 𝑒𝑖,
are scaled inwards based on the
viewing angle 𝜗.

the volume of a 3-sphere4 and then project-
ing them stereographically to ℝ􏷢, resulting
in curved edges, faces and volumes.

(A) (B)

Figure 8: A polyhedron and a polychoron in
Jenn 3D: (A) a cube and (B) a 24-
cell.

In a dimension-independent form, this
type of projection can be easily done by
considering the angles 𝜗􏷟, … , 𝜗𝑛−􏷡 in an 𝑛-
dimensional spherical coordinate system. Steeb
[2011, §12.2] formulates such a system as:

𝑟 = √𝑥􏷫􏷩 +⋯+ 𝑥􏷫𝑛−􏷪

𝜗𝑖 = 􏸂􏸎􏸒−􏷪
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑥𝑖

√𝑟􏷫 − ∑𝑖−􏷪
𝑗=􏷩 𝑥

􏷫
𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, 􏸅􏸎􏸑 􏷟 ≤ 𝑖 < 𝑛 − 􏷡

𝜗𝑛−􏷫 = 􏸓􏸀􏸍−􏷪 􏿶
𝑥𝑛−􏷪
𝑥𝑛−􏷫

􏿹

4Intuitively, anunboundedvolume thatwraps around
itself, much like a 2-sphere can be seen as an un-
bounded surface that wraps around itself.

It is worth to note that the radius 𝑟 of such a
coordinate system is a measure of the depth
with respect to the projection (𝑛 − 1)-sphere
𝑆𝑛−􏷠 and can be used similarly to the pre-
vious projection examples. The points can
then be converted back into points on the
surface of an (𝑛 − 1)-sphere of radius 1 by
making 𝑟 = 1 and applying the inverse
transformation. Steeb [2011, §12.2] formu-
lates it as:

𝑥𝑖 = 𝑟 cos 𝜗𝑖

𝑖−􏷠
􏾟
𝑗=􏷟

sin 𝜗𝑗, for 0 ≤ 𝑖 < 𝑛 − 2

𝑥𝑛−􏷠 = 𝑟
𝑛−􏷡
􏾟
𝑗=􏷟

sin 𝜗𝑗

The next step, a stereographic projection,
is also easy to apply in higher dimen-
sions,mapping an (𝑛+1)-dimensional point
𝑥 = (𝑥􏷟, … , 𝑥𝑛) on an 𝑛-sphere 𝑆𝑛 to an
𝑛-dimensional point 𝑥′ = (𝑥􏷟, … , 𝑥𝑛−􏷠)
in the 𝑛-dimensional Euclidean space ℝ𝑛.
Chisholm [2000] formulates this projection
as:

𝑥′𝑖 =
𝑥𝑖

𝑥𝑛 − 1, for 0 ≤ 𝑖 < 𝑛

The stereographic projection from 𝑛D to
(𝑛 − 1)D is particularly intuitive because it
results in the 𝑛-th axis being converted into
an inwards-outwards axis. As shown in Fig-
ure 9, when it is applied to scale, this results
in models that decrease or increase in de-
tail as one moves inwards or outwards. The
case with time is similar: as one moves in-
wards/outwards, it is easy to see the state of
a model at a time before/after.

Results

We have implemented a small prototype for
an interactive viewer of arbitrary 4D objects

11

(A) (B)

Figure 9: (A) The 4D house model and (B) the two buildings model projected first in-
wards/outwards to the closest point on the 3-sphere 𝑆􏷢 and then stereographi-
cally toℝ􏷢. The round surfaces are obtained by first refining every face in the 4D
models.

that performs the three projections previ-
ously described. It was used to generate Fig-
ures 3, 6 and 9, which were obtained by
moving around the scene, zooming in/out
and capturing screenshots using the soft-
ware.

The prototype was implemented using part
of the codebase of azul5 and is written in
a combination of Swift 3 and C++11 using
Metal—a low-level and low-overhead graph-
ics API—under macOS 10.126. By using
Metal, we are able to project and display ob-
jects with several thousand polygons with
minimal visual lag on a standard computer.
Its source code is available under the GPLv3
licence at https://github.com/kenohori/
azul4d.

We take advantage of the fact that the Metal
Shading Language—as well as most other
linear algebra libraries intended for com-
puter graphics—has appropriate data struc-
tures for 4D geometries and linear algebra
operations with vectors andmatrices of size
up to four. While these are normally in-
tended for use with homogeneous coordi-
nates in 3D space, they can be used to do
various operations in 4D space with mi-
nor modifications and by reimplementing
some operations.

5https://github.com/tudelft3d/azul
6https://developer.apple.com/metal/

Unfortunately, this programming trick also
means that extending the current proto-
type to dimensions higher than four re-
quires additional work and rather cum-
bersome programming. However, imple-
menting these operations in a dimension-
independent way is rather not difficult out-
side in a more flexible programming en-
vironment. For instance, Figure 10 shows
how a double stereographic projection can
be used to reduce the dimensionality of an
object from 5D to 3D. This figure was gen-
erated in a separate C++ program which ex-
ports its results to an OBJ file. The models
were afterwards rendered in Blender7.

In our prototype, we only consider the
vertices, edges and faces of the 4D ob-
jects, as the higher-dimensional 3D and 4D
primitives—whose 0D, 1D and 2D bound-
aries are however shown—would readily ob-
scure each other in any sort of 2D or 3D
visualisation [Banks, 1992]. Every face of
an object is thus stored as a sequence of
vertices with coordinates in ℝ􏷣 and is ap-
pended with an RGBA colour attribute with
possible transparency. The alpha value of
each face is used see all faces at once, as they
would otherwise overlap with each other on
the screen.

The 4D models were manually constructed

7https://www.blender.org

12

https://github.com/kenohori/azul4d
https://github.com/kenohori/azul4d
https://github.com/tudelft3d/azul
https://developer.apple.com/metal/
https://www.blender.org

(A) (B)

Figure 10: (A) A stereographic projection of a 4-orthoplex and (B) a double stereographic
projection of a 5-orthoplex. The family of orthoplexes contains the analogue
shapes of a 2D square or a 3D octahedron.

based on defining their vertices with 4D co-
ordinates and their faces as successions of
vertices. In addition to the 4D house pre-
viously shown, we built a simpler tesser-
act for testing. As built, the tesseract con-
sists of 16 vertices and 24 vertices, while
the 4D house consists of 24 vertices and 43
faces. However, we used the face refining
process described below to test our proto-
type with models with up to a few thousand
faces. Once created, the models were still
displayed and manipulated smoothly.

To start, we preprocess a 4D model by tri-
angulating and possibly refining each face,
which makes it possible to display concave
faces and to properly see the curved shapes
that are caused by the stereographic projec-
tion previously described. For this, we first
compute the plane passing through the first
three points of each face8 and project each
point fromℝ􏷣 to a new coordinate system in
ℝ􏷡 on theplane. We then triangulate and re-
fine separately each face inℝ􏷡 with the help
of a few packages of the Computational Ge-
ometry Algorithms Library (CGAL)9, and
thenwe reproject the results back to the pre-
viously computed plane in ℝ􏷣.

8This is sufficient for our purposes, but other
applications would need to find three linearly-
independent points or to use a more computation-
ally expensive method that finds the best fitting
plane for the face.

9http://www.cgal.org

We then use a Metal Shading Language
compute shader—a technique to perform
general-purpose computing on graphics
processing units (GPGPU)—in order to ap-
ply the desired projection from ℝ􏷣 to ℝ􏷢.
The three different projections presented
previously are each implemented as a com-
pute shader. By doing so, it is easier to run
them as separate computations outside the
graphics pipeline, to then extract the pro-
jected ℝ􏷢 vertex coordinates of every face
and use them to generate separate repre-
sentations of their bounding edges and ver-
tices10. Using their projected coordinates
in ℝ􏷢, the edges and vertices surrounding
each face are thus displayed respectively as
possibly refined line segments and as icosa-
hedral approximations of spheres (i.e. ico-
spheres).

Finally, we use a standard perspective pro-
jection in a Metal vertex shader to display
the projected model with all its faces, edges
and vertices. We use a couple of tricks in
order to keep the process fast and as par-
allel as possible: separate threads for each
CPU process (the generation of the ver-
tex and edge geometries and the modifi-
cation of the projection matrices accord-
ing to user interaction) and GPU process

10An alternative would be to embed these in 4D from
the beginning, but it would result in distorted
shapes dependingon their position andorientation
due to the extra degrees of rotational freedom inℝ􏷭.

13

http://www.cgal.org

(4D-to-3D projection and 3D-to-2D projec-
tion for display), and blending with order-
independent transparency without depth
checks. For complex models, this results
in a small lag where the vertices and edges
move slightly after the faces.

In the current prototype, we have imple-
mented a couple functions to interact with
the model: rotations in 4D and transla-
tions in 3D. In 4D, the user can rotate
the model around the 6 possible rotation
planes by clicking anddraggingwhile press-
ing different modifier keys. In 3D, it
is possible to move a model around us-
ing 2D scrolling on a touchpad to shift
it left/right/up/down and using pinch ges-
tures to shift it backward/forward (accord-
ing to the current view).

Discussion and conclusions

Visualising complete 4D and 𝑛D objects
projected to 3D and displayed in 2D is often
unintuitive, but it enables analysing higher-
dimensional objects in a thorough manner
that cross-sections do not. The three projec-
tions we have shown here are nevertheless
reasonably intuitive due to their similar-
ity to common projections from 3D to 2D,
the relatively small distortions in the mod-
els and the existence of a clear fourth axis.
They also have a dimension-independent
formulation.

There are however many other types of in-
teresting projections that can be defined in
any dimension, such as the equirectangu-
lar projection where evenly spaced angles
along a rotation plane can be directly con-
verted into evenly spaced coordinates—in
this case covering 180∘ vertically and 360∘
horizontally. Extending such a projection
to 𝑛D would result in an 𝑛-orthotope, such
as a (filled) rectangle in 2D or a cuboid (i.e.
a box) in 3D.

By applying the projections shown in this
paper to4Dobjects depicting 3Dobjects that
change in time or scale, it is possible to see
at once all correspondences between differ-
ent elements of the 3D objects and the topo-
logical relationships between them.

Compared to other 4D visualisation tech-
niques, we opt for a rather minimal ap-
proach without lighting and shading. In
our application, we believe that this is opti-
mal due to better performance and because
itmakes for simpler-looking andmore intu-
itive output. In this manner, progressively
darker shades of a colour are a good visual
cue for the number of faces of the same
colour that are visually overlapping at any
given point. Since we apply the projection
from 4D to 3D in the GPU, it is not efficient
to extract the surfaces again inorder to com-
pute the 3Dnormals required for lighting in
3D, while lighting in 4D results in unintu-
itive visual cues.

Acknowledgements

This research is supported by the Dutch
Technology Foundation STW, which is part
of the Netherlands Organisation for Scien-
tific Research (NWO), and which is partly
funded by the Ministry of Economic Af-
fairs (Project code: 11300). This project
has received funding from the European
Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and
innovation programme (grant agreement
No 677312 UMnD).

References

Edwin A. Abbott. Flatland: A Romance of
Many Dimensions. Seely & Co., 1884.

Serge Abiteboul and Richard Hull. Update
propagation in the IFO database model.
In Sakti P. Ghosh, Yahiko Kambayashi,
and Katsumi Tanaka, editors, Founda-
tions of Data Organization, pages 319–331.
Springer US, 1987.

Yaxal Arenas and Ricardo Pérez-Aguila. Vi-
sualizing 3Dprojections of higher dimen-
sional polytopes: An approach linking art
and computers. In Memorias del Cuarto
Congreso Nacional de Ciencias de la Com-
putacion, 2006.

14

Marc P. Armstrong. Temporality in spa-
tial databases. In GIS/LIS ’88 : proceed-
ings : accessing the world : third annual In-
ternational Conference, Exhibits, and Work-
shops, pages 880–889. American Society
for Photogrammetry and Remote Sens-
ing, 1988.

Ken Arroyo Ohori. Higher-dimensional mod-
elling of geographic information. PhD the-
sis, Delft University of Technology, apr
2016.

Ken Arroyo Ohori, Pawel Boguslawski, and
Hugo Ledoux. Representing the dual
of objects in a four-dimensional GIS.
In A. Abdul Rahman, P. Boguslawski,
C. Gold, and M.N. Said, editors, Devel-
opments in Multidimensional Spatial Data
Models, Lecture Notes in Geoinformation
and Cartography, pages 17–31. Springer
BerlinHeidelberg, JohorBahru,Malaysia,
May 2013.

Ken Arroyo Ohori, Guillaume Damiand,
and Hugo Ledoux. Constructing an n-
dimensional cell complex from a soup
of (n-1)-dimensional faces. In Prosen-
jit Gupta and Christos Zaroliagis, editors,
Applied Algorithms. First International Con-
ference, ICAA 2014, Kolkata, India, January
13-15, 2014. Proceedings, volume 8321 of
Lecture Notes in Computer Science, pages
37–48. Springer International Publishing
Switzerland, Kolkata, India, January 2014.

Ken Arroyo Ohori, Hugo Ledoux, Filip Bil-
jecki, and Jantien Stoter. Modelling a 3D
city model and its levels of detail as a true
4D model. ISPRS International Journal of
Geo-Information, 4(3):1055–1075, Septem-
ber 2015a.

Ken Arroyo Ohori, Hugo Ledoux, and
Jantien Stoter. An evaluation and clas-
sification of nD topological data struc-
tures for the representation of objects in
a higher-dimensional GIS. International
Journal of Geographical Information Science,
29(5):825–849, May 2015b.

Ken Arroyo Ohori, Hugo Ledoux, and
Jantien Stoter. Storing a 3D city model,
its levels of detail and the correspon-
dences between objects as a 4D combi-
natorial map. In Alias Abdul Rahman,

Umit Isikdag, and Francesc Antón Cas-
tro, editors, Joint International Geoinforma-
tion Conference 2015, 28–30 October 2015,
Kuala Lumpur, Malaysia, volume II–2/W2
of ISPRS Annals of the Photogrammetry, Re-
mote Sensing and Spatial Information Sci-
ences, pages 1–8, Kuala Lumpur, Malaysia,
October 2015c. ISPRS.

Ken Arroyo Ohori, Hugo Ledoux, and
Jantien Stoter. Modelling and manipulat-
ing spacetime objects in a true 4D model.
Journal of Spatial Information Science, 14,
2017.

Dana H. Ballard. Strip trees: A hierarchi-
cal representation for curves. Communica-
tions of the ACM, 24(5):310–321, May 1981.

Thomas Banchoff and Davide P. Cervone.
Illustrating beyond the third dimension.
Leonardo, 25(3–4):273–280, 1992.

Thomas F. Banchoff. Beyond the Third Di-
mension: Geometry, Computer Graphics, and
Higher Dimensions. Scientific American
Library Series, 1996.

David Banks. Interactive manipulation and
display of surfaces in four dimensions. In
I3D ’92 Proceedings of the 1992 symposium
on Interactive 3D graphics, pages 197–207.
ACM, 1992.

Clifford M. Beshers and Steven K. Feiner.
Real-time 4D animation on a 3D graph-
ics workstation. In Graphics Interface ’88,
pages 1–7. CHCCS/SCDHM, 1988.

Praveen Bhaniramka, Rephael Wenger, and
Roger Crawfis. Isosurfacing in higher di-
mensions. InVIS ’00 Proceedings of the con-
ference on Visualization ’00. IEEE, 2000.

H. Bieri and W. Nef. Elementary set op-
erations with 𝑑-dimensional polyhedra.
In Hartmut Noltemeier, editor, Compu-
tational Geometry and its Applications, vol-
ume 333 of Lecture Notes in Computer Sci-
ence, pages 97–112. Springer Berlin Hei-
delberg, 1988.

Erik Brisson. Representing geometric struc-
tures in d dimensions: topology and or-
der. Discrete & Computational Geometry, 9:
387–426, 1993.

15

Barbara P. Buttenfield and Joseph S. De-
Lotto. Multiple representations: Sci-
entific report for the specialist meeting.
Technical Report 89–3, National Center
for Geographic Information and Analy-
sis, 1989.

Matt Chisholm. The sphere in three
dimensions and higher: Generaliza-
tions and special cases. Available
at https://theory.org/geotopo/
3-sphere/3-sphere.ps, May 2000.

Nicholas R. Chrisman. The role of quality
information in the long-term function-
ing of a geographic information system.
Cartographica, 1983.

Alan Chu, Chi-Wing Fu, Andrew J. Hanson,
and Pheng-Ann Heng. GL4D: A GPU-
based architecture for interactive 4D vi-
sualization. In IEEE Transactions on Visual-
ization and Computer Graphics, volume 15,
pages 1587–1594. IEEE, 2009.

Lidija Čomić and Leila de Floriani. Model-
ing andManipulating Cell Complexes in Two,
Three and Higher Dimensions, volume 2 of
Lecture Notes in Computational Vision and
Biomechanics, chapter 4, pages 109–144.
Springer, 2012.

René Descartes. Discours de la méthode. Jan
Maire, Leyde, 1637.

Michael D’Zmura, Philippe Colantoni, and
Gregory Seyranian. Virtual environ-
ments with four or more spatial dimen-
sions. Presence, 9(6):616==631, 2000.

Alberto Elduque. Vector cross products.
Talk presented at the Seminario Rubio de
Francia of the Universidad de Zaragoza
on April 1, 2004, April 2004.

Steven Feiner and Clifford Beshers. Visu-
alizing 𝑛-dimensional virtual worlds with
𝑛-vision. In Proceedings of the 1990 sym-
posium on Interactive 3D graphics, pages 37–
38. ACM, 1990.

Waldemar Celes Filho, Luiz Henrique
de Figueiredo, Marcelo Gattass, and
Paulo Cezar Carvalho. A topological
data structure for hierarchical planar
subdivisions. Technical Report CS-95-
53, Department of Computer Science,
University of Waterloo, 1995.

James D. Foley, Andries van Dam, Steven K.
Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice in C.
Addison-Wesley Professional, 1995.

Thomas A. Foley and Gregory M. Niel-
son. Practical techniques for producing
3D graphical images. In John Black, ed-
itor, The System Engineer’s Handbook: A
guide to building VMEbus and VXIbus sys-
tems, chapter 19, pages 223–237. Academic
Press, 1992.

Andrew U. Frank. Four-dimensional repre-
sentation in human cognition and diffi-
culties with demonstrations: A commen-
tary on wang. Spatial Cognition & Compu-
tation, 14:114–120, 2014.

Anders Friis-Christensen and Christian S.
Jensen. Object-relational management of
multiply represented geographic entities.
In Proceedings of the 15th International Con-
ference on Scientific and Statistical Database
Management, pages 150–159. IEEE Com-
puter Society, 2003.

Erik W. Grafarend and Rey-Jer You. Map
Projections: Cartographic Information Sys-
tems. Springer-VerlagBerlinHeidelber,
2014.

Carine Grasset-Simon, Guillaume
Damiand, and Pascal Lienhardt. nd
generalized map pyramids: definition,
representations and basic operations.
Pattern Recognition, 39(4):527–538, 2006.

Gerhard Gröger, Thomas H. Kolbe, Claus
Nagel, and Karl-HeizHäfele. OGCCityGe-
ography Markup Language (CityGML) En-
coding Standard. Version 2.0.0. Open
Geospatial Consortium, April 2012.

Leonidas J. Guibas and Jorge Stolfi. Prim-
itives for the manipulation of general
subdivisions and the computation of
Voronoi diagrams. ACM Transactions on
Graphics, 4(2):74–123, 1985.

Oliver Günther. The arc tree: An ap-
proximation scheme to represent arbi-
trary curved shapes. In Efficient structures
for geometric data management, volume 337
of Lecture Notes in Computer Science, chap-
ter 6, pages 85–121. Springer Berlin Hei-
delberg, 1988.

16

https://theory.org/geotopo/3-sphere/3-sphere.ps
https://theory.org/geotopo/3-sphere/3-sphere.ps

Ralf Hartmut Güting, Michael H. Böhlen,
Martin Erwig, Christian S. Jensen,
Nikos A. Lorentzos, Markus Schneider,
and Michalis Vazirgiannis. A foundation
for representing and querying moving
objects. ACM Transactions on Database
Systems, 25(1):1–42, March 2000.

Torsten Hägerstrand. What about people in
regional science? Papers of the Regional
Science Association, 24(1):6–21, 1970.

Torill Hamre, Khalid Azim Mughal, and
Anita Jacob. A 4Dmarine datamodel: De-
sign and application in ice monitoring.
Marine Geodesy, 20(2–3):121–136, 1997.

Henning Østergård Hansen and Niels Jør-
gen Christensen. A model for 𝑛-
dimensional boundary topology. In
Proceedings of the 2nd ACM Symposium on
Solid Modelling and Applications. ACM,
1993.

Andrew J. Hanson. Geometry for 𝑛-
dimensional graphics. In Paul S. Heck-
bert, editor, Graphics Gems IV, chapter
II.6, pages 149–170. Academic Press Pro-
fessional, 1994.

Andrew J. Hanson and Robert A. Cross. In-
teractive visualization methods for four
dimensions. In VIS ’93 Proceedings of the
4th conference on Visualization ’93, pages
196–203. ACM, 1993.

Andrew J. Hanson, Konstantine I. Ishkov,
and JeffH.Ma. Meshview: Visualizing the
fourth dimension. Technical report, Indi-
ana University, 1999.

Charles Howard Hinton. A New Era of
Thought. Swan Sonnenschein & Co. Ltd.,
1888.

Steven RichardHollasch. Four-space visual-
ization of 4D objects. Master’s thesis, Ari-
zona State University, 1991.

Kathleen Hornsby and Max J. Egenhofer.
Modeling moving objects over multiple
granularities. Annals of Mathematics and
Artificial Intelligence, 36(1–2), 2002.

C.B. Jones and I.M. Abraham. Design con-
siderations for a scale-independent carto-
graphic database. In D. Marble, editor,

Proceedings of the 2nd International Sympo-
sium on Spatial Data Handling, pages 384–
398, 1986.

Martin Kada. Scale-dependent simplifica-
tion of 3D building models based on cell
decomposition and primitive instancing.
In COSIT 2007, volume 4736 of Lecture
Notes in Computer Science, pages 222–237.
Springer-Verlag Berlin Heidelberg, 2007.

Akira Kageyama. A visualization
method of four dimensional poly-
topes by oval display of parallel hy-
perplane slices. Available at https:
//arxiv.org/pdf/1607.01102.pdf,
2016.

Menno-Jan Kraak. The space-time cube re-
visited from a geovisualization perspec-
tive. In Proceedings of the 21st International
Cartographic Conference, pages 1988–1996,
2003.

Pascal Lienhardt. 𝑛-dimensional gener-
alized combinatorial maps and cellular
quasi-manifolds. International Journal of
Computational Geometry and Applications,
4(3):275–324, 1994.

David Luebke, Martin Reddy, Jonathan D.
Cohen, Amitabh Varshney, Benjamin
Watson, and Robert Huebner. Level of De-
tail for 3D Graphics. Morgan Kaufmann
Publishers, 2003.

W. S. Massey. Cross products of vectors
in higher dimensional Euclidean spaces.
The American Mathematical Monthly, 90
(10):697–701, December 1983.

Hiroshi Masuda. Topological operators
and Boolean operations for complex-
based non-manifold geometric models.
Computer-Aided Design, 25(2), 1993.

John W. McKenzie, Ian P. Williamson, and
N.W.J. Hazelton. 4-D adaptive GIS: Justifi-
cation and methodologies. Technical re-
port, Department of Geomatics, The Uni-
versity of Melbourne, 2001.

Chris McMullen. The Visual Guide To
Extra Dimensions: Visualizing The Fourth
Dimension, Higher-Dimensional Polytopes,
And Curved Hypersurfaces. CreateSpace In-
dependent Publishing Platform, 2008.

17

https://arxiv.org/pdf/1607.01102.pdf
https://arxiv.org/pdf/1607.01102.pdf

Martijn Meijers. Variable-scale Geo-
information. PhD thesis, Delft University
of Technology, December 2011a.

Martijn Meijers. The space-scale cube: an
integrated model for 2D polygonal ar-
eas and scale. In Elfriede M. Fendel,
Hugo Ledoux, M. Rumor, and Sisi Zla-
tanova, editors, Proceedings of the 28th Ur-
ban Data Management Symposium, volume
XXXVIII-4/C21, pages 95–101, Delft, The
Netherlands, 2011b. ISPRS Archives.

D. E. Muller and F. P. Preparata. Finding
the intersection of two convex polyhedra.
Theoretical Computer Science, 7(2):217–236,
1978.

A. Michael Noll. A computer technique
for displaying n-dimensional hyperob-
jects. Communications of the ACM, 10(8):
469–473, 1967.

A. Michael Noll. Computer animation and
the fourth dimension. In Proceedings of
the December 9-11, 1968, fall joint computer
conference, part II, pages 1279–1283. ACM,
1968.

Norbert Paul. Signed simplicial decompo-
sition and overlay of n-d polytope com-
plexes. Available at http://arxiv.org/
abs/1205.5691, May 2012.

Thomas K. Peucker and Nicholas R. Chris-
man. Cartographic data strutures. The
American Cartographer, 2(1):55–69, 1975.

Donna J. Peuquet. It’s about time: A con-
ceptual framework for the representation
of temporal dynamics in geographic in-
formation systems. Annals of the Associ-
ation of American Geographers, 84(3):441–
461, 1994.

Donna J. Peuquet and Niu Duan. An
event-based spatiotemporal data model
(ESTDM) for temporal analysis of geo-
graphical data. International Journal of Ge-
ographical Information Science, 9(1):7–24,
1995.

Lutz Plümer and Gerhard Gröger. Achiev-
ing integrity in geographic information
systems—maps and nested maps. GeoIn-
formatica, 1(4):345–367, 1997.

M.H. Poincaré. Analysis situs. Journal de
l’École polytechnique, 2(1):1–123, 1895.

A. A. G. Requicha and H. B. Voelcker.
Constructive solid geometry. Technical
Memorandum 25, College of Engineer-
ing & Applied Science, The University of
Rochester, November 1977.

B. Riemann. Ueber die Hypothesen, welche
der Geometrie zu Grunde liegen. PhD
thesis, Abhandlungen der Königlichen
Gesellschaft der Wissenschaften zu Göt-
tingen, 1868.

Philippe Rigaux and Michel Scholl. Multi-
scale partitions: Application to spatial
and statistical databases. In Max J.
Egenhofer and John R. Herring, edi-
tors, Advances in Spatial Databases, vol-
ume 951 of Lecture Notes in Computer Sci-
ence, pages 170–183. Springer Berlin Hei-
delberg, 1995.

J. Rossignac and M. O’Connor. SGC:
A dimension-independent model for
pointsets with internal structures and
incomplete boundaries. In M. Wosny,
J. Turner, and K. Preiss, editors, Proceed-
ings of the IFIP Workshop on CAD/CAM,
pages 145–180, 1989.

Dave Shreiner, Graham Sellers, John
Kessenich, Bill Licea-Kane, and Khronos
ARB Working Group. OpenGL Program-
ming Guide: The Official Guide to Learning
OpenGL, Version 4.3. Addison-Wesley, 8th
edition, 2013.

John P. Snyder. Map Projections—A Working
Manual. U.S. Geological Survey, 1987.

Cathy Sohanpanah. Extension of a bound-
ary representation technique for the de-
scription of 𝑛 dimensional polytopes.
Computers & Graphics, 13(1):17–23, 1989.

Willi-Hans Steeb. The Nonlinear Workbook.
World Scientific Publishing, 5th edition,
2011.

Peter van Oosterom. Reactive Data Structures
for Geographic Information Systems. PhD
thesis, Leiden University, 1990.

Peter vanOosterom. Variable-scale topolog-
ical data structures suitable for progres-
sive data transfer: The GAP-face tree and
GAP-edge forest. Cartography and Geo-
graphic Information Science, 32(4):331–346,
2005.

18

http://arxiv.org/abs/1205.5691
http://arxiv.org/abs/1205.5691

Peter van Oosterom and Martijn Meijers.
Vario-scale data structures supporting
smooth zoom and progressive transfer of
2D and 3Ddata. International Journal of Ge-
ographical Information Science, 28:455–478,
2014.

Peter van Oosterom and Jantien Stoter. 5D
datamodelling: Full integration of 2D/3D
space, time and scale dimensions. In
Sara Irina Fabrikant, Tumasch Reichen-
bacher, Marc van Kreveld, and Christoph
Schlieder, editors, Geographic Information
Science: 6th International Conference, GI-
Science 2010, Zurich, Switzerland, Septem-
ber 14-17, 2010. Proceedings, pages 311–324.
Springer Berlin Heidelberg, 2010.

Monica Wachowicz and Richard G. Healy.
Towards temporality in GIS. In Innova-
tions in GIS. Taylor & Francis, 1994.

M.F. Worboys. A model for spatio-temporal
information. In Proceedings of the 5th In-
ternational Symposium on Spatial DataHan-
dling, pages 602–611, 1992.

Michael F. Worboys. A unified model for
spatial and temporal information. The
Computer Journal, 37(1):26–34, 1994.

Michael F. Worboys, Hilary M. Hearnshaw,
and David J. Maguire. Object-oriented
data modelling for spatial databases. In-
ternational Journal of Geographical Informa-
tion Systems, 4(4):369–383, 1990.

Mann-May Yau and Sargur N. Srihari. A hi-
erarchical data structure for multidimen-
sional digital images. Communications of
the ACM, 26(7):504–515, 1983.

19

